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SUMMARY
The nervous system in the intestine controls motility, secretion, sensory perception, and immune

function. Peptidergic neurones with neurotransmitters such as substance P and nerve growth

factors have been the main focus of neuroimmunomodulation research in the gut. This review

summarises the present knowledge concerning the role of the sympathetic nervous system (SNS)

in modulating intestinal inflammation. The role of the SNS for gut inflammation is compared

with its role in rheumatoid arthritis which demonstrates notable similarities. Nerve fibres of the

SNS not only enter the enteric plexuses but also innervate the mucosa and gut associated

lymphoid tissue (GALT). The SNS has pro- and anti-inflammatory functions. Neurotransmitters

such as norepinephrine, adenosine, and others can evoke remarkably different opposing effects

depending on concentration (presence of sympathetic nerve fibres and extent of neurotransmitter

release), receptor affinity at different receptor subtypes, expression of adrenoceptors, availability

of cotransmitters, and timing of SNS activity in relation to the inflammatory course. This review

attempts to integrate the different perspectives of the pro- and anti-inflammatory effects of the

SNS on inflammatory disease of the gut.

INTRODUCTIONc
Since the work of Selye in the 1940s, the SNS together with the hypothalamic-pituitary-adrenal

(HPA) axis was thought to play an important supportive role in the fight and flight reaction

during stressful situations (fig 1).1 In linking this important concept to inflammatory diseases,

several groups, from 1960 to the late 1980s, delineated the proinflammatory role of the SNS for

the early inflammatory response (fig 1) (for example, see Levine and colleagues2). Indeed, the

SNS is a critical proinflammatory component of neurogenic inflammation, which is particularly

evident during the first hours of induction of inflammation.3 This is most probably due to the

supportive effects of neurotransmitters on plasma extravasation and directed migration of

immune cells to sites of inflammation (summarised by Dhabhar and McEwen4).

At the beginning of the 1980s, with the appearance of in vitro immune cell culture assays for

several days and development of immunoassays for the detection of distinct proinflammatory

cytokines such as tumour necrosis factor (TNF), interferon c (IFN-c), interleukin (IL)-2, or IL-12,

important immune inhibitory effects of sympathetic neurotransmitters via b-adrenoceptors and

A2 adenosine receptors, via cyclic adenosine monophosphate (cAMP), protein kinase A, and

cAMP responsive element binding protein were described in vitro (for example, see Johnson and

colleagues,5 Novogrodsky and colleagues,6 Renz and colleagues,7 Snijdewint and colleagues, and 8

Elenkov and colleagues9). In the following years, observations encouraged a new understanding

of the role of the SNS as independent authors noted either pro- or anti-inflammatory roles for the

SNS, as exemplified in arthritis research.2 3 10–12 Recent understanding of the SNS in inflammation

strongly suggests that both viewpoints are probably correct. This review tries to integrate these

different viewpoints of the pro- and anti-inflammatory effects of the SNS in gut inflammation.

ANATOMY AND PHYSIOLOGY OF THE SYMPATHETIC NERVOUS SYSTEM IN THE
GUT
Control levels of the sympathetic nervous system
Central sympathetic outflow is controlled by sympathetic control centres in the brain which are

activated by either central nervous stimuli (cortical areas, limbic system) or by different inputs

from the periphery (via the hypothalamus) or sensory afferent nerves (fig 2).13 Input signals to

the brain from the periphery can be circulating cytokines such as IL-1b or stimulation of sensory

nerve fibres by cytokines.14–16 Different brain centres activate efferent sympathetic pathways,

which pass through the intermediolateral column of the spinal cord and reach sympathetic

ganglia in the proximity of the aorta or in the abdomen. Then, nerve fibres are switched to
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postganglionic sympathetic noradrenergic nerve fibres, which

enter the gut through the mesenteric serosal surface (fig 2).

