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Canonical or classical transient receptor potential channel 6 (TRPC6) is a Ca2+-permeable 

non-selective cation channel that is widely expressed in the heart, lung, and vascular tis-

sues. The use of TRPC6-deficient (“knockout”) mice has provided important insights into 

the role of TRPC6 in normal physiology and disease states of the pulmonary vasculature. 

Evidence indicates that TRPC6 is a key regulator of acute hypoxic pulmonary vasocon-

striction. Moreover, several studies implicated TRPC6 in the pathogenesis of pulmonary 

hypertension. Furthermore, a unique genetic variation in the TRPC6 gene promoter has 

been identified, which might link the inflammatory response to the upregulation of TRPC6 

expression and ultimate development of pulmonary vascular abnormalities in idiopathic 

pulmonary arterial hypertension. Additionally, TRPC6 is critically involved in the regula-

tion of pulmonary vascular permeability and lung edema formation during endotoxin or 

ischemia/reperfusion-induced acute lung injury. In this review, we will summarize latest 

findings on the role of TRPC6 in the pulmonary vasculature.

Keywords: transient receptor potential channels, transient receptor potential channel 6, hypoxic pulmonary 

vasoconstriction, pulmonary hypertension, vascular permeability

INTRODUCTION

Regulation of the intracellular Ca2+ ([Ca2+]i) homeostasis is a crucial factor in many physiological 
processes (1). Altered Ca2+ homeostasis in both vascular endothelium and smooth muscle has been 
documented for a majority of pathophysiological conditions in the pulmonary vasculature. Changes 
in [Ca2+]i play a pivotal role in the regulation of contraction, migration, and proliferation of vascular 
smooth muscle cells (2). Furthermore, Ca2+ signaling in endothelial cells (ECs) is essential for the 
maintenance of the endothelial barrier integrity (3).

Non-selective cation channels (NSCCs) play an important role in the regulation of vascular tone 
and vascular smooth muscle cell proliferation by mediating the entry of cations (4). Among the 
ion channels located in the pulmonary vasculature, members of the canonical or classical transient 
receptor potential (TRPC) channels subfamily allow for the entry of Na+ and Ca2+. �ere is growing 
evidence that transient receptor potential channel 6 (TRPC6) mediates receptor-operated cation 
entry and is critically involved in numerous physiological processes. Recent studies have provided 
important insights into the role of TRPC6 in normal physiology and disease states of the pulmonary 
vasculature. We provide an overview on current knowledge regarding the role of TRPC6 channels 
in pulmonary vasculature and potential therapeutic strategies.
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FIGURE 1 | [Ca2+]i homeostasis regulation in precapillary pulmonary arterial smooth muscle cells (PASMCs) and ECs. Ca2+ enters cells from extracellular fluid 

through L-type voltage-dependent calcium channels or non-selective cation channels, which can be divided into SOCCs and ROCCs. The initiation of ROCC-

mediated Ca2+-influx from the extracellular space is thought to be induced by ligand-activated G-protein coupled receptors, starting a PLC-mediated hydrolyzation 

of PIP2 to IP3 and DAG. DAG regulates the activity of ROCC to induce receptor-operated Ca2+ entry, whereas IP3 generation induces depletion of the intracellular 

Ca2+ stores in the endoplasmic reticulum, leading to induction of store-operated Ca2+ entry. The increased [Ca2+]i drives different cellular responses. Ca2+, calcium 

ion; [Ca2+]i, intracellular Ca2+ concentration; ROCC, receptor-operated calcium channel; SOCC, store-operated calcium channel; VDCC, L-type voltage-dependent 

calcium channel; DAG, diacylglycerol; DAGK, DAG kinase; EC, endothelial cell; ER/SR, endoplasmic/sarcoplasmic reticulum; IP3, inositol trisphosphate; IP3R, inositol 

trisphosphate receptor; L, ligand; PA, phosphatidic acid; PASMC, precapillary pulmonary arterial smooth muscle cells; PIP2, phosphatidylinositol 4,5-bisphosphate; 

PLC, phospholipase C; VEGF, vascular endothelial growth factor; solid arrows indicate direct interactions; dotted arrows illustrate indirect interactions.
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REGULATION OF CALCIUM 

HOMEOSTASIS

In general, Ca2+ enters cells from extracellular �uid through L-type 
voltage-dependent calcium channels or NSCCs, which can be 
divided into store-operated calcium channels (SOCCs) and recep-
tor-operated calcium channels (ROCCs) (Figure 1). Stimulation 
of G-protein-coupled receptors initiates signaling mechanisms 
leading to activation of ROCC. �ese signaling pathways include 
phospholipase C (PLC) activation resulting in production of 
diacylglycerol (DAG) along with inositol 1,4,5-trisphosphate 
(IP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). DAG 
regulates the activity of ROCC to induce receptor-operated Ca2+ 
entry, whereas IP3 generation induces depletion of the intracellular 
Ca2+ stores in the endoplasmic reticulum, leading to induction of 
store-operated Ca2+ entry. Ca2+ entry through SOCCs plays a very 
important role in Ca2+ stores replenishment in the endoplasmic/
sarcoplasmatic reticulum and maintaining Ca2+ homeostasis.

