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Abstract
Thyroid hormone is a critical regulator of growth,

development, and metabolism in virtually all tissues, and

altered thyroid status affects many organs and systems.

Although for many years testis has been regarded as a thyroid

hormone unresponsive organ, it is now evident that thyroid

hormone plays an important role in testicular development

and function. A considerable amount of data show that

thyroid hormone influences steroidogenesis as well as

spermatogenesis. The involvement of tri-iodothyronine

(T3) in the control of Sertoli cell proliferation and functional

maturation is widely accepted, as well as its role in postnatal
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Leydig cell differentiation and steroidogenesis. The presence

of thyroid hormone receptors in testicular cells throughout

development and in adulthood implies that T3 may act

directly on these cells to bring about its effects. Several recent

studies have employed different methodologies and tech-

niques in an attempt to understand the mechanisms

underlying thyroid hormone effects on testicular cells. The

current review aims at presenting an updated picture of the

recent advances made regarding the role of thyroid hormones

in male gonadal function.
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Introduction

In mammals, altered thyroid status is known to adversely affect

many organs and tissues. Nevertheless, for many years, the

impact of thyroid disorders on male reproduction remained

controversial. This was partly due to the demonstration that

the adult testis of experimental animals was metabolically

unresponsive to thyroid hormones (Barker & Klitgaard 1952),

and to the low number of thyroid hormone-binding sites

found in the adult organ (Oppenheimer et al. 1974). These

early reports led to the widespread view that the testis was

unaffected by iodothyronines. Additionally, clinical data

correlating male sexual function with thyroid disorders are

limited, probably because thyroid diseases are more common

in females than in males. However, in the past two decades,

several experimental and clinical studies have demonstrated

that thyroid hormone plays an important role in testicular

development and function. It is now established that tri-

iodothyronine (T3) regulates the maturation and growth of

testis, controlling Sertoli cell and Leydig cell proliferation and

differentiation during testicular development in rats and other

mammal species (Holsberger & Cooke 2005, Mendis-Han-

dagama & Siril Ariyaratne 2005). Furthermore, changes in

thyroid hormone levels during early testis development have

been shown to affect testicular maturation and reproduction

later in life (Jannini et al. 1995).
An extensive body of data shows that thyroid hormone

inhibits Sertoli cell proliferation and stimulates their

functional maturation in prepubertal rat testis. The efficiency

of spermatogenesis, reflected by the daily sperm production in

adulthood, correlates with the total number of functional

Sertoli cells that is established during prepubertal life (Orth

et al. 1988). These data, in conjunction with the findings that

thyroid hormone receptors (TRs) are present in human and

rat testes from birth to adult life (Buzzard et al. 2000, Jannini

et al. 2000), further confirm that thyroid hormone plays a key

role in testicular development. Interestingly, the presence of

iodothyronine deiodinases, enzymes that modulate the

concentration, and thus the actions of thyroid hormones in

different tissues were also identified in the rodent testis from

fetal to adult life (Bates et al. 1999, Wagner et al. 2003, Wajner

et al. 2007). Although the mechanism(s) whereby T3 regulates

Sertoli cell proliferation remains unclear, recent studies have

suggested that the suppressive effects of T3 on Sertoli cell

proliferation might be mediated by increased levels of

expression of cyclin-dependent kinase inhibitors (CDKIs)

and/or connexin43 (Cx43; Holsberger et al. 2003, Gilleron

et al. 2006).

Insights into the role of thyroid hormone in the adult testis

have also been gained from studies with rats subjected to

prolonged thyroid hormone deficiency (Sakai et al. 2004).

These animals presented marked morphological and
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functional testicular alterations. Moreover, clinical literature

indicates that most patients with thyroid hormone disorders

experience some kind of sexual dysfunction, which improves

or normalizes when patients become euthyroid (Jannini et al.

1995, Krassas & Pontikides 2004, Carani et al. 2005). Hence,

although thyroid hormone was not historically viewed as a

major regulator of the male gonad, it is now clear that it has

critical effects on the testis especially during development.

The aim of the current review is to present an updated picture

of the recent advances of our knowledge regarding the role of

the thyroid hormones on male gonadal function.
Overview of testis structural organization

The testes are mainly comprised of tightly coiled seminiferous

tubules, which are supported by loose interstitial connective

tissue where the steroidogenic Leydig cells are located (Griffin

& Wilson 2002). Each tubule consists of a basement

membrane, elastic fibers, and peritubular myoid cells. Within

the basement membrane, the seminiferous tubules are lined

by a columnar epithelium composed of germ cells and the

somatic Sertoli cells. Adjacent Sertoli cells are connected by

tight specialized junctions to form a diffusion barrier, the

so-called blood–testis barrier, which divides the seminiferous

tubule into two functional compartments, basal, and

adluminal (Fig. 1). The basal compartment consists of Sertoli

cells, spermatogonia and preleptotene/leptotene spermato-

cytes (Cheng & Mruk 2002). In the adluminal compartment,
Figure 1 Schematic illustrating the morphological struc
the different germ cells within the seminiferous epitheliu
adjacent Sertoli cells, which create the blood–testis bar
basal and adluminal compartments, are indicated.
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primary spermatocytes divide and differentiate into germ cells

in more advanced stages of spermatogenesis. Functionally, the

blood–testis barrier creates a controlled microenvironment

providing the nutrients, appropriate mitogens, differ-

entiation factors as well as an immunological protected

ambient required for the full development of germ cells (Yan

et al. 2008).