The hierarchy of control centres is mandatory for adequate

and site specific control of the SNS on different levels from

the brain to the periphery.

Microanatomy of the sympathetic nervous system in
the gut
The serosal surface of the intestine is densely innervated by

sympathetic nerve fibres.17 In 1965 it was reported that

sympathetic nerve fibres are normally infrequent in the

intestinal mucosa.18 This view changed during the 1970s and

1980s when improved histological techniques became avail-

able.19–22 Sympathetic nerve fibres enter the intestinal wall

along arteries and terminate in the myenteric and submuco-

sal plexuses, and in the mucosa.21 22 It is important to

mention that sympathetic nerve fibres not only terminate in

vessel walls or enteric plexuses in order to control vascular

tone or secretomotor neurones but also end in the larger

vicinity of blood vessels in the submucosa and mucosa.21

With respect to the GALT, sympathetic noradrenergic nerve

fibres innervate both the vasculature and parenchymal fields

of lymphocytes (fig 3).22 This innervation is directed into

zones of T lymphocytes and plasma cells.22 In the GALT,

represented by the appendix and Peyer’s patches, noradre-

nergic fibres enter at the serosal surface, travel longitudinally

in the serosa and on the submucosal border of the muscularis

interna, turn radially into an internodular nerve fibre

meshwork, plunge directly through the T cell zones, and

ramify profusely among lymphocytes, enterochromaffin cells,

and plasma cells in the interdomal regions (fig 3).21 In two

studies, it was reported that sympathetic nerve fibres have a

similar behaviour in different species, including humans.19 22

Neurophysiology of the sympathetic nervous system
in the gut
Most often the SNS is linked to the control of motility,

secretion, and vasoregulation (fig 4). Through a2 adrenergic

inputs, the SNS inhibits postsynaptic potentials of motoneur-

ones in the myenteric plexus and of secretoneurones in the

submucosal plexus (fig 4). Furthermore, via a1 adrenergic

pathways, the SNS counteracts vasodilation induced by

substance P, calcitonin gene related peptide, nitric oxide,

and others (fig 4).23 The question arises as to the role of the

SNS in the mucosa and GALT. Interestingly, important

reviews on the enteric nervous system did not discuss the

immunomodulatory role of sympathetic neurotransmitters

on mucosal immune cells.23–25 The role of sympathetic

neurotransmitters for immunomodulation is outlined below.

Neurotransmitters of the sympathetic nervous system
Apart from norepinephrine, sympathetic varicosities store

neuropeptide Y (NPY), methionine-enkephalin, leucine-enke-

phalin, b-endorphin, and adenosine triphosphate (ATP) in

small and large vesicles.26 These neurotransmitters are co-

released.27 It is important to mention that norepinephrine and

ATP are locally recycled whereas peptide neurotransmitters are

transported along the sympathetic axon to the nerve terminal.26

At a high stimulation frequency over a longer period of time, the

sympathetic nerve terminal is devoid of peptide neurotrans-

mitters in relation to norepinephrine and ATP due to the

transport and production limit.

Neurotransmitters of the sympathetic nerve terminal are

ligands at functionally different receptors with opposing

intracellular signalling pathways, which is best elucidated

for norepinephrine and adenosine.28 At low concentrations

(1029 to 1027 M), norepinephrine and adenosine bind to

a-adrenoceptors and A1 adenosine receptors, respectively,

leading to decreased cAMP levels. At high concentrations

(1027 to 1025 M), these neurotransmitters bind to b adreno-

ceptors and A2 adenosine receptors, increasing cAMP levels.