CLASSICAL TRANSIENT RECEPTOR 

POTENTIAL CHANNEL 6

Transient receptor potential (TRP) channels play a prominent 
role in the regulation of the cation homeostasis (5). TRP channels 
belong to a large and diverse family of mostly NSCCs. In this 
regard, they are non-selectively permeable to cations, including 
potassium (K+), sodium (Na+), calcium (Ca2+), and magnesium 
(Mg2+) (6). Based on amino acid sequence homology, the 28 

mammalian TRP channels are grouped into six subfamilies, one 
of which is the TRPC (for classical or canonical) subfamily (6). 
�e TRPC subfamily includes seven members, TRPC1 to TRPC7, 
and can be further divided into subfamilies on the basis of their 
structural and functional similarities. All TRPC proteins have a 
common structure. Mainly, they are composed of four N-terminal 
ankyrin repeats, six transmembrane domains with a putative pore 
between domains 5 and 6, and several protein-binding domains 
(4). TRPC proteins can form homomeric or heteromeric channels 
consisting of four monomers.

Transient receptor potential channel 6 is a NSCC, which is 
about six times more permeable for Ca2+ than for Na+ (7). It 
belongs to the subfamily of ROCC and there is good evidence that 
TRPC6 is directly activated by DAG (8). TRPC6 is ubiquitously 
expressed in the whole vasculature (9). In the pulmonary circu-
lation, TRPC6 is most prominent in pulmonary artery smooth 
muscle cells (PASMCs) and ECs (10). TRPC6 mRNA and protein 
were identi�ed in PASMCs isolated from both proximal and 
distal pulmonary arteries (11–13). However, TRPC6 expression 
is higher in PASMCs isolated from distal pulmonary arteries than 
in those isolated from proximal vessels (14). Recently, expression 
of TRPC6 in pulmonary venous smooth muscle cells has also 
been demonstrated (15).

PULMONARY HYPERTENSION

Pulmonary hypertension (PH) is a pathophysiological disorder 
that may involve various clinical conditions and can complicate 
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cardiovascular and respiratory diseases (16). PH is characterized 
by remodeling of the pulmonary vessels, leading to a progres-
sive increase in pulmonary vascular resistance (PVR), right 
ventricular failure, and premature death. PH is de�ned as a 
resting mean pulmonary artery pressure ≥25 mmHg (17). �e 
disorder has been classi�ed into �ve clinical groups based on their 
similarities in clinical presentation, pathophysiological mecha-
nisms, and therapeutic options: pulmonary arterial hypertension 
(PAH) (Group 1); PH due to le� heart disease (Group 2); PH 
due to chronic lung disease and/or hypoxia (Group 3); chronic 
thromboembolic PH (Group 4); and PH due to unclear and/or 
multifactorial mechanisms (Group 5) (18).

Depending on the pulmonary artery wedge pressure val-
ues, PH is divided into precapillary and postcapillary forms. 
Pulmonary artery wedge pressure provides an indirect estimate 
of le� atrial pressure and its elevation >15 mmHg in patients with 
PH indicates presence of postcapillary PH due to le� heart disease 
(Group 2) (17). Precapillary PH is de�ned by the presence of PH 
and a pulmonary artery wedge pressure ≤15 mmHg and includes 
the clinical groups 1, 3, 4, and 5 (17).

Pulmonary arterial hypertension is a progressive dis-
ease characterized by the presence of precapillary PH and 
a PVR  >  3  Wood units in the absence of other causes of 
precapillary PH (17). It includes idiopathic PAH (IPAH), 
hereditary PAH, and PAH associated with diseases, drugs, 
and toxins (APAH) (18). Sustained pulmonary vasoconstric-
tion, in situ thrombosis, and pathological pulmonary vascular 
remodeling due to excessive vascular cell growth leading to 
intimal narrowing and vascular occlusion are the main causes 
for the increased PVR and pulmonary arterial pressure in 
IPAH patients. In addition, pulmonary vascular remodeling 
with increased muscularization contributes to elevated PVR 
as well as hyperreactivity of pulmonary vessels to various 
vasoconstrictor agents. Neointimal and medial hypertrophy in 
small and medium-sized pulmonary arteries is a key aspect of 
pulmonary vascular remodeling in IPAH patients.

