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In earlier literature, so-called twitches were used to support a user in a steady-state

somatosensory evoked potential (SSSEP) based brain–computer interface (BCI) to focus

attention on the requested targets. Within this work, we investigate the impact of these

transient target stimuli on SSSEPs in a real-life BCI setup. A hybrid BCI was designed

which combines SSSEPs and P300 potentials evoked by twitches randomly embedded

into the streams of tactile stimuli. The EEG of fourteen healthy subjects was recorded,

while their left and right index fingers were simultaneously stimulated using frequencies

selected in a screening procedure. The subjects were randomly instructed by a cue on

a screen to focus attention on one or none of the fingers. Feature for SSSEPs and P300

potentials were extracted and classified using separately trained multi-class shrinkage

LDA classifiers. Three-class classification accuracies significantly better than random

could be reached by nine subjects using SSSEP features and by 12 subjects using P300

features respectively. The average classification accuracies were 48.6% using SSSEP

and 50.7% using P300 features. By means of a Monte Carlo permutation test it could be

shown that twitches have an attenuation effect on the SSSEP. Significant SSSEP blocking

effects time-locked to twitch positions were found in seven subjects. Our findings suggest

that the attempt to combine different types of stimulation signals like repetitive signals

and twitches has a mutual influence on each other, which may be the main reason for

the rather moderate BCI performance. This influence is originated at the level of stimulus

generation but becomes apparent as physiological effect in the SSSEP. When designing

a hybrid BCI based on SSSEPs and P300 potentials, one has to find an optimal tradeoff

depending on the overall design goals or individual subjects’ performance. Our results

give therefore some new insights that may be useful for the successful design of hybrid

BCIs.

Keywords: brain–computer interface (BCI), steady-state somatosensory evoked potential (SSSEP), P300,
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1. INTRODUCTION

Brain–computer interfaces (BCIs) can provide a means of
communication for persons who have lost all their motor control
due to a severe neurological disease or brain injury (Wolpaw
et al., 2002). In cases where the visual or auditory system is
not functional, a BCI based on tactile stimuli might be the only
way to provide a communication channel for such persons. One
promising way to realize a tactile BCI is to use steady-state
somatosensory evoked potentials (SSSEPs). SSSEPs can be evoked
by repetitive tactile stimuli of sufficiently high rate (Regan, 1989).
In healthy subjects, a two-class BCI based on SSSEPs could
successfully be realized for the first time (Müller-Putz et al.,
2006). On the one hand, users of such a BCI have to learn to
focus attention on one of several stimulus locations, thereby
modulating the respective SSSEP. On the other hand, the BCI
needs to be trained to reliably detect such attention-modulated
changes in the SSSEPs and translate them into an output channel
for communication and control.

In several studies, attention modulation effects of SSSEPs and
BCIs based on SSSEPs were investigated (Giabbiconi et al., 2004,
2007; Müller-Putz et al., 2006; Adler et al., 2009; Breitwieser et al.,
2011; Severens et al., 2013; Pang andMueller, 2014). In all of these
studies, the use of some kind of randomly appearing transient
target stimuli with increased or decreased amplitude which were
embedded in the streams of repetitive tactile stimuli was reported.
In our work, we follow the nomenclature of Müller-Putz et al.
(2006) and refer to these transient target stimuli as “amplitude
twitch” or simply “twitch.” Typically, the subjects were instructed
to actively recognize (e.g., to silently count) these twitches, in
order to force the subjects to focus maximal attention on the
desired stimulation site. Otherwise, keeping attention focused
on one of different simultaneous streams of stimuli over some
period of time would be a virtually impossible task. In most
of these studies, trials with twitches were included in the data
analysis without treating them in a particular way (Giabbiconi
et al., 2004, 2007; Müller-Putz et al., 2006; Breitwieser et al.,
2011), whereas, Adler et al. (2009) and Pang and Mueller (2014)
excluded them from further analyses in order to investigate pure
SSSEPs. In the study of Severens et al. (2013), a successful attempt
was made to explicitly include transient event-related potentials
(ERPs) caused by twitches in the analyses and to directly compare
the BCI performance using transient and steady-state responses
for the first time.

However, in none of these studies, the effects of twitches on
the stimulation signal and subsequently, on the SSSEP itself were
explicitly analysed from a signal processing point of view in terms
of intended or unintended temporal or spectral changes of the
stimulation signal. Arguably, a transient change in the repetitive
stimulation signal will have some impact on the SSSEP. Here,
an important question is, if such effects are negligible or may
cause some undesired physiological effects, such as degraded
classification performance in a BCI. In some cases, as shown by
Xu et al. (2013) in the context of steady-state visually evoked
potentials (SSVEPs), seemingly negative effects may even be
turned to some new kind of features (“blocking features") which
can even be beneficial for classification.

The aim of our work is to ask this question again and to
critically revisit the use of twitches in an SSSEP-based BCI. For
this purpose, a hybrid BCI based on tactile stimuli was designed
to throw some new light on the use of twitches. In general,
the idea of a hybrid BCI is to combine different brain signals
in a meaningful way in order to improve the performance and
to make the BCI applicable to a broader range of subjects or
patients (i.e., lower number of illiterates) (Pfurtscheller et al.,
2010; Müller-Putz et al., 2015). Similar as Severens et al. (2013),
we investigate in our study a BCI which combines SSSEPs and
P300 potentials evoked by twitches embedded into the streams
of tactile stimuli. However, these two brain signals are somehow
mutually exclusive, since the former is a frequency-domain signal
whereas the latter is a time-domain signal. According to the
Fourier uncertainty principle (Gabor limit) a signal cannot be
both time-limited and band-limited at the same time (Gabor,
1946). We therefore investigate the role of twitches in the
context of SSSEPs and address the questions if SSSEPs and P300
potentials can be evoked concurrently and under what conditions
the performance of a hybrid BCI may be improved by combining
SSSEPs and P300 potentials.