Although gonadotropins play an essential role in modulat-

ing spermatogenesis and androgen synthesis, the full

hormonal requirements for the entire germ cell maturation

process and general maintenance of a well-functioning testis

remain unclear. In addition to gonadotropins and testoster-

one, a number of other factors play a critical role in

modulating spermatogenesis including genes, several para-

crine/autocrine factors, and other hormones, such as growth

hormone (GH) and thyroid hormones (Jegou & Sharpe 1993,

Sharpe 1994).
Role of thyroid hormone in testicular development

The main pathway for the production of the thyroid

hormone bioactive form, T3, is via outer ring deiodination

of thyroxin (T4) by iodothyronine deiodinases type 1 and 2

(D1 and D2) in peripheral tissues. Although the actions of

thyroid hormones on target tissues are predominantly

mediated by specific nuclear receptors, these hormones also

have well-known non-genomic actions (Davis et al. 2008).
ture of adult Sertoli cells and their interactions with
m. The relative locations of tight junctions between
rier (BTB) and divide the seminiferous tubule into

www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 08/23/2022 12:01:15PM
via free access



Thyroid hormone and male gonadal function . M S WAGNER and others 353
The role of thyroid hormone in testicular development and

function has received much attention since the report that

functional TRs were present in high quantities in neonatal

Sertoli cells (Palmero et al. 1988, Jannini et al. 1990,

Francavilla et al. 1991). These findings changed the classical

view of the testis as a thyroid hormone unresponsive organ,

indicating that thyroid hormone could have direct effects

on testis.
The role of thyroid hormone in Sertoli cell proliferation and
functional maturation

In the mammalian testis, Sertoli cells represent the main

structural component of the seminiferous epithelium playing a

key role in the initiation and maintenance of spermatogenesis

(Sharpe 1994). These are the first cell typeknown todifferentiate

within the fetal gonad, byexpressing the SRY gene, an event that

acts as the organizing center of the male gonad enabling the

formation of the primitive seminiferous cords (Mackay 2000,

Brennan & Capel 2004). After birth, the immature Sertoli cells

continue to proliferate until the beginning of puberty when they

stop dividing and start differentiating into their non-proliferative

adult form. It is well established that the number of Sertoli cells

present at puberty is closely correlated with both adult testicular

size and sperm output (Orth et al. 1988). At this point in time, the

establishment of an adequate numberof Sertoli cells is crucial for

future male fertility. The number of Sertoli cells present in the

adult testis depends on both the duration of the proliferative

phase and the rate of division during that phase. In rats, Sertoli

cell proliferation starts during fetal life and is complete on

approximately day 16 post partum (Orth 1982, Wang et al. 1989).

Follicle-stimulating hormone (FSH) signaling is a critical factor

in determining the rate of Sertoli cell division (Meachem et al.

1996, Kumar et al. 1997, Dierich et al. 1998, Griswold 1998), but

other factors also have an effect on the final number of Sertoli

cells (Griswold et al. 1977, Kirby et al. 1992). Several studies

performed in rats have demonstrated that thyroid hormone

determines the duration of Sertoli cell division and may be

involved in the maturational changes that decrease and eliminate

mitogenic responses to FSH (Holsberger & Cooke 2005).

Although hypothyroidism had no effect on testicular

development during fetal life (Francavilla et al. 1991,

Hamouli-Said et al. 2007), when induced in newborn rats,

it was associated, at puberty, with impaired testicular

development including testicular growth, germ cell matu-

ration, and seminiferous tubule formation (Palmero et al.

1989, Francavilla et al. 1991). However, as the animals made

hypothyroid were allowed to recover back to the euthyroid

state, a significant increase in testis size and daily sperm

production (80 and 140% respectively, compared with control

animals) was observed in adulthood (Cooke & Meisami 1991,

Cooke et al. 1991). Subsequently, the mechanism underlying

these unpredictable testicular changes was established. It has

been shown that transient neonatal/prepubertal hypothyroid-

ism extends the length of Sertoli cell proliferation by delaying

their maturation, resulting in an increased number of Sertoli
www.endocrinology-journals.org
cells in the adult testis (Francavilla et al. 1991, Van Haaster

et al. 1992, Hess et al. 1993, Joyce et al. 1993, De Franca et al.

1995). The adult number of Sertoli cells in rats that had been

subjected to transient neonatal hypothyroidism was shown to

increase 157% compared with control animals (Hess et al.

1993). Conversely, transient juvenile hyperthyroidism

resulted in an early cessation of Sertoli cell proliferation and

had a concomitant stimulatory effect on their maturation,

resulting in premature canalization of seminiferous tubules,

decreased testis size, and sperm production (van Haaster et al.

1993, Cooke et al. 1994, Palmero et al. 1995b).

The above data together with the reported high levels of

expression of functional T3 receptors in proliferating Sertoli

cells (Buzzard et al. 2000, Jannini et al. 2000) indicate that

Sertoli cells are a major testicular target for thyroid hormone.

It appears that thyroid hormone acts directly on Sertoli cells to

inhibit proliferation while stimulating differentiation, not

only in rodents (Cooke & Meisami 1991, Joyce et al. 1993,

Kirby et al. 1993) but also in many other vertebrate species

(Jannini et al. 1995, Kirby et al. 1996, Majdic et al. 1998, Matta

et al. 2002, Jansen et al. 2007). Although several factors are

presumed to play a role in proliferation and maturation of

Sertoli cells (Sharpe et al. 2003, Mackay & Smith 2007), T3 is

likely to represent a major hormonal signal involved in the

establishment of the adult Sertoli cell population.
Thyroid hormone and the mechanisms involved in Sertoli cell
proliferation

The mechanism(s) by which thyroid hormone suppress

proliferation and induce differentiation in Sertoli cells is still

unknown. Recent studies indicate that T3 might be able to

control Sertoli cell proliferation by acting through specific

CDKIs (Holsberger et al. 2005b), a family of proteins that

directly interact with the cell cycle (Sherr & Roberts 1995),

and/or by a mechanism involving Cx43, a constitutive protein

of gap junctions (Gilleron et al. 2006).

In vivo and in vitro experiments demonstrated that thyroid

hormone induces the expression of two CDKIs, p27Kip1 and

p21Cip1, in neonatal Sertoli cells, whereas hypothyroidism

decreases p27Kip1 in these cells (Buzzard et al. 2003,

Holsberger et al. 2003). Indeed, the expression of p27Kip1, a

critical regulator of proliferation in many cell types (Coats et al.