Role of TRPC6 in Hypoxic Pulmonary 

Vasoconstriction (HPV)
Acute HPV is an adaptive response of the pulmonary circula-
tion to a local alveolar hypoxia, by which local lung perfusion is 
matched to ventilation resulting in optimization of ventilation–
perfusion ratio and thus gas exchange (19, 20). �is dynamic 
mechanism is also known as von Euler–Liljestrand mechanism 
(21) and can be found in �sh, reptiles, birds, and mammals. Acute 
HPV occurs throughout the pulmonary vascular bed, including 
arterioles, capillaries, and veins, but is most pronounced in small 
pulmonary arterioles (22, 23). In isolated pulmonary arteries and 
isolated perfused lungs, the HPV response is typically biphasic 
(24–26). �e �rst phase is characterized by a fast but mostly 
transient vasoconstrictor response that starts within seconds and 
reaches a maximum within minutes. �e following second phase 
is characterized by a sustained pulmonary vasoconstriction. 
Acute HPV in local alveolar hypoxia is limited to the a�ected lung 
segments and is not accompanied by an increase in pulmonary 
artery pressure.

A rise of [Ca2+]i in PASMCs is a key element in HPV (27, 
28). We have demonstrated that TRPC6 plays an essential role 
in acute HPV (29). We have shown that the �rst acute phase of 
HPV (<20 min of hypoxic exposure) was completely abolished 
in isolated, ventilated, and bu�er-perfused lungs from TRPC6-
de�cient mice. However, the vasoconstrictor response during 
the second sustained phase (60–160 min of hypoxic exposure) in 
TRPC6−/− mice was not signi�cantly di�erent from that in wild-
type mice (29). During hypoxia, DAG is accumulated in PASMCs 
and leads to activation of TRPC6 (29). Accumulation of DAG can 
result from PLC activation or from ROS-mediated DAG kinase 
(DAGK) inhibition (30, 31). Along these lines, inhibition of DAG 
synthesis by the PLC inhibitor U73122 inhibited acute HPV in 
wild-type mouse lungs (32). Blocking DAG degradation to 
phosphatidic acid through DAGKs or activation of TRPC6 with a 
membrane-permeable DAG analog 1-oleoyl-2-acetyl-sn-glycerol 
(OAG) resulted in normoxic vasoconstriction in wild-type but 
not in TRPC6−/− mice (32). Recently, the cystic �brosis trans-
membrane conductance regulator and sphingolipids have been 
demonstrated to regulate TRPC6 activity in HPV, as both translo-
cate TRPC6 channels to the caveolae and activate the PLC–DAG–
TRPC6 pathway (33). Cytochrome P-450 epoxygenase-derived 
epoxyeicosatrienoic acids also induced translocation of TRPC6 
to the caveolae during acute hypoxia (34). Consistent with these 
data, 11,12-epoxyeicosatrienoic acids increased pulmonary artery 
pressure in a concentration-dependent manner and potentiated 
HPV in heterozygous but not in TRPC6-de�cient lungs (34). 
As the constriction of the pulmonary vessels in response to the 
thromboxane mimetic U46619 is not altered in TRPC6−/− mice, 
TRPC6 channels appear to be a key regulator of acute HPV. �ese 
studies are summarized in Figure 2.

In PASMCs isolated from small precapillary arteries of 
TRPC6-de�cient mice, cation in�ux and currents induced by 
severe hypoxia (1% O2) were completely absent (29). �e rise of 
[Ca2+]i in response to hypoxia was not dependent on Ca2+ release 
from internal stores, because, in the absence of extracellular 
Ca2+, no hypoxia-induced increases in [Ca2+]i were detected (29). 
Interestingly, blocking voltage-gated Ca2+ channels almost com-
pletely inhibited acute HPV in isolated wild-type mouse lungs 
and Ca2+ in�ux in wild-type PASMCs (29), suggesting that Na+ 
in�ux through TRPC6 channels leads to membrane depolariza-
tion and activation of voltage-gated L-type Ca2+ channels mediat-
ing the bulk of the Ca2+ in�ux and contraction of smooth muscle 
cells (35). Importantly, the lack of acute HPV in TRPC6 KO mice 
has profound physiological relevance, because partial occlusion 
of alveolar ventilation provoked severe hypoxemia in TRPC6−/− 
but not in wild-type mice (29). �ese data provide compelling 
evidence that di�erent molecular mechanisms regulate pulmo-
nary vascular responses to acute and sustained hypoxia. TRPC6 
channels may thus represent a potential therapeutic target for 
the control of pulmonary hemodynamics and gas exchange in 
hypoxic conditions.

