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1. INTRODUCTION. Devaney's definition of chaos for discrete dynamical sys- 

tems is one of the most popular and most widely known. It says a function f: 

M M is chaotic if 

(1) f iS transitive that is, for any pair of non-empty open sets U and V in M, 
there is some k > 0 urith fk(U) n v + 0; 

(2) the periodic points of f are dense in M; and 

(3) f displays the famous condition, sensitive dependence on initial conditions: there 

is a number 8 > O depending only on M and f, SO that in every non-empty 

open subset of M one can find a pair of points whose eventual iterates under f 

are separated by a distance of at least 8. 

Here M is generally a subset of R'l, and fsl means f composed with itself n times 

so that, for example, f 3(x) = f(f(f(x))). 

One of the ironies of this definition is that, the more popularly understood each 

hypothesis is, the more redundant it is in relationship to the other two. 
For example, sensitive dependence is a condition which is easily understood by 

mathematicians and non-mathematicians alike. It has been even dubbed cc the 
butterfly effect" in examples of popular literature such as Jurassic Park [3], and The 
Mathematical Tounst [7]; the phrase probably dates back to the Ray Bradbury story 

"A Sound of Thunder", in which a time-traveller changes the course of histoIy by 

stepping on a prehistoric butterfly [2]. This condition embodies the essence of 

chaos-the utter unpredictability of what ought to be simple systems-and so 

there is something popularly pleasing about requiring sensitive dependence on 

initial conditions. 
However, an elegant paper by Banks, Brooks, Cairns, Davis, and Stacey [1] 

demonstrated that sensitive dependence is assured whenever the function displays 

transitivity and dense periodic points. That is, despite its popular appeal, sensitive 

depXendence is mathematically redundant-so that in fact, chaos is a property 

relying only on the topological, and not on the metric, properties of a space. 

The requirement that periodic points be dense is slightly less intuitive than 

requiring sensitive dependence, but it appeals to those who look for patterns 

within a seemingly random system. Mathematicians in particular instinctively seek 

symmetIy, and the wealth of periodicities within a chaotic system is a wonderful 

I am grateful to Bob Gethner, who got me interested in the questions that are asked in this paper, 
and to Sasha Blokh, who gave me useful and timely advice on how to pursue the answers. In addition I 
would like to thank Michal Misiurewicz and the reviewer for their helpful suggestions. 
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mathematical phenomenon. It even allows us to explain, somewhat mystically, that 
"there is order within chaos". Accordingly, the search for periodic points in an 
understandable one. 

On the other hand, Vellekoop and Berglund [8] recently gave a simple proof of 
an already-known theorem which says that, on any finite or infinite interval in the 
Real line, dense periodic points (and hence chaos) follows directly from the 
condition of transitivity. Moreover, they gave examples which demonstrated that 
neither dense periodic points nor sensitive dependence is enough to ensure any of 
the other conditions leading to chaos. Therefore, in one dimension both sensitive 
dependence and dense periodic points are redundant hypotheses in the definition 
of chaos. 

This leaves us only the study of the transitivity hypothesis, which is required 
both for historical reasons and for the strength of the condition. Still, it has less 
intuitive justification-it is harder to explain in nonmathematical terms, and even 
once it is explained, it seems to follow (morally, although not mathematically) from 
the sensitivity hypothesis, as both of these hypotheses say that, starting with just 
about any data, one could eventually get just about any answer. The purpose of 
this paper is to ask, "why transitivity?-why not something else?" and to provide 
some conditions which might play the same role as transitivity, but which are 
slightly more intuitive. 

2. A POSSIBLE ALTERNATIVE TO TRANSITIVI1Y. Perhaps, instead of transi- 
tivity, a more philosophically satisfying hypothesis might be one of the following: 

Definition. A function f: M M is weak blending if, for any pair of non-empty 

open sets U and V in M, there is some k > O so that f k(U) n f k(V) $ 0. We say 
f is strong blending if, for any pair of non-empty open sets U and V in M, there is 
some k > O so that f k(U) n f k(V) contains a non-empty, open subset. 

