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In all vertebrates, the thyroid axis is an endocrine feedback system that affects growth,

differentiation, and reproduction, by sensing and translating central and peripheral signals

to maintain homeostasis and a proper thyroidal set-point. Fish, the most diverse group of

vertebrates, rely on this system for somatic growth, metamorphosis, reproductive events,

and the ability to tolerate changing environments. The vast majority of the research on the

thyroid axis pertains to mammals, in particular rodents, and although some progress has

been made to understand the role of this endocrine axis in non-mammalian vertebrates,

including amphibians and teleost fish, major gaps in our knowledge remain regarding

other groups, such as elasmobranchs and cyclostomes. In this review, we discuss the

roles of the thyroid axis in fish and its contributions to growth and development,

metamorphosis, reproduction, osmoregulation, as well as feeding and nutrient

metabolism. We also discuss how thyroid hormones have been/can be used in

aquaculture, and potential threats to the thyroid system in this regard.
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INTRODUCTION

The thyroid gland is a key metabolic regulator in the body of animals. An intact axis between the
brain, thyroid, and peripheral tissues is essential to modulate energy expenditure and homeostasis
(1). An imbalance in energy homeostasis results in the release of brain or peripheral signals, which
communicate to the thyroid to increase or decrease energy expenditure, by modulating the release of
thyroid hormones (THs). In mammals, there is clear evidence that increased TH production/release
induces increases in metabolic rate (2), weight loss (3), and cardiac output (4), while decreased TH
production/release leads to opposite effects. In all vertebrates, THs are key hormones that influence
a number of physiological processes including growth, development/morphogenesis, and
metabolism (5). However, in fish, the role of the thyroid is incompletely understood. Although
homology in genetic mechanisms exists between mammals and fish (6) and THs are generally
conserved in structure and function (7), the thyroid system is not always analogous between groups.

Fish [Chondrichthyes (i.e., cartilaginous fish: sharks, skates, rays), Osteichthyes (i.e., bony fish:
ray-finned and lobe-finned fish) and Agnatha (i.e., jawless fish: hagfish and lamprey)] (8) make up
approximately 48% of all vertebrates (9), contributing to the 73,327 of total vertebrate species
described (10). This diversity has led to wide variations within ecological niches, physiological
mechanisms and local adaptations. In the context of the thyroid, major differences in terms of
morphology, physiology, and regulation are seen within and between species.

The thyroid was first described in fish in the 19th century (11). Later studies compared the structure/
location of the gland in different fish species [e.g., gill tissue in rainbow trout (Oncorhynchus mykiss)
(12)], and uncovered the role of the thyroid as a regulator of metabolic activity (13), and the role of the
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pituitary [sailfin molly (Poecilia latipinna) (14)] and hypothalamus
[African lungfish (Protopterus annectens) (15)] in the regulation
of thyroid function. Despite over a century of research, our
knowledge of the physiology of the fish thyroid is still incomplete,
and previously published reviews focus on teleosts and on
specific functions of the thyroid [e.g., metamorphosis (16);
reproduction (17)].

This review provides a general overview of our current
knowledge on the actions of thyroid hormones in fish (not
only teleosts but also other groups), including those on growth
and development, reproduction, osmoregulation, and feeding/
metabolism, how thyroid function may be affected by intrinsic
and extrinsic factors, and how this knowledge could be used by
the aquaculture industry.

THYROID HORMONES AND THE
THYROID AXIS

Regulation of Secretion
THs consist of two forms, thyroxine (or tetraiodothyronine, T4)
and the biologically active triiodothyronine (T3) (18). Although
T4 is the predominant circulating form, T3 is more biologically
active (19). Conversion of T4 to T3 occurs in central and
peripheral tissues (e.g., brain, gut, liver) by enzymatic removal
(5’-monodeiodination, 5’-MDA) of an iodide unit on the outer
ring of T4 (20).

In vertebrates, the secretion of THs is regulated by the
hypothalamus-pituitary-thyroid (HPT) axis (hereafter also
referred to as the thyroid axis). The prime stimulatory hormone
for the thyroid gland/follicle is thyrotropin (TSH), from thyrotropes
of the anterior pituitary. In higher vertebrates, thyrotropin-releasing
hormone (TRH) is the main stimulator of TSH release, whereas
some neurotransmitters, dopamine (DA), and somatostatin (SS),
act as inhibitors (21, 22). Serum TH levels have direct inhibitory
effects on the synthesis and release of both hypothalamic TRH and
pituitary TSH (23). While it is clear in mammals that TRH
stimulates release of TSH from the anterior pituitary, the role of
TRH in activating the fish thyroid axis is not clear (17).

In teleosts, there seems to be species-specific differences in
TRH action on thyrotropes. In bighead carp (Aristichthys
nobilis), TRH treatment of pituitary cells increases TSHb

messenger RNA (mRNA) expression levels (24). However, in
common carp (Cyprinus carpio) (25, 26) and coho salmon
(Oncorhynchus kisutch) (27), TRH does not directly affect TSH
expression or release from the pituitary. It has been suggested
that, in some teleosts, corticotropin-releasing hormone (CRH)
may play a greater role as a TSH stimulator than TRH (27, 28).

There is evidence that TRH stimulates the secretion of growth
hormone (GH), prolactin (PRL), adrenocorticotropic hormone
(ACTH), and melanocyte stimulating hormone alpha (a-MSH)
in fish (29). TRH evokes release of proopiomelanocortin
(POMC)-derived peptides (a-MSH and ACTH) (30) and GH
(31) from goldfish (Carassius auratus) anterior pituitaries, and
PRL synthesis and release in common carp (25). It is possible
that TRH-induced increases in T4 plasma levels, as seen in

rainbow trout and Arctic charr (Salvelinus alpinus) (32), might
occur through stimulation of TSH release or other pituitary
hormones such as GH and PRL.

Similar to mammalian TSH, fish TSH is a glycoprotein that
comprises a hormone-specific b subunit (TSHb) coupled to a
glycoprotein a subunit (GSUa) [e.g., teleosts (33), elasmobranchs
(34)]. The a subunit is common to TSH and gonadotropins
[luteinizing hormone (LH) and follicle-stimulating hormone
(FSH)] whereas the b subunit confers hormonal specificity (34).
TSH mRNA is mainly expressed in teleost pituitary tissue,
although ectopic expression occurs, particularly in gonads (33).

TSH exerts its actions by binding to TSH receptors (G
protein-coupled receptors) on the basal membrane of thyroid
follicles (33). Two TSH receptor sequences have been identified
in most teleost groups but only one receptor gene has been
identified in the coelacanth and elephant shark genomes (34).
Evidence suggests that, in fish, TSH has a stimulatory effect on
the synthesis/release of THs and iodide uptake. For example,
incubating thyroid glands from the sea catfish (Galeichthys felis)
in vitro for 3 days with mammalian TSH increases T4 release and
thyrocyte height (35); in vivo injections with mammalian TSH
increase thyrocyte height and follicle proliferation in coho
salmon (36), and circulating T4 levels in mummichog
(Fundulus heteroclitus) (37) and brook trout (Salvelinus
fontinalis) (38).

The release of pituitary TSH is inhibited by DA (39) and SS
(40), neuropeptides, and by negative feedback actions by T4 and
T3. In goldfish, treatment with SS suppresses radioiodide uptake
by thyroid follicles but does not lower plasma T4 in TSH-injected
goldfish, supporting the role of SS as a TSH inhibiting factor in
this species (41). Appetite regulating peptides also affect TSH
expression/release at the pituitary, as leptin and b-endorphin
stimulate, whereas galanin and neuropeptide Y (NPY) inhibit
TSH pituitary mRNA expression in bighead carp (42).

In mammals, THs exert an inhibitory feedback action on
TRH and TSH expression by binding to TRb located on the TRH
promoter in the hypothalamus (43, 44), and inhibiting the
transcription of both TSHa and TSHb in the pituitary (45). In
fish, there is no clear evidence of TH inhibition on TRH.
Injections of T4 in common carp have no effect on
hypothalamic TRH expression, but increase hypothalamic
CRH binding protein expression (46), which might result in
CRH inactivation and in the modulation of TSH synthesis in the
pituitary, as seen in mammals (47). There is however evidence in
fish for feedback control of THs at the pituitary level, as THs
decrease pituitary TSHb expression both in vivo [e.g., goldfish
(48); turbot (Scophthalmus maximus) (49); European eel
(Anguilla Anguilla) (50)] and in vitro [goldfish (51)].

Thyroid Hormone Synthesis Sites and
Peripheral Regulation
Synthesis of THs occur in thyroid follicles—a single layer of
epithelial cells (thyrocytes) enclosing a colloid-filled space (52).
In mammals, and most vertebrates, the thyroid gland is an
encapsulated gland in the neck region. In fish, the thyroid

Deal and Volkoff Thyroid Axis in Fish

Frontiers in Endocrinology | www.frontiersin.org November 2020 | Volume 11 | Article 5965852

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


gland can be either compact/encapsulated [e.g., Chondrichthyes
or cartilaginous fish, such as sharks and rays, and Chondrostei,
such as sturgeons] or more commonly diffusely arranged in the
pharyngeal, heart, and kidney regions [e.g., most teleosts with a
few exceptions such as Tetraodontiformes and Lophiiformes]
(53–55). In larval lampreys, the site of TH synthesis is the
subpharyngeal endostyle, a filter-feeding apparatus, which
transforms into typical follicular thyroid tissue during
metamorphosis (56).

Synthesis of THs requires iodine, that, in most fish, is
assimilated by diet or from water via the gills (57), and thyroid
uptake of iodine requires TSH binding to follicles. Evidence on
TSH stimulation of iodide uptake in teleost fish is scarce as the
spatial distribution of thyroid follicles makes it difficult to
measure radioiodide uptake (38), but it has been shown in
elasmobranchs, who have an encapsulated thyroid [e.g., lesser
spotted dogfish (Scyliorhinus canicula) (58)].