1996, Lu et al. 2002, Tokumoto et al. 2002), has been shown to

be inversely correlated with Sertoli cell proliferation (Beumer

et al. 1999). Accordingly, adult p27Kip1 knockout (p27KO),

p21Cip1 KO (p21KO), and p27/p21 double-KO (DBKO)

mice presented enlarged testes, increased Sertoli cell numbers,

and increased daily sperm production compared with wild-

type animal (Holsberger et al. 2005b). Although loss of p27

and/or p21 results in increased Sertoli cell proliferation, the

magnitude of their roles in establishing the final number of

adult Sertoli cells and daily sperm production has not yet been

established. Nevertheless, these data suggest that the suppres-

sive effects of T3 on Sertoli cell proliferation might be, at least

in part, mediated by suppression of the cell cycle.
Journal of Endocrinology (2008) 199, 351–365
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As puberty approaches, Sertoli cells form a complex network

of specific intercellular junctions with each other and with

adjacent germ cells (Cheng & Mruk 2002, Yan et al. 2008).

Among these junctional complexes, the connexin-based gap

junctions are unique because they form cell membrane

channels, which allow intercellular communication that, in

turn, plays a critical role in the control of cell proliferation and

differentiation (Loewenstein & Rose 1992, Risley et al. 1992,

Decrouy et al. 2004). In testicular cells, Cx43 is the most

abundant gap junctionprotein (Risley et al. 1992, Tan et al. 1996,

Batias et al. 2000) and recent studies demonstrated that the

inhibitory effect of T3 on Sertoli cell proliferation is associated

with increased levels of this protein in postnatal testis (Gilleron

et al. 2006). This observation was further verified when specific

blockers of gap junctions coupling, such as oleamide and

glycyrrhetinic acid, reverse the inhibitory effect of T3 (Gilleron

et al. 2006). These results are in agreement with what has been

observed in the recently developed Sertoli cell-specific Cx43

knockout (SC-Cx43 KO) mouse. Two laboratories have

independently demonstrated that, in these animals, loss of

Cx43 in Sertoli cells is associated with continued Sertoli cell

proliferation and delayed maturation in adulthood (Brehm et al.

2007, Sridharan et al. 2007b). In addition, seminiferous tubules

of SC-Cx43 KO mice contained only Sertoli cells and actively

proliferating early spermatogonia, indicating that loss of Cx43

prevents initiation of spermatogenesis and leads to a significant

reduction of germ cells and infertility (Sridharan et al. 2007a).
Thyroid hormone and markers of Sertoli cell maturation

The maturation of Sertoli cells is a complex multistep process

involving a cascade of changes that lead to a radical switch in

their morphology and function (Sharpe et al. 2003, Brehm &

Steger 2005). This process is characterized by either

suppression or upregulation of specific proteins associated

with the Sertoli cell differentiation (Sharpe et al. 2003) and

thyroid hormone seems to affect the expression of a number

of these markers.

Thyroid hormone has been reported as a possible negative

regulator of anti-Müllerian hormone (AMH) expression, a

Sertoli cell secretory protein that plays a critical role in the

early stages of testicular development. AMH expression is

sharply downregulated as Sertoli cells mature (Hirobe et al.

1992, Lee & Donahoe 1993, Brehm & Steger 2005). The

hypothesis that thyroid hormone would be involved in this

phenomenon was based on the fact that neonatal hypo-

thyroidism in rats delayed the fall of Amh mRNA levels

(Bunick et al. 1994), whereas T3 administration decreased

Amh transcripts in cultured neonatal rat Sertoli cells

(Arambepola et al. 1998b). Nevertheless, recently,

Mendis-Handagama & Siril Ariyaratne (2008) showed that

AMH content in Sertoli cells gradually declines with age,

irrespective of the thyroid hormone status in prepubertal rats,

suggesting that AMH production is not regulated by T3.

Loss of aromatase activity is also a marker of final

maturation of Sertoli cells in rats. It is maximally expressed
Journal of Endocrinology (2008) 199, 351–365
at perinatal age, and then it decreases sharply at puberty to

become virtually absent in fully differentiated cells (Sharpe

et al. 2003). Thyroid hormone was shown to decrease

aromatase activity in Sertoli cells by direct inhibition of

the aromatase gene transcription (Catalano et al. 2003).

Moreover, precocious terminal differentiation concomitant

with a dramatic decrease of aromatase activity was observed in

T3-treated prepubertal Sertoli cells (Ulisse et al. 1994,

Palmero et al. 1995a, Panno et al. 1995, Andò et al. 2001).

