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Abstrac t .  The main goal of this paper is to put well-established tech- 
niques for two-view motion analysis in the context of the theory of Total 
Least Squares and to make clear that robust and reliable motion analysis 
algorithms cannot be designed without a thorough statistical considera- 
tion of the consequences of errors in the input data. 
We focus on the non-iterative 8+n-point algorithm for estimating the 
fundamental matrix and present a comprehensive statistical derivation 
of the compelling necessity for one of the normalization transforms pro- 
posed by Hartley [1, 2]. It tarns out that without these transformations 
the results of the well-known non-iterative methods for two-view motion 
analysis are biased and inconsistent. With some further improvements 
proposed in this paper, the quality of the algorithm can even be enhanced 
beyond what has been reported in the literature before. 

1 I n t r o d u c t i o n  

The computation of relative orientation is one of the key points in two-view mo- 
tion analysis. The early investigations of Longuet-Higgins [3] and Tsai & Huang 
[4] have led to a family of non-iterative 1 algorithms that have attracted consid- 
erable attention due to their moderate computational effort. Unfortunately, the 
quality of the results that  are obtained from these algorithms decreases dramat-  
ically as soon as measurement errors enter the input data, and even the usage 
of far more data than is minimally required - the approved recipe: ' redundancy 
combats noise' - does not significantly defuse this situation. 

We will consider in the following the non-iterative algorithm for the deter- 
mination of the fundamental matrix as it is rather compactly described in [2], 
and which goes back to [4] (although the early papers are dealing with the case 
of calibrated cameras and employ the essential matrix which is a special case of 
the fundamental matrix). 

1 These algorithms are non-iterative except for the solution of eigensystem equations 
or the determination of the singular value decomposition which play a key role in 
these procedures. Sometimes these algorithms are called linear, but this is rather 
misleading since the computation of the eigensystem and the SVD is definitely non- 
lineal' .  
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2 T h e  idea l  case:  no  m e a s u r e m e n t  error  in t h e  i n p u t  d a t a  

Let us first briefly review the 8+n-point algorithm. Let u -- (ul ,u2,  1) T and 
v -- (vl, v2, 1) T be the homogeneous coordinates of the projection of the same 
rigid object point in two images B~ and By. If the vectors u and v are error-free, 
it is well known that  they are related to each other by the equation 

v T . F  .u = 0 (I) 

with a 3 x 3-matrix F, the fundamental matrix, which is identical for all pairs of 
corresponding vectors ui,  vi. The matr ix  F --- (fij) is the entity we are interested 
in, since it encapsulates all the information on motion or relative orientation that  
can be extracted from the given image pair. The matr ix  F is necessarily rank- 
deficient, i.e. rank (F) = 2 [4, 5]. By 'vectorizing' the matr ix  F, i. e. stacking the 
matr ix  elements fij  to form a vector f which is (dropping double indices) 

F --~ f : (f11,f12, f13, f21,f22, f23, fa1, fa2, f33) T = ( f l , . - . , f 9 )  T , 

equation (1) can be expressed as 

a T . f = 0  with a T = ( v l u l ,  vlu2, Vl, V2Ul, v2u2, v2, Ul, u2, 1) .  (2) 

Each point correspondence (ui e+ vi) can be expressed in the form of equation 
(2) and from N correspondences we obtain a linear equation system 

Ao" f = 0 (3) 

where the coefficient vectors a/T (i = 1 , . . . ,  N) are row vectors of a N x 9-matrix 
A0 (subscript 0 denoting the unperturbed matrix).  

If the correspondences between each pair ui,  vi were perfect, matr ix  A0 would 
have rank 8 for N > 8 except for degenerate configurations 2 of the object points 
in the 3D-space [6], so 8 point correspondences would be sufficient for deter- 
mining vector f and thus the fundamental matr ix  F as well. In this error-free 
case, equation (3) can be solved exactly, and the solution vector (or vectors, as 
in the case of degenerate configurations) correspond to the basis vector(s) of the 
nullspace of matr ix  A0. 