Once secreted from follicles, THs require peripheral regulation
to exert their effects. Iodothyronine deiodinases are selenoenzymes
that regulate TH availability and disposal. Several isoforms of
deiodinases (DIOs) with different catalytic properties (type 1, 2,
and 3, or DIO1, DIO2, DIO3) and tissue- and developmental stage-
specific expressions exist (59). In mammals, DIO2 is part of the
activating pathway [or outer ring-deiodination (ORD)] as it
converts T4 to T3, whereas DIO3 is part of inactivation [inner
ring-deiodination (IRD)] as it converts T4 and T3 to inactive
metabolites [reverse triiodothyronine (rT3) and 3,3 ′-
diiodothyronine (T2)] (59, 60). DIO1 is capable of both activation
(ORD) and inactivation (IRD), processing T4 to T3 and rT3 to T2,
respectively (61, 62). Similar DIOs have been shown in fish (57, 63–
66). However, fish DIOs differ in some respects from their
mammalian counterparts (20). For example, teleostean DIO1 is
resistant to propylthiouracil (PTU, inhibitor of thyroperoxidase,
TPO—responsible for iodide to iodine oxidation in thyroid follicles)
inhibition, and teleosts have relatively higher levels of hepatic DIO2
activity and expression compared to other vertebrates (67).

Regulation by Circadian and Seasonal
Rhythms
Several studies have shown circadian and seasonal cycles of THs
and thyroid axis components. In mammals, circadian cycles of
TRH and TSH are controlled by “pacemakers” within the
superchiasmatic nucleus (SCN) of the hypothalamus. These in
turn regulate circulating TH levels (68). The pineal gland—which
produces melatonin, and controls sleep patterns in a circadian
and seasonal manner—also has an inhibitory influence on
circulating THs (69). Studies in hamsters show that melatonin
inhibits the release of TSH and increases DIO3 expression during
winter months (short photoperiod), and stimulates TSH release
in summer (long photoperiods), increases DIO2 expression and
decreases DIO3 expression, thus controlling the availability and
metabolism of THs (70, 71).

Several studies in fish have shown that thyroid axis
components respond to environmental cues (72) and undergo
circadian and seasonal cycles (73). Pituitary transcript expression
levels of TSH and DIO exhibit distinct rhythms. In red drum

(Sciaenops ocellatus), seasonal rhythms of T4 correlate with
pituitary TSH subunits (TSHa, TSHb) and DIO3 gene
expression cycles (74), and in Arctic charr, hypothalamic DIO2
expression is decreased during late summer (75). In fish, there is
evidence that the saccus vasculosus (SV, an organ only observed
in fish, situated on the ventral side of the diencephalon, posterior
to the pituitary gland) is the seasonal sensor in the brain. The SV
expresses TSH and DIO2, suggesting that this organ might play a
central role in seasonal changes in THs, albeit probably linked to
reproduction (76). In precocious male masu salmon (Oncorhynchus
masou), the SV responds to changes in light, with salmon kept
under long periods of light displaying high TSHb and DIO2 protein
levels, the opposite occurring with exposure to short periods of
light (77).

TH circadian cycles have been shown in several fish species
[see (73)], including Atlantic salmon (Salmo salar) (78), winter
flounder (Pseudopleuronectes americanus) (79), goldfish (80),
and red drum (81), although the time of the peak of TH
appears to be species-specific. There also appears to be sex-
specific TH rhythms, as in rainbow trout, TH levels increase
during the day and decrease at night in males, and increase at
night and decrease in the morning in females (82). Seasonal
variations in THs also exist, often related to migration and
reproduction [e.g., channel catfish (Ictalurus punctatus) (83);
Atlantic cod (Gadus morhua) (84); rainbow trout (85)].

MECHANISM OF ACTION AND GENERAL
ACTIONS OF THYROID HORMONES

The ability of THs to exert their many pleiotropic effects relies on
efficient transport, bioactivation, and genomic/nongenomic
actions at target tissues.

Thyroid Hormone Transport
In higher vertebrates, THs are transported by plasma TH-
binding proteins: thyroxine-binding globulin (TBG),
transthyretin (TTR), and albumin. The primary plasma TH-
binding molecules in fish consist of albumin and prealbumin, the
latter now identified as TTR (86). A TBG-like protein has not yet
been identified in fish. In contrast to mammals, fish TTR binds
T3 more avidly than T4 (57), possibly making albumin the main
T4 binding protein (86).

Due to the lipophilic nature of THs, it was previously
assumed that passive diffusion across lipid bilayers of plasma
membranes occurred. It is now believed that THs enter target
cells via facilitated transport by several ATP-dependent
transporters including the monocarboxylate transporters
(MCTs) such as MCT8, organic anion transporter polypeptides
(OATPs, predominately present in brain capillaries), large
neutral amino acid transporters (LATs), and the sodium/
taurocholate co-transporting polypeptide (SLC10A1, also
known as NTCP) (87, 88).

With the exception of some studies on the role of MCT8 in
zebrafish (Danio rerio) development, little is known about TH
transporters in fish. The tissue distribution of TH transporters
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appears to vary between fish models. MCT8 mRNA is expressed
in brain, spinal cord and vascular system in zebrafish (89) and
mostly in the liver of fathead minnow (Pimephales promelas)
(90). OATP1C1 is expressed primarily in the liver and brain in
zebrafish (91, 92), and in the gonad, liver, and brain in fathead
minnow (90).

The expression of TH transporter transcripts shows an
inverse relationship to circulating TH levels. In fathead
minnow, exogenous T3 administration leads to a reduction in
liver OATP1C1 transcript abundance (90), while treatment with
oral PTU increases brain MCT8 expression (93). In zebrafish,
MCT8 seems to mediate T3 transport across the blood brain
barrier (BBB) (89) and MCT8-deficient zebrafish have altered
nervous system development (94). The role of OATPs in fish
remains unclear but in zebrafish, OATP1C1 deficiency leads to
hyperactivity of the thyroid and the development of goiter
(thyroid follicle enlargement), possibly as a consequence of low
TH levels as a result of reduced transport into target cells (91).

Thyroid Hormone Nuclear Receptors
THs affect physiological processes by regulating expression of
genes in target tissues (genomic actions) (95). Within target cells,
T3 binds to thyroid hormone receptors (TRs). TRs are located on
thyroid response elements (TRE) of the DNA, located at T3

target gene promoter sites (96). Nuclear TRs act as ligand-
modulated transcription factors, In the absence of T3, TR
represses transcription by recruiting corepressors [e.g., nuclear-
receptor co-repressor (NCoR)/silencing-mediator for retinoid/
thyroid hormone receptors (SMRT)], whereas in the presence of
T3, TRs recruit coactivators [e.g., steroid receptor coactivator
(SRC), p300/CREB-binding protein (CBP)] to facilitate
transcription (96). Therefore, the transcription rate of target
genes depends on the binding of T3 to TRs.

TRs are products of two different genes, c-erbAa and c-erbAb
(or TRa and TRb) (97, 98). The TR binds to a TRE as a
monomer, a homodimer (a/a, a/b, b/b) or a heterodimer, in
which a TR isoform dimerizes with the retinoid X receptor
(RXR) (99). TRa and TRb each have different isoforms that
have different tissue distributions (e.g., in mice, TRa1 and TRb1
are expressed in all tissues, but TRa1 is predominantly expressed
in the heart and brain, whereas TRb1 is predominant in skeletal
muscle, kidney, and liver) and binding capacities (TRa2 and
TRa3 isoforms are truncated and are unable to bind T3) (98).

In fish, several species-dependent TR isoforms have been
identified. For example, Japanese flounder (Paralichthys
olivaceus), Atlantic salmon, and Atlantic halibut (Hippoglossus
hippoglossus) have two distinct TRa genes, while conger eels
(Conger myriaster) have two subtypes of each TRa and TRb
genes (100–102). Goldfish have three unique TRa isoforms
(TRa-1, TRa-2, and TRa-truncated) all similarly expressed in
pituitary, brain, liver, gonads, and gut (103). The goldfish
truncated form may inhibit transcription of functional TRs by
competition for TREs (103, 104). In tilapia, two isoforms of TRb
exist—a short (S-TRb1) and long (L-TRb1) isoform—differing
by nine amino acids. T3 and T2 bind to activate L-TRb1, but not
S-TRb1, and regulate TRb expression in vivo (105).

Differences in the number/type/specificity of isoforms, and
tissues distributions might indicate species-specific differential
splicing, target cells, and functions, although it must be noted
that transcript expression levels might not reflect protein levels,
for which information is lacking (95).

Non-Nuclear Thyroid Hormone Receptors
THs have the ability to act both non-genomically and
extracellularly—within the cytoplasm or plasma membrane—in
a very rapid manner. THs activate intracellular pathways and
other transcription factors such as the mitogen-activated protein
kinase (MAPK) (106, 107) or phosphatidylinositol 3-kinase
(PI3K) pathways (108, 109) by binding to the integrin aVb3

TH specific plasma membrane receptor (110). Non-genomic
actions may have downstream long-term specific nuclear
effects (cell proliferation, gene transcription) leading to cross-
talk between non-genomic and genomic action of THs (111).

There is very limited evidence showing direct non-genomic
actions of THs in fish, as non-genomic and genomic effects can
overlap in the nucleus. In embryonic zebrafish, T4, but not T3,
regulates sodium currents through the MAPK pathway requiring
the integrin aVb3 receptor (112). It has also been suggested that,
in fish, THs regulate mitochondrial respiration (113), similar to
what is seen in rodents, for which TH binding sites have been
shown in mitochondrial membranes (114).

Actions of T2
Although most studies focus on the actions of T4 and T3, recent
evidence shows that T2, a product of T3 ORD, is also biologically
active and binds to TRb in teleosts (105). In rodents,
administration of T2 increases metabolic rate and has
hypolipidemic effects (115). In fish, T2 regulates the transcription
of genes associated with cell signalling and transcriptional
pathways in the liver of Nile tilapia (Oreochromis niloticus) (116)
and stimulates mitochondrial respiration of liver and muscle in
goldfish (117). T2 (like T4 and T3) also decreases DIO1 and DIO2
activities in the liver of killifish (Fundulus heteroclitus) (66), and
regulates thermal acclimation in zebrafish (118) and growth in
tilapia (119). Therefore, while previously viewed as an inactive TH,
T2 may have a larger role than originally thought.