2. METHODS

The impact of twitches on SSSEPs was investigated in a real-world
BCI setup. For this purpose, we designed an online BCI following
the standards for open interfaces for communication (TiA, TiD)
described by Müller-Putz et al. (2011). For the online BCI and
all offline analyses, Matlab/Simulink (The MathWorks, Inc., MA,
USA) together with the EEGLAB (Delorme and Makeig, 2004)
and BCILAB (Kothe and Makeig, 2013) toolboxes were used.

2.1. Experimental Paradigms
Within this study, EEG (electroencephalogram) measurements
were conducted in three successive parts using experimental
paradigms for (i) EOG (electrooculogram) recording needed
for EOG artifact removal, (ii) screening for subject-specific
“resonance-like” frequencies of the somatosensory system
(Müller et al., 2001), and (iii) a cue-based online BCI paradigm.

2.1.1. EOG Recording
The first part of each measurement was to record 2 min of
induced EOG artifacts. Following the procedure described by
Schlögl et al. (2007), each subject was instructed to perform
1 min of eye movements and 1 min of blinking only. Using
this recording, parameters for an autoregressive model were
estimated which was then used to automatically remove EOG
artifacts from online BCI recordings.

2.1.2. Screening
As demonstrated in various experiments in literature, each
person shows a characteristic tuning curve and reacts with
specific “resonance-like” frequencies of the somatosensory
system in response to repetitive tactile stimuli (Tobimatsu
et al., 1999, 2000; Müller et al., 2001; Breitwieser et al., 2012).
“Resonance-like” frequencies are frequencies with maximal
SSSEP amplitude and reflect resonance phenomena of the
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underlying frequency-selective neuronal networks. In SSSEP-
based BCIs, the use of subject-specific stimulation frequencies
with strongest SSSEP responses is assumed to yield higher
BCI performance compared to when using the same standard
frequencies for all subjects (Müller-Putz et al., 2006; Breitwieser
et al., 2011; Severens et al., 2013). Therefore, a screening
procedure similar as described by Breitwieser et al. (2012)
was applied to identify these subject-specific “resonance-like”
frequencies, and to select two frequencies for left and right index
finger stimulation to be used in the subsequent BCI paradigm.

The left and right index finger tips were randomly stimulated
with 10 frequencies ranging from 17 to 35Hz in steps of 2Hz.
As shown in Figure 1A, each trial started with a reference
period (length 3–3.5 s) without stimulation, followed by 10
stimulation intervals (length 2.3 s; only the last 2 s were used
for analysis). In each stimulation interval, frequency and index
finger were randomly chosen. The only restriction was that the
exact same frequency and finger could not be selected twice
in succession. Short pauses (length 0.25 s) were added between
different stimulation intervals. To avoid attention modulation
effects during screening, the subjects were not supposed to focus
attention on the stimuli. Therefore, subjects had to perform
a distracting mental arithmetic task during the whole trial
(Breitwieser et al., 2011). They had to continuously add or
subtract random numbers appearing on the screen in front
of them. At the end of each trial, they were asked for their
calculation results in order to monitor their distraction. The
whole screening was divided into eight runs with 10 trials each.
In total, 40 repetitions per frequency and index finger were
recorded, resulting in a total amount of 800 repetitions per
subject.

After screening, tuning curve maps showing the percentage
band power increase of the stimulation intervals relative to
the reference intervals (Müller et al., 2001) were computed
for seven bipolar channels above the somatosensory cortex.
Two stimulation frequencies with the highest and most similar
responses in the tuning curve maps were manually selected
for each subjects. The only restriction was that the selected
frequencies had to be separated by at least one other stimulation
frequency in between. The selected frequencies were then used
in the subsequent BCI paradigm for left and right index finger
stimulation.

2.1.3. BCI Paradigm
The left and right index fingers were simultaneously stimulated
using the two frequencies selected after the screening procedure.
The subjects were randomly instructed by a cue on the screen
to focus attention on one or none of the fingers. The target
finger was indicated by an arrow pointing to the left (“Focus
left” class) or right (“Focus right” class). In one third of all trials,
no arrow was shown and the subjects were instructed to avoid
focusing attention on any finger (“Idle” class). Since the repetitive
stimulation signals are usually just perceived as continuous
vibrations, it is generally very difficult to focus attention and
keep attention focused on the target finger. In order to make
the focusing attention task easier, short twitches were inserted in
the stimulation patterns of both fingers at random time points
(see Section 2.2 for more details). Such twitches were short
interruptions in the repetitive stimulation signals and could be
perceived as rare, discrete events in the repetitive streams of
stimuli. So, to keep attention focused on the target finger, the
subjects were instructed to actively recognize and silently count
the twitches appearing on the target, and to ignore twitches on
the non-target finger. During the whole trial, the subjects were
also instructed to avoid shifting their gaze and to just look at the
center of the screen indicated by a cross.

As shown in Figure 1B, each trial started with a beep tone and
the cross appearing on the screen. After 0.2 s, the stimulation of
the left and right index fingers started. After a waiting time of
0.5 s after trial start, there was a reference period with a random
length between 1 and 1.5 s without focused attention, where the
subjects just had to look at the cross on the screen. Then, an arrow
faded in on the screen instructing the subjects on which finger
to focus attention on, or no arrow appeared for idle trials. The
length of such a focus attention or idle period respectively was
randomly chosen between 9.5 and 10 s. Twitches were presented
only during this period and not during the reference interval.
Each trial ended with a double beep followed by a discrete
feedback appearing for 2 s on the screen. The feedback indicated
if the target class was correctly detected (green circle), wrongly
detected (red circle), or if no decision could be made (yellow
circle). After the feedback, a random break between 3 and 4 s
was added before the start of the next trial. Class decisions were
made by two combined classifiers, one for SSSEPs and one for
P300 potentials evoked by twitches (see Section 2.5 for details).