3 T h e  r e a l i s t i c  case:  i n p u t  d a t a  w i t h  m e a s u r e m e n t  errors  

In the presence of errors, the matr ix  will not be of rank 8, i.e. there is no non- 
trivial solution to eqn.(2). Traditionally, the approach taken in this situation is 
as follows: 

2 It is not true that in the case of degenerate configurations no solution can be ex- 
tracted at all; instead, we obtain a linear manifold of solution vectors, which could 
possibly be valuable information as well. 
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S t e p  1: i n i t i a l  e s t i m a t e  o f  F.  Since it follows from rank (A) = 9 tha t  there is 
no f r 0 that  solves eqn.(3) exactly, we try to find a unit vector f for which the 
right hand side is at least close to 0. This means that  we minimize IAf l  2 subject 
to the constraint if]2 = f T f  _ _  1. The solution to this constrained minimization 
problem obtained by means of Lagrangian multipliers is given by the eigenvector 
of A T A  corresponding to the smallest eigenvalue of ATA.  In other words (see 
[7]), f is the right hand singular vector corresponding to the smallest singular 
value of mat r ix  A. 

S t e p  2: e n f o r c e m e n t  o f  rank (F)  = 2. Since the true fundamental  mat r ix  
F must  have rank 2, the vector f obtained so far is rearranged to mat r ix  form 
and the resulting mat r ix  is enforced to have rank 2 by expanding the current 
es t imate of F in a sum of rank 1 matrices and suppressing the mat r ix  with the 
lowest Frobenius norm. Practically, this is done by means of the singular value 
decomposition (SVD). 

This procedure is correct under certain conditions that  we will discuss later. 
However, it blocks the view onto a much more general framework which allows 
a consideration of the detailed statistical structure of the disturbances. 

3.1 E r r o r  m o d e l s  a n d  m e t r i c s  fo r  o p t i m u m  e s t i m a t i o n  

Let us look a bit closer onto equation (3). It  necessarily holds for error free 
data,  i. e. for vector pairs (ui e+ vi) containing no measurement  errors and, 
consequently, for row vectors a T being numerically correct. However, in practice 
there are errors in our input da ta  and we have the following situation: A f  # 0 
due to the fact tha t  the mat r ix  A we actually have is related to the true, but  
unknown mat r ix  A0 by A = A0 + D, introducing the error mat r ix  D # 0. 

(A0 + D ) f  = A 0 f  + D I  = D f  # 0 

In this si tuation the search for the solution vector f boils down to est imate the 
true mat r ix  A0, and given its corrupted version A this is equivalent to est imate 
the error mat r ix  D.  In other words, given a rank 9 matr ix  A we have to find 
a plausible (whatever that  may denote) est imate of a matr ix  D tha t  lowers 

the rank of A - D = ,~0 to 8, since for N • 9-matrices -~0 of rank < 8 the 
equation -~0f  = 0, f r 0 has one (or several) solution(s). The credibility of 
the est imate D is inevitably related to a consideration of the structure of the 
stochastic process that  generates the error matr ix  D. 

Let us assume for the moment  (until we still look a bit closer) tha t  the 
error mat r ix  D is a realization of a random matr ix  process with the following 
characteristics: 

M o d e l  1 ( Z e r o - m e a n  i . i .d,  e r r o r  m a t r i x  D)  

E [D] = 0 r E [dij] = 0 for  all i, j 

Var [dij] = E [(d U - E [dij]) 2] = E [d2j] = (r 2 for  all i, j 

( 0 2  : i , j = k ,  m 
Cov [dij, dkm] = E [(dij - E [dij])(dkm -- E [dkm])] = : else 
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Here E [.] denotes expectation, and Var [.] and Coy [.] are the variances and covari- 
ances of their arguments.  The mat r ix  elements complying to these conditions are 
called independent identically distributed (i.i.d.) and zero mean, and the mat r ix  
itself is called a zero mean i.i.d, random matrix.  

Under these conditions, a least squares estimate 3 of mat r ix  A0 is performed 
by determining the error mat r ix  D that  is lowest in Frobenius norm HDIIF = 
( 2 ~ 1/2 

~ i j  dij] --+ min and lowers the rank of matr ix  A such that  rank (A - D)  = 8 

holds, i.e. the Frobenius norm serves as a metric. 
If  additionally the random matr ix  process {D} is Gaussian (and this is not 

required for the least squares process to be reasonable!), this very solution is also 
the maximum likelihood (ML) est imate of A0 and consequently of/e as well, with 
all the advantageous characteristics of ML estimation applying. 