Role of TRPC6 in Experimental PH
A variety of animal models are currently used to study PH. �ese 
models have provided a plethora of scienti�c information and 
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FIGURE 2 | Mechanisms of TRPC6 regulation and function in precapillary pulmonary arterial smooth muscle cells (PASMCs) and ECs in response to hypoxia. The 

TRPC6 protein forms homomeric and heteromeric channels composed of TRPC6 alone or TRPC6 and other TRPC proteins. TRPC6 is expressed in PASMCs from 

mice, rat, as well as humans and is suggested to play a significant role in human idiopathic PAH. The initiation of TRPC6-mediated Ca2+ influx from the extracellular 

space is thought to be induced by ligand-activated G-protein coupled receptors, starting a PLC-mediated hydrolyzation of PIP2 to IP3 and DAG. It has been already 

shown that DAG activates TRPC6-containing channels to induce Ca2+ influx from the extracellular space. Ca2+ entry through TRPC6 might be triggered by 

hypoxia-induced O
2

− production or hypoxia-induced DAG accumulation and that the increased [Ca2+]i drives different cellular responses through ERK and p38, NFAT, 

and NF-κB downstream signaling. These pathways might be involved in the induction of TRPC6 expression and contribute to the modulated cellular response 

associated with hypoxia. Moreover, hypoxia leads to acute stabilization of HIF-1α, which might induce TRPC6 expression among other proteins. 11,12 EET, 

11,12-epoxyeicosatrienoic acid; Ca2+, calcium ion; [Ca2+]i, intracellular Ca2+ concentration; DAG, diacylglycerol; DAGK, DAG kinase; EC, endothelial cell; ER/SR, 

endoplasmic/sarcoplasmic reticulum; ERK, extracellular signal-regulated kinase; ET-1, endothelin-1; G, G-protein; H2O2, hydrogen peroxide; HIF-1α, hypoxia-

inducible factor 1 alpha; IP3, inositol trisphosphate; IP3R, inositol trisphosphate receptor; L, ligand; NF-κB, nuclear factor kappa-light-chain enhancer of activated 

B-cells; NFAT, nuclear factor of activated T-cells; NOX2, NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 2; O
2

− , superoxide; PA, phosphatidic acid; 

p38, p38 mitogen-activated protein kinase; PASMC, precapillary pulmonary arterial smooth muscle cells; PIP2, phosphatidylinositol 4,5-bisphosphate; PLC, 

phospholipase C; SOD, superoxide dismutase; TRPC, classical transient receptor potential channel; TRPC6, classical transient receptor potential channel 6; VEGF, 

vascular endothelial growth factor; solid arrows indicate direct interactions; dotted arrows illustrate indirect interactions. Not all interaction partners have been 

identified.
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made signi�cant contribution to our understanding of molecular 
mechanisms in PH. In animals, PH can be induced by pharma-
cologic/toxic substances, genetic manipulations, exposure to 
environmental factors, or surgical interventions (36).

Exposure to chronic hypoxia is the most commonly used 
animal model of PH in biomedical research. In global alveolar 
hypoxia, which occurs at high altitude and chronic respiratory 
diseases, HPV involves the entire pulmonary vascular bed leading 
to elevation of pulmonary artery pressure. Chronic global alveolar 
hypoxia induces structural remodeling of pulmonary vessels due 
to smooth muscle cell proliferation and migration characterized 
by increased muscularization of smaller arteries with extension of 
smooth muscle cells into previously non-muscularized arterioles 
(37). �is vascular remodeling has previously been thought to be 
a major determinant of the persistent elevation of PVR in chronic 
hypoxia-induced PH (38–40). However, recent studies have pro-
vided evidence that sustained vasoconstriction is an important 
contributor to chronic hypoxia-induced PH (41).

Although TRPC6 is important in the acute phase of HPV in 
mouse lungs, the data regarding its role in chronic hypoxic PH are 
controversial. We have previously shown that, despite disrupted 
acute HPV, TRPC6-de�cient mice display sustained HPV and 

chronic hypoxia-induced PH with pulmonary vascular remod-
eling and RV hypertrophy a�er 3  weeks of hypoxia (10% O2), 
which are indistinguishable from those in wild-type mice (29). 
Slightly but signi�cantly lower right ventricular systolic pressure 
was observed in TRPC6−/− mice exposed to 1 week of hypoxia 
when compared to wild-type mice (42). Nevertheless, this dif-
ference was not signi�cant a�er 3 weeks of exposure to hypoxia 
(42). In contrast, other authors have demonstrated attenuation of 
PH and pulmonary vascular remodeling in TRPC6 KO mice a�er 
4 weeks of hypoxia (43). Although the exact reason is not clear, 
di�erences in age (44, 45), gender (46), strain, and substrain (47, 
48) of mice can account for most of the discrepancies.