A B

FIGURE 1 | Experimental paradigms. (A) In the screening paradigm, each trial started with a reference (REF) period, followed by 10 stimulation (STIM) intervals with

frequency and index finger randomly chosen. Subjects had to perform a distracting mental arithmetic task during the whole trial. At the end of each trial, they were

asked for their calculation results. (B) In the online BCI paradigm, both index fingers were simultaneously stimulated. Each trial started with a reference period,

followed by a focused attention or idle period, as indicated by a cue appearing on the screen. Twitches were only presented during this period (hatched area). At the

end of each trial, a discrete feedback was given on the screen.
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A B

FIGURE 2 | Tactile stimulation. (A) Two C-2 tactors were attached to the left

and right index finger using finger clips. (B) The tactile stimulation pattern

consisted of a 237Hz sinusoidal carrier signal which was amplitude modulated

with a rectangular stimulation signal (red dashed line) of the respective

stimulation frequency (here: 35Hz). Twitches were implemented as complete

interruption of the stimulation signal for exactly one stimulation period.

The whole online BCI paradigm was divided into eight runs with
10 trials per class each. The following classifier update strategy
was chosen: During the first two runs, data were just recorded
and no feedback was given. After two runs, the classifiers were
trained based on data from the first two runs and used to provide
feedback in the following two runs. After four runs, the classifiers
were retrained again based on data from all four previous runs
and used to provide feedback in the remaining four runs of the
measurement. The data from all eight runs (80 trials per class)
were altogether used in the offline analyses.

2.2. Tactile Stimulation
Two C-2 tactors (Engineering Acoustics, Inc., Casselberry,
Florida, USA) were attached to the left and right index finger.
In order to have constant contact pressure betweeen tactors and
fingers, finger clips as depicted in Figure 2A were used for this
purpose. The prototype of a self-made tactile stimulation device
(Pokorny et al., 2014) was used to generate the complex repetitive
and transient stimulation patterns needed to evoke SSSEPs as well
as P300 potentials. The stimulation pattern consisted of a 237Hz
sinusoidal carrier signal which was amplitude modulated with
a rectangular signal of the respective stimulation frequency (see
Figure 2B), similar as used in previous studies involving SSSEPs
(Müller-Putz et al., 2006; Breitwieser et al., 2011, 2012; Pokorny
et al., 2014). The duty cycle was chosen close to 50% in such a
way that the carrier signal always started and stopped at phase
zero.

During the online BCI runs, seven twitches per finger and
trial were pseudo-randomly embedded into the stimulation
patterns. As visible in Figure 2B, twitches were implemented
as complete interruption (100% attenuation) of the repetitive
stimulation signal for exactly one period of the respective
stimulation frequency. This was done to have a strong and clearly
defined effect when explicitly investigating the role of twitches.
In contrast, in previous studies, e.g., by Breitwieser et al. (2011)
and some pilot studies (unpublished), we realized twitches only
as moderate attenuation of the stimulation signal. However, in

FIGURE 3 | Pseudo-randomized twitch patterns. To ensure that twitches

would not occur closer than 250ms, three different randomized twitch

patterns were generated beforehand for all possible stimulation frequency

combinations (here: 33 and 27Hz). In each trial, one of these three pattern

was randomly chosen. Left (blue squares) and right (green diamonds) twitch

positions, as well as trial start, cue onset, and trial end (magenta bullets) are

shown for individual trials, aligned to the first twitch’s positions (t = 0 s).

those studies, twitches were generally reported by the subjects
to be hardly perceivable and almost impossible to recognize or
count.

Twitch positions were distributed in such a way that they
would occur as rare, random events, suitable to evoke P300
potentials when the subjects actively focus attention on them.
To ensure that twitches would not occur too close after each
other within and across hands, three different randomized twitch
patterns were generated beforehand for all possible combinations
of left and right stimulation frequencies. In each trial, one of these
three pattern was randomly chosen. The minimal inter-stimulus
interval between consecutive twitches at the same hand and
across hands was 250ms each. Twitch onsets were precisely (in
the order of µs) recorded by means of two additional (optically
isolated) trigger channels from the stimulation device to the
EEG amplifier. Figure 3 shows an example of three different
twitch patterns generated for stimulation frequencies of 33 and
27Hz respectively. Twitch positions, as well as trial start, cue
onset, and trial end positions are shown as separate markers for
individual trials. All positions within trials were aligned to the
corresponding first twitch’s positions. Due to random reference
and focus attention period lengths, this results in variable trial
start, cue onset, and trial end positions relative to the first
twitch.

2.3. Participants
Fifteen healthy subjects voluntarily participated in this study.
They were paid for participation and were informed in detail
about the aims of this study. None of them reported any
neurological disease. All subjects gave written informed consent,
and the study was conducted in accordance with the local ethics
regulations (Medical University Graz) and the Declaration of
Helsinki. The measurement of one subject was aborted since he
or she did not follow the instructions given by the experimenter.
The remaining fourteen subjects (seven male/female) were aged
between 20 and 39 years [mean 26.3± 6.2(SD) years].

2.4. EEG Recording
The EEG was recorded from 29 channels together with 3 EOG
channels, as shown in Figure 4. The channel Fpz was used as
reference, the right mastoid as ground. Data were recorded using
two g.USBamp biosignal amplifiers (g.tec medical engineering
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FIGURE 4 | Electrode setup. The EEG was recorded at 29 channels (gray),

the EOG at 3 channels (green). The Fpz electrode (blue) was used as reference

(REF), the right mastoid (yellow) as ground (GND). The SSSEP channel set

consisted of 13 bipolar channels indicated by arrows, the P300 channel set of

10 monopolar channels indicated by dashed circles.

GmbH, Austria) with active electrodes and a sampling rate of
600Hz. A bandpass filter between 0.5 and 200Hz, and a notch
filter at 50Hz were applied. All measurements were conducted
in a shielded room. The subjects were seated in an armchair in
front of a computer screen with their hands comfortably placed
on armrests during the measurements.