The answer to the question how this least squares est imate of A0 is obtained 
is provided by the Eckart- Young-Mirsky theorem (Eckart ~ Young 1936, Mirsky 
1960): 

T h e o r e m  1. Let A be a N x M matrix of rank (A) = r and let A = U S V  T = 
}-~i=l si u l v T  with singular values sl >_ s2 >_ . . .  >_ s~-i > s~ > 0 be the singular 
value decomposition of A .  

k I l k  < r then Ak  = Y~i=l s l u i v T  is the solution to the minimization problem 

IIA---&OIIF > min subject to rank (Ao) "k 

In our case, the actual rank of A is 9 and the desired rank is 8, so we have 

x = Es," "Y and D = (4) 
i = 1  

Since we are ul t imately looking for the vector f that  solves A f  = 0, we see from 
equation (4) tha t  v9 (the right singular vector corresponding to the smallest 
singular value s9) is the solution to our problem, since it is the only vector that  
is orthogonal to all of the vectors vi,  i = 1 , . . . ,  8. This vector is, as it is known 
from the theory of singular value decomposition [7], identical to the eigenvector 
of A T A  corresponding to the smallest eigenvalue. Here, it becomes obvious that  
the solution of step 1 and step 2 both reduce to the rank reduction of a given 
matr ix ,  controlled by a given (or tacitly assumed) error metric. Note that  this 
proceeding, stacking two approximation problems on top of each other does not 
necessarily provide a rank 2 matr ix  that  is op t imum with respect to the metric 
defined in step 1. 

Thus, we have apparently derived the very same result as it is known for a 
long t ime by making a considerable detour. However, we will show in the follow- 
ing tha t  this detour is really worthwhile, since it opens the door to a very valuable 
theory, from which we can use methods and tools for adjusting our solution to 

z Note that this is not a linear least squares problem. 
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the precise requirements given by the algebraic and statistical structure of the 
problem at hand. This framework is the theory of total least squares estimation, 
also known as errors-in-variables-modeling (EIV) or orthogonal regression. 

4 T o t a l  L e a s t  S q u a r e s  

What  we have done so far is in fact to use the basic procedure of Total Least 
Squares estimation. [8-11]: 

D e f i n i t i o n  1 (Tota l  Leas t  Squares  p r o b l e m ) .  We are given an overdeter- 
mined set of N equations a T ~  : b in M unknowns x, compiled to a matrix 
equation A ~  = b. Both the vector b as well as the matrix A are subject to er- 
rors. The total least squares problem consists in finding an N x M matrix A and 
an M-vector b for which the equation 

h ~  = b (5) 

has an exact solution, (i.e. b is in the column space of A )  under the condition 
that the deviation between (AIb) and (All)) is minimal in terms of the Frobenius 
norm: 

II(AIb)-  (AIb)IIF > min (6) 

Once a minimizing approximation (A]b) has been found, any vector ~ satisfying 
eqn. (5) is called a TLS solution. 

In the last decade, this basic TLS problem has been extended to a considerable 
number of generalizations and specializations, such as Generalized Total Least 
Squares (GTLS),  Structured Total Least Squares (STLS)  and many more, cf. 
[8-10, 12, 13]. One of the most important motivations for the development of 
these specialized versions of TLS is the need for a metric that  differs from the 
Frobenius norm, either due to a prescribed structure of the true matrix A0 (e.g. 
Toeplitz) or due to disturbances in A that do not have the simple statistical 
structure given by a zero-mean i.i.d, matrix D. 

Van Huffel [10] gives a comprehensive overview on the statistical properties 
of TLS solutions, including conditions for consistency of the estimate, i.e. the 
requirement that  the estimate converges towards the true parameter vector as 
the number of measurements is increased. 

If the errors in A and b are uncorrelated with zero mean and equal variance, 
then under mild conditions the TLS solution ~ is a strongly consistent estimate 
of the solution of the unperturbed equation A0w = b0. 

If, however, this is not the case, for instance if the errors are correlated and 
of unequal size, or if some columns of A are error-free, an adequate estimate can 
be obtained by use of the Generalized Total Least Squares technique [10] which 
essentially consists in replacing the metric given in eqn.(6) by 

W l .  ((A ] b ) - ( _ ~  ] l ) ) ~ . W 2  ) min.  (7) 
k / F 
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with suitably chosen weight matrices W1 and W2 which perform a so-called equi- 
libration. The case of matrices A known to contain exact, i.e. error-free columns 
is handled by Demmel [14]. 

We are now equipped with a sufficient repertoire of techniques to handle non- 
standard problems of type TLS; but let us first have a look on the subject of 
data  normalization before we investigate the statistical structure of the specific 
problem we are dealing with. 