ROLE OF THE THYROID AXIS ON
SOMATIC DEVELOPMENT AND GROWTH

In fish, as in all vertebrates, THs are crucial for the proper
development of both embryos and adults, and are involved in
major life transitions and metamorphosis in some species (52,
120, 121).

Maternal Origin of Thyroid Hormones and
Importance in Egg and Larval Development
In early mammalian development, an embryo relies solely on
maternal THs as its thyroid gland is not yet fully functional
(121). THs are actively transported from the mother to the
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embryo across tissue barriers—including the placenta and BBB—
and act on embryonic target cells (121).

The diverse modes of reproduction in fish (122) result in
species-specific thyroid-mediated development, due to the
variety of mechanisms by which maternal transfer of THs into
the egg/embryo occurs (123).

Most fish have external fertilization and are oviparous [i.e.,
produce eggs that develop and hatch in the external environment
(124)]. Others have internal fertilization and the egg/embryo
develops within the mother. In viviparity, eggs develop and hatch
within the mother before being released as live young to the
external environment (124). In yolk sac, or lecithotrophic
viviparity, eggs are retained inside the female until fully
developed, with no maternal chemical contribution beyond
yolk. In matrotrophic viviparity, the embryos receive additional
nutrition from the mother (e.g., maternal proteins and lipid-rich
histotroph secreted from the uterus in histotrophy; unfertilized
eggs/other embryos in oophagy/adelphophagy; or through
placenta-like structures) (125, 126).

In oviparous fish, there is evidence that THs are transferred
from female fish to eggs (127). Fathead minnow and zebrafish
eggs display high TH levels and high transcript levels of thyroid-
related transcripts (TRa, TRb, DIO1, DIO2, DIO3, TPO,
sodium-iodide symporter, TRH-receptor, TSH-receptor, TG,
and TTR) before 2–3 days post-fertilization (dpf)—time at
which endogenous TH production begins—suggesting a
maternal transfer of THs (123). In alligator gar (Atractosteus
spatula) and spotted gar (Lepisosteus oculatus), injecting females
with THs or TSH results in increases in the concentrations of T4

and T3 in early embryos (128). As well, maternal injections and
egg immersion have been shown to increase pigment
concentrations in larval tissues, hatching and larval growth
rate, swim bladder inflation, muscle development, larval
metabolic capacity, and metamorphosis [e.g., Sterlet sturgeon
(Acipenser ruthenus) (129, 130); piracanjuba (Brycon
orbignyanus) (131); matrinxã (Brycon amazonicus) (132);
zebrafish (133); goldfish (134)]. Interestingly, it appears that T4

concentrations are greater than T3 concentrations in eggs of most
freshwater (FW) fish, whereas T3 concentrations are greater in
seawater (SW) fish (135), suggesting differential TH utilization
during egg development.

Less is known about maternal transfer of THs in viviparous
species. In the lecithotrophic viviparous dogfish (Squalus
acanthias), 5′-MDA activity (an indicator of the production
rate of the active thyroid hormone T3) is present in yolk sac
embryos and may be of maternal origin (136), and in Korean
rockfish (Sebastes schlegelii), maternal T3 injections improve
growth and survival of young in utero (137). In matrotrophic
viviparity, there is an association between embryos and maternal
structures, suggesting that maternal THs could be exchanged
(125). In surfperch (Neoditrema ransonnetii)—a matrotrophic
teleost in which embryos are sustained by ovarian cavity fluid
(OCF) ingestion and by nutrient absorption via enlarged
hindgut—OCF and fetal plasma contain high TTR levels. TTR
plasma levels are higher in pregnant fish than in non-pregnant
fish, and large amounts of maternal TTR are taken up by fetal

intestinal epithelial cells (enterocytes), indicating that maternal
TTR is secreted into OCF and taken up by fetal enterocytes,
presumably to deliver THs to developing embryos (138). In the
viviparous bonnethead shark (Sphyrna tiburo), yolk-dependent
embryos undergo yolk-sac modification in which the fetal
portion of a placenta attaches to the maternal uterine wall near
mid-gestation, which facilitates direct exchanges of blood and
nutrients between the mother and embryo (139). In this
species, T3 in yolk increases from pre- to post-ovulation and
peaks during the pregnancy stage, and maternal serum T3

concentrations increase as development progresses, suggesting
that maternal THs are needed for development of the egg/
embryo (140).

The Thyroid and Growth Axes
In fish, as in mammals, somatic growth is regulated by hormones
of the growth (or hypothalamic–pituitary–somatotropic, HPS)
axis, i.e., growth-hormone releasing hormone (GHRH) from the
hypothalamus, and growth hormone (GH) produced by
somatotrophs in the anterior pituitary. GH release is
stimulated by GHRH and other secretagogues (e.g., ghrelin)
and inhibited by SS (141). GH has direct and indirect actions
on tissues via the stimulation and release of insulin-like growth
factors I and II (IGF-I, IGF-II) by the liver. These act on tissues to
promote cellular proliferation and differentiation (142, 143).

Embryonic differentiation/organogenesis and growth in
teleosts is regulated by THs, likely by triggering both GH [e.g.,
THs increase GH mRNA transcription in rainbow trout (144)
and carp (145), and increase synthesis and release in hybrid
tilapia (146)] and IGF-I [e.g., THs induce in vivo and in vitro
synthesis/release in Mozambique tilapia (Oreochromis

mossambicus) (147)]. Since THs are crucial regulators of
growth (148, 149), inhibition of thyroid function results in
impairment in the development of brain, skeleton, and other
organs, as well as in pigmentation. For example, in zebrafish,
treatment with T3 increases IGF-1 expression and enhances
swim bladder and eye development but IGF-1 receptor
blockade suppresses these effects of T3 on swim bladder and
eye (150).

Interactions Between Thyroid and Growth Axes
Components of the thyroid axis have been shown to affect the
GH/IGF-I axis in vertebrates. TRH stimulates the secretion of
GH by acting directly upon GH cells in amphibians (151, 152)
and reptiles (152, 153). In rodents, THs have been shown to
stimulate GH synthesis and secretion (154, 155), upregulate SS
receptors (156) and increase SS immunoreactivity and
release (157).

In fish, the effects of the thyroid axis on growth are not clear,
as components have been shown to have both inhibitory and
stimulatory effects. TRH increases GH secretion in vivo in
goldfish (158) and tilapia hybrid (Oreochromis niloticus x

Oreochromis aureus) (146), and in vitro in common carp
pituitary fragments (159), but not in tilapia hybrid (146) or
sailfin molly (160). TSH injections increase GH plasma levels in
several species including Nile tilapia (146), killifish (161, 162),
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coho salmon (163), rainbow trout (164), and Indian carp
(Cirrhinus mrigala) (165).

THs also affect the growth axis in fish, although results are
inconsistent. In vivo treatment with T4 or T3 decreases both
pituitary and serum GH levels in female European eel (166) but
has no effect on GH levels in goldfish (51). T4 administration to
aquarium water increases somatotroph activity in red belly
tilapia (Coptodon zillii) (167), and in vivo T3 injections
increase pituitary GH mRNA expression in rainbow trout
(144) and GH plasma levels in hybrid tilapia (146). THs also
act on liver to stimulate IGF-I synthesis/secretion: T3 increases
hepatic IGF-I mRNA levels both in vitro and in vivo in
Mozambique tilapia (147) and zebrafish (168), but not in coho
salmon (169) or silver sea bream (Sparus sarba) (170). T3 may
regulate IGF-I expression by binding to liver GH receptors [e.g.,
coho salmon (169)] or TRs [e.g., rainbow trout (171)], although
this action seems species-specific.

Whereas the thyroid axis can affect growth, components of
the growth axis affect the thyroid. In mammals, the thyroid axis
is stimulated by GH, as seen by increases in TH levels following
GH treatment (172), and inhibited by SS (173). In humans,
ghrelin decreases TSH-induced production of thyroglobulin and
mRNA expression of TPO in thyroid cells (174), while SS
treatment decreases the volume of TSH-cells and serum
concentrations of TSH in rats (175) but has no effect on serum
TSH and TH levels in humans (176).

In fish, there is also evidence for a role of the GH axis in
regulating thyroid function. TSH receptor expression is up-
regulated in transgenic grass carp overexpressing GH (177),
and in European eel, GH stimulates thyroid follicles to release
T4 and enhances peripheral 5’-MDA activity (178). In
mummichog, hypophysectomy prevents TSH-induced
secretion of T4 and treatment with ovine GH restores this
response (162). Information on the role of ghrelin and SS on
the thyroid axis is scarce. Plasma TH levels are inversely
correlated with SS plasma levels in rainbow trout (179), and
burbot (Lota lota) have decreased plasma ghrelin and TH levels
pre-spawning (180), suggesting an interaction between SS,
ghrelin and THs.

Ecological Importance of Thyroid-
Mediated Development
THs are particularly important for the development of the
central nervous system (CNS) and for ecological/ecosystem
shifts within fish. The plasticity of the fish nervous system
allows it to regenerate after injury and be remodeled during
life history shifts, processes in which THs are most likely
implicated. This has been demonstrated in zebrafish submitted
to optic nerve injury, in which the re-innervation of the optic
tectum is accelerated when T3 plasma levels are lowered with a
TRb antagonist and iopanoic acid (IOP, inhibits TH release and
reduces peripheral T4 to T3 conversion) (181).

In the case of migrating anadromous species, T3 induces the
proliferation of olfactory receptor neurons (which are crucial for
natal stream imprinting) in olfactory epithelium (182) and T4

induces a switch from UV to blue opsin photoreceptors in the
retinas of young coho salmon and rainbow trout (183)—which
allows better visual contrast for feeding before a SW migration
(184). In masu salmon, T3 binding in the brain is tissue-specific
during the parr-smolt transformation: At both life stages, T3

binding is highest in the olfactory epithelium, and smolts show
higher binding compared to parr in this region (185). This
suggests that THs play an important role in functional changes
of the brain and olfactory epithelium, playing a preparatory role
for shifting between aquatic habitats.