For SSSEP investigations, 13 bipolar channels above the
somatosensory cortex indicated by arrows in Figure 4 were
preselected and are referred to as SSSEP channel set. Similarly,
10 monopolar channels indicated by dashed circles in Figure 4

were preselected for investigating P300 effects and are referred to
as P300 channel set.

2.5. Data Analysis
2.5.1. Artifact Removal
EEG channels with obviously bad signal quality found after
visual inspection of the EEG signals during measurements
were excluded from data analysis (five channels in total). EOG
artifacts were removed based on autoregressive parameters
estimated from the EOG recording (Schlögl et al., 2007). Trials
contaminated with EMG (electromyogram) and other types
of strong artifacts were removed using a simple theshold-
based artifact detection method (Delorme et al., 2007). Artifact
thresholds of 90 and 60µV were used for monopolar and bipolar
channels respectively.

2.5.2. Brain–Computer Interface
Feature for SSSEPs and P300 potentials were extracted and
classified using separately trained classifiers. For SSSEPs,

logarithmic lock-in amplifier system (LAS) features (Müller-
Putz et al., 2006) were extracted from the 13 bipolar channels
from the SSSEP channel set. A filter bandwidth of 2Hz around
each stimulation frequency was used and a moving average
(MAV) filter with 1 s length was applied. The mean SSSEP
strength was estimated by averaging the LAS features over time
within an interval from 1 to 8.5 s after cue onset and used for
classification.

For P300 potentials, the 10monopolar channels from the P300
channel set were selected and low-pass filtered using a 3rd-order
Butterworth filter at 10Hz. Time segments from 0 to 800ms
after each twitch onset (read out from trigger channels) were
extracted, resulting in seven twitch segments for each of the index
fingers per trial. The seven segments of each finger were linearly
detrended, averaged, downsampled by a factor of ten, and used
for classification. The influence of the number of averages on the
P300 performance was separately investigated by using different
numbers of averages ranging from one to seven. For numbers
of twitches lower than seven, random subsampling was used to
select subsets of twitches within trials. The whole procedure was
repeated 10 times in order to get a reliable estimate.

For both types of features, multi-class shrinkage LDA
classifiers (Schäfer and Strimmer, 2005) based on the one-vs-
all strategy were used to predict the target class. The overall
BCI performance was estimated using 10 × 10 cross-validation
to avoid overfitting. To identify classification results that were
significantly better than a random classifier, we compared our
results to the real chance level (Müller-Putz et al., 2008) instead
of to the theoretical one (33.3%). The real chance level takes a
confidence interval at significance level α = 1% into account
and was computed based on the total number of trials per
class to be 40.8%. So all classification results exceeding this
level can be regarded as significantly better (at α = 1%)
than just random results. For online feedback presentation, the
decisions from both classifiers were combined in order to arrive
at a final decision. Together with the class prediction, each
classifier returned a linear score which was mapped to a class
probability value, representing a measure of certainty (0–100%)
about their decisions. The result from the classifier with the
higher probability value was selected as final decision. If none of
the classifiers reached a probability threshold of at least 50%, no
decision was made.

2.5.3. Effects of Twitches on the SSSEP
To investigate the effects of twitches on the SSSEP, different
visualization and analysis methods were implemented. A time-
frequency representation was chosen which is capable of
visualizing steady-state as well as transient signals. For this
purpose, spectrograms were computed based on the short-
time Fourier transform (STFT) showing the power spectral
densities (PSD) at different frequencies over time. The STFTs
were computed using a 4096-point fast Fourier transform (FFT).
As already mentioned (see Section 2.2), in each trial, one of
three pseudo-randomized twitch patterns was randomly chosen.
Separate spectrograms were computed by averaging the PSDs of
all trials belonging to the same twitch pattern. Before averaging,
the corresponding time axes were aligned either to the trial
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start or first twitch’s position as needed. Since spectrograms are
subject to the Fourier uncertainty principle, the choice of the
window has a strong impact on their time-frequency resolution.
Long time windows result in better frequency but poor time
resolution, whereas short time windows result in good time but
poor frequency resolution. Minimizing the Fourier uncertainty
principle, the best simultaneous time-frequency resolution can
be achieved with a Gaussian window function (Gabor, 1946)
which was used in our analysis. Gaussian windows with two
different lengths were applied: (i) To visualize the (steady-state)
frequency content, a fixed window length of 3 s and an overlap
between consecutive window segments of 2.95 s was chosen. (ii)
To visualize transient effects, a fixed window length of 1 s and a
window overlap of 0.95 s was chosen.

To specifically reveal potential transient effects of twitches
on the SSSEP, the idea was to extract LAS features from both
stimulation frequencies and test them for significant changes
(decreases) at twitch locations. Since the settling time of the
LAS is inverse proportional to its bandwidth, a bandwidth of
4Hz around each stimulation frequency was chosen for this
purpose. Additionally, the MAV filter was omitted, resulting in
a much faster LAS setting. Figure 5 shows an example of how
this method is capable of extracting short transient disruptions
caused by twitches from an ideally simulated stimulation signal
with 35Hz. Effects of twitches are clearly visible as attenuations
of the LAS amplitude at the twitch locations. In comparison, LAS
features extracted with the standard setting (2Hz bandwidth, 1 s
MAV filter) are not capturing such transients.