These conditions initially struck the author as an intuitive counterpart to 
sensitive dependence: sensitive dependence on initial conditions thrusts nearby 
points apart (for the same iterate of f ), and blending pulls far away points 
together (again, for the same iterate of f )l 

Blending has certain obvious disadvantages when compared with transitivity. 
First and foremost, any function which is blending can not be a homeomorphism, 
which automatically excludes the study of many interesting multi-dimensional 
chaotic systems such as the horeshoe map [4, pp. 180-189]. Moreover, even in 
low dimensions, functions which are blending are not necessarily transitive, and 
transitive functions are not necessarily blending. Consider the following two 
examples: 

Example 1. f: S1 Sl, given by f(8) = 8 + k, where k/1r is irrational. Ihis 

function is rigid, irrational rotation; it is transitive but not strongly or weakly 
blending. 

Example 2. Any continuous piecewise linear function f: [-1, 1] [-1, 1] satisty- 

ing: 

* If'(x)l > 2 on except at the vertices of f; and 
* each vertex of the graph of the function likes alternately on the line y = 7r/2 and 

y =-w/2 (see the figure below). 
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Figure 1. Graph of Example. 2 

This function is clearly not transitive; in fact each set is mapped closer to the origin 

than it had been. At the same time, the large slope of f ensures that if neither I 

nor f(I) contains {0}, then f(I) is longer than I. This ensures that every interval is 

mapped, in a finite number of iterations, to an interval which contains a neighbor- 

hood of the origin the only fixed point. Therefore, the function is strongly 

blending. 
However, a common characteristic of these two examples is that neither has 

dense periodic points in fact, the first example has no periodic points at all, and 

the second example has a lone fixed point. If we include dense periodic points, 

then the ideas of transitivity and blending in our everyday one-dimensional 

eEperience have quite a strong overlap, especially when one is considering chaos. 

This can be seen in theorems 1 and 2, which are the main theorems of the paper. 

They show that if periodic points are dense and there's a strongly repelling fixed 

point, then strong blending transitivity weak blending. 

3 THE MAIN THEOREMS OF THIS PAPER One-dimensional dynamical sys- 

tems are well-understood nowadays, and so there is a wealth of theory on the 

subject. However, the following theorems will be proved with more simple tools: 

The link between open sets and continuous functions; the incredible strength of 

the compactness condition, and induction arguments. These simple proofs are 

possible because the conditions of transitivity and blending are both topological; 

the proofs in this section contain many of the ideas that one finds in a Point-Set 

Topology or an introductory Real Analysis course. 

The easier of the two theorems to prove is: 

Theorem 1. Let M be a subjet of Rn, and f: M M a continuous function with 

dense penodic points. Then if f is strongly blending, f is also transitive. 

Proof of Theorem 1. We assume that f is blending and that periodic points of f 

are dense. Pick two non-empty open sets, U and V. Because of the blending 
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property we know that there is some number k > O and some non-empty open set 
N c M so that N c fk(U) n fk(V). 

For the sake of convenience of notation, we'll let V = r k(N) n V; i is the set 
of points in V which "blend"with those in U. 

By the continuity of f, V is open, so our hypotheses allow us to pick a periodic 
point x E V; let us say that x is of period p > k (it may be that p is a multiple of 
the prime period of x). 

Because of the way we chose x E V, we know that ft(x) E N, and so there is 
some y E U with fk(y) = fk(X). From this, the simple computation 

fp(y) = ftp_k)(fk(y)) = ttp-k?(fk(X)) = tP(X) = X 

ensuresthatxefP(U)nVo0. + 

Remark. The assumption we make that N be open is a crucial one, and the 
theorem does not hold without it. For a counter example, consider the function 

(-(2x - 2) for-1 < x < - 2 

T( x ) = 4 2x for lXl < 2 

12-2x for 2 < X < 1 

defined on the interval [-1,1]. This function is an odd extension of the tent map 
- its restriction to the interval [0,1] is well known to be transitive (see for example 
[5]). Accordingly, T has dense periodic points, and in fact eveIy open interval in 
the domain eventually maps onto an interval which contains the frwed point at the 
origin, so that it is weakly blending. However, this function over the entire intenal 
[-1, 1] is not transitive: the interval (0, 1) will never map onto any subinterval of 
(-1,0). 

Can one hope that the converse is also true: that chaos inevitably blends all sets 
together (strongly)? The answer is no, unfortunately, as one can see from the 
following. 

Example 3. We can flip the above function and get F(x) = -T(x) on the interval 
[-1,1]. This is a lovely example of a chaotic function with periodic orbits of all 
even periods, but no odd periods. (In fact, if XQ iS a periodic point of T with 
period n, than x0 is a periodic point of F with period 2n-so periodic points are 
dense.) Examining a few iterates of this function will convince the reader that F is, 
moreover, transitive. On the other hand, if U is an interval to the left of the origin, 
and V is an interval to the right of the origin, no matter which iterate we examine 
we will have Fk(U) rl Fk(V) = 0 or (0}. Therefore, F is only weakly blending. 