METAMORPHOSIS

Fish metamorphosis refers to the dramatic changes seen in
flatfish, lampreys, and eels, but also be applied to any
irreversible post-embryonic developmental event that affects
multiple physiological or morphological traits (excluding those
related to sexual maturation, reproduction, or senescence) seen
in several FW and marine species (56, 186). THs are key
regulators of teleost metamorphosis, which involves cellular
and molecular remodeling that lead to developmental changes
(16). Typically, thyroid activity is low during pre-metamorphosis
(i.e., low TH levels, with reduced DIO and TR expression),
increases during the metamorphic event, peaks during
developmental changes (metamorphic climax), and decreases
to pre-metamorphic levels (16, 186).

In flatfish, pelagic larvae develop symmetrically with eyes on
each side of the head, and morph into asymmetric benthic
juveniles following the migration of one eye to the opposite
side of the head to become right- or left-eyed, a species-specific
distinction [e.g., right-eyed Atlantic halibut (187), left-eyed
Japanese flounder (100) and left- or right-eyed Starry flounder
(188)]. In Senegalese sole (Solea senegalensis), increases in TH
circulating levels, pituitary TSHb, and whole body thyroglobulin
and TR transcript levels (189) coincide with metamorphic climax
and activity in thyroid follicles (190). Similarly, during Atlantic
halibut metamorphosis, the vast majority of transcripts
expressed in the head transcriptome are related to the thyroid
axis (187).

In sea lamprey (Petromyzon marinus), the blind, sedentary,
filter-feeding larvae metamorphose into free-swimming
juveniles. This involves major changes including the
development/transformation of adult kidneys, GIT, gills, and
the development of the eyes (56). Interestingly, as opposed to
other fish, lamprey metamorphosis coincides with a drop in
serum endostyle cells-derived TH levels, is blocked by TH
treatment and is stimulated by goitrogens (which suppress TH
levels), but the mechanisms by which this occurs are still unclear
(56, 191).

In diadromous species, which migrate between SW and FW,
metamorphosis induces morphological and physiological
changes (e.g., changes in body shape, pigmentation, kidneys,
gut, eyes, osmoregulation, metabolism) that prepare the fish to
survive in a new habitat (186). In anadromous salmonids (e.g.,
Oncorhynchus, Salmo and Salvelinus), fish hatch and grow in FW
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before migrating to SW where most of the somatic growth takes
place. Smoltification [or parr (FW fish)–smolt (SW fish)
transformation] refers to the changes in physiology, behavior,
and morphology that occur in juvenile salmonids prior to this
migration. These include pigmentation changes (i.e., body and
darkening of fins) and changes in olfactory receptors and
osmoregulatory adaptation (192–195), all associated with a
surge in TH levels. For example, TH treatment induces
downstream migration in Atlantic (196), coho, chum
(Oncorhynchus keta) and sockeye (Oncorhynchus nerka)
salmon (197), and TSH injections or TH treatment increase
purine synthesis, which is responsible for skin silvering in
rainbow trout (198) and brook trout (199).

In contrast to salmonids, eels hatch and develop as marine
larvae [flat and transparent marine larvae (leptocephali)] and
undergo a SW to FW (catadromous) migration. Larvae
transform into transparent “glass eels,” which move to FW and
complete metamorphosis to become juvenile “elvers.” These then
undergo a secondary metamorphic event (silvering) and return
to the ocean for spawning. In Japanese eel, the change from
leptocephalus larvae to glass eel is characterized by an increase in
TH levels and TSHb expression, with TSHb levels peaking at the
glass eel stage and THs increasing into the juvenile stages (200).

Many teleosts undergo subtle irreversible post-embryonic
morphological and physiological changes that have been
defined as a metamorphosis and are regulated in part by THs
(186). These include the development of the fins and the
appearance of adult stripes in zebrafish (133), and changes in
coloration and swimming behavior marine fish such as red sea
bream (Pagrus major) (201), grouper (Epinephelus coioides)
(202), surgeonfish (Acanthurus triostegus), and clown fish
(Amphiprion ocellaris) (203).

REPRODUCTION

THs regulate many aspects of the reproductive system, including
formation of gametes and steroids, and sexual behavior in both
males and females. In vertebrates, the hypothalamus-pituitary-
gonadal (HPG) axis regulates reproduction: gonadotropin
releasing hormone (GnRH) from the hypothalamus stimulates
the pituitary to release gonadotropins (GTH) [luteinizing
hormone (LH) and follicle stimulating hormone (FSH)] which
act on gonads to regulate gametogenesis and steroidogenesis
[e.g., in mammals (204) and fish (205)]. There is growing
evidence of a crosstalk between the thyroid and HPG axes in
several vertebrates (e.g., mammals, amphibians, fish) (206).

In mammals, the link between thyroid and reproductive
function is well established. THs and TSH can affect gonadal
development and sex steroid hormone synthesis and actions, and
thyroid dysfunction is associated with decreased fertility,
impaired gonadal function and disruption of seasonal cycles in
both in males and females (207–210). In fish, the link between
THs and reproduction is not clear, as inconsistent results have
been reported, likely due to the diversity in reproductive
strategies, and methods used to investigate TH actions (211).

Thyroid Hormone and Reproductive
Cycles
Several studies have shown correlations between circulating THs
and reproductive cycles (e.g., gamete formation and maturation,
and spawning/hatching events) in fish, but between species, the
nature of these relationships vary. Among teleosts, some species
display peaks in plasma THs during gametogenesis [e.g., rainbow
trout (212); brook trout (213) and/or during spawning [e.g.,
climbing perch (Anabas testudineus) (214); sea lamprey (215)],
whereas others display decreases in TH levels during gonad
maturation [e.g., Mozambique tilapia (216)], before [e.g., sockeye
salmon (217)] or during spawning [e.g., winter flounder (79)]. In
the jawless Pacific sea lamprey, both males and females show
peaks in plasma THs during gametogenesis and spawning
(215, 218).

In the Chondrostei stellate sturgeon (Acipenser stellatus) and
lake sturgeon (Acipenser fulvescens), THs are correlated with
increased gonad maturation during the spawning season (219,
220), while in immature and previtellogenic individuals, changes
in THs during the reproductive season are more closely
correlated with temperature, feeding, and growth [e.g., great
sturgeon (Huso huso) (221) and lake sturgeon (220)].

Very little is known about the role of THs in elasmobranch
reproduction. In oviparous elasmobranchs, thyroid activity and
TH levels are usually lowest in immature females in the non-
breeding season, and greatest during egg development and
vitellogenesis during the reproductive season [e.g., lesser
spotted dogfish (222); brownbanded bamboo shark
(Chiloscyllium punctatum) (223)]. Complete thyroid removal
inhibits seasonal gonad development [e.g., spotted dogfish
(224)]. A similar correlation between thyroidal function and
female reproduction has been shown in viviparous
elasmobranchs. In the Atlantic stingray (Dasyatis sabina),
circulating T3 levels and thyroid activity are low in immature
individuals and high in females undergoing oogenesis, and, from
ovulation throughout gestation (225, 226). Similarly, in the
torpedo (Torpedo ocellata), thyroid activity is high in gestating
females (227). However, in female dogfish, thyroid activity does
not seem to be associated with reproductive events, but rather
with migration (228).

Evidence of Expression of Deiodinases,
Thyroid Hormone Receptors, and
Thyrotropin Receptors in Gonads
Deiodinases
DIOs have been shown to be present in gonads [e.g., mammals
(229, 230); amphibians (231); reptiles (232)] and to be involved
in reproductive cyclicity. In mammals, 5’-MDA activity is
elevated during gonad development and differentiation [e.g.,
horse ovary (233); pig testis (230)]. In western clawed frog
(Silurana tropicalis) gonads, DIO2 and DIO3 expressions
increase and DIO1 expression decreases throughout the
development into adult (231). Moreover, gender-specific roles
of DOIs have been suggested in lower vertebrates. Adult western
clawed frog testis show higher expression of DIO1, DIO2, and
DIO3 than ovary (231), and in breeding green anole lizards
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(Anolis carolinensis), DIO2 and DIO3 expression levels are high
in testes and ovaries, respectively (232).

Although DIO1, DIO2, and DIO3 activity/expression has been
shown in the gonads of several fish [including striped parrotfish
(Scarus iseri) (234), European sea bass (Dicentrarchus labrax)
(235), goldfish (236), Nile tilapia (237), sapphire devil
(Chrysiptera cyanea) (238), and rainbow trout (239)] their role
in gonadal thyroid metabolism is not clear.

A gender-specific expression of DIO1 and DOI2 has been
shown in parrotfish, with higher expression levels in ovaries than
testes, suggesting that ovaries may require more bioactive THs
than testes (234). Whereas there is no evidence for a role of DIO1
in the gonads, DIO2 has been implicated in the regulation of
gonad maturation and gametogenesis. In zebrafish, DIO2
deficiency results in delayed sexual maturity and reduced
gametogenesis and spawning in both males and females (240).
Conversely, high DIO2 activity/expression in gonads [e.g.,
female tilapia (216); male rainbow trout, (239)], may ensure
appropriate levels of T3 needed for gametogenesis. In the
sapphire devil, transcript levels of ovary DIO3 increase as
vitellogenesis progresses, suggesting that high DIO3 expression
might prevent excess TH buildup (238).

Thyroid Hormone Receptors
TRs are expressed in gonads of teleosts such as goldfish (103,
236), striped parrotfish (234), Korean rockfish (241), black porgy
(Acanthopagrus schlegelii) (242), and fathead minnow (243), and
their expressions appear to be gender-dependent and species-
specific. The expressions of TRa and TRb are higher in ovary
than in testis in mature Korean rockfish (241), mature goldfish
(103), and developing fathead minnow (243), but higher in testis
than the ovary in striped parrotfish (234).