To test if such attenuations caused by twitches are not only
present in the stimulation signal but also in the resulting SSSEPs
(referred to as SSSEP blocking) a Monte Carlo permutation test
(Nichols and Holmes, 2001) was applied. Since this is a non-
parametric approach, no assumptions about the distribution of
values being tested were required. The permutation test was
based on the null hypothesis that no significant decrease in
SSSEP amplitude caused by twitches was present and therefore,
twitch pattern labels (i.e., fixed twitch positions within each
trial) would be interchangeable across trials. So, twitch patterns
were randomly permuted, changing the assignment of twitch

FIGURE 5 | Effect of twitches in an ideally simulated 35Hz stimulation

signal. Logarithmic LAS features were extracted at the stimulation frequency

using a fast setting (4Hz bandwidth, no MAV filter; red solid line) or standard

setting (2Hz bandwidth, 1 s MAV filter; red dashed line). With the fast setting,

effects of twitches are clearly visible as attenuations of the LAS amplitude at

twitch locations.

patterns to trials, without changing the overall distribution of
twitch positions. As test statistic, the average SSSEP amplitude
over all trials and twitches extracted from 50ms time intervals
around twitch onsets (positions according to real or permuted
twitch pattern assignment) was computed. In this way, a null
distribution of average SSSEP amplitude values was generated
based on the real assignment and N = 100, 000 permutations.
The false positive probability (FPP) that an observed decrease
in SSSEP amplitude is just a random effect was estimated as
percentage of values in the null distribution that were lower than
or equal the actually observed one. Since the actually observed
value was always part of the null distribution, the resulting FPP
could never be smaller than 1/(N + 1). The FPP was estimated
in steps of 50ms from−500 to+500ms around twitch onsets, in
order to identify intervals of significant blocking effects. An FPP
below some significance level α was then considered as significant
SSSEP blocking effect. An α-level of 1%, Bonferroni corrected
for multiple testing based on the number of time intervals,
stimulated fingers, and observed channels was applied. Only two
bipolar channels above the somatosensory cortex (FC3-CP3 and
FC4-CP4), where the highest SSSEP responses and therefore, the
strongest effects were expected, were included in this significance
test.

This significance test was intended to identify significant
SSSEP blocking effects disregarding any class information. As
a next step, we investigated if potential SSSEP blocking effects
were modulated by attention and could, therefore, be beneficial
features for classification, similar as shown by Xu et al. (2013)
in the context of SSVEPs. For this purpose, we extracted SSSEP
features at both stimulation frequencies using the fast LAS setting
from intervals of 0 to 400ms after twitch onsets. Segments
from all seven twitches per finger and trial were averaged over
time for different channels and used as blocking features for
classification. All 13 bipolar channels from the SSSEP channel set
were used for this purpose. Again, a multi-class shrinkage LDA
classifier together with 10 × 10 cross-validation was applied for
performance estimation.

3. RESULTS

3.1. Steady-State Somatosensory Evoked
Potentials
SSSEP responses could be found in all subjects after screening
for subject-specific “resonance-like” frequencies of the
somatosensory system. In Figure 6, the grand average tuning
curve maps over all subjects obtained after the screening
procedure can be found. The relative bandpower increase is
shown at 10 stimulation frequencies and seven bipolar channels
above the somatosensory cortex for left and right index finger
stimulation. Vertical markers indicate the grand average of the
95% confidence intervals estimated with bootstrapping based
on 1000 bootstrap samples. As expected, the tuning curve maps
show largest bandpower increases at channels contralateral to
the stimulated finger.

Table 1A summarizes the individual screening results of all
subjects. The manually selected stimulation frequencies for left
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A

B

FIGURE 6 | Grand average tuning curve maps over all subjects. The

relative bandpower increase is shown at 10 stimulation frequencies and seven

bipolar channels above the somatosensory cortex for (A) left and (B) right

index finger stimulation. Vertical markers indicate grand average confidence

intervals (α = 95%) estimated with bootstrapping.

and right index finger stimulation to be used in the BCI paradigm
are shown, which were in the range of 21 to 35Hz. Additionally,
the relative bandpower increases at bipolar channels contralateral
to the stimulated hand, namely FC4-CP4 for left and FC3-CP3 for
right index finger stimulation can be found. Relative bandpower
increases at these channels were in the range of 53–536%. On
average, relative bandpower increases of 235±133(SD)% for left
and 269±127(SD)% for right index finger stimulation could be
found.

To visualize SSSEPs at the selected stimulation frequencies
during the online BCI runs, spectrograms with a window length
of 3 s and an overlap between consecutive window segments of
2.95 s were computed. As an example, in Figure 7, spectrograms
of subject s01 showing the PSD during simultaneous left and right
index finger stimulation with 25 and 21Hz respectively can be
found. Spectrograms are shown for the bipolar channels FC3-
CP3 and FC4-CP4 during the course of a trial. Trials belonging

to only one of the three twitch patterns were averaged, and
individual trials were aligned to each trial’s start position. SSSEPs
are clearly visible at the respective channel contralateral to the
stimulated hand.

3.2. P300 Potentials
By embedding twitches at random positions into the streams
of repetitive tactile stimuli, P300 potentials could be evoked.
Figure 8 shows the grand average P300 response over all subjects
divided into different twitch locations (left or right hand) and
target classes (left cue, right cue, or idle cue). Averaged time
segments from 0 to 800ms after twitch onsets are shown for the
monopolar channels Fz, Cz, and Pz. A P300 response can be seen
around 300–400ms in response to left and right target twitches
(i.e., at left twitch locations for left classes and at right twitch
locations for right classes), most pronounced at channel Cz. After
non-target twitches, no clear P300 potentials can be found.

Additionally, in Figure 9, grand average topographic plots
show the spatial distribution over all subjects of the P300
component extracted from a 200–500ms time window. It can
be seen that the P300 component is most prominent after target
twitches at central channel location above the somatosensory
cortex. For the left target twitches, a shift toward contralateral
channels can be observed while for right target twitches, a
bilateral activation can be found.

3.3. Effects of Twitches on the SSSEP
To visualize transient effects in the SSSEP, spectrograms with
a window length of 1 s and a window overlap of 0.95 s were
computed. As an example, Figure 10 shows spectrograms for
the same subject and trials as in Figure 7. This time, individual
trials were aligned to each corresponding first twitch’s position,
and positions of all twitch onsets are drawn in the spectrograms.
Moreover, the color axes were individually scaled to highlight
PSD variations over time at the stimulation frequencies.
Interestingly, SSSEP blocking effects, namely an attenuation of
roughly 2–3 dB of the SSSEPs time-locked to the corresponding
twitch onsets can be observed. In more detail, attenuations at the
left stimulation frequency seem to be time-locked to left-hand
twitches (visible at channel FC4-CP4). Similarly, attenuations
at the right stimulation frequency seem to be time-locked to
right-hand twitches (visible at channel FC3-CP3).