However, a weaker converse is true: 

Theorem 2. Let I be a compact subset of R, and f: I I a continuoas, transataue 

function with a repelling fiuced point xO. Then f is weakly blending. 

To prove this theorem, we will use two lemmas: 

Lemma 1. If f and xO are as given above, then xO has infinitely many eventual 
. * . 

pre-lmages m 1. 

Lemma 2. IffandxO are asgiven above, then the eventualpre-images of xO are dense 
in I. 
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In fact, a much stronger version of these lemmas was proved three decades ago in 
6]: if f is a piecewise-monotone function, then the set 

(y E Ilfk(y) = x for some k) 

is dense in I Ytx E I. As this paper needs only the weaker lemmas (with the 
weaker hypotheses), we will restrict our proofs accordingly. 

Proof of Theorem 2. We wish to show that for any two open sets U, V c I, there is 
some n > O with tn(U) n tN(V) + 0. Lemma 2 tells us that the eventual preim- 
ages of xO are dense, and so there exist u E U, u E V, and j, k > O so that 
fi(u) = xO = fk(v). Assume without loss of generality that k > j; then because xO 
is fixed, we have fk(U)=Xo=tk(V). Thus, XoEfk(U)flfk(V)+Ø and our 
theorem is proved. + 

Proof of Lemma 1. We will prove this lemma by induction. 
Suppose xO is our given repelling fixed point, and we are given a finite set 

Xx = {x-n, . . ., x_l, xO} with t(Xk) = Xk+l k k =-n, . . .,-1. If n = O, then we 
have XO = {xO}. 

Choose an open set U c I with Xn c U satisfying. 
(l) if y E U then f(y) $ x_,l (unless n = O and y = xO); and 
(2) f(U \B) n Bf = 0. 

(Here B¢ is assumed to be the ball of radius E centered at x_,.) In the case n = O, 
we use the fact that xO is repelling to satisfy the second of these two assumptions. 

From here, we will use transitivity to show that f must send the exterior of the 
set U arbitrarily close to x_n: that is, for every E > 0 t(UC) n Be + 0. 

We can choose U sufficiently small that uc contains an open set. By the 
transitivity of f, we know that fk+l(Uc) fol Bf; + 0 for some k 2 0; we're tiying to 
show that k = O. 

Let Y be the set of points which start in the compliment of U and which are 
first mapped into B,¢ on the k + lS' iteration. That is, 

y = (y E Uclfk+l (y) E B fi(y) Z Bg if l < j < k}. 

Then clearly fk(Y) n BE = 0. Moreover, we must have fk(y) E uc if y E Y, for 
if it were otheIwise, assumption (2) would give us 

fk+l(y) =y(tk(y)) ef(U\B) { (B) 

for some y E T. This contradicts the definition of Y. Therefore, we see that 
fk(Y) C UC and that t(tk(Y)) n Bg + 0 so fk(Y) is the subset of uc which 
proves our claim. 

Tlie rest of the proof of Lemma l follows easily, for the claim holds regardless 
of the size of E and therefore the compactness of uc tells us that there is some 
point y in uc with f(y) = X_n. 

This argument gives us an infinite sequence {X_k}k_o with fk(x_k) = xO, and so 
completes the proof of Lemma l. 0 

Proof of Lemma 2. Let X = {y E Ilfk(y) = xO for some k}. We want to show that 
X is dense in I. Because f is transitive, it follows that if X is anywhere dense, then 
X must be everywhere dense. Let's assume that opposite: that X is totally 
disconnected. 
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If such is the case, the xc must be open, so we can write xc = U k 1 Ikx where 
the Ik's are distinct, open intervals in I. Lemma 1 notes that X is infinite, so, in 
fact, there must be an infinite number of such intervals. 

Note, moreover, that at least one interval has x0 as an endpoint; call this 
interval I1. Because x0 is frwed, we have t2(Il) n s1 + 0 in fact, because of the 
construction of the Ik's, we have t2(I1) c I1. 

On the other hand, transitivity prohibits exactly such a cycle, for I1 must visit 
each of the infinite number of intervals a contradiction. This contradiction arose 
from assuming that X is not dense in *, and so our final lemma is proved. t 
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