Thyroid hormone has also been shown to downregulate the

expression of the neural cell adhesion molecule (NCAM) in

cocultures of Sertoli cell–gonocytes isolated from neonatal rat

testis (Laslett et al. 2000). The downregulation of NCAM,

involved in Sertoli cell–gonocytes interactions in seminiferous

cords, seems to mark the appropriate differentiation of Sertoli

cells since its expression decreases dramatically in the first

week of postnatal life and eventually disappears in parallel

with Sertoli cell maturation in rats (Orth et al. 2000). Another

feature of mature Sertoli cells is the nuclear expression of

androgen receptor (AR), since it first appears in their nucleus

before final maturation in humans, rats, and marmoset

monkeys (Williams et al. 2001, Weber et al. 2002, Sharpe

et al. 2003). In vitro studies have shown that T3 increases

androgen binding (Panno et al. 1995) and AR mRNA levels

in immature rat Sertoli cells (Arambepola et al. 1998a),

indicating that thyroid hormone might regulate the postnatal

increase in AR expression in these cells. As already

mentioned, T3 upregulates the cyclin-dependent kinase

inhibitors p27Kip1 and p21Cip1 (Buzzard et al. 2003,

Holsberger et al. 2003) and Cx43 in Sertoli cells (Gilleron

et al. 2006). Expression of both p27Kip1 and Cx43 coincides

with maturation of Sertoli cells in mice, rats, and humans

(Beumer et al. 1999, Cipriano et al. 2001, Brehm & Steger

2005). Thyroid hormone was also shown to differentially

regulate the expression of the major components of the

basement membrane (BM), laminin, entactin/nidogen, and

type IV collagen, in rat Sertoli cell cultures. T3 induced a

significant increase in the number of cells expressing laminin

and/or entactin, whereas type IV collagen expression was

greatly reduced (Ulisse et al. 1998). These results obtained by

in vitro studies suggest that T3-induced remodeling of BM

components might play a role in enhancing structural

differentiation and/or in maintaining the Sertoli cell

differentiated state, although similar effects in vivo have not

been reported so far.
Effect of thyroid hormone on Sertoli cell metabolism

It is well known that the germ cells survival within the

seminiferous tubules depends on the supply of many factors

produced by Sertoli cells. Several studies have demonstrated

that Sertoli cells actively metabolize glucose that is converted

to lactate and used as energy substrate by germ cells (Jutte et al.

1981, Robinson & Fritz 1981, Mita & Hall 1982, Grootegoed

et al. 1986a,b). The provision of adequate levels of lactate for

germ cells seems to be essential for normal spermatogenesis
www.endocrinology-journals.org
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(Courtens & Ploen 1999). Although thyroid hormone

stimulates lactate production in immature Sertoli cells

(Palmero et al. 1995b), its role in the different biochemical

steps involved in this stimulatory effect has not yet been

determined. The increase in lactate production is associated

with increased levels of the glucose transporter-1 (GLUT1;

now known as SLC2A1) mRNA (Ulisse et al. 1992). The

increase in SLC2A1 might represent a cellular mechanism

involved in the effect of T3 on lactate production; however, it

cannot be ascribed to a direct action of T3 on the SLC2A1

gene promoter since any thyroid responsive element has been

identified in this region (Carosa et al. 2005). In addition to the

effects on glucose metabolism, thyroid hormones also

stimulate protein synthesis in immature Sertoli cells (Palmero

et al. 1995b, 1996). Both T4 and T3 promote amino acid

accumulation in Sertoli cells by distinct mechanisms

(Menegaz et al. 2006). While the T3 effect is partially blocked

by cycloheximide, an inhibitor of protein biosynthesis, the

potent stimulatory effect of T4 remained unchanged, thus

indicating that T4 effects are modulated by non-genomic

mechanisms.

The above-mentioned observations suggest that thyroid

hormones use different signaling pathways to regulate critical

biochemical steps in the Sertoli cell metabolism.
The role of thyroid hormone in Leydig cell differentiation and
function

A considerable amount of data indicates that thyroid hormone

plays a role in several aspects of Leydig cell development and

function (Mendis-Handagama & Siril Ariyaratne 2005). Two

distinct populations of Leydig cells are present in the testis of

mammals. The fetal Leydig cells are responsible for the

production of androgens for fetal masculinization and the

primary source of testicular testosterone in the neonatal

period (Kerr & Knell 1988, Mendis-Handagama et al. 1998).

The adult Leydig cells are unrelated to their fetal counterparts

and differentiate postnatally from the peritubular mesench-

ymal Leydig cell precursors of testicular interstitium

(Ariyaratne et al. 2000a). The population of adult Leydig

cells is the most abundant and the primary source of

androgens in the mature mammalian testis.

Several studies have shown that altered thyroid status has

marked effects on mesenchymal cell differentiation in the

prepubertal and adult rat testis (Maran 2003, Mendis-Handa-

gama & Siril Ariyaratne 2005). Initial reports showed that

transient neonatal hypothyroidism increase the number of

Leydig cells in adult rat testis (Hardy et al. 1993, Mendis-

Handagama & Sharma 1994). Subsequent studies have

demonstrated that neonatal hypothyroidism produces this effect

by arresting Leydig cell differentiation and allowing continuous

proliferation of precursor mesenchymal cells that accumulate in

the interstitium, which will become available for differentiation

later when euthyroidism is restored (Hardy et al. 1996,

Mendis-Handagama et al. 1998, Teerds et al. 1998). Conversely,

hyperthyroidism was shown to stimulate the differentiation of
www.endocrinology-journals.org
mesenchymal cells into progenitor Leydig cells and to increase

the number of mesenchymal cells produced in prepubertal rat

testis (Teerds et al. 1998, Ariyaratne et al. 2000a). Moreover, T3

has been shown to induce Leydig cell differentiation in the testes

of adult rats previously treated with ethane-dimethane sulfonate

(EDS), a toxin that selectively kills Leydig cells within 48 h after

administration (Ariyaratne et al. 2000b). These results indicate

that thyroid hormone is crucial for triggering the onset of

mesenchymal cell differentiation into a steroidogenic progenitor

Leydig cell in prepubertal and adult rat testis. Indeed, the onset

of the adult Leydig cell differentiation in the rat and mouse testes

appears to be independent of luteinizing hormone (LH; Siril

Ariyaratne et al. 2000, Baker et al. 2003). Nevertheless, LH is

essential for the steps beyond the initial differentiation stage for

further development and maturation of adult Leydig cells

(Mendis-Handagama & Ariyaratne 2001).

The molecular mechanism(s) whereby thyroid hormone

affects Leydig cell differentiation is still unclear. The AMH has

been reported as a possible negative regulator of Leydig cell

differentiation. This suggestion was based on the findings that

AMH overexpression in male transgenic mice blocks the

differentiation of Leydig cell precursors (Racine et al. 1998),

whereas AMH-deficient mice presented Leydig cell hyperplasia

(Behringer et al. 1994). Additionally, AMH was shown to inhibit

Leydig cell regeneration following EDS treatment in adult rats

(Salva et al. 2004). These results have brought into question

whether T3 would affect neonatal Leydig cell differentiation

indirectly by induction of Sertoli cell maturation and

consequently decrease in AMH levels. However, this seems to

beunlikely since, as previouslymentioned,AMH productionby

prepubertal Sertoli cells was shown to be independent of Sertoli

cell maturation and not regulated by thyroid hormone

(Mendis-Handagama & Ariyaratne 2008).