Cotransmitters such as NPY support effects via the a or b

adrenoceptors depending on the predominant adrenergic

signalling pathway.29 The b adrenergic signalling pathway is

further supported by cooperative effects of available cortisol,

as demonstrated in different cell types.30–37 Cortisol enters the

tissue without restraint. Loss or rapid degradation of

endogenous cortisol is most probably a prerequisite for

predominant a adrenergic signalling because cortisol exclu-

sively supports the b adrenergic pathway. The cooperative

effect has recently been demonstrated in inflamed synovial

tissue of patients with rheumatoid arthritis.38
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Figure 1 Historical consideration of the sympathetic nervous system
(SNS) in relation to inflammation. Between the 1940s and the late
1980s, it was thought that the SNS supports the inflammatory process
in the context of a fight and flight reaction. In this period, mainly short
lived inflammatory processes were investigated over a few hours. Since
about 1985, with recognition of strong inhibitory influences on
secretion of immune mediators such as tumour necrosis factor in cell
culture experiments, the SNS was thought to play an anti-inflammatory
role in arthritis. Nowadays, it is generally agreed that the SNS plays
either a pro- or anti-inflammatory role depending on the time point of
SNS modulation in relation to inflammation.
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Figure 2 Neuronal control of the intestine has a hierarchical
organisation with different levels of integrative organisation (adapted
from Wood and colleagues. Gut 1999; 45(Suppl II):II6–II16).
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Sympathetic neurotransmitters modulate immune
responses
Migration of immune cells
In addition to direct modulation of immune cells (see below),

norepinephrine and cotransmitters are important substances

for redistribution and directed migration of immune cells

(fig 5A).39 Injection of norepinephrine intravenously (as well

as cortisol) mobilises many types of immune cells.40 Directed

migration of monocytes is partly mediated via b adrenergic

signalling and via the NPY Y1 receptor.39 Furthermore,

adenosine can attract neutrophils,41 and norepinephrine

stimulates secretion of the neutrophil chemotactic cytokine

IL-8.42 Instillation of norepinephrine into the intestinal lumen

of the mid-ileum increased neutrophil influx to the intestinal

mucosa.43 Stress during surgery increased lymphocytes in the

lymphatic tissue of the intestine.44 It was further shown that

sympathectomy reduced migration of adoptively transferred

cells into Peyer patches.45 After resuscitation in a haemor-

rhagic shock model, leucocyte rolling in gut vessels markedly

increased, which was not observed in sympathectomised

animals.46 The functional relevance of the SNS for directed

migration of leucocytes into dermal tissue has recently been

reviewed.4 Interestingly, migration of immature dendritic

cells to lymph nodes is mediated via a1 adrenergic receptors,

as exemplified in the skin.47 As the SNS responds very rapidly

(as a nervous system), these early effects of the SNS are

important at the beginning of a local inflammatory tissue

response (fig 5A).

Sympathetic neurotransmitters modulate apoptosis
High concentrations of norepinephrine stimulate apoptosis in

different cell types.48–53 In the intestinal tract, it has been

demonstrated that exercise, stress, and catecholamine

infusion induced b adrenergically mediated apoptosis of

intestinal lymphocytes.54 Induction of apoptosis can be an

anti-inflammatory mechanism if proinflammatory immune

cells are targeted.

Sympathetic neurotransmitters modulate innate
immune cells
Norepinephrine at high concentration (via b adrenoceptors)