Excessive proliferation of PASMCs is the main cause of 
pulmonary arterial medial hypertrophy, which narrows the 
intraluminal diameter, increases the resistance to blood �ow, and 
eventually leads to PH. Proliferation of PASMCs is regulated by 
[Ca2+]i. �ere is increasing evidence that elevated TRPC6 expres-
sion might be responsible for the elevated [Ca2+]i. Interestingly, it 
has been shown that enhanced expression of TRPC6, STIM2, and 
Orai2 as proteins of the store-operated Ca2+ in�ux underlies the 
change of the phenotype of PASMCs from the contractile to the 
proliferative (49). Furthermore, deletion of TRPC6 signi�cantly 
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attenuated Ca2+ currents in the proliferative phenotype of 
PASMCs (49).

Transient receptor potential channel 6 upregulation in 
PASMCs has been demonstrated to be dependent on hypoxia-
inducible transcription factor 1 (HIF-1) (50). Overexpression of 
HIF-1 led to TRPC6 upregulation under normoxic conditions 
while partial de�ciency in HIF-1 resulted in hypoxia-induced 
Ca2+ in�ux in PASMCs, suggesting an important role of HIF-1 
for sustained expression of TRPC6 channels (50). Although 
short-term hypoxia (1% O2 for 72 h) did not produce any changes 
in TRPC6 mRNA expression in isolated murine PASMCs (51), 
increased expression of TRPC6 on mRNA and protein level was 
detected in pulmonary arteries and PASMCs isolated from pul-
monary arteries of mice and rats exposed to chronic hypoxia (42, 
50, 52). Moreover, a Notch-dependent upregulation of TRPC6 
channels in PASMCs in response to chronic hypoxia has recently 
been reported (43). It has been shown that TRPC6 is induced by 
BMP4 in rat PASMCs via the p38MAPK and ERK1/2 pathways 
(53, 54). Additionally, BMP4 may increase TRPC6 expression 
by elevating NOX4-mediated ROS levels in PASMCs (55). 
Interestingly, BMP4 expression has been shown to be dependent 
on HIF-1 as well (15).

Chronic lung diseases including chronic obstructive pulmo-
nary disease (COPD) are o�en complicated by PH (56). Growing 
evidence implicates cigarette smoke (CS) products in the initia-
tion of pulmonary vascular alterations in COPD (57). Recently, 
we have demonstrated the formation of PH in mice chronically 
exposed to tobacco smoke (58). Similarly, development of PH has 
been documented in rats chronically exposed to CS (59, 60). CS 
is an in�ammatory stimulus, which upregulates Ca2+-regulatory 
molecules. In this regard, TRPC6 was upregulated in rat lungs and 
isolated rat PASMCs a�er 4, 12, and 20 weeks of CS exposure (59). 
In another study, expression of TRPC1 and TRPC6 was increased 
in PASMCs isolated from distal pulmonary arteries of rats a�er 
1, 3, and 6 months of CS exposure (60). Furthermore, PASMCs 
in rats exposed to CS for 3 and 6 months showed a higher basal 
[Ca2+]i and an increased Ca2+ entry (60).

�e role of TRPC6 in other models of PH has not been inves-
tigated in detail. Increased expression of TRPC6 protein in distal 
pulmonary arteries was observed in the monocrotaline-induced 
rat model of PH (61). Chronic thromboembolic PH in a rat model 
is associated with upregulation of TRPC1 and TRPC6 in PASMCs 
isolated from distal pulmonary arteries, elevated basal [Ca2+]i, 
and an increased Ca2+ entry (62).

�ere is growing evidence that in addition to TRPC6, other 
members of the TRPC family also contribute to the pulmonary 
vascular remodeling in PH. Culture of isolated PASMCs under 
hypoxic conditions led to upregulation of TRPC1 mRNA (50, 51, 
63). Furthermore, enhanced expression of TRPC1 and TRPC4 
mRNA and protein has been documented in pulmonary arter-
ies and PASMCs isolated from mice and rats with PH induced 
by various stimuli (50, 59, 60, 62, 64, 65). Treatment of murine 
PASMCs with TRPC1-speci�c small interfering RNA resulted in 
signi�cant attenuation of hypoxia-induced proliferation of cells 
(51). Consistent with this, PASMCs isolated from TRPC1−/− mice 
showed diminished proliferation under hypoxic conditions (51). 

Additionally, TRPC1−/− mice exposed to chronic hypoxia were 
protected from development of PH, which was associated with 
attenuated pulmonary vascular remodeling (51). In line with our 
data, reduced chronic hypoxic vascular remodeling in TRPC1−/− 
mice has been demonstrated by an independent research group 
(42). Moreover, downregulation of TRPC1 expression by small 
interfering RNA attenuated PH and pulmonary vascular remode-
ling in a murine model of hypoxia-induced PH (66). Interestingly, 
in mice de�cient for both TRPC1 and TRPC6, chronic hypoxia-
induced changes in pulmonary arterial pressure, right ventricular 
hypertrophy, and pulmonary vascular remodeling are even more 
inhibited compared to those in mice with a de�ciency for a single 
gene (42). In a recent study, de�ciency for TRPC4 has been shown 
to confer a survival bene�t, which was associated with diminished 
vasculopathy in a rat model of severe PAH (67).