In fish that change sex as part of their life-history strategy, TR
subtypes display expression changes in regard to gender. In
protandrous (sex change from male to female) black porgy,
TRa mRNA expression is low in immature testis and increases
at maturation. During sex change, TRa expression decreases
then subsequently increases during ovary development and
maturation and TRb expression is highest in mature ovary
after sex change than in any other gonadal or sex stage (242).
These results suggest that TRa is critical for both testis and ovary
development, and TRb might only be required in the ovary of
this species, similar to fathead minnow (243). The significance of
this differential expression is yet to be uncovered, but most likely
important in cell-specific proliferation and differentiation in
gonads, albeit, dependent on sex.

Thyrotropin Receptors
Thyrotropin receptor (TSHR) expression has been detected in
gonads of several species, including European sea bass (244),
walking catfish (Clarias batrachus) (245), channel catfish (246),
striped bass (Morone saxatilis) (247), Biwa trout (Oncorhynchus
rhodurus) (248), and sunrise sculpin (Pseudobennius
cottoides) (248).

TSHR expression levels increase during ovarian and testicular
maturation in European sea bass (244), channel catfish (246) and

striped bass (247), and peak during spermatogenesis in sunrise
sculpin (248), suggesting a direct role of TSH and TSHR in
gametogenesis. In walking catfish, GnRH treatment increases
TSHR mRNA expression in gonads, suggesting a positive
correlation between TH levels and reproduction (245).

Thyroid and Hypothalamus-Pituitary-
Gonadal Axes
In fish, as in mammals, the thyroid influences the HPG axis in a
gender-, development-, and species-specific manner. The effects
of the thyroid axis on reproductive processes of fish occur via
actions at all levels of the HPG axis, i.e., the hypothalamus,
pituitary, and gonads.

In the hypothalamus, the effects of THs on GnRH appear to
depend on the species and the reproductive-stage considered, as
well as the specific population of GnRH neurons. In male mature
recrudescent (active gametogenesis) air-breathing catfish
(Clarias gariepinus), thiourea-induced TH depletion reduces
the number of hypothalamic GnRH immunoreactive neuronal
cells and fibers (249). In immature male Nile tilapia, T3

treatment suppresses terminal nerve GnRH mRNA, but does
not significantly affect preoptic or midbrain GnRH mRNA levels
or the number of hypothalamic GnRH neurons (250), suggesting
central-specific TH action dependent on reproductive stage.

Studies have shown that THs may act at the pituitary level to
inhibit gonadotropin secretion. Hypothyroid conditions decrease
pituitary LH immunoreactivity and LH circulating levels in male
recrudescent air-breathing catfish (249), and, in recrudescent
goldfish, administration of T3 decreases pituitary LH mRNA
expression in males (251) and attenuates GnRH-induced LH
secretion in females (252).

Gonadal steroidogenesis occurs in Leydig cells of testes and
thecal and granulosa cells of ovaries, and starts with the transport
of cholesterol into the mitochondria mediated by steroidogenic
acute regulatory protein (StAR), where it is converted into
pregnenolone, which is sequentially converted into active
steroids such as progesterone (P), 17a-hydroxy-20b-
dihydroprogesterone (DHP), the androgens testosterone (T)
and 11-ketotestosterone (11-KT, the predominant androgen in
fish), and estradiol-17b (E2) by several steroidogenic enzymes
(253). In male vertebrates, Sertoli and Leydig cells are responsible
for spermatogenesis and androgen biosynthesis, respectively,
whereas oogenesis is stimulated by ovarian estrogen and
progestins in females (254).

There is evidence in fish that THs increase spermatogenesis
and androgen secretion in males and estrogen and progestin
secretion in females. In zebrafish testis, T3 stimulates
spermatogenesis by increasing the division of spermatogonia
and Sertoli cells (255, 256), increasing the production of IGF-III
(insulin-like growth factor-III, a stimulatory growth factor
of spermatogenesis) by Sertoli cells, and enhancing the
gonadotropin-induced synthesis and release of androgens by
Leydig cells (257). In male goldfish, treatment with T3 decreases
expression of CYP19 (aromatase, which converts androgens into
estrogens) thus increasing the androgen to estrogen (A:E) ratio

Deal and Volkoff Thyroid Axis in Fish

Frontiers in Endocrinology | www.frontiersin.org November 2020 | Volume 11 | Article 5965858

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


(251), and inhibiting T3 synthesis with monocrotophos
(organophosphate pesticide) increases CYP19 expression and
reduces the A:E ratio (258). In contrast, in cultured adult
zebrafish testis, T3 does not affect the release of 11-KT, or AR
and CYP19 mRNA expressions (255), and in juvenile common
carp, treatment with T4 has no effect on testis diameter or
number of spermatogonia (259). In mid to late recrudescent
male goldfish, T3 decreases circulating E2 levels and expression
levels of testis estrogen receptor subtypes (ERa, ERb1, and ERb2)
during mid-recrudescence (251), but has no effect in late or
regressed gonads (51). This suggests that THs are essential for
spermatogenesis in males but are reproductive stage-specific and
seem to have the greatest effect in periods of active spermatogenesis.

In mid-recrudescent female goldfish, in vivo T3 treatment
decreases the expressions of estrogen receptors (ERa and ERb1)
and CYP19 in ovary (251), and in recrudescent female air-breathing
catfish, T4 treatment decreases CYP19 immunoreactivity and E2
levels in ovary (260), while thiourea-induced TH depletion increase
ovarian expression of CYP19 (261). In oocytes of pre-spawning
climbing perch, in vitro T3 treatment increases progesterone release
(262) and 3b-hydroxysteroid dehydrogenase (3b-HSD, which
converts pregnenolone to progesterone) activity (263), and
enhances gonadotropin-induced E2 secretion in ovarian follicles
from spawning rainbow trout (264).Therefore, similar to male
testes, the actions of TH in ovaries appear more pronounced
during active periods of gametogenesis. It has been suggested that
in seasonal species such as goldfish, THs might inhibit oogenesis/
vitellogenesis during non-spawning season, allowing fish to allocate
their energy to somatic growth (251, 265).

Very few studies have been performed in elasmobranchs. In
the oviparous female dogfish, thyroidectomy impairs ovarian
follicular development (224). Both male and female spiny dogfish
show correlations between gonad follicle and thyroid growth,
with female follicular cell height showing a positive relationship
to thyroid weight (228).

While THs affect reproductive tissues, the thyroid axis is also
regulated by reproductive hormones. In fish, treatment with E2
appears to have inhibitory effects on TH levels, as seen by E2
induced decrease in thyroid epithelial cell height and thyroid
activity [e.g., European eel (266) and rainbow trout (267)],
decreases in plasma TH levels (usually T3) [e.g., European eel
(266), Atlantic salmon (268) and southern hemisphere lamprey
(Geotria austrails) (269)], decreases in hepatic T3 production
[e.g., trout (264, 270) and masu salmon (271)], increases in TSH
[e.g., rainbow trout (270) and masu salmon (271)], and decrease
in gonad TRa expression in male and female fathead minnow
(272). Like estrogens, androgens might also affect the thyroid
axis in fish (273). Androgens have been shown to enhance
thyroidal function in most teleosts examined [e.g., striped
catfish (Mystus vittatus) (274); rainbow trout (275); masu
salmon (276); coho salmon (277), striped catfish (274)]. In
Japanese medaka (Oryzias latipes) (278) and coho salmon
smolt (277), 11-KT (medaka), and 17a-methyltestosterone
(MT, coho) administration in larval males causes thyroid
follicle hypertrophy and enhances 5’-MDA activity (279).
However, MT treatment induces a dose-dependent decrease in

plasma T4 and inhibits the smoltifying effects of T4 in masu
salmon (276).

ROLE OF THYROID HORMONES IN
OSMOREGULATION

In mammals, the kidney is the major osmoregulatory organ, and
THs influence renal development, kidney hemodynamics,
glomerular filtration rate and ion and water homeostasis (280)
and thyroid dysfunction affects renal function (280).

In fish, osmoregulation is accomplished by the kidneys and
GIT, but mainly by gills (via chloride cells) in teleosts and rectal
gland in elasmobranchs (281). Compared to the outside water,
the internal environment of marine fish is hypoosmotic, while
that of a FW fish is hyperosmotic. Most species live in relatively
constant habitats and can only survive within a narrow range of
salinities (stenohaline). However, other species are able to adapt
to a wide range of salinities (euryhaline) and some undergo
drastic osmotic changes as they migrate [from SW to FW
(anadromy) or from FW to SW (catadromy)] (282).

Several hormones control osmoregulation in fish. In
euryhaline fish, cortisol (a glucocorticoid secreted by kidney) is
considered the main SW adapting hormone whereas prolactin
(PRL, which promotes ion uptake and inhibits ion secretion) is
viewed as a FW adapting hormone; GH and IGF-I have also been
implicated in the control of SW adaptation (283, 284). The
thyroid axis has been shown to regulate osmoregulatory changes
in fish, most likely through interactions with cortisol/GH and
PRL (283, 284).

Salinity Tolerance in Salmonids
Several studies have examined the role of the thyroid axis in
determining tolerance to changing salinities in salmonids.
Salinity tolerance (capacity to withstand SW) increases after
TH treatment in FW coho salmon (285, 286), Atlantic salmon
(287, 288), pink (Oncorhynchus gorbuscha) and sockeye salmon
(289), and sockeye salmon transferred from FW to SW have
increased gill TRa, TRb1, and TRb2 mRNA and increased TH
levels (290). In Atlantic salmon, T3 increases the binding affinity
of cortisol to gill cortisol receptors, an effect synergistic when co-
injected with GH (291)—indicative of increased SW tolerance. In
amago salmon (Oncorhynchus rhodurus), T4 treatment
potentiates the action of GH on gill Na+/K+-ATPase (NKA,
major ion pump) (292), while there is a synergistic effect in gill
NKA activity in Atlantic salmon (291) and rainbow trout (293)
when co-injected with T3 and GH.

Atlantic salmon injected with PRL limits cortisol receptor
binding affinity and decreases NKA activity, reducing SW
tolerance. In coho salmon, PRL alone has no effect on plasma
T3 levels and decreases plasma T4 levels, and when PRL is co-
injected with TSH it prolongs the TSH-induced elevation of TH
levels (294). In brook trout (Salvelinus fontinalis) co-injections of
TSH and PRL increase plasma T3 levels, hepatic T3 content and
5’-MDA rates compared with TSH-treated animals (295),
suggesting an interaction between TSH and PRL.
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Evidence in Other Euryhaline Fish
THs have also been shown to affect the osmoregulatory
capabilities of other euryhaline species. In Mozambique tilapia,
TH injections increase gill NKA activity (296), potentiate the
action of cortisol on gill NKA activity (297) and increases
chloride cell size (a function of ionoregulatory ability) (296).