On the other hand, several studies have suggested a potential

role of Sertoli cells paracrine factors in the regulation of Leydig

cells (Verhoeven & Cailleau 1985, 1987, Papadopoulos 1991,

Cheng et al. 1993). During testicular development, signaling

molecules secreted by Sertoli cells, such as desert hedgehog

(DHH) and platelet-derived growth factor (PDGF), seem to

regulate Leydig cell differentiation and function (Clark et al.

2000, Pierucci-Alves et al. 2001). Moreover, several authors

have shown that proteins secreted by Sertoli cells present

stimulatory effects on Leydig cells (Verhoeven & Cailleau 1985,

1987, Papadopoulos 1991, Cheng et al. 1993). In this context,

some thyroid hormone-mediated changes observed in Sertoli

cells, such as the increase in insulin-like growth factor-1 (IGF-1)

secretion (Palmero et al. 1990) and decrease in estrogen

production due to downregulation of aromatase activity (Ulisse

et al. 1994, Catalano et al. 2003), might indirectly affect Leydig

cell differentiation. IGF-1 was shown to stimulate differentiation

and mitosis of Leydig cells (Lin et al. 1998). Conversely, the

decrease in estrogen production seems to inhibit Leydig cell

differentiation in prepubertal as well as adult rat testis (Dhar &

Setty 1976, Abney & Myers 1991). Therefore, it seems

reasonable to speculate that thyroid hormone actions on Leydig

cells might be, at least in part, mediated through Sertoli cells.
Journal of Endocrinology (2008) 199, 351–365
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Thyroid gland disorders were also shown to be associated

with alterations in the hypothalamo-pituitary–testicular axis,

which indirectly could affect Leydig cells. However,

inconsistent alterations in the pattern of circulating gonado-

tropins and testosterone have been reported in hypothyroid

males. Hypothyroidism was found to be associated with a

significant decrease in plasma gonadotropins and testosterone

levels in several reports (Chandrasekhar et al. 1986, Ruiz et al.

1989, Antony et al. 1995, Jannini et al. 1995, Kirby et al. 1997,

Chiao et al. 1999, Maran et al. 2000b, 2001, Rao et al. 2003),

while in others no such effects were observed (Kalland et al.

1978, Corrales Hernandez et al. 1990, Maia et al. 1990,

Cristovao et al. 2002). These inconsistencies have been

attributed to differences in the age, duration of treatment, and

method of inducing the hypothyroid state in experimental

animals (Maran et al. 2001, Maran 2003, Mendis-Handagama

& Siril Ariyaratne 2005).

Likewise, evidence of direct actions of thyroid hormones

on Leydig cell steroidogenesis has been demonstrated in

different studies (Jana & Bhattacharya 1994, Manna et al.

1999, Maran et al. 2000a). It has been reported that T3 directly

stimulates and enhances LH-induced androgen secretion in

goat Leydig cells (Jana et al. 1996), whereas hypothyroidism

decreased testosterone and cAMP production in response to

LH in rat testis (Antony et al. 1995). Decreased 3b-hydroxy

steroid dehydrogenase (HSD) and 17b-HSD activities were

also associated with decreased thyroid hormone levels

(Antony et al. 1995). Similarly, thyroidectomy in adult rats

led to decreased secretion of testosterone and decreased

activity of 17b-HSD (Chiao et al. 1999). T3 treatment of

Leydig cells isolated from adult rats resulted in increased

secretion of testosterone and estrogen under basal conditions

as well as in response to LH stimulation, in a dose-dependent

manner (Maran et al. 2000a). It has also been observed that

chronic stimulatory effect of T3 on Leydig cells increases the

mRNA levels of the cytochrome P450 side-chain cleavage

enzyme, while it decreases cytochrome P450 17a-hydroxyl-

ase and 3b-HSD (Manna et al. 2001b).

Recent studies have shown that T3 treatment of mouse

Leydig cells increases the levels of the steroidogenic acute

regulatory (Star) mRNA and protein, as well as steroid

production, and these responses were dependent on the

expression of steroidogenic factor 1 (SF-1; Manna et al. 1999,

2001a,b). STAR protein mediates a rate-limiting step in

Leydig cell steroidogenesis, the translocation of cholesterol

from the outer to the inner mitochondrial membrane (Clark

et al. 1994, Stocco & Clark 1996). Additionally, these studies

showed that the inhibition of SF-1 expression by DAX-1

markedly abolished T3-mediated STAR expression concur-

rently with steroid biosynthesis decrease. These findings

suggest that thyroid hormone and STAR protein work in a

coordinated manner to regulate steroid hormone biosynthesis

in Leydig cells (Manna et al. 2001b).

The above reviewed data support the concept that thyroid

hormone plays an important role on Leydig cell differen-

tiation and function. However, a direct thyroid hormone
Journal of Endocrinology (2008) 199, 351–365
effect on Leydig cells is still a matter of debate. The presence

of TRs in Leydig cells is an issue that has not been completely

resolved. Although TRs have been described in a subset of

testicular interstitial cells in rats by immunocytochemistry, the

specific cell type was not identified (Tagami et al. 1990,

Buzzard et al. 2000). Further studies focus in this issue will be

particularly important to identify the mechanisms by which

thyroid hormone affects Leydig cells.
TRs and transporters in testicular cells

The first studies describing the presence of specific thyroid

hormone nuclear-binding sites in Sertoli cell-enriched

extracts and developing rat testis were of great significance,

since these findings changed the classic view of the testis as a

thyroid hormone unresponsive organ (Palmero et al. 1988,

Jannini et al. 1990). Subsequently, several molecular tech-

niques, such as RT-PCR (mRNA expression), in situ

hybridization, western blotting, and immunohistochemistry,

were used to demonstrate the presence of functional TR

isoforms, TRa1 and TRb1, in testicular cells. An ontogenic

pattern of TRs expression in rat and human testis was

established (Jannini et al. 1994, 1999, 2000). These studies

showed that the active TRa1 isoform was expressed in

human and rat testis at different levels throughout develop-

ment, and that TRb1 was completely absent in the testes of

both species. The TRa1 expression was found to be maximal

in late fetal and early neonatal life and restricted to Sertoli

cells, suggesting these as the main target cells for T3 action in

testis. Nevertheless, current analysis of published data

indicates that active TR isoforms, including TRb1, are also

found in interstital and germ cells, not only during neonatal

development but also in the adult testis (Arambepola et al.