5 Input  data normal izat ion 

5.1 N o r m a l i z e d  eight-point algorithm 

The 'classic' 8+n-point  algorithm is known to be very susceptible to noise. In 
1995 Hartley pointed out that  a considerable improvement in performance could 
be achieved by a normalization of the input data  (point correspondences) and it 
was demonstrated by examples that  the quality of the results of the normalized 
8+n-point  algorithm is significantly better than the standard procedure, and 
comparable to the best iterative algorithms [1]. A second paper [2] exposed the 
principle in more detail, describing several variants of data  normalization. How- 
ever, an analysis of the statistical input-output relation, referring to the central 
entities of any estimation procedure, namely bias, variance and consistence, is 
missing in both of these papers. 

Hartley's proposal is centred in the observation that  a valid solution for the 
initially given problem A f  = 0 (which is, as we know, a TLS problem) can 
be obtained as well, if the initially given correspondence data  which may be 
specified in arbitrary coordinate frames are linearly transformed to a canonical 
coordinate frame which is derived from the distribution of the data. Let R and 
S be two non-singular 3 • 3 matrices which are used to obtain the transformed 
correspondence data  v~ = Svi and u~ = R u i  from the initially given data  ui 
and vi. Instead of looking for a solution to v~Fuio = 0, a solution for 

vTS (S )-IFR -1 m , ,  = 0. (8) 

is sought. In the new coordinate frame, matr ix F '  is determined the same way as 
before: Find a TLS solution, rearrange it in matr ix  form and enforce the rank 2 
constraint using the Eckart-Young-Mirsky-theorem. The inverse transformation 
F = SCF 'R will yield the desired matr ix F. Hartley points out that  the TLS 
solution of eqn.(1) is not identical to the TLS solution of eqn.(8), and this is 
really what is intended: By selection of proper matrices t t  and S the initial TLS 
can be solved under a problem-adapted metric. 4 

4 Unfortunately, the coordinate transform can help only in step 1 of the estimation 
process, but not in step 2 (reduction to rank 2). 



311 

5.2 C h o i c e  o f  t h e  t r a n s f o r m a t i o n  m a t r i c e s  

Hart ley proposes to apply the transformations both to vectors {ui} and vectors 
{vi}.  We will now describe the t ransformation v~ = Svi. Since the third compo- 
nent of the homogeneous vector should not be changed, possible t ransformations 
will consist of a translation, a rotation and a scaling in the first two components.  

) (o ~ // cosr  s i n r  10 1 g 
s :  1} ~ 

0 1 0 1 / 
(9) 

The r ighthand mat r ix  translates the new coordinate f rame into the center of 
gravity of the point set. The middle mat r ix  may rotate the coordinate f rame 
and the lefthand mat r ix  is a scaling matrix.  

Hart ley proposes two different normalizing schemes. Whereas the translat ion 
and the rotat ion into the principal axes frames are identical in his papers, the 
scaling is not. In [1] the scaling is designed with the aim to make the mean 
absolute value of the new coordinates equal to 1, whereas in [2] the points are 
normalized with the aim to make the mean square of the coordinates equal to 
1. In our experiments we have found only very small differences between the 
results obtained with these two normalization schemes 5, which we will denote 
by Hartleyl and Hartley2. 

6 Perturbat ion of the TLS solution 

As the determinat ion of the SVD, which is the central operation in our algo- 
r i thm, involves the solution of an eigensystem problem, we will now consider the 
influence of an error mat r ix  on the eigenvectors of the unperturbed matr ix.  

6.1 P e r t u r b a t i o n  o f  t h e  e i g e n v e c t o r s  

Golub &z van Loan [9, chapter 7.2.4] give a linear approximation of the per- 
turbat ion in eigenvectors. But whereas they regard arbi trary N • N-matr ices  
with complex elements we are only interested in symmetr ic  matrices with real 
elements. Therefore their equations simplify considerably. 

T h e o r e m  2. Let B G IR ~• be a symmetric matrix with distinct eigenvalues 
)u, A2, . . . ,  An and eigenvectors Zek. Assume C E lFt '~x~ satisfies HCI]2 = 1. We 
are looking for the eigenvectors of B + eC. 

A Taylor expansion of ~k (e) has the following form: 

= + + (10) 

5 Hartley also proposes an algorithm with isotropic scaring and no rotation at all in 
his second paper, which has not been considered here. 
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with 

6 ~  = ,=~ (Ak--Ai) x i =  ,=~ (Ak--A,) Cxk (11) 
iCk iCk 

Thus, we have made a very important  observation: If E [C] = 0 holds, it 
follows that  E [6~]  = 0: 

: 

Now we have shown that  

E [EigVec (B + eC)] = EigVec (B) if E [C] = O, (13) 

where EigVec (.) denotes the set of eigenvectors of a given matrix. 