has been shown to inhibit immune functions such as

phagocytosis, natural killer (NK) cell activity, and MHC class

II expression, as well as secretion of TNF, IL-12, and IFN-c

from macrophages or lymphocytes (for review see Elenkov

and colleagues55). This b adrenergic effect of norepinephrine

is supported by an increase in the IkB cytoplasmic half life.56

It is generally accepted that b adrenergic signalling inhibits

many aspects of the innate immune system (NK cells,

neutrophils, macrophages, and others). However, the effects

of norepinephrine at low concentration mediated via a2

adrenoceptors can even increase macrophage TNF secretion.57

Signalling through a2 adrenoceptors can be important to

resist the intracellular growth of microbes.58 Similarly,

adenosine exerts opposite effects on cytokine secretion at

low concentrations compared with high concentrations.59 The

dual role of sympathetic neurotransmitters is thus an

important prerequisite for either the pro- or anti-inflamma-

tory effects of the SNS on the innate immune system. As

mentioned above, the activity of the SNS and presence of

neurotransmitters plus their cotransmitters largely define the

effects of sympathetic modulation. In addition, regulation of

adrenoceptor subtypes on immune cells depending on their

state of activation is another mechanism by which sympa-

thetic neurotransmitters are differentially operative (see

below).
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Figure 3 Organisation of the sympathetic innervation in gut associated lymphoid tissue (adapted from Felten and colleagues22). Noradrenergic
fibres enter the serosal surface (S) pass through the muscle layers (ME, muscularis externa; MI, muscularis interna) and touch the myenteric plexus
(MP), form a mesh of sympathetic nerve fibres (SMF) at the submucosal (SM) border of the MI, and then turn radially to run between lymph nodes (N)
as internodular nerve fibres (INF). Fibres pass through the T dependent zone (T) and enter the interdomal region (ID) between the domes (D) and then
branch profusely in this zone among lymphocytes, enterochromaffin cells, and subepithelial plasma cells. BV, blood vessel; SMP, submucosal plexus.
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Sympathetic neurotransmitters modulate cells of the
adaptive immune system
Elenkov and colleagues concluded that norepinephrine via

b-adrenergic signalling stimulates aspects of T helper type 2

(Th2) immune responses by increasing IL-4, IL-5, IL-6, and IL-

10.55 In addition, norepinephrine stimulates immunoglobulin

production of B lymphocytes.60 From this point of view, a

proinflammatory immune reaction with a predominance of Th2

cytokines such as in ulcerative colitis, systemic lupus erythe-

matosus, or allergic diseases is likely aggravated by the SNS.

Interestingly, one study also demonstrated a supportive effect of

the b-adrenergic agonist salbutamol on immunological toler-

ance.61 In contrast, typical T helper type 1 (Th1) immune

responses such as production of lymphocyte TNF, IL-2, or IFN-c

are suppressed via the b adrenergic receptor.55 Thus the pre-

vailing type of T lymphocyte reaction determines the influence

of the SNS on the immune system. We recently demonstrated

such opposite effects of the SNS on immune responses in

bacterial infection with Gram negative (TNF is bacteriostatic)

and Gram positive (IL-4 is bacteriostatic) bacteria.62

Figure 4 Connections of sympathetic nerve fibres (purple) with structures in the intestinal wall. A plus sign indicates a positive and a minus sign
indicates a negative influence. (1) Sympathetic nerve fibres terminate at motoneurones in myenteric plexus ganglia (grey ellipses). Here,
norepinephrine (NE) inhibits descending motoneurones (ACh, acetylcholine; SP, substance P) via a2 adrenergic signalling. (2) Immune stimuli from
the lumen and in the mucosa stimulate sensory neurones of the vagus, which locally release SP and signal the information to higher centres. SP can
attract leucocytes (blue) and can support vasodilation (line with two arrows in the blood vessel (BV)). Via a1 adrenergic receptors, NE leads to
vasoconstriction (opposite to SP). (3) Distension and mucosal stimuli can stimulate intrinsic afferent neurones, which modulate motoneurones.
(4) Modulation of vascular tone via dilatory signals (SP; CGRP, calcitonin gene related peptide; NO, nitric oxide; VIP, vasoactive intestinal peptide)
and constriction signals (SOM, somatostatin; NE via a1 adrenergic receptors). (5) Regulation of the secretory neurone of the submucosal plexus by
secretory signals (ACh) and inhibitory signals (NE via a2 adrenoceptors; SOM). (6) Stimulation of intrinsic afferent neurones by serotonin (5-HT).
These neurones are coupled to motoneurones and secretory neurones as wells as interneurones in the myenteric plexus. (7) Local efferent sympathetic
nerve fibres travel along blood vessels (BV) into the submucosa and mucosa and terminate next to epithelial cells. These efferent fibres can modulate
immune responses in the vicinity of mucosal blood vessel. ATP, adenosine triphosphate.
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With respect to human immune mediated diseases, the

preponderance of a specific B or T lymphocyte immune

reaction is often not detectable. A mixture of different types

of immune reactions with innate and adaptive (B, Th1, Th2, T

regulatory) aspects is present in humans, and the dominant

response largely depends on genetic prerequisites of the

patient, the antigen, the site of the immune response (co-

signals), and the time point of the immune response.