In summer flounder (Paralichthys dentatus), which move
from high to low salinity ocean water during metamorphosis,
SW tolerance increases after TH treatment in individuals
undergoing metamorphosis, suggesting that, similar to
anadromous salmon, THs regulate the development of
osmoregulatory mechanisms necessary for the transition to
FW to SW (298). In gilthead sea bream (Sparus aurata),
exposure to low salinity increases T4 levels and decreases gill
DIO1 activity (299), while high salinity decreases T4 levels and
increases pituitary TSHb and gill NKA activity (300). However,
in grass carp (Ctenophayngodon idella), an increased salinity
decreases T3 and TSH levels, and increases T4 serum levels (301).

Marine and euryhaline elasmobranchs in SW regulate urea and
other body fluid solutes [trimethylamine oxide (TMAO), Na+, Cl−]
such that they remain iso- or slightly hyperosmotic to their
environment (302). While little information is available, it seems
that the thyroid axis may contribute to elasmobranch
osmoregulation. In Atlantic stingray, plasma urea levels and
osmotic concentration increase following thyroidectomy and
decrease after T4 replacement therapy, possibly due to the
regulation of urea efflux or metabolism (303). In dogfish, 5’-
MDA liver activity increases in the presence of TMAO (protein
stabilizer that counteracts urea buildup) and TMAO + urea (136),
suggesting a role of THs in urea metabolism, as seen in goldfish, for
which T4 increases ammonia production and excretion (304, 305).

FEEDING AND NUTRIENT HOMEOSTASIS

The nutritional energy provided by food intake is essential for
activity, growth, andmaintenance of bodily functions. In fish (306)
as in mammals (307), food intake is mainly regulated by brain
feeding centers controlled by central and peripheral endocrine
signals, which either stimulate [orexigenic peptides, such as orexin,
agouti-related protein (AgRP), and neuropeptide Y (NPY)] or
inhibit [anorexigenic signals, such as cocaine- and amphetamine-
regulated transcript (CART) and a-melanocyte-stimulating
hormone (a-MSH) derived from POMC] feeding behavior.
Feeding centers receive information about nutritional status
from the periphery [e.g., gastrointestinal tract (GIT)] either via

the general circulation or the brainstem/vagal complex. These
peripheral signals include ghrelin, cholecystokinin (CCK), peptide
YY (PYY), and leptin. Usually, when food intake is restricted, the
expression of orexigenic hormones increases while that of
anorexigenic hormones decreases (306, 308).

Role of the Thyroid Axis in Feeding/Food
Intake
In mammals, the thyroid axis regulates food intake, body weight
(309) and metabolic/nutrient homeostasis (310). The thyroid

axis can influence feeding via the actions of TRH and THs in the
brain, THs in the periphery, and also be influenced by endocrine
appetite-regulating signals (e.g., NPY, leptin).

In rodents, central administration of TRH or TSH decreases
food intake (311, 312) whereas TH injections increase feeding
(313, 314). Conversely, food deprivation decreases hypothalamic
TRH and pituitary TSHb mRNA expression, and peripheral T3

serum levels (315), while refeeding increases hypothalamic TRH
mRNA expression, increases plasma TSH, and normalizes
circulating T3 levels (316).

Interactions between the thyroid axis and appetite-regulating
signals have been shown in mammals. In rats, although TRH
neurons contain NPY receptors (317), TRH does not stimulate
NPY neurons (318), but goats injected with NPY show a dose-
dependent increase in TH levels (319). TRH neurons excite orexin
neurons (318) and orexin has been reported to either increase (320)
or decrease (321) hypothalamic TRH levels. Interestingly, some
hypothalamic TRH neurons co-secrete CART but the nature of this
interaction is unclear (322). It has been suggested that the
anorexigenic actions of TRH are mediated in part by the
inhibition of melanin-concentrating hormone (MCH, an
orexigenic neuropeptide) (318), while the orexigenic effect of THs
might occur via decreases in the expression of anorexigenic factors
such as POMC, CART, and MC4R (melanocortin 4 receptor,
activated by a-MSH and AgRP to reduce food intake) (310, 323,
324), and increases in the expression of appetite stimulators such as
NPY (325). Leptin (a adipose satiety signal) increases TRH
expression directly by binding to its receptors at TRH neurons
(326), or indirectly via decreases in AgRP and NPY and increases in
a-MSH (which innervate TRH neurons) (309, 327). There is no
clear evidence of a correlation between THs and leptin expression
and circulating levels (328, 329).

In fish, interactions between feeding and thyroid status have
been shown in several species. In green sunfish (Lepomis

cyanellus), high thyroid activity correlates with increased food
intake (330), whereas in Amur sturgeon (Acipenser schrenckii),
low serum TH levels correlate to low feeding rates (331). In
climbing perch, exposure to thiourea (TPO inhibitor) decreases
food consumption (332). Reduced food ration in green sunfish
(330) and long-term starvation in rainbow trout (333) decreases
the sensitivity of thyroid tissues to TSH, resulting in a decrease in
TH levels. In winter flounder, hypothalamic TRH expression
increases during fasting (334) but decreases in common carp
(335), and in goldfish, TRH injections increase food intake (336).

Little is known about interactions between the thyroid axis
and appetite regulators in fish. In goldfish, TRH injections
increase the brain expression of orexin, orexin receptor, and
CART (336). In bighead carp pituitaries, leptin increases TSHa

and TSHb expression (42), and in grass carp, leptin and ObRb
expression levels increase in hepatocytes incubated with low
doses of T3 (although high doses inhibit expression) (337). In
fasted burbot, plasma T4 and TSH correlate with increased
plasma leptin levels (180).

All together, these results suggest that in fish, the thyroid axis
plays a role in regulating appetite, and responds to changes in
feeding status.
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Thyroid Hormones, Nutrient
Synthesis, and Metabolism
Nutrients and how efficiently they are metabolized have been
shown to influence and be influenced by the thyroid axis. In
mammals, hyperthyroidism is associated with high metabolism—

increased fat breakdown, weight loss, increased liver cholesterol
synthesis and clearance, and low serum cholesterol—while the
opposite occurs in hypothyroidism (338). For example, in rats, T3

increases caloric intake and leads to increased lipolysis (by fatty
acid b-oxidation) (339), while hypothyroid female rats have
reduced hepatic mRNA expressions associated with cholesterol
uptake and lipid oxidation (340). Conversely, the quality of
nutrients influences the thyroid axis and TH production. Rats
fed fish oil diets have higher liver TR expression and increased
thyroid signaling associated with lipid metabolism than rats fed
soybean oil diets (341), and rats fed diets supplemented with Yucca
schidigera (which contains saponins that decrease GIT nutrient
absorption), have lower THs levels than control animals (342).

In fish, THs influence nutrient metabolism of lipids, proteins
and carbohydrates (343) in a species-specific manner. T4 treatment
promotes lipolysis, stimulates lipid mobilization, and decreases
lipid stores (e.g., as seen by decreased total lipids and increased
lipolytic enzyme activity) in coho salmon (344), and increases lipid
efficiency, plasma cholesterol and triglyceride levels in Sterlet
sturgeon (345). Body protein content decreases in European eel
(glass stage) treated with THs (346), and walking catfish exposed to
thiourea (347). THs also affect glucose and related carbohydrate
metabolism pathways. Following TH treatment, plasma glucose
levels increase in red sea bream (348), gilthead sea bream (349), and
European eel (346), but decrease in rainbow trout (350). TH
treatment increases liver gluconeogenic pathways in gilthead sea
bream in vivo (349), and expression of transcripts associated with
glycolytic pathways [i.e., glucokinase (GK), glucose-6-phosphatase
(G6Pase), glycogen synthase (GS), and glycogen phosphorylase
(GP)] in silver sea bream hepatocytes in vitro (351). However,
RNA-seq analysis conducted in liver of tilapia treated with T3

shows a down-regulation of several pathways related to
carbohydrate metabolism (i.e., amino sugars synthesis, galactose
and mannose metabolism, tricarboxylic acid cycle) (116).

The quality of the food (i.e., protein, carbohydrate, or lipid
content) also influences the thyroid axis in fish. For example, low
protein diets reduce plasma T4 levels and/or 5’-MDA activity in
rainbow trout (352) and brook trout (353). Similarly, in Japanese
flounder, fish meal-fed fish have higher levels of T3 than fish fed
with fish protein concentrate (FPC) or soy protein concentrate
(SPC) (353). Rainbow trout fed a diet with low carbohydrates have
low 5’-MDA activity compared to fish fed a carbohydrate-rich diet
(354). Under a diet with low salmon oil content, rainbow trout
have reduced plasma T4 and increased plasma T3 levels, while a
high salmon oil diet leads to high plasma T4 and low T3 (354).

RELEVANCE OF THE THYROID AXIS IN
AQUACULTURE

The basic premise to aquaculture systems is to maximize growth
at a minimum cost, producing an aesthetic product with high

nutritional value (355). The bottlenecks in aquaculture are often
the survival of larval and juvenile stages, and successful
spawning. Manipulations or disruptions of the thyroid axis
could potentially have positive (e.g., increased developmental
and reproductive success, hatching, and growth rates) or
negative (e.g., skeletal deformations, depressed food intake)
effects in the aquaculture industry.

Thyroid Hormones Could Be
Used to Enhance Early Survival
and Development in Fish
THs are important in the development and growth of fish,
particularly during early life stages. In aquaculture settings,
high mortality rates are seen in early life stages and several
species develop skeletal deformities or abnormal pigmentations
which might compromise the aspect of the fish and render it
improper for sale [e.g., Atlantic salmon (356); Atlantic cod (357);
flatfish (358)].