1998a, Buzzard et al. 2000, Canale et al. 2001, Rao et al.

2003). These results emphasized that, although TRs

expression was maximal during the perinatal period and

subsequently declined, T3-binding capacity is not completely

absent in adult testis (Buzzard et al. 2000, Canale et al. 2001).

Because TRa1 and TRb1 isoforms are expressed mainly in

the neonatal Sertoli cells, either or both TRs could potentially

mediate the effects of T3 on Sertoli cells. To address this issue,

Holsberger et al. (2005a) used TRa KO and TRb KO

(TRbKO) transgenic mice, lacking TRa or TRb isoforms

respectively, to determine the relative roles of these receptors

in mediating T3 effects on Sertoli cells and testicular

development. Whereas neonatal hyperthyroidism reduced

Sertoli cell proliferation to minimal levels and induced their

maturation similarly in both wild-type and TRbKO mice,

minimal changes were observed in Sertoli cell proliferation in

the TraKO mice. More interestingly, the TraKO mice

showed testicular phenotypic changes comparable with

those observed in the wild-type mice following neonatal

hypothyroidism. These observations indicate that TRa1 is

the specific TR isoform mediating T3 effects in neonatal

Sertoli cells.
www.endocrinology-journals.org
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In order to interact with specific nuclear receptors and

generate a biological response, thyroid hormones have to cross

cell membranes. It was originally believed that thyroid

hormones, due to their lipophilic nature, enter target cells by

passive diffusion. Currently, however, there is growing evidence

indicating that T4 and T3 cross the plasma membrane by carrier-

mediated mechanisms (Hennemann et al. 2001, Neves et al.

2002, Jansen et al. 2005). Several membrane transporter families

have been identified, however, only monocarboxylate trans-

porter (MCT) 8, MCT 10, and organic anion-transporting

polypeptides (OATPs) demonstrate a high degree of specificity

towards thyroid hormone (Visser et al. 2008). The OATPs form

a novel family of transporter proteins that have been detected

in several tissues, including testis, in rodents and humans (Suzuki

et al. 2003, Hagenbuch & Meier 2004, Hagenbuch 2007,

Westholm et al. 2008). The OATPs are involved in transporting

organic anions such as steroid conjugates, bile salts, drugs, and

thyroid hormones into the cells. Some OATPs show preference

for the transport of certain substances and are predominantly

expressed in a particular tissue, rendering their action more

specific (Fujiwara et al. 2001).

Specific thyroid hormone membrane transporters have also

been identified in testes. In the human testis, a specific OATP

molecule named OATP-F, which transports T4 and reverse

T3 (rT3) with high affinity, was isolated and shown to be

expressed only in Leydig cells (Pizzagalli et al. 2002). Three

novel members of the OATPs family designated gonad-

specific transporters (GSTs) were identified in human and rat

(GST-1 and GST-2) testis (Suzuki et al. 2003). The rat GST-1

and GST-2 is highly expressed in Sertoli cells, spermatogonia,

and Leydig cells, and functional studies revealed both

transport T4 and T3 in these cells. Additionally, two novel

splice variants of OATPs, OATP3A1-V1 and OATP3A1-V2,

recently isolated from human brain, were also found to be

expressed in testicular germ cells and Sertoli cells respectively

(Huber et al. 2007). However, the physiological relevance of

these transporters in regulating thyroid hormone bioavail-

ability to testicular cells is currently unknown.

Thyroid hormone actions on target tissues are predomi-

nantly mediated by specific nuclear receptors able to bind to

regulatory regions of target genes modifying their expression

(Yen et al. 2006). Nevertheless, thyroid hormones also have

well-known non-genomic actions (Davis & Davis 1996,

Shibusawa et al. 2003). Contrary to the genomic events, a

number of thyroid hormones effects on plasma membrane,

cytoplasm, and sub-cellular organelles occur rapidly and are

unaffected by transcription and translation inhibitors. These

non-genomic actions include the regulation of ion channels,

oxidative phosphorylation and mitochondrial gene transcrip-

tion, and generation of intracellular secondary messengers

(Bassett et al. 2003, Davis et al. 2008). Recently, an increasing

number of thyroid hormone non-genomic effects have been

described in tissues such as brain (Leonard 2008), heart

(Portman 2008), skeletal muscle (Irrcher et al. 2008),

fibroblasts (Bhargava et al. 2007), and vascular endothelial

cells (Hiroi et al. 2006).
www.endocrinology-journals.org
In addition to classical genomic effects, non-genomic

responses to thyroid hormones have also been described in

testis. Electrophysiological studies demonstrated that both

hormones, T4 and T3, produced immediate hyperpolarization

of Sertoli cell membrane potential that involved K(C) channels

(Menegaz et al. 2006). This study also showed a potent T4

stimulatory effect on amino acid accumulation probably related

to its effects onSertoli cell membranepotential, since amino acid

accumulation was independent of active protein synthesis. It has

also been reported that in vitro administration of T3 to isolated rat

testis stimulates, by non-genomic mechanisms, the phosphory-

lation of vimentin (Zamoner et al. 2005), a cytoskeletal-

associated protein that seems to be involved in the modifications

of Sertoli cell morphology throughout development (Tanemura

et al. 1994). The thyroid hormone-induced increase inSLC2A1

mRNA levels in immature Sertoli cells (Ulisse et al. 1992) also

seems to be mediated by a non-genomic mechanism. Recently,

studies using transient transfections in primary Sertoli cell

cultures have shown that T3 does not directly regulate SLC2A1

gene promoter (Carosa et al. 2005). This observation was further

confirmed by the absence of any recognized thyroid responsive

element (TRE) in the rat SLC2A1 promoter (Carosa et al.