Figure 5 Sympathetic influence on vasoregulation, leucocyte extravasation, and dendritic cell exodus. (A) An immune stimulus induces local
production of substance P (SP), calcitonin gene related peptide (CGRP), and nitric oxide (NO). Among others, these mediators lead to vasodilation.
Norepinephrine (NE) and neuropeptide Y (NPY) counteract vasodilation via a1 adrenergic and NPY Y1 receptors. Chemotactic factors, including SP
and NE via b adrenoceptors and sympathetic opioid peptides, support leucocyte extravasation. Elevated concentrations of NE and NPY is indicated
by numerous purple dots. Thus neurotransmitters of the sympathetic nervous system support chemotaxis, which is a very early event in the beginning of
an inflammatory reaction. In addition, exodus of relatively immature dendritic cells is supported by a1 adrenergic signalling. (B) After leucocytes are
encountered in an inflammatory process, they start to produce proinflammatory cytokines and sympathetic nerve repellent factors, which inhibit
neurotransmitter release and lead to loss of sympathetic nerve fibres. This development is typical for the early phase of a wound healing process. TNF,
tumour necrosis factor; IL, interleukin.
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Direction of influence of the sympathetic nervous
system depends on the time point of the immune
response
In the pre-symptomatic phase of an immune mediated

disease, a limited number of cell types are involved. If we

accept the aetiological concept of an antigen driven disease

(self or foreign), T cells, B cells, and antigen presenting cells

will play a major role in the pre-symptomatic phase (as easily

recognised in animal models). Recent important articles

demonstrated increased autoantibody titres against autoanti-

gens (a function of the adaptive immune system) many years

before the first symptoms appeared.63 64 This indicates that

immunity is not instantaneously accompanied by sympto-

matic disease. At a time when the disease becomes

symptomatic, many other local cell types, particularly of the

innate immune system, are involved in the destructive

process. The role of the initial secret players of the adaptive

immune system—T cell, B cell, and APC—simultaneously

decreases while other cell types are involved. Thus one can

separate a pre-symptomatic from a symptomatic phase of the

disease. Consequently, the influence of the SNS on the

immune response largely depends on the time point of SNS

activation in relation to the immune response. Furthermore,

we must distinguish the very first phase of an inflammation,

during which directed migration is maximally important

(supported by the SNS), from later phases of tissue

destruction by cells of the innate immune system (inhibited

by the SNS). We recently demonstrated that this can largely

change the outcome in arthritis in animals.12 The dual role of

the SNS depends on the immune mechanisms involved.

THE SYMPATHETIC NERVOUS SYSTEM IN GUT
INFLAMMATION
Sympathetic innervation in gut inflammation
Previous studies in arthritis and diabetes research demon-