To statistically validate this visual impression, significant
blocking time intervals were determined by means of a
permutation test based on SSSEP amplitudes extracted with the
fast LAS setting. As an example, Figure 11 shows the estimated
FPPs (i.e., the probabilities that the observed decreases in SSSEP
amplitude are random effects) for subject s01 at the bipolar
channels FC3-CP3 and FC4-CP4 in the interval from −500
to +500ms around twitch onsets for left-hand and right-hand
twitches. Significant SSSEP blocking effects can be seen in
intervals where the FPP is below the α-level of 1% (Bonferroni
corrected). For left-hand twitches, significant SSSEP blocking was
found in the interval 50–150ms after twitch onset at channel
FC4-CP4. For right-hand twitches, significant SSSEP blocking
was found in the interval 150–200ms after twitch onset at
channel FC3-CP3. A full summary of significant results from all
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TABLE 1 | Summary of individual screening, blocking interval estimation, and classification results.

Code (A) SSSEP screening (B) SSSEP blocking intervals (C) Performance

fL fR relBPL,c relBPR,c BLIntL,c BLIntR,c SSSEP P300 BLFtr Combined

(Hz) (Hz) (%) (%) (ms) (ms) (%) (%) (%) (%)

s01 25 21 536 475 50–150 150–200 47.1 47.3 29.8 38.2

s02 23 27 356 482 – 100–150 56.1 51.1 49.4 50.9

s03 33 27 114 133 – – 45.5 58.1 46.0 64.3

s04 31 35 291 288 50–150 – 39.5 41.9 35.7 39.8

s05 25 29 190 201 – – 36.0 45.7 38.9 47.8

s06 27 23 291 315 200–250 – 42.7 44.2 46.5 50.1

s07 23 27 161 419 – – 46.0 42.3 38.7 40.5

s08 33 27 376 291 50–100 50–100 46.5 39.2 44.8 46.6

s09 25 29 155 165 – – 31.4 42.4 23.3 24.0

s10 29 25 53 101 – – 9.2 36.0 16.0 10.8

s11 23 27 234 294 50–200 50–100 44.4 65.5 38.6 33.0

s12 23 27 120 123 – – 47.5 64.1 46.4 66.2

s13 27 21 310 308 50–150 100–250 61.8 57.5 44.2 62.9

s14 21 25 101 165 – – 39.5 48.1 32.6 33.6

Mean 235 269 48.6 50.7 46.2 55.5

SD 133 127 6.2 8.5 1.8 8.5

(A) SSSEP screening: Manually selected stimulation frequencies for left (fL ) and right (fR) index finger stimulation; Relative bandpower increases at contralateral bipolar channels, FC4-

CP4 for left (relBPL,c) and FC3-CP3 for right (relBPR,c ) hand stimulation. (B) SSSEP blocking intervals: Significant blocking intervals (BLInt) for left and right index finger stimulation at

the bipolar channels FC3-CP3 and FC4-CP4 contralateral to the stimulated hand. (C) Performance: Cross-validated BCI performance using SSSEP, P300, and blocking features (BLFtr)

separately or combined for classification. Mean and SD were computed only over subjects with accuracies significantly better than random [40.8% at α = 1% (Müller-Putz et al., 2008);

bold values].

subjects can be found in Table 1B. Significant blocking intervals
could be found in seven subjects at channels contralateral to the
stimulated hand. These intervals were found between 50 and
250ms after twitch onsets, with interval lengths in the range
of 50–150ms. On ipsilateral channels, no significant blocking
intervals were found (not shown in Table 1).

3.4. BCI Performance
The three-class BCI performance was evaluated by means of
a 10 × 10 cross-validation when using SSSEP features, P300
features, or SSSEP blocking features. Table 1C summarizes
the classification accuracies of all subjects. All classification
results above the 1% chance level (Müller-Putz et al., 2008)
are highlighted as bold values in the table. Accuracies better
than random were found in 12 subjects using P300 features,
in nine subjects using SSSEP features, and only in six subjects
using blocking features. Mean and SD were computed only over
subjects with accuracies significantly better than random. When
comparing the accuracies of all three types of features one can
see that the mean accuracies are in the range of 46.2± 1.8(SD)%
for blocking feature classification, 48.6 ± 6.2(SD)% for SSSEP
features, and 50.7 ± 8.5(SD)% for P300 features. Additionally,
the hybrid BCI performance was computed when using the
combined SSSEP, P300, and blocking features for classification,
showing various results. In some subjects, an improvement in
accuracy of the combined over the best single feature set could
be found, whereas in some other subjects, no improvement or
even a drop in performance to chance level could be observed.

Classification accuracies better than random could be found
in seven subjects, with a mean accuracy of 55.5 ± 8.5(SD)%.
One subject, s10, did not reach accuracies above chance level
using any feature set. This can be explained by the fact, that
in s10, unexpectedly strong alpha waves were present in the
EEG throughout all measurements, interfering with the actual
features used for classification and leading to a rejection of
around two thirds of the trials. Over all other subjects (s10
excluded), the mean rejection rate of trials due to artifacts
was 7% using SSSEP features and 6% using blocking features.
When using P300 features, no trials at all were rejected but the
number of averaged segments per trial was reduced accordingly
(on average, 6.997 ± 0.07(SD) averaged segments per hand and
trial).