Involvement of TRPC6 in IPAH
Pulmonary arterial hypertension is characterized by progressive 
adverse structural changes in the resistance pulmonary arteries 
driven mainly by excessive vascular cell growth (68). Vascular 
remodeling in PAH is mediated by multiple stimuli. It is widely 
recognized that PASMCs in IPAH patients have a hyperprolifera-
tive phenotype and contribute to the pro-proliferative microen-
vironment in the vascular wall of their pulmonary arteries (68, 
69). �e enhanced [Ca2+]i plays an key role in PASMC growth 
(70). Furthermore, increased [Ca2+]i levels have been observed in 
PASMCs from IPAH patients (71). Expression studies revealed 
that c-jun/STAT3-induced upregulation of TRPC6 expression 
underlies PDGF-mediated proliferation of PASMCs (72). �e 
mRNA and protein expression of TRPC6 in lung tissues and 
PASMCs from IPAH patients has been shown to be much higher 
than in those from normotensive patients (73). Furthermore, 
inhibition of TRPC6 gene expression by small interfering RNA 
signi�cantly diminished proliferation of PASMCs from IPAH 
patients suggesting that the abnormally increased PASMC pro-
liferation in these patients may be due to enhanced expression 
of TRPC6 (73).

Mounting evidence implicates in�ammatory mechanisms in 
the development of PAH (74, 75). A unique genetic variant of 
the TRPC6 gene promoter has been identi�ed, which might link 
in�ammatory responses to the upregulation of TRPC6 expression 
and ultimate development of pulmonary vascular abnormality in 
IPAH (76). Sequencing TRPC6 regulatory regions of 268 patients 
with IPAH revealed three biallelic single-nucleotide polymor-
phisms (SNPs): −361(A>T), −254(C>G), and −218(C>T) (76). 
Among these three SNPs, only the −254(C>G) SNP was associ-
ated with IPAH by increasing basal TRPC6 gene promoter activity. 
Furthermore, the −254(C>G) SNP introduces a new binding site 
for the in�ammatory transcription factor nuclear factor κB (NF-
κB) in the promoter region of the TRPC6 gene and thus enhances 
NF-κB-mediated promoter activity and stimulates TRPC6 
expression in PASMCs (76). In addition, this SNP has functional 
relevance as it also a�ects TRPC6 channel activity. In PASMCs 
from IPAH patients with the −254(C>G) SNP, TNF-α-induced 
activation of NF-κB signi�cantly increased TRPC6 expression, 
elevated the resting [Ca2+]i, and enhanced OAG-induced Ca2+ 
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in�ux (76). In contrast, inhibition of nuclear translocation of 
NF-κB by overexpression of an IκBα super-repressor signi�cantly 
diminished TNF-α-mediated enhancement of TRPC6 expres-
sion, resting [Ca2+]i, and agonist-induced elevation of [Ca2+]i. �e 
importance of NF-κB has been demonstrated in experimental 
models of PAH (77–79). More importantly, activation of NF-κB 
has recently been observed in the pulmonary vessels of patients 
with end-stage IPAH (80). �us, in the presence of in�ammatory 
triggers, individuals carrying the −254(C>G) SNP may have an 
increased risk of developing IPAH (81). Although the functional 
signi�cance of the two other SNPs, −361(A>T) and −218(C>T), 
is not clear, it has been shown that patients with IPAH and APAH 
carrying all three SNPs develop a more severe disease (82).

TRPC6 As a Therapeutic Target in PH
Transient receptor potential channel 6 is predominantly expressed 
in tissues harboring smooth muscle cells including the lungs (83, 
84). However, TRPC6−/− mice do not have any major pathological 
phenotypes probably because TRPC6 channels have little basal 
activity and modest importance under physiological conditions 
(85). Moreover, loss of TRPC6 is compensated by the activity of 
closely related TRPC3 channels in the systemic vasculature (86) 
and airway smooth muscle (87). Nevertheless, TRPC6 channels 
are speci�cally activated in various disease conditions suggesting 
their pathophysiological relevance and thus represent attractive 
therapeutic targets. Importantly, systemic application of TRPC 
inhibitors in mice was not associated with any serious side e�ects 
(88, 89).