6.2 P e r t u r b a t i o n  o f  t h e  s i ngu l a r  v e c t o r s  

We assume that  the vectors ui  in the first image are error-free whereas the 
corresponding point coordinates vi  in the second image are corrupted by zero- 
mean measurement errors, i.e. ui  = uio and vi  = vio + bi with E [bi] = 0. Since 
bl is zero-mean, we have Coy [bi] = Cb, = E [bibT],  and in the absence of further 
information we may assume Cb, = diag { ~ ,  c~, 0 }. The row vectors of A (called 
a T)  are corrupted with an error d T (ai  --- aio + di)  and for di we get: 

d T = (biluiol ,  bilUiO2, bil, bi2uiol, bi2uio~, bi2, 0, 0, 0). (14) 

We see that  the last three elements are error-free. It is seen easily that  F [di] = 0 

for all i holds as well. 
We are looking for the eigenvectors 6 of ATA0 which we denote as xi0 (actu- 

ally we are only interested in the eigenvector x90 corresponding to the smallest 
eigenvalue). 

ATA = ATAo + ATD + DTAo~+ ~DTD = ATAo + A (15) 

~1 A2 

ATAo is perturbed with two different error matrices; a term A1 which is linear 
in D (with E [A1] = 0) and a quadratic term A2 (with E [A2] # 0). Since AroAo 
is symmetric, we can apply eqn.( l l )  to 5~ o and get (for small D) an expression 
for the error in x9 

In order to obtain an unbiased estimator we have to ensure that  E [(f~o] - 0 
holds. In general this will not  be true due to E [4] • O. 

6 The subscript 0 denotes the true eigenvalues and eigenvectors of ATA0. 
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6.3 Requirements  for the statist ical  structure of  matr ix  A 

We can formulate the last requirement in another way as well: we would like 
to achieve that  the expected eigenvectors (at least the ninth) of the per turbed 
mat r ix  do not differ from the eigenvectors of the unperturbed matr ix.  Thus the 
stochastic process that  generates the perturbat ion matrices A should be such 
tha t  

E [EigVec (ATAo + ~) ]  ~- EigVec (ATAo) (17) 

holds. In section 6 we have already derived with eqn. (13) that  eqn. (17) would 
hold in linear approximation if F [A] = 0, which is not the case. However, we 
will see that  even a weaker requirement is sufficient in order to make eqn. (17) 
hold. 

Proposit ion:  If  E [A] = cI holds, the requirement (17) assuring unbiasedness 
holds as well. 

In order to prove this proposition, we first note tha t  EigVec (A- t -c I )  = 
EigVec (A) for any mat r ix  A ([15]). Now we define A '  _-- z~ -- cI. Obviously 
E [~ ' ]  = 0 holds, thus eqn.(13) can be applied and we obtain: 

E [EigVec (ATo Ao + A)] = E [EigVec ((A T Ao + cI) + A') ] 
= EigVec (ATA0-I-cI )  -- EigVec (ATA0) . 

Therefore, we have to ensure that  

E [h]  = E [h i ]  + E [A2] = E [ATD + DTA0] + E [DTD] " cI (18) 

holds.  F r o m  E [D] --  0 follows E [A1] = 0, and  therefore our requirement can be 
t ransformed into the simple form 

E [DTD] : cI (19) 

We see that ,  for small errors, it does not depend on the linear per turbat ion 
terms whether the est imator  is unbiased but solely on the quadratic te rm DTD. 

Let us now regard the matr ix  DTD. Its element (j, k) is obtained from the 

scalar product  of the j - th  and the k-th column of D: (DTD)jk = ~N=I dijdik. 
Therefore our requirement is ~N=I E [dijdik] " 6jkC. In mat r ix  form we can 
express eqn. (19) as follows: 

N N N 

Cov[ai] = Z E  [didi T] = Z C d '  ~ cI. (20) 
i=1  i=1  i=1  

If  we look at d~ (eqn.(14)) we realize that  the last three columns of A are error- 
free and therefore in Cdi ---- Coy [ai] the last three columns and rows will be 

0. 
However, this is no serious problem. On the contrary, we can turn it into an 

advantage since we have more information about  the possible error structure in 
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matrix A. We can replace the normal TLS estimation procedure with the already 
mentioned special form of TLS that  minimizes the error matr ix  norm subject to 
the constraint that  a certain number of columns (here: three) are free of errors. 
Two different but  equivalent TLS-FC (Total Least Squares - Fixed Columns) 
algorithms are described by Golub, Hoffman &~ Steward [16] and Demmel [14]. 
We use the second algorithm which is based on the SVD of the matr ix  A. 