2005). Thus, it might be possible that T3 modulates SLC2A1

mRNA levels by interfering with SLC2A1 mRNA stability.

Recently, it was shown that T3 promotes a rapid up

regulation of gap junction plaque number on Cx43-GFP-

transfected cells (Gilleron et al. 2006). This effect seems to be

mediated through actin cytoskeleton control, since cytocha-

lasin D totally reversed T3 stimulatory effect. The rapid non-

genomic responses to thyroid hormones are currently viewed

as a complementary pathway to genomic mechanisms, which

may improve cell regulation by these hormones.
Expression of iodothyronine deiodinases in testis

The availability of the biologically active T3 is essential for

normal developmental processes in mammals and other

vertebrates. As different tissues have specific temporal patterns

of development, it is likely that their T3 requirement varies

widely, suggesting a need for the regulation of intracellular T3

generation (Escobar-Morreale et al. 1996). Thyroid hormone

metabolism by deiodinases regulates the local availability of T3

(Bianco et al. 2005, St Germain et al. 2005, Gereben et al. 2008)

and plays a critical role in the adaptation of the organism to

environmental and internal changes such as exposure to cold,

starvation, illness, and thyroid status (Kohrle 2007).

All three Deiodinases, D1, D2, and D3, are expressed in

testis at different levels from weanling to adult life (Bates et al.

1999). D3 activity predominates in the developmental period

and then declines in adult life. Although both D1 and D2 are

present in testis, their relative levels of activity indicate that

D2 is the predominant activating enzyme in this organ. It is

noteworthy that the highest level of D2 expression, known to

play a major role in the intracellular conversion of T4 to T3,

occurs at a prepubertal age, a critical period of testicular
Journal of Endocrinology (2008) 199, 351–365
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development when TRs are highly expressed in testis

(Buzzard et al. 2000, Jannini et al. 2000). Interestingly, D2

activity was significantly induced in the testis of neonatal

hypothyroid rats, suggesting a D2 role in maintaining T3

concentration in testis when T4 levels are reduced in plasma

(Bates et al. 1999). Similarly, studies performed by our group

demonstrated that induction of even mild hypothyroidism in

adult mice also significantly increases D2 activity in testis

(Wagner et al. 2003). Unexpectedly, we found that D2

expression in the adult rat testes is highly concentrated in

elongated spermatids (Fig. 2), whereas other germ cells and

Sertoli cells were virtually negative for this enzyme (Wajner

et al. 2007). This suggests that thyroid hormone may play a

role in spermatogenesis in the adult rat testis, specifically on

the spermiogenic phase. The coexpression of D2 and D3 in

testis from weanling to adult life seems to indicate a need for

tight control of intracellular T3 levels in this organ.
Thyroid hormone effects on the adult testis

It is now well established that thyroid hormone deficiency

during early stages of testicular development affects testis

growth and physiology adversely. However, the role of
Figure 2 In situ hybridization autoradiograms
expression in rat seminiferous epithelium. Dark
longitudinal sections of the seminiferous epithel
spermatids. Tubule 1 is on stage III/IV of the cyc
elongation and localized more internally in the
cycle. (C) Higher magnification of part of tubule
D2 mRNA and intense D2 labeling in elongated
background can de observed. In (D), a high mag
tubule in stage V of the cycle shows D2-positive
tubule. Note that spermatogonia (SG) are negati
(C and D).
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thyroid hormone on the adult testis is unclear and contra-

dictory results have been reported. Early studies showed that

induction of hypothyroidism in adult male rats has little effect

on testicular morphology, spermatogenesis, and serum

testosterone levels (Vilchez-Martinez 1973, Weiss & Burns

1988). In contrast, chronic hypothyroidism induced in rats,

from birth to adulthood, was shown to be associated with

delayed maturation of the testis, impaired spermatogenesis,

germ cells degeneration, and reduced seminiferous tubule

diameter (Francavilla et al. 1991, Meisami et al. 1994,

Simorangkir et al. 1997, Maran & Aruldhas 2002). The

congenital hypothyroid rdw rat is a strain of dwarf mutant that

has decreased serum T4 levels due to a missense mutation in

the thyroglobulin gene (Hishinuma et al. 2000, Kim et al.