A number of non-selective small molecule inhibitors of TRPC6 
channel activities including 2-APB and SKF-96365 have become 
available during recent years (85, 90). Also, antagonists including 
synthetic gestagen norgestimate and compound 8009-5364 with 
IC50 values in a low micromolar range and with higher selectiv-
ity for TRPC6 have been identi�ed (91, 92). As the members of 
the TRPC3/6/7 subfamily have very similar biochemical and 
biophysical properties, most of the TRPC6-selective blockers 
exhibit poor selectivity between the subfamily members (85, 
90). A continuous search for selectively acting pharmacological 
TRPC6 has recently identi�ed new highly potent TRPC6 inhibi-
tors with subtype selectivity, SAR7334, and larixyl acetate (93, 
94). Most importantly, these drugs e�ectively blocked acute HPV 
in isolated mouse lungs (92–94). However, the only inhibitor that 
has been tested in experimental PH is the non-speci�c TRPC 
blocker 2-APB, which prevented development of PH in mice 
exposed to chronic hypoxia (43).

Evidence supporting the role of TRPC6 in the pathogenesis 
of IPAH suggests that it might serve as a pharmacologic target. 
Although the selective TRPC6 inhibitors represent promising 
drug candidates for the treatment of PH, they have not yet been 
tested in experimental models of PH. It would be highly desirable 
to con�rm the therapeutic e�cacy and safety of the new potent 
and selective TRPC6 blockers in animal models of PH with the 
ultimate goal of development of new therapeutic strategies for 
patients with PH.

Recent studies suggest that speci�c drugs approved for PAH 
treatments can also target TRPC6 expression and activity. In a 
small number of PAH patients with a positive response to acute 

vasodilator testing, initial therapy includes high doses of calcium 
channel blockers. However, most of the PAH patients do not 
react to calcium channel blockers, and they are treated with 
drugs approved for PAH therapy. Currently, established clini-
cal practice treatments of PAH target three signaling pathways 
that are involved in the pathogenesis of PH: endothelin, nitric 
oxide, and prostacyclin (95). �ese therapies include endothelin 
receptor antagonists, phosphodiesterase type 5 inhibitors, soluble 
guanylate cyclase stimulators, prostacyclin receptor agonists, and 
epoprostenol. Bosentan has been found to directly downregulate 
TRPC6 expression in addition to its well-known blockade of 
endothelin receptors (96).

In PASMCs from chronically hypoxic rats, the potent phos-
phodiesterase type 5 inhibitor sildena�l decreased acutely basal 
[Ca2+]i (97). Chronic treatment of rats exposed to 10% O2 for 
21  days with sildena�l showed a decreased right ventricular 
pressure and right ventricular hypertrophy, which is related to 
decreased TRPC6 mRNA and protein expression in pulmonary 
arteries (63). Furthermore, knockdown of TRPC6 gene by small 
interference RNA diminished the hypoxic increases of basal 
[Ca2+]i and Ca2+ in�ux in PASMCs exposed to hypoxia for 60 h 
(63). It has been shown that inhibition of the Ca2+/NFAT pathway 
is involved in the antiproliferative e�ect of sildena�l on PASMCs 
(98). More recent studies have revealed that sildena�l inhibits 
hypoxia-induced TRPC6 protein expression in PASMCs via the 
cGMP–PKG–PPARγ axis (99).

TRPC6 IN ACUTE LUNG INJURY (ALI)

Acute lung injury is characterized by lung edema due to increased 
lung vascular permeability of the alveolar-capillary barrier and 
subsequent impairment of arterial oxygenation. Ca2+ homeosta-
sis has been shown to be essential in the mechanism of barrier 
disruption and endothelial contraction (3). Elevated [Ca2+]i 
leads to changes in EC morphology and increased endothelial 
permeability. Recent studies have shown that Ca2+ entry through 
TRPC6 is essential for increased endothelial permeability and 
compromised barrier function in pulmonary vasculature (100).

In ALI, lung vascular barrier disruption usually coincides 
with the invasion of immune cells and activation of in�amma-
tory signaling pathways (101). Various mediators, including 
platelet-activating factor (PAF), vascular endothelial growth 
factor (VEGF), thrombin, tumor necrosis factor-α (TNF-α), 
and others, induce changes in EC shape and consequently an 
increase in endothelial permeability (3, 102). PAF, a critical 
mediator in numerous experimental models of ALI, has been 
shown to increase lung vascular permeability by activation of acid 
sphingomyelinase (ASM) (103). In an extension of that study, the 
authors provided evidence that ASM activation by PAF causes 
rapid recruitment of TRPC6 channels into caveolae of lung ECs, 
thus facilitating endothelial Ca2+ entry and subsequent increases 
in endothelial permeability (104). Translocation of the TRPC6 
to caveolin-rich areas in the plasma membrane in response to 
bradykinin has also been shown to be facilitated by 11,12-epox-
yeicosatrienoic acids (105). TRPC6 has also been implicated in 
the VEGF-mediated increase in [Ca2+]i and subsequent down-
stream signaling in microvascular ECs (106–108). In human 
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pulmonary ECs, interaction of a protein called phosphatase and 
tensin homolog with TRPC6 enables cell surface expression of the 
channel in ECs and OAG-induced Ca2+ entry through TRPC6 as 
well as a subsequent increase in monolayer permeability (109). 
�rombin-mediated Ca2+ entry through TRPC6 in human 
pulmonary artery ECs activated RhoA in a protein kinase C-α-
dependent manner and thereby induced EC shape change and an 
increase in endothelial permeability (100).