strated extensive loss of sympathetic nerve fibres in the

inflamed area.65–67 Dvorak and Silen demonstrated axonal

loss of autonomic nerves in the surgically resected ileum of

patients with Crohn’s disease.68 They suggested that affected

axons belong to the SNS. Others have demonstrated that gut

infection with Toxoplasma gondii resulted in colonic pseudo-

obstruction due to selective sympathetic denervation.69

Interestingly, appearance of numerous small TH positive

nerve cell bodies and NPY positive nerve fibres were found in

clusters in myenteric ganglia in patients with Crohn’s disease

but not in control specimens.70 However, sympathetic nerve

fibres were rare in the circular muscle layer of the ileum in

controls and patients with Crohn’s disease.70 Unfortunately,

in this detailed study, sympathetic innervation of the GALT,

submucosa, and mucosa was not investigated. In our recent

studies in patients with Crohn’s disease there was marked

loss of sympathetic nerve fibres in the mucosa and

submucosa but not in circular or longitudinal muscle

compared with control specimens of tumour patients (F

Grum, unpublished results). In addition, we recently

demonstrated marked loss of sympathetic nerve fibres in

dextran sodium sulphate colitis in mice.71

Geboes reported that the presence of immune cells was

associated with alterations of the enteric nervous system.72

This may indicate that immune cells are able to produce

factors which influence the plasticity of the local nervous

system. In the gastrointestinal tract, neurotrophic factors

regulate plasticity of the nervous system.73 However, nerve

growth factors are not specific for the different types of nerve

fibres, which necessarily does not explain the differential loss

of sympathetic nerve fibres during inflammation. In contrast

with nerve growth factors, nerve repellent factors are much

more specific for nerve fibre repulsion.74–76 We recently

demonstrated that macrophages and fibroblasts in inflam-

matory lesions produce nerve repellent factors specific for

sympathetic but not for sensory nerve fibres.77 One may

speculate that during the early process of inflammation the

SNS supports directed migration but on activation of local

macrophages and fibroblasts, secreted nerve repellent factors

lead to distinct loss of sympathetic nerve fibres (fig 5B).

The situation seems to be remarkably different in

ulcerative colitis where the density of the adrenergic network

was significantly pronounced. However, authors used

glyoxylic acid induced fluorescence which is not as specific

as antityrosine hydroxylase fluorescence.78

Levels of sympathetic neurotransmitters in intestinal
inflammation
As sympathetic nerve fibres are lost in inflamed areas, tissue

concentrations of sympathetic neurotransmitters should be

decreased. Indeed, in Crohn’s disease, norepinephrine tissue

levels in both non-inflamed and inflamed colonic mucosa

were markedly lower than in control subjects.79 Similarly,

dopamine levels in the inflamed mucosa of Crohn’s disease

and ulcerative colitis were markedly lower than in controls

whereas L-DOPA levels were elevated.79 As L-DOPA is the

precursor of dopamine (and norepinephrine), these findings

suggest decreased L-DOPA decarboxylase activity in inflamed

tissue.79 Similarly, in the trinitrobenzene sulphonic acid

(TNBS) colitis model, dopamine and norepinephrine levels

were markedly lower in the inflamed mucosa of the distal

colon but not in the non-inflamed ileum.80

A second important factor for low catecholamine levels in

inflamed tissue is inhibition of norepinephrine release from

sympathetic nerve terminals. This was described by Swain

and colleagues in 1991 who demonstrated that intestinal

intraepithelial infection with Trichinella spiralis suppressed

electrically induced release of norepinephrine. Although the

worm infection only lasts 17 days, norepinephrine release

was inhibited for over 100 days post infection.81 At the same

time, Elenkov and colleagues found that TNF inhibits release

of norepinephrine from noradrenergic axon terminals in the

isolated rat hypothalamus.82 Rühl and colleagues further

corroborated these findings in the intestine using IL-1b and

IL-6 and this effect was mediated via induction of nitric

oxide.83 84 These studies were confirmed by independent

research groups.71 85 This fundamental effect of inflammation

induced inhibition of norepinephrine release reduces the

sympathetic break on secretomotor neurones supporting

neurogenic secretory diarrhoea (fig 4). This has been

described in Clostridium difficile toxin A induced intestinal

inflammation and directly by the influence of IL-1b and

IL-6.86 87 In addition, prostaglandins such as PGE1 and PGE2

released on inflammation attenuated the sympathetically

induced inhibition of motoneurones.88 Furthermore, inhibi-

tion of norepinephrine release supports the chronicity of

inflammation due to loss of sympathetic inhibition of innate

and Th1 mediated immune responses (see above).