Our modified requirement is: 

N 

E Cd, ~ ci with i = diag {1, 1, 1, 1, 1, 1, O, O, O} (21) 
i----1 

7 D e r i v a t i o n  o f  o p t i m u m  n o r m a l i z a t i o n  t r a n s f o r m s  

Now we recall Hartley's idea and perform a transformation of the input data  ui  
and vi. 

u; = rtu, = R~,0 = ~ 0  and v~ = Sv, = Sv,0 + S~, = v;0 + b~ 

In contrast to Hartley we will now deduce the matrices R and S from the require- 
ment we set up in the last section. The matrices R and S must be non-singular 
(otherwise eqn.(8) could not hold) and have the following structure 

R = r21 r22 r 3 and S = s s (22) 

The third rows are (0,0,1) because the third component of the homogenous vec- 
tors ui and vi  shall remain 1. Now we look at the expectation and the covariance 
matr ix  of b~: 

E [b~] = E [Sb/] = SE [b,] = S0 = 0 (23) 

= [bib ̀  ] = E Cb,=Covtb~]  E ,  , T  [ S b i b T s T ] = S E [ b i b T ] S  T 

~_ __-- C 2 1  C 2 2  

0 0 0 

After considering the statistical properties of the transformed input data  we can 
now use this knowledge. In the new coordinate frame we have 

d ~ T =  (b~lU~l , b~lu~ , b~l , b~2u~l, b~2u~2 , b~2 , O, O, 0 ) .  (25) 

The vector d~ is zero-mean because b~ is zero-mean (see eqn.(23)). We obtain: 

( 00) c ~ X ,  c ~ X ,  o / ~;~ ~.~,~' ' ~,~ 
---- I I 12 ( Cov[d~] = Cd~ c21Xi c22Xi with Xi de] | u i l u i 2  ui2 2 

! 
0 0 \ ~t~l Ui2 

(26) 
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Using the Kronecker matrix product | this can be written as: 

Cd, = Cb, | Xi (27) 

With the requirement expressed by eqn.(21) we obtain: 

c <  = ~ cb, | x ,  = cb, | x~ '= ci (2s) 
i = 1  i=1  

This means that  the following two equations must hold simultaneously: 

C b, : S �9 C d  �9 S T ! 0 kl (29) 
0 0 

(00)  0 0 IA..~i il il E i  ~tilUis 

�9 ~ . '  u' E ,  i s ]  = E~ R - i - T ~  ~ ; ks 0 30) E~ x~ = i ~ i  is i~ E i  "isuis 
u' ' 0 ks 

\ E i  il E i  ~ti2 E i  1 ] 

This can also be seen from eqn.(26). Since Cb is already assumed to be 
diag { a~, a~, 0 }, S may be an arbitrary matrix of the following structure: 

(cos0  in i)(10,) 
S = c ~ .  - s i n r 1 6 2  �9 0 1 t s  

0 0 0 0 1  

with arbitrary values for the parameters c~,r except c~ r 0. This looks 
very similar to the transformation given by eqn.(9) except for the fact that  a 
is no diagonal matrix, i.e. only isotropic scaling is allowed for the vectors vi .  In 
contrast to this requirement Hartley is performing an anisotropic scaling of the 
'second' vector vi as well. However, this will cause problems only if two principal 
moments of the vectors vi are notably different. 

We continue regarding eqn.(30). If we require that  the third component of 
vector u~ remains to be 1, this fixes the otherwise arbitrary constant ks to be 
N. Solutions for R can be found by considering that  from eqn.(30) and the 
requirement that  R be nonsingular we obtain 

~ u~u~ 7" = N .  R -1 (R T ) - :  (31) 
i 

This fixes the 3 x a-matrix R except for a premultiplication by an arbitrary 
orthonormal 3 x 3 matrix. In any case, from eqn.(30) we clearly see that  the 
matrix R must inevitably yield 

E u::: E - ; s :  0 
i i 

~_ , (  X - " t u '  ~2 U~l) s = Z . ~  isJ = N 
i i 

u~lu~2 = 0 

(32) 

(33) 

(34) 
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These are exactly the non-isotropic scaling prescriptions proposed by Hartley 
[2] as one of severM options. Our derivation has shown that  this scaling process 
is absolutely necessary for the vectors ui. Finally, the difference between the 
method derived in our paper and Hartley's method is that  firstly the transfor- 
mation S is isotropic, and secondly that  we use the TLS-FC algorithm instead 
of plain TLS. 