A novel function for TRPC6 in pulmonary ECs in ALI induced 
by the endotoxin lipopolysaccharide (LPS) has also been inden-
ti�ed (110). In that study, LPS induced generation of DAG by 
binding to toll-like receptor 4 (TLR4), and DAG in turn directly 
activated TRPC6 and increased Ca2+ entry in ECs resulting in 
enhanced lung vascular permeability. Most interestingly, TRPC6 
signaling was also important for the LPS/TLR4-mediated NF-κB 
activation and lung in�ammation (110).

Lung edema and endothelial injury are accompanied by an 
in�ux of neutrophils into the interstitium and alveolar space 
(111). �erefore, activation and recruitment of polymorphonu-
clear neutrophils are thought to play key roles in the progression 
of ALI. When neutrophils are recruited to in�amed tissue, they 
become migratory and traverse the walls of blood vessels. It is 
known that the stimulation of CXC-type Gq-protein-coupled 
chemokine receptors activates PLC and induces a sustained 
increase in [Ca2+]i (112). An important role of TRPC6 signaling 
was demonstrated in CXCR2-induced intermediary chemotaxis 
(113). A de�ciency for TRPC6 in neutrophil granulocytes 
negatively a�ects macrophage in�ammatory protein-2 and OAG-
induced cell migration (114). It has also been shown that TRPC6 
expressed in ECs promotes leukocyte transendothelial migration 
by mediating tra�cking of the lateral border recycling compart-
ment membrane (115).

Recently, we have investigated the role of TRPC6 in lung 
ischemia-reperfusion edema (LIRE) formation in mice (31). 
Remarkably, global TRPC6−/− mice were fully protected from 
LIRE, whereas global TRPC1- and TRPC4-de�cient mice showed 
no protection. Bone marrow transplantation experiments using 
TRPC6 KO and wild-type mice allowed us to exclude the involve-
ment of TRPC6 in immune cells. In line with our in vivo �nd-
ings, pulmonary ECs isolated from TRPC6 KO mice displayed 
reduced permeability in response to hypoxia. A detailed analysis 
of signaling pathways underlying TRPC6 activation showed 
that mice lacking NOX2, but not NOX1 and NOX4, were also 
protected from LIRE. Moreover, mice de�cient for NOX2 speci�-
cally in pulmonary arterial ECs displayed protection from LIRE. 
Consistent with our in vivo �ndings, we observed enhanced O

2

− 
production by endothelial NOX2 during the ischemic (hypoxic) 
phase. We have shown that a�er extracellular conversion to 
hydrogen peroxide (H2O2), H2O2 penetrates into the cell, where 
it inhibits DAGK η1/2 activity and activates PLCγ, resulting in 
DAG accumulation and activation of TRPC6. Furthermore, 
elevation in [Ca2+]i was diminished in ECs lacking either NOX2 
or TRPC6, indicating that NOX2 in�uences TRPC6-dependent 
Ca2+ homeostasis. Our studies provided a unique mechanistic 
insight into the pathogenesis of LIRE involving production of 
superoxide by endothelial Nox2, activation of PLCγ, inhibition 
of DAGK, and DAG-mediated activation of TRPC6 (31). �ese 
studies are summarized in Figure 3.

CONCLUDING REMARKS

In summary, TRPC6 channels are involved in various physi-
ological and pathophysiological processes in the pulmonary 
vasculature. �ere is a clear evidence for the importance of 

FIGURE 3 | Additional TRPC6 signaling pathways in ECs after lung injury. Recruitment of TRPC6 by the indicated factors increases the density of TRPC6 channels 

at the plasma membrane (left), which open after activation of endothelial receptors (right) and increase endothelial permeability and inflammatory processes inducing 

endothelial dysfunction. 11,12 EET, 11,12-epoxyeicosatrienoic acid; ASM, acid sphingomyelinase; Ca2+, calcium ion; [Ca2+]i, intracellular Ca2+ concentration; Cav-1, 

caveolin-1; DAG, diacylglycerol; EC, endothelial cell; G, G-protein; HIF-1α, hypoxia-inducible factor 1 alpha; L, ligand; LPS, lipopolysaccharide; PAF, platelet-

activating factor; PTEN, phosphatase and tensin homolog; PIP2, phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; TLR4, toll-like receptor 4; TRPC, 

classical transient receptor potential channel; TRPC6, classical transient receptor potential channel 6; VEGF, vascular endothelial growth factor; solid arrows indicate 

direct interactions; dotted arrows illustrate indirect interactions. Not all interaction partners have been identified.
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