This phenomenon was not found in ulcerative colitis

specimens,79 89 which supports the increase in sympathetic

nerve fibres in this disease.78 With respect to sympathetic

innervation, Crohn’s disease (and rheumatoid arthritis) seem

to be remarkably different from ulcerative colitis. Thus it is
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likely that different immune or healing responses are used in

these contrasting diseases.

Link between leucocyte infiltration, innervation, and
motility disorders
We have focused on changes in the sympathetic nervous

system in conjunction with intestinal inflammation.

However, entities such as irritable bowel syndrome are also

linked to inflammatory changes of the enteric nervous

system. In a seminal paper, it was demonstrated that patients

with irritable bowel syndrome demonstrated leucocyte

infiltration of the myenteric plexus and neuronal degenera-

tion.90 We do not know how leucocyte infiltration affects

sympathetic pathways but, given the increased release of

proinflammatory cytokines, one may expect a decrease in

sympathetic neurotransmitter release.71 81 83–87 Inflammation

induced inhibition of norepinephrine release would reduce

the sympathetic break on secretomotor neurones, supporting

neurogenic secretory diarrhoea in irritable bowel syndrome

(fig 4). On the other hand, its has been demonstrated that

patients with inflammatory bowel diseases demonstrate

intestinal pseudo-obstruction and degenerative neuropathy

in the myenteric plexus.91 As infiltrating leucocytes can also

produce substance P or support cytokine driven substance P

release, increased secretomotor tone might be the conse-

quence of leading to obstructive symptoms. Thus it might

well be that inhibition and stimulation of secretomotor

neurones by infiltrating leucocytes may be present at the

same time, leading to a heterogeneous picture of various

symptoms. In addition, increased infiltration of enteroendo-

crine cells during inflammation may further complicate the

situation because these cells produce neurotransmitters

which can affect intestinal function.92

Adrenoceptor expression in gut inflammation: the b to
a adrenergic shift
In chronic inflammation, reduced expression of b adreno-

ceptors and increased expression of a1 adrenoceptors were

observed.93–95 This shift was termed the b to a-adrenergic shift

of adrenoceptor expression.96 Consequently, this shift would

support a proinflammatory immune response (see above). A

similar shift has not been described in patients with

inflammatory bowel diseases. However, experimentally

induced intestinal inflammation leads to a similar phenom-

enon: induction of colitis increased a2 adrenoceptor expres-

sion in both ileal and colonic muscular layers.85 Three days

after intraperitoneal injection of zymosan, a decrease in

b adrenergic smooth muscle contraction was observed.97 In

the guinea pig, inflammation is accompanied by upregula-

tion of a1 and a2 adrenoceptors but downregulation of

b adrenergic receptors on smooth muscle membranes within

10 days of TNBS jejunitis.98 In addition, the increase in blood

flow induced by the b adrenergic agonist isoproterenol was

markedly lower in inflamed ileum.99 These studies in animal

models of intestinal inflammation support the concept of a

b to a adrenergic shift. The functional consequences are

further corroborated by repulsion of sympathetic nerve fibres

(fig 5B).

We hypothesise that the b to a adrenergic shift has been

evolutionarily conserved to overcome bacterial infection in

the gut. Indeed, it has been demonstrated that a adrenergic

signalling increases defence mechanisms in the gut.100 In

addition, signalling through a2 adrenoceptors can be

important for macrophages to resist the intracellular growth

of microbes.58

Sympathetic nerve fibres in relation to substance P
positive nerve fibres
It has been repeatedly demonstrated that substance P from

the visceral nociceptive system and intrinsic sensory afferents

is a proinflammatory mediator in intestinal inflammation.23 25

Similarly, this point of view is true for arthritis.101

Interestingly, in contrast with sympathetic nerve fibres,

substance P positive nerve fibres sprout into inflamed tissue,

as described in rheumatoid arthritis and inflammatory bowel

diseases.25 65 As sympathetic neurotransmitters normally

inhibit release of substance P, the preponderance of the

sensory system over the sympathetic system is likely an

additional inflammatory factor.