Many studies have reported positive effects of TH treatment in
newly fertilized eggs and larvae to enhance hatching, post-
embryonic growth and larval survival. For example, immersion in
T4 reduces the hatching period, the number of physical deformities,
and mortality rate in Asian stinging catfish (Heteropneustes fossilis)
eggs, (359), and induces faster development (i.e., gut formation,
swim bladder development, yolk absorption) in freshwater carp
(Catla catla) larvae (360). Similar positive effects have been shown
in Pacific threadfin (Polydactylus sexfilis) (361), spotted gar (128),
rainbow trout (362), milkfish (Chanos chanos) (363), grouper (202),
and chum salmon (364), as well as a number of South American fish
[e.g., piracanjuba (131); matrinxã (132); dourado (Salminus
maxillosus) (365)].

However, negative effects of THs have also been reported. T4

immersion results in reduced hatching, growth rate, and yolk
content in alligator gar (128), decreased pigmentation in Atlantic
salmon (366), major abnormalities in Nile tilapia [i.e., abnormal
shaped pectoral fins, lordosis, and scoliosis (spinal curvature)]
(367) and albinism in Japanese flounder—possibly via inhibition
of pigment production or impairment of melanophore
development due to precocious metamorphosis (368).

Overall, these studies suggest that the effects of TH on eggs
and larvae might be dose- and species-dependent.

Thyroid Hormones Can Control and
Optimize the Time of Salmonid
Smoltification
As there are individual variations in growth rates in fish, THs
(which are involved in stimulating both growth and
smoltification) have been used to accelerate growth and
promote the achievement of SW tolerance in several salmonids
(369). TH treatments could also be useful in inducing promote
out-of-season growth and smoltification.

Smoltification is controlled by environmental cues (mainly
photoperiod and temperature), which induce changes in the
thyroid axis (370–372) and only occurs when a threshold
weight has been reached (373). In aquaculture, the period
following the transfer of fish from FW to SW is critical, as the
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performance (including optimal growth rates) of the fish after
t r an s f e r d ep end s upon a su c c e s s f u l P a r r - Smo l t
transformation (374).

A well-timed TH induction of smoltification may be
advantageous in species which are released and recaptured
[e.g., kokanee salmon (Oncorhynchus nerka) (375)] to ensure
the return of adult fish to release sites, as fish with the highest
whole body T4 content display increased odor attractions and
more accurate homing behavior compared to fish with low T4

levels (376). In Atlantic salmon smolts following transfer to
SW, there is a transient suppression of appetite and growth (for
up to 30 days) (374, 377), and THs treatment at the right time
and the right dose during the parr phase might lessen this
inhibition. However, T4 administration in late Atlantic salmon
parr depressed olfactory bulb response to L-alanine (nasal
stimulant in salmon) and inhibited 5’-MDA, so timing of
induction is critical (378).

Thyroid Hormones Could Enhance
Reproduction
THs may potentially be used to enhance reproduction in some
aquaculture species by enhancing offspring survival and market
value [e.g., increase quality of eggs for sturgeon caviar production
(379)]. Higher embryonic/larval survival rates and hatching rates
have been shown in fertilized eggs treated with THs [e.g., Pacific
threadfin (361); Sterlet sturgeon (130)] or following maternal TH
injections [e.g., greater amberjack (Seriola dumerili), Japanese
whitling (Sillago japonica), red spotted grouper (Epinephelus
akaara), red sea bream, and Japanese parrotfish (Oplegnathus
fasciatus) (380, 381); striped bass (382)]. In Medaka,
administration of T3 prior to spawning increases E2 production
and oocyte growth, showing that T3 administration can enhance
final oocyte maturation (383).

The use of THs to enhance reproduction has been successfully
used in large scale aquaculture production of some species [e.g.,
goldstriped amberjack (Seriola lalandi) (380); Korean rockfish
(137)]. In goldstriped amberjack, maternal injections of T3

reduce mortality during early development and growth, and
larval survival increased from less than 1.0% when seed
production began in 1985, to 7.3% by 1994 following
implementation of T3 injections (380).

Thyroid Disruption by Anthropogenic
Actions as a Threat to Aquaculture
Pollutants
Thyroid disruption by exposure to environmental toxicants such as
metals [e.g., cadmium (384)], pesticides [e.g., organophosphorous
pesticides (385)], and pollutants [e.g., polychlorinated biphenyls,
PCBs (386)] could result in increased larval mortality and
developmental deficiencies (387) depending on the aquaculture
system and species.

With increasing anthropogenic and industrial activities,
heavy metals can become soluble and accumulate to toxic
levels, and potentially affect the thyroid axis (388). Cadmium

decreases TH levels in rainbow trout (389), while chromium
exposure reduces TH levels in European eel (390), and induces
thyroid follicle hypertrophy and increases in serum TH levels in
spotted snakehead (Channa punctatus) (391). Exposure to
mercury decreases circulating TH levels in spotted snakehead
(392) and increases the T4:T3 ratio—suggesting an inhibition of
5’-MDA activity—in yellowfin sea bream (Acanthopagrus
latus) (393).

Organophosphorus pesticides (OPs) can inhibit growth and
development of fish. Dimethoate decreases serum TH levels and
increases TSH levels in roho labeo (Labeo rohita) (394),
chlorpyrifos decrease serum TH and TSH levels in Asian
stinging catfish (395), and decreases in TH levels inhibits
development of sensory organs (eyes, olfactory organ, and
lateral line) and decreases survival rates in surgeonfish (396).
In goldfish, monocrotophos decrease TH levels, and up-regulate
pituitary TSHb and hepatic DIO1 and DIO3 expressions (397).
In Senegalese sole, exposure to malathion affects growth patterns
(eye migration, skeletal disorders), reduces thyroid follicle size,
and induces decreased thyroid signaling (as seen by low TRb
mRNA levels) (398).

PCB exposure induces higher rates of thyroid metabolism
(i.e., deiodination, glucuronidation, and sulfatation) and lower
TH levels in European sea bass (399), coho salmon (400), and
rainbow trout (401), but not in European flounder (Platichthys
flesus) (402).

Therefore, while some mechanisms of interaction between
environmental toxicants and the thyroid axis are unknown,
toxicants can have negative effects on thyroid economy of fish,
and could potentially affect growth and production of
aquaculture species.

Climate Changes
Climate change brings about changes in the aquatic environment,
such as increases in temperature and acidification, which deeply
affect fish physiology (403) and aquaculture practices (404), and
might have potential effects on the thyroid axis.

Warmer temperatures have been shown to decrease the
sensitivity of fish to THs in zebrafish (118, 405) and mosquito
fish (Gambusia holbrooki) (406), and in surgeonfish, a 3°C
increase in temperature induces lower TH levels and a
disrupted development of sensory organ, an effect that can be
reversed by treating the fish with THs (396). In addition,
thermally challenged fish may produce less viable gametes,
with fitness implications that could affect species at
the population level (407). In Japanese Medaka, high
temperatures decrease the number of spawned eggs, an effect
amplified by a reduction in TH levels (by sodium perchlorate
exposure) (408). Similarly, seasonal spawners such as goldfish
exhibit high TH levels post-spawning in the summer (when
water temperatures are the highest) as a way to inhibit pituitary
LH and gonadal aromatase (265). While these temperature-
mediated effects have not held true for all fish species [e.g.,
Atlantic cod (84, 409)], an earlier than normal increase in water
temperatures as a result of climate change, might disrupt
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thyroid cycles and inhibit reproductive capabilities in some fish.
The thyroid axis is also sensitive to ambient acidity. For

example, exposure to acid water increases T4 plasma levels in the
climbing perch (Anabas testudineus) (410) and brown trout
(Salmo trutta) (411), and a decrease in T3 levels in Atlantic
Salmon (412).

Changes associated with climate may differentially affect
specific life-history stages of fish (e.g., species that undergo
substantial metamorphic events), which may result in plastic
responses that lead to deficiencies later in life. These abiotic
changes are poorly understood in the context of the thyroid axis
and fish, but require attention for future climate scenarios and
aquaculture practices.

SUMMARY AND CONCLUSION

Thyroid hormones have diverse effects and play an important
role in the maintenance of a normal physiological state in
vertebrates. While similarities exist between fish and other
vertebrates exist, fish thyroidal systems present unique features
(see Table 1, Figure 1) and functions owing to the diversity in
fish anatomies, habitats, and life cycles.

The follicular structure of the thyroid is conserved in
vertebrates, but most fish have diffuse glands making it more
difficult to study. The mechanisms by which fish synthesize and
metabolize THs is similar to those in mammals (i.e., THs
requires thyroglobulin, iodine, and TPO, and DIOs are needed
to activate/inactivate THs), but fish might have different isoforms
of enzymes which have different properties/actions/locations
(e.g., DIO1 is insensitive to PTU and DIOs are located in
various tissues), suggesting diverse TH metabolisms.

Evidence suggests that TRH may not be the major TSH-
releasing factor at the pituitary in fish, but rather be responsible
for the secretion of GH, PRL, and ACTH, which in turn might

affect TSH. THs appear to exert an inhibitory feedback action on
TSH, but there is no clear evidence for TRH. More advanced
molecular techniques (e.g., RNA-sequencing) and in vivo studies
may help to shed light on the true nature and interactions of
TRH in fish.

Existing literature has highlighted the actions of TH in fish via
genomic (binding to species specific isoforms of TRs)
mechanisms. However, the non-genomic mechanisms by
which THs act are poorly understood, as these processes can
overlap with genomic actions. As in all vertebrates, T3 is the main
biologically active form of TH, but metabolized THs (e.g., T2 and
Tetrac) previously deemed inactive, are proving to have a role in
regulating metabolism (413).

In fish, THs regulate many aspects of reproduction, including
gonad maturation, steroidogenesis, and sexual behavior, and can
affect the time of spawning, quality of eggs, and fertilization rates
and development of eggs/larvae. There are also deep complex
interactions between the thyroid axis and growth (e.g., GH, IGF-1)
and feeding/appetite (e.g., NPY, POMC) regulators, however, a
good knowledge of these interactions is still lacking. A better
understanding of the control of THs on reproduction, growth, and
development, and feeding might provide invaluable insights in
aquaculture species/practices and may especially be important to
maximize growth while reducing production costs in the ever-
growing aquaculture industry.