8 E x p e r i m e n t a l  r e s u l t s  

The different approaches discussed so far have been implemented in Mathemat- 
ica, using synthetic data  with an exactly known setup and exactly controllable 
measurement errors. We would like to stress the point that  these experimen- 
tal results are reported here in order to illustrate several effects that  have been 
observed in a very large set of experiments. Due to the huge number of param- 
eters, the derivation of generally valid conclusions is only possible on the basis 
of theoretical considerations, and experiments are to be understood as a t tempts  
to check whether the theory can be in accordance with reality. 

We considered the case of the essential matr ix (known camera parameters, 
enabling us to analyze the algorithms' performance in a Euclidean space) and 
performed a large number of simulations for different settings of the true motion 
(by now: pure translation in varying directions) and using 'objects' determined 
by a set of N random points inside of a cube given by world coordinates x, y, z E 
[ -1 ,  1]. These points have been projected onto the image plane yielding a set 
of N vector pairs u, v. Examples of such point sets visualized as displacement 
vector fields are shown in fig. 1 and fig. 8. 

Errors in the point correspondences have been introduced by adding noise 
vectors (dl, d2) drawn from a uniform distribution 41, d2 E [ -c /2 ,  ~/2] to the v~ 
vectors (u~ remaining undisturbed) with c varying in the range between 0 and 
30 units. Thus the variance of the error components di is e2/12. The focal length 
was 256 units. The virtual image area had a width and height of 400 units. 

For a fixed motion situation and a fixed 'object ' ,  500 experiments have been 
performed for each of 10 different values of c, respectively. What  we were most 
interested in was the difference between the true motion vector direction and the 
estimates of this entity as produced by the four different algorithm variations 
which have been under investigation. As the translation direction can only be 
computed up to a scale factor, we used the angular difference between the two 
unit vectors (true and estimated direction) as a measurement of quality. 

We did not only compute the m__ean angular error (MAE) between the esti- 
mated and the true direction of translation (each simulation yields one angular 
error, MAE = mean of all these errors), but  also the -angular error between the 
true translation direction and the mean estimated translation direction (com- 
pute mean estimated direction first and then the angular error of this quantity; 
AEM = angular error of mean direction). Whereas the MAE reflects the overall 
dispersion of the estimation result, the AEM measure will flag situations where 
the expectation of the estimated direction is not in coincidence with the true di- 



317 

rection of translation. Thereby a more differentiated analysis of the algorithms' 
output  is possible and cases where the considered algorithm is biased can be 
detected. The four algorithm variants considered here are 

- standard algorithm: no normalization; application of plain TLS for first es- 
t imation step and subsequent rank reduction. 

- "Hart leyl" :  anisotropic scaling of both u and v; application of plain TLS 
for first estimation step and subsequent rank reduction. 

- "Har t ley2":  anisotropic normalization of both u and v; application of plain 
TLS for first estimation step and subsequent rank reduction. 

- new algorithm: anisotropic normalization of u,  shift to the center of mass 
and isotropic scaling for v; application of TLS with fixed columns according 
to [14]. 

200 

150 

100 

50 

0 

~50 

-100 

-150 

-200 

Fig. 1. Example of a displacement vec- 
tor field used in our experiments; mo- 
tion parallel to image plane (x direc- 
tion), N=9 

In our experiments, the theoretically predicted problems with the standard al- 
gorithm and the two variants proposed by Hartley did in fact occur. We list the 
different observations: 

- The standard algorithm (solid line in all figures) is extremely susceptible to 
noise in the input data. Even for a rather moderate amount of error in the 
correspondences, the mean angular error increases very rapidly and settles 
in the area of about 60 degrees. It can be shown rather easily that  the mean 
angular error to be expected when the direction of translation is guessed 

(i. e. uniform distribution on the unit sphere), is about 57 degrees. So we 
can only join the choir of authors stating that  the plain 8+n-points algorithm 
is virtually useless due to its lack of stability. 