Sympathetic nervous tone in inflammatory bowel
diseases
Similar to other chronic inflammatory diseases,102–106 the tone

of the sympathetic nervous system is increased in patients

with inflammatory bowel diseases.107 In rheumatoid arthritis

and systemic lupus erythematosus, this phenomenon was

related to increased mortality.108 109 We mentioned above that

norepinephrine can be anti-inflammatory at increased con-

centrations (targeting cells of the innate immune system).

However, an elevated sympathetic nervous tone does not

increase norepinephrine at the site of inflammation due to

loss of sympathetic nerve fibres (see above). In addition,

concentrations of circulating norepinephrine are only

increased by a factor of 2–3 (from approximately 1029 M to

22361029 M). Thus increased plasma concentration of this

neurotransmitter is not sufficient to significantly increase the

local concentration in inflamed tissue. On the other hand, the

increased systemic concentration of norepinephrine might

facilitate leucocyte mobilisation from non-inflamed areas,

which may then migrate to sites of inflammation.

In common with rheumatoid arthritis,110 111 patients with

inflammatory bowel diseases show inadequately low con-

centration of the anti-inflammatory steroid hormone cortisol

in relation to inflammation, as measured by IL-6 and

TNF.107 112 Consequently, this also leads to low concentrations

of cortisol in inflamed tissue. Considering the above

mentioned cooperativity of cortisol and norepinephrine, low

cortisol concentrations in relation to inflammation is an

additional chronicity factor.

CONCLUSIONS
Striking similarities exist between rheumatoid arthritis and

inflammatory intestinal disease:

(1) Rheumatoid arthritis and Crohn’s disease are disorders

with a Th1 lymphocyte dominance, signs of an activated innate

immune system in the chronic symptomatic phase (macro-

phage, neutrophils and others), and overshooting responses of

myofibroblasts/fibroblasts leading to scar/pannus formation.

(2) The inflammatory reactions described above are typically

suppressed by the SNS via b adrenergic pathways. This

happens directly at the level of T lymphocytes, macrophages,

dendritic cells, NK cells, and neutrophils.

(3) Loss of sympathetic nerve fibres in inflamed tissue and

inflammation induced inhibition of norepinephrine release

with a concomitant decrease in local neurotransmitter levels

converts a normally present b adrenergic zone into an a

adrenergic zone.
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(4) This is followed by a reduction in the sympathetic break

on secretomotor neurones leading to secretory diarrhoea and

by an overall proinflammatory microenvironment.

(5) In addition, a preponderance of proinflammatory sub-

stance P positive nerve fibres in relation to sympathetic nerve

fibres supports these phenomena.

(6) The parallel inadequate secretion of cortisol together with

loss of b adrenergic receptor mediated effects leads to

inadequate anti-inflammatory cooperativity of these two

systems.

All of the above mentioned factors contribute to an overall

proinflammatory milieu at the local site. The similarities

between the two diseases of rheumatoid arthritis and Crohn’s

disease suggest that a general principle exists which can

explain these facets in chronic inflammation. We recently

hypothesised that the observed changes in these diseases

have been evolutionarily conserved to overcome infectious

diseases and to support the wound healing process.113 In

chronic inflammatory diseases, these evolutionarily con-

served mechanisms are also used but are probably inade-

quate. This review reinforces the belief that apart from the

immune system, many other factors contribute to the chronic

inflammatory process. As a consequence, more wider ranging

and well adjusted combination therapy must be introduced,

which comprises additional aspects together with the

immune system (neuroendocrine targets) because the

immune system is not a lonely player in an empty body.
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