Any alteration of the thyroid axis by environmental
anthropogenic pollutants (effluents containing thyroid
disrupting compounds) could have serious physiological and
ecological consequences. Understanding specific mechanisms of
action of these pollutants might help to substantiate their
potential long term affects, and help fisheries managers
regulate wild populations under threat from these compounds.

Finally, climate change is an additional stress to aquatic
ecosystems, affecting both water temperature and shifting
carbon dioxide concentrations through direct and indirect
effects. Owing to the aquatic habitat of fish, the thyroid axis

TABLE 1 | Example effects of the thyroid axis on various physiological processes in fish.

Process Effects

Egg/larval survival + Thyroxine increases egg viability, hatchability, and survival [e.g., common carp (363)].

Egg/larval/juvenile

development

+ TH immersion or injection increases pigmentation, hatching, growth rate, larval metabolic capacity [e.g., Sterlet sturgeon (125, 130); zebrafish

(133); goldfish (134)].

− Hyperthyroidism leads to arrested development of skeletal structures [e.g., zebrafish (149)].

Juvenile/adult

development

+ T4 induces opsin switch in juvenile coho salmon and rainbow trout (183). T4 promotes intestinal and swim bladder development in freshwater

carp larvae (360). T3 and T2 promote growth in tilapia (119).

Metamorphosis/

smoltification

+ THs increase olfactory bulb proliferation, body silvering, and downstream migration in salmon (196, 197).

− Metamorphosis is blocked by THs in sea lamprey (191).

Reproduction + T3 stimulates spermatogenesis in zebrafish by increasing IGF-III (255, 256). T3 increases progesterone release in female climbing perch (262).

− T3 treatment suppresses terminal nerve GnRH expression in Nile tilapia (250) and administration of T3 in male goldfish decreases pituitary LH

mRNA expression (251).

Osmoregulation + T3 injections increase gill ion pump activity in Mozambique tilapia (296) and T4 immersion increases salinity tolerance in summer flounder

(298).

Feeding/food

conversion

+ TRH injections increase food intake in goldfish (336). T4 increases food, protein, and lipid efficiency in sterlet sturgeon (345).

− T3 decreases body protein in European eel (346) and decreases plasma glucose in rainbow trout (350).

A (+) denotes the thyroid axis enhancing the physiological process while a (−) denotes a suppression or impairment.
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shows trends in seasonality (414), and is affected by
external factors such as temperature, salinity, and pH (118),
begging the question on how climate change might alter
thyroid signaling.
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administered somatostatin on pituitarythyrotropes in male rats. Histochem J

(2000) 32(9):565–9. doi: 10.1023/a:1004158412915
176. De Rosa G, Corsello SM, Della Casa S, De Rosa E, Raimondo S. Effect of

somatostatin on the pituitary–thyroid axis. Annales d’Endocrinolo (Paris)

(1983) 44(6):355–60.
177. Chen J, Cao M, Zhang A, Shi M, Tao B, Li Y, et al. Growth hormone

overexpression disrupts reproductive status through actions on leptin. Front
Endocrinol (2018) 9:131. doi: 10.3389/fendo.2018.00131

178. de Luze A, Leloup J. Fish growth hormone enhances peripheral conversion of
thyroxine to triiodothyronine in the eel (Anguilla anguilla L.). Gen Comp

Endocrinol (1984) 56(2):308–12. doi: 10.1016/0016-6480(84)90045-5
179. Holloway AC, Sheridan MA, Van Der Kraak G, Leatherland JF. Correlations

of plasma growth hormone with somatostatin, gonadal steroid hormones
and thyroid hormones in rainbow trout during sexual recrudescence. Comp

Biochem Physiol – B Biochem Mol Biol (1999) 123(3):251–60. doi: 10.1016/
S0305-0491(99)00059-0

180. Nieminen P, Mustonen A–M, Hyvärinen H. Fasting reduces plasma leptin–
and ghrelin–immunoreactive peptide concentrations of the burbot (Lota
lota) at 2°C but not at 10°C. Zool Sci (2003) 20(9):1109–15. doi: 10.2108/
zsj.20.1109

181. Bhumika S, Lemmens K, Vancamp P, Moons L, Darras VM. Decreased
thyroid hormone signaling accelerates the reinnervation of the optic tectum
following optic nerve crush in adult zebrafish. Mol Cell Neurosci (2015)
68:92–102. doi: 10.1016/j.mcn.2015.04.002

182. Lema SC, Nevitt GA. Evidence that thyroid hormone induces olfactory
cellular proliferation in salmon during a sensitive period for imprinting.
J Exp Biol (2004) 207(19):3317 LP–27. doi: 10.1242/jeb.01143

183. Cheng CL, Gan KJ, Flamarique I. Thyroid hormone induces a time–
dependent opsin switch in the retina of salmonid fishes. Invest Ophthalmol

Visual Sci (2009) 50(6):3024–32. doi: 10.1167/iovs.08-2713
184. Flamarique IN, Browman HI. Foraging and prey–search behaviour of small

juvenile rainbow trout (Oncorhynchus mykiss) under polarized light. J Exp
Biol (2001) 204(14):2415–22.

185. Kudo H, Tsuneyoshi Y, Nagae M, Adachi S, Yamauchi K, Ueda H, et al.
Detection of thyroid hormone receptors in the olfactory system and brain of
wild masu salmon, Oncorhynchus masou (Brevoort), during smolting by in
vitro autoradiography. Aquaculture Res (1994) 25(S2):171–81. doi: 10.1111/
are.1994.25.s2.171

186. McMenamin SK, Parichy DM. Metamorphosis in teleosts. Curr Topics Dev
Biol (2013) 103:127–65. doi: 10.1016/B978-0-12-385979-2.00005-8

187. Alves RN, Gomes AS, Stueber K, Tine M, Thorne MAS, Smáradóttir H, et al.
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327. Fekete C, Légrádi G, Mihály E, Huang Q–H, Tatro JB, Rand WM, et al. a–
melanocyte–stimulating hormone is contained in nerve terminals
innervating thyrotropin–releasing hormone–synthesizing neurons in the
hypothalamic paraventricular nucleus and prevents fasting–induced
suppression of prothyrotropin–releasing hormone gene expression.
J Neurosci (2000) 20(4):1550 LP–8. doi: 10.1523/JNEUROSCI.20-04-
01550.2000

328. Kristensen K, Pedersen SB, Langdahl BL, Richelsen B. Regulation of leptin by
thyroid hormone in humans: Studies in vivo and in vitro.Metabolism (1999)
48(12):1603–7. doi: 10.1016/S0026-0495(99)90252-4

329. Sreenan S, Caro JF, Refetoff S. Thyroid dysfunction is not associated with
alterations in serum leptin levels. Thyroid (1997) 7(3):407–9. doi: 10.1089/
thy.1997.7.407

330. Gross WL, Fromm PO, Roelofs EW. Relationship between thyroid and
growth in green sunfish,Lepomis cyanellus (Rafinesque). Trans Am Fish Soc

(1963) 92:401–8. doi: 10.1577/1548-8659(1963)92[401:RBTAGI]2.0.CO;2
331. Li D, Liu Z, Xie C. Effect of stocking density on growth and serum

concentrations of thyroid hormones and cortisol in Amur sturgeon,
Acipenser schrenckii. Fish Physiol Biochem (2012) 38(2):511–20. doi:
10.1007/s10695-011-9531-y

332. Pavlov ED, Zvezdin AO, Pavlov DS. Effect of thiourea on migratory activity
of climbing perch Anabas testudineus and food consumption. J Ichthyol

(2019) 59(5):810–4. doi: 10.1134/S0032945219050126
333. Milne RS, Leatherland JF, Holub BJ. Changes in plasma thyroxine,

triiodothyronine and cortisol associated with starvation in rainbow trout
(Salmo gairdneri). Environ Biol Fish (1979) 4:185–90. doi: 10.1007/
BF00005452

334. Buckley C, MacDonald EE, Tuziak SM, Volkoff H. Molecular cloning and
characterization of two putative appetiteregulators in winter flounder
(Pleuronectes americanus): Preprothyrotropin–releasing hormone (TRH)
and preproorexin (OX). Peptides (2010) 31(9):1737–47. doi: 10.1016/
j.peptides.2010.05.017

335. Huising MO, Geven EJW, Kruiswijk CP, Nabuurs SB, Stolte EH, Spanings
FAT, et al. Increased leptin expression in common carp (Cyprinuscarpio)
after food intake but not after fasting or feeding to satiation. Endocrinology
(2006) 147(12):5786–97. doi: 10.1210/en.2006-0824

336. Abbott M, Volkoff H. Thyrotropin Releasing Hormone (TRH) in goldfish
(Carassiusauratus): Role in the regulation of feeding and locomotor
behaviors and interactions with the orexin system and cocaine– and
amphetamine regulated transcript (CART). Hormones Behav (2011) 59
(2):236–45. doi: 10.1016/j.yhbeh.2010.12.008

337. Lu R–H, Zhou Y, Yuan X–C, Liang X–F, Fang L, Bai X–L, et al. Effects of
glucose, insulin and triiodothyroxine on leptin andleptin receptor expression
and the effects of leptin on activities of enzymes related to glucose
metabolism in grass carp (Ctenopharyngodon idella) hepatocytes. Fish
Physiol Biochem (2015) 41(4):981–9. doi: 10.1007/s10695-015-0063-8

338. Liu Y–Y, Brent GA. Thyroid hormone crosstalk with nuclear receptor
signaling in metabolic regulation. Trends Endocrinol Metab (2010) 21
(3):166–73. doi: 10.1016/j.tem.2009.11.004

339. Oppenheimer JH, Schwartz HL, Lane JT, ThompsonMP. Functional relationship
of thyroid hormone–induced lipogenesis, lipolysis, and thermogenesis in the rat.
J Clin Invest (1991) 87(1):125–32. doi: 10.1172/JCI114961

340. Hapon MB, Varas SM, Jahn GA, Giménez MS. Effects of hypothyroidism on
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