2000). These animals constitute an interesting model to study

the consequences of prolonged thyroid hormone deficiency

on testes at different ages, from early neonatal life to the adult

stage. Studies performed by Sakai et al. (2004) showed that,

although it took more time, normal structures developed

in the testes of adult rdw rats (Fig. 3). However, soon after

full testicular maturation was accomplished, normal

morphology began to degenerate. Many germ cells under-

went apoptosis and the germinal epithelium became thin,

changes rarely observed in normal rat testes (Sakai et al. 2004).
of type 2 iodothyronine deiodinase (D2)
(A) and bright (B) field microscopy show
ium with intense labeling for D2 mRNA in
le, in which spermatids are in the process of
tube wall. Tubule 2 is on stage VII/VIII of the
2 showing interstitial cells (IC) negative for
spermatids close to the lumen. A negligible
nification of a cross-section of seminiferous
spermatids localized in the middle of the
ve. Scale bars, 50 mm (A and B) and 12 mm
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Figure 3 The control (C/?) and rdw rat testes stained with HE.
(A) Two-week-old control (C/?) rat testis. Some spermatocytes can
be seen in the center of the seminiferous tubules (arrows;
magnification: !140). (B) Four-week-old control (C/?) rat testis.
Spermatocytes (arrows) become large but initial meiotic division
has not yet been detected (magnification: !140). (C) Eight-week-
old control (C/?) rat testis. Seminiferous tubules fully developed
(magnification: !140). (D) Enlarged picture of (C). Even at high
magnification (!560), no difference from the normal adult
germinal epithelium can be detected. (E) Four-week-old rdw rat
testis. Some spermatocytes (arrows) can be seen in the seminiferous
tubules. This corresponds to the 2-week-old normal one (magni-
fication: !140). (F) Eight-week-old rdw rat testis. Spermatocytes
(arrows) become large but initial meiotic division has not yet been
detected. This corresponds to the four-week-old normal one
(magnification: !140). (G) Twenty-two-week-old rdw rat testis.
Seminiferous tubules apparently seem to be fully developed. This
corresponds to the 8-week-old normal one (magnification: !140).
(H) Enlarged picture of Figure g (magnification:!560). (Permission
taken from the publisher, Development, Growth and Differentiation
(2004) 46, 327–334).
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The degeneration gradually proceeded and finally produced

atrophic testes. The spermatocytes and spermatids were in

direct contact with each other, Sertoli cells did not

completely enclose the germ cells in rdw testes. Of note, the

infertility described in the male rdw rat is partially reversed by

T4 treatment (Jiang et al. 2000, Umezu et al. 2004).

Similar histological changes were observed in the testis of

adult rats subjected to chronic thyroid hormone deficiency

due to thyroidectomy performed early in life (Oncu et al.
www.endocrinology-journals.org
2004). In addition to the histological changes, reduced serum

gonadotropins and testosterone levels were observed in both

rat models. Accordingly, prolonged PTU treatment in rats,

from birth to 90 days, was shown to result in a significant

decrease in germ cell number and in the percentage of live

sperm in the epididymis (Sahoo et al. 2008). Observations in

the above studies indicate that prolonged thyroid hormone

deficiency results in marked testicular degenerative changes,

suggesting that thyroid hormone plays an important role not

only in controlling normal testicular development but also in

maintaining normal testicular function. However, one should

keep in mind that hypothyroidism is a complex hormonal

dysfunction rather than a single hormonal defect (Gomez

Dumm et al. 1985). Hypothyroidism has been also shown to

reduce the secretion of gonadotropin-releasing hormones,

LH, FSH, GH, and testicular testosterone in rats, and all these

changes seem to be corrected by T4 administration. There-

fore, many of the testicular changes observed in prolonged

hypothyroidism could result in some degree of diminished

levels of the aforementioned hormones.
Thyroid hormones and testicular antioxidant
defense system

Thyroid hormones have recently been associated with the

induction of oxidative stress in tissues, such as brain, heart,

blood, muscle and liver (Zaiton et al. 1993, Huh et al. 1998,

Shinohara et al. 2000, Bednarek et al. 2004, Das & Chainy 2004).

Non-radical oxygen species, such as hydrogen peroxide,

superoxide and hydroxyl radicals, which can be toxic to cells,

are called reactive oxygen species (ROS; Venditti & Di Meo

2006). When ROS generation exceeds the antioxidant capacity

of cells, oxidative stress develops. Cells are equipped with an

enzymatic and non-enzymatic defense system to counteract

ROS (Johnson & Giulivi 2005).

Interestingly, altered thyroid status has been shown to

influence several oxidative stress and enzymatic antioxidant

defense parameters in rat testis (Choudhury et al. 2003). For

example, hyperthyroidism in the rat testis was associated with

increased lipid peroxidation (LPx), indicative of oxidative

stress, increased levels of reduced glutathione (GSH), an

important component of non-enzymatic antioxidant defense,

and increased levels of mitochondrial hydrogen peroxide

(Sahoo et al. 2008). Increased activity levels of most

antioxidant defense enzymes such as glutathione peroxidase

(GPx), glutathione reductase (GR), glutathione-S-transferase

(GST), and catalase (CAT) have also been demonstrated

(Zamoner et al. 2007). These results indicate that thyroid

hormone treatment caused a high oxidative insult to the testis

and are consistent with data showing that hyperthyroid tissues

exhibit increased ROS production (Venditti & Di Meo 2006).

Conversely, congenital and transient hypothyroidism seems to

induce oxidative stress in testis by reducing the levels of

testicular enzymatic and non-enzymatic defenses (Sahoo et al.

2008, Zamoner et al. 2008). The activities of superoxide
Journal of Endocrinology (2008) 199, 351–365
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dismutase (SOD), GR, GPx, and CATas well as GSH content

were significantly reduced in testis of transient hypothyroid

rats (Sahoo et al. 2007).
Conclusion

Since the identification of functional thyroid receptors in

Sertoli cells about two decades ago, greater insights have

been gained into the role of thyroid hormone in testicular

physiology. It has become clear that disturbance of the

normal euthyroid state affects the morphological and

functional development of the testis. The proliferation of

immature Sertoli cells, an event that determines the extent

of sperm production, was shown to be under the control of

thyroid hormone. Furthermore, the Sertoli cell maturation

process is at least in part regulated by T3. Similarly, thyroid

hormone was shown to play a critical role in the onset of

Leydig cell differentiation in postnatal testis as well as in

maintaining steroidogenic function with advancement of

age. Thyroid hormone is also likely to contribute to normal

spermatogenesis and metabolic processes in the adult testis,

but these aspects are not well understood at present. The

available data do not allow us to determine whether the

adverse effects of prolonged hypothyroidism on testes

development are mediated directly by low levels of

circulating hormones, indirectly by testicular metabolic

impairment, or both.

The molecular mechanisms by which thyroid hormone

acts on Sertoli and Leydig cells are still unclear and further

studies are necessary to establish how thyroid hormone

controls Sertoli and Leydig cells proliferation, regulates

testicular paracrine factors and how these impact on other

events such as spermatogenesis, sperm motility, and ultimately

fertility. Nevertheless, despite the gaps in our knowledge, the

data reviewed here provide considerable evidence to conclude

that thyroid hormone is an important hormonal regulator of

testicular development and function.
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