When extracting P300 features, all seven twitch segments
per trial and hand were averaged. Figure 12 shows the grand
average classification accuracies (10 × 10 cross-validated) for
different numbers of averages ranging from one to seven. The
P300 accuracy is monotonically increasing with the number of
averages per trial from 36% (one segment only, i.e., no averaging)
to 49% (seven segments averaged). The actual 1% chance level
(Müller-Putz et al., 2008) of 40.8% is also shown in the figure.

4. DISCUSSION

Within our work, the impact of transient target stimuli on the
SSSEP was investigated in a real-life BCI setup. SSSEPs could
successfully be evoked by simultaneous left and right index
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A

B

FIGURE 7 | Visualization of SSSEPs. Spectrograms (4096-point FFT, 3 s

window length, 2.95 s window overlap) of subject s01 showing the PSD (in dB)

during simultaneous left (25Hz) and right (21Hz) index finger stimulation can

be seen for the bipolar channels (A) FC3-CP3 and (B) FC4-CP4.

finger stimulation with repetitive tactile stimuli. Subject-specific
stimulation frequencies were determined bymeans of a screening
procedure in order to maximize the individual SSSEP responses.
The overall screening results showed grand average tuning curves
with peaks at 27Hz, which is fully in line with previous findings
byMüller et al. (2001). Moreover, the subject-specific stimulation
frequencies which were selected after screening are in a similar
range as the individual tuning curvemaxima reported in previous
studies (Breitwieser et al., 2011, 2012).

By embedding twiches at random positions into the repetitive
stimulation signals, P300 potentials could successfully be evoked
in addition to the steady-state response. The P300 component is
usually defined as ERP with a positive deflection with a latency
of about 300ms (Farwell and Donchin, 1988). In our study, the
grand average P300 response at channel Cz was found between
300 and 400mswhich is in line with this definition.Moreover, the
latency and shape of the P300 component are fully in agreement
with the results reported in other studies involving pure tactile
P300 (Brouwer and van Erp, 2010; van der Waal et al., 2012).
However, in our study, the P300 component was most prominent
at central channel location above the somatosensory cortex, with
an activation bilateral or contralateral to the stimulated hand,
which was not reported in any other of these studies. Yet another
transient response, namely a positive deflection with shorter
latencies and at a more frontal location than the standard P300
response was found by Severens et al. (2013). These various
results may be explained by the use of different tactile stimulators,
stimulation patterns, and target body locations. In the study of
Severens et al. (2013) for example, the index, middle, and ring
finger tips were stimulated simultaneously per hand by means
of Braille stimulators with complex stimulation characteristics
involving different pins of the Braille stimulators. In contrast, in
our study, we only used a single stimulator for each index finger

A

B

C

FIGURE 8 | P300 response evoked by twitches randomly embedded

into the stream of repetitive stimuli. Grand average time segments

(0–800ms) after twitch onsets over all subjects are shown for the channels Fz,

Cz, and Pz (A–C). Separate segments are shown for left (bold blue) and right

(bold red) target twitches, as well as for all remaining non-target conditions

(gray).

tip but complex temporally modulated stimulation patterns.
Moreover, due to the short inter-stimulus intervals between
twitches, it is possible that some kind of overlapping ERPs
instead of pure P300 potentials may have been evoked, which
may explain the differences in our results. Some overlapping
effects were already observed in the auditory domain using two
concurrent tone streams with randomly appearing deviant tones
(Pokorny et al., 2013).

The main focus of our work was to investigate the impact
that twitches may have on the SSSEP. By means of a fast LAS
feature extraction setting and statistical validation methods it
could be shown that twitches have an attenuation effect on the
SSSEP which usually cannot be captured with standard analysis
methods. Significant SSSEP blocking effects time-locked to twitch
positions were found in seven subjects. This shows that the
attempt to combine different types of stimulation signals like
repetitive signals and twitches has a mutual influence on each
other. As demonstrated in an ideally simulated stimulation signal,
this influence is originated at the level of stimulus generation but
becomes apparent as physiological effect in the SSSEP. Similar
results were also presented by Xu et al. (2014) who found out
that SSVEPs and ERPs were not two absolutely independent
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features in their study. However, our significance test only proved
the presence of significant attenuations of the SSSEP, but no
conclusions about the actual blocking strength–full interruption
or just attenuation of SSSEPs–can be made. Moreover, the exact

FIGURE 9 | Grand average topographic plots of the P300 response. The

spatial distribution of the P300 component extracted from a 200–500ms time

window is shown for different twitch locations (left/right column: left/right hand)

and target classes (from top to bottom: left/right/idle cue).

positions of reported blocking intervals need not necessary
coincide with real physiological effects. The reason for this
are fundamental limitations in the simultaneous time-frequency
resolution referred to as Gabor limit (Gabor, 1946) which
prevents a more detailed characterization of the observed
blocking effects in the time or frequency domain.

The general principle of an SSSEP-based BCI is that users
intentionally modulate the SSSEP by focusing attention on one
of the stimulated target locations (Müller-Putz et al., 2006).
However, the SSSEP blocking effects found in our work may
prevent subjects from effectively modulating the target SSSEP.
According to Müller-Putz et al. (2006), time points of best class
separability were generally reached only after a few seconds after
cue onset. So, such time points of highest separability may have
never been reached in our study due to repeated interruptions
of the steady-state potential. We therefore investigated the
information content about the target class that is contained in
different feature sets by means of a classifier. In the SSSEP feature
set, we wanted to reduce any transient effects and used the mean
SSSEP strengths averaged over a long time interval of 7.5 s. In
contrast, in the P300 feature set, short time segments after twitch
onsets were used. Using a third feature set, we also investigated if
SSSEP blocking effects may contain additional information useful
for classification, similar as reported by Xu et al. (2013) in the
visual domain.