- The standard algorithm is strongly biased towards the viewing direction. 
This is a known - but not widely known - fact (cf. [17] and the related case 
discussed in [18]). This bias gets visible from a comparison of figures 2, 4, 
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Fig. 2. Angular difference of mean direc- 
tion estimate to true direction (AEM); 
here: motion in x direction, N=9 

Fig. S. Mean angular difference between 
estimated and true motion direction 
(MAE); motion type = x direction, N=9 
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Fig. 4. AEM; here: motion in x direction, Fig. 5. MAE; motion type : x direction, 
N--18 N--18 

and 6 (translation parallel to image plane; 9, 18 and 36 correspondences) 
versus figure 9 (translation in viewing direction, 9 correspondences) which 
is representative for the behaviour of 18, 36 and 60 correspondences as well. 
The apparent ly excellent behaviour of the standard algorithm with respect 
to the AEM measure in fig. 9 is caused by the fact that  the true motion 
direction is in exact coincidence with the bias of the estimator.  

- The performance of Hart ley 's  variants with respect to the AEM criterion 
does not provide any clue for a bias (cf. figs. 2, 4, 6, and 9), and neither 
does our new algorithm, which is Mmost indistinguishable from the latter 
two with respect to the AEM criterion. Thus the results of the experiments 
are compatible with our claim that  the normMization procedure eliminates 
the bias, as indented. 

- When we performed the first experiments, we were rather astonished to 
s tumble upon the strange behaviour of the 'Har t ley-normal ized '  algorithms 
with respect to the mean angular error (MAE) for the case tha t  the di- 
rection of translation is identical to the viewing direction (translation in 
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Fig. 6. AEM; here: motion in x direction, Fig. 7. MAE; motion type = x direction, 
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Fig. 8. Displacement vector field 
for motion in z direction (in viewing 
direction), N=36 

Fig. 9. AEM; here: motion in z direction, N=9 

z-direction): Comparing figs.10, 11, 12, and 13 one finds that  the MAE, and 
therefore the uncertainty of the estimation result, increases if more da ta  
(point correspondences) are added. Obviously, the regarded est imator  is not 

consistent. 
For the method proposed in this paper, the MAE remains moderate  for all 
situations investigated here, and - more impor tant  - it does not increase 
with increasing number  of point correspondences as can be seen in figures 

1 0 -  13. 

9 C o n c l u s i o n s  

We have shown that  a proper analysis of the statistical structure of errors in the 
input da ta  of a motion estimation algorithm can provide valuable information 
about  the sensitive parts of a given procedure. Moreover, this type of error 



320 

angular error 

80 ' ' s t a n d a r d  

H t t l  v l  x,- _ -  - -  . . a . . . e , _  

60 ~ . . . . . . .  H a r l l e y 2  

...... . . . . . . . .  . . . . .  n e w  method 

4 0  

2 0  

0 . . . . . . . .  ' ' 

5 i0 15 20 25 30 
d.v. error 

mean angular error 

8 o  t ' , s t a n d a r d  

I . I  ,., _ _ ~ - -  H a r t l e y l  

601 ~- ...... H a r t l e y 2  

n e w  m e t h o d  

."-t "" , , , ' , , 

o L ~  . . . . . . . . . .  

5 i0 15 20 25 30 
d.V. error 

Fig. 10. MAE; motion type = z direction, Fig. 11. MAE; motion type = z direction, 
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analysis can be the starting point for modifications that provide the algorithm 
with extensions that  significantly improve its overall performance in terms of 
precision, stability and reliability. 

We are convinced that  the concept of Total Least Squares estimation will 
become established in the field of motion analysis, since many estimation tasks 
currently under investigation in various research groups do precisely belong to 
the class of problems the TLS method is aiming at. 

It shall not be held back that  even in the context of the specific problem 
discussed in this paper there are still several open questions, for instance the 
opt imum estimation of a rank 2 fundamental matrix. For the moment being, we 
must confine ourselves to the remark that  the Frobenius norm is certainly not 

the correct metric for performing the constraint enforcement step; instead, the 
correct metric is implicitly given by the covariance structure of the F-matr ix  
estimate obtained in the first step. Here, further investigations are required and 
we hope to be able to present results before long. 

Finally, we would like to express our confidence in that  non-iterative algo- 
ri thms for the two-view motion analysis problem will eventually perform at least 
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as well as the best iterative procedures as soon as a comprehensive exploitation of 
the statistical input-output relation has been performed. As it has been pointed 
out in Hartley's 1997 paper, the gap to be bridged is not very large. 
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