When looking at the three-class BCI performance,
classification accuracies significantly better than random
could be reached by nine subjects using SSSEP features and
by 12 subjects using P300 features respectively. The average
classification accuracies (counting subjects with accuracies
better than random only) were on similar performance levels,
namely 49% for SSSEP features and 51% for P300 features.
Using blocking features, accuracies significantly better than
random could be reached only by six subjects, with an average
performance of 46%. When using the combined feature set
for classification, an improvement in accuracy could be found
only in some subjects, whereas in others, no improvement or
even a drop in performance to chance level could be observed.
The main reason for this may be that the number of combined

A

B

FIGURE 10 | Visualization of transient effects in the SSSEP. Spectrograms for the bipolar channels (A) FC3-CP3 and (B) FC4-CP4 of subject s01 as in Figure 7,

but with shorter time windows (1 s window length, 0.95 s window overlap) and individual trials aligned to each first twitch’s position. The color axes were scaled to

highlight variations at each stimulation frequency. Twitch onsets at left (L) and right (R) index fingers are drawn as vertical dashed lines.
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FIGURE 11 | Blocking interval estimation of subject s01. SSSEP blocking

effects of (A) left-hand and (B) right-hand twitches were statistically validated

using a permutation test (100,000 repetitions; 4Hz LAS bandwidth; no MAV

filter). The FPP (in %; log y-axis) was estimated in steps of 50ms from −500 to

+500ms around twitch onsets for two bipolar channels (blue: FC3-CP3;

green: FC4-CP4). Significant blocking effects (indicated by asterisks) can be

found in intervals where the FPP is below the indicated significance level

(α = 1%; Bonferroni corrected; red dashed line).

features (in the order of 1350) was simply too high compared to
the number of trials (80 trials per class) so that even a shrinkage-
based classifier could not extract all useful information any
more. Moreover, the respective numbers of features within
the combined feature set were highly different between SSSEP
(2%), P300 (71%), and blocking (27%) features so that their
relative importance may be biased toward P300 features. Further
optimizations, such as reducing the total number of combined
features and balancing their relative numbers in the combined
feature set may therefore be required. So, unlike in the study
of Xu et al. (2013), blocking features could not successfully
be used to increase classification performance. However, they
used a completely different BCI setup, namely a visual matrix
speller with only one repetitive stimulation (flicker) frequency.
In our work, blocking feature classification performance was
above chance level only in subjects where SSSEP performance
was also significant, and could never improve classification in
cases where SSSEP classification was below chance level. This
indicates that blocking features did not contain any additional
information about the intended class but simply reflected SSSEP
features extracted from shorter time intervals within the whole
focus attention period. Moreover, a direct relationship between
significant SSSEP blocking effects and reduced SSSEP accuracies
could not be observed in our results. However, for blocking
feature classification, all channels from SSSEP channel set were
included whereas the blocking intervals reported in Table 1B

only reflect significant results from two channels.

FIGURE 12 | Influence of the number of averages on the P300

performance. The grand average of the classification accuracies (10 × 10

cross-validated) over all subjects is shown when averaging different numbers

of twitch segments per trial (1–7). Random subsampling was used to select

different numbers of twitches within trials. The whole procedure was repeated

10 times in order to get a more reliable estimate (mean±SD are shown).

Even though accuracies better than random were reached
by most subjects, the overall BCI performance was rather
moderate and presumably hardly sufficient for communication
purposes. The minimum performance level of 70% usually
required for communication (Kübler et al., 2004) could not
be reached by any of the subjects. However, this performance
level was defined for a two-class BCI and, therefore, cannot be
directly applied to our three-class BCI setup. The main reason
for the rather moderate BCI performance could be that both
types of brain signals—SSSEP and P300—cannot be evoked
at the same time, since one is detrimental to the other. Also
Severens et al. (2013) found no boost in performance when
combining SSSEP and ERP features. On the one hand, the use
of many twitches would be beneficial for P300, since as shown
in Figure 12, averaging of many twitch segments increases the
P300 accuracy. On the other hand, many twitches within short
time may cause overlapping ERPs and many interruptions of
the SSSEP, presumably lowering SSSEP and P300 performance.
One obvious solution would be to increase the trial durations,
so that many twitches could be embedded with large inter-
stimulus intervals into the repetitive stimulation signal. The
disadvantages of longer trial durations are of course lower
information transfer rates and higher susceptibility to EEG
artifacts. Another reasons for only moderate P300 performance
may be that in some subjects a P300 was present not only
after target but also after non-target twitches (not visible in
the grand average response), possibly due to too strong (100%
attenuation) twitches which drew attention toward the non-
target hand. The same reason may also contribute to decreased
SSSEP performance in some subjects, as non-target twitches may
have prevented them from keeping attention focused on the
target finger, thereby reducing attentionmodulation of the SSSEP
(as opposed to SSSEP blocking effects which were caused by
twitches irrespective of the target finger). As demonstrated by
Adler et al. (2009), the distracting influence of non-target events
in sustained somatosensory attention is mediated by perceptual
load. In that study, distractors pulled attention toward to-be-
ignored body locations in an easy detection task (low perceptual
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load), which was not the case in a challenging discrimination
task (high perceptual load). Therefore, our results indicate
that even though twitches were reported by most subjects as
difficult to recognize and count, the perceptual load may have
been too low since it was only a detection task. So, a more
challenging discrimination task using different types of twitches
could be beneficial in future. Moreover, in some subjects, only
weak SSSEPs were present, even though individual stimulation
frequencies were determined by a screening procedure. However,
it is not yet known if there is some relationship between relative
bandpowers from screening and SSSEP classification accuracies
and if selecting the frequencies with highest bandpowers
is even the best choice for strongest attention modulation
effects.

5. CONCLUSION

Within our work, the role of transient target stimuli was
investigated in an SSSEP-based BCI setup. Our findings suggest
that different types of combined stimulation or brain signals
such as SSSEP and P300 may not be regarded separately but

have a mutual influence on each other. When designing a hybrid
BCI based on SSSEPs and P300 potentials, one has to find
an optimal tradeoff depending on the overall design goals or
individual subjects’ performance. Our results give therefore some
new insights that may be useful for the successful design of hybrid
BCIs.
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