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Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the
world, with a high rate of morbidity. The invasion and metastasis of ESCC is the main
reason for high mortality. More and more evidence suggests that metastasized cancer
cells require cellular elements that contribute to ESCC tumor microenvironment (TME)
formation. TME contains many immune cells and stromal components, which are critical
to epithelial–mesenchymal transition, immune escape, angiogenesis/lymphangiogenesis,
metastasis niche formation, and invasion/metastasis. In this review, we will focus on the
mechanism of different microenvironment cellular elements in ESCC invasion and
metastasis and discuss recent therapeutic attempts to restore the tumor-suppressing
function of cells within the TME. It will represent the whole picture of TME in the metastasis
and invasion process of ESCC.

Keywords: esophageal squamous cell carcinoma, tumor microenvironment, invasion, metastasis,
immune regulation
1 INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, with
high rates of morbidity and mortality (1). More than half of the ESCC patients are in advanced
stages when they are first diagnosed. Extensive metastases prevent patients from having radical
surgery, which is the only clinical method of curing ESCC currently (2). The Food and Drug
Administration (FDA) has approved a number of new immune and targeted drugs, such as
programmed cell death protein 1 (PD-1) inhibitors and human epidermal growth factor receptor-2
(Her-2) inhibitors for advanced ESCC treatment, but the survival rate of those advanced patients is
still low (3, 4). It is reported that the 5-year survival rate for advanced esophageal cancer (19%) was
on par with lung cancer (19%) and next only to liver cancer (18%) and pancreatic cancer (9%) (5, 6).
Local invasion and distant metastasis of ESCC are the main reasons for the failure of treating these
advanced patients. Therefore, further molecular research of the ESCC landscape has the potential to
ascertain new biomarkers and molecular targets that affect ESCC progression and enable the design
of new therapeutic strategies (7).
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Recently, the central role of the tumor microenvironment
(TME) in the invasion and metastasis of de novo ESCC has been
identified. TME includes immune cells, fibroblasts, endothelial
cells, perivascular cells, neurons, and extracellular matrix. There
is increasing evidence that TME plays an important role in cell
proliferation, cell survival, epithelial–mesenchymal transition
(EMT), angiogenesis/lymphangiogenesis immunosuppression,
invasion, and metastasis (8, 9). TME is a dynamic environment
constantly reshaped by tumor and tumor-associated cells to
make tumor cells survive well (10). Thus, TME is now
regarded as a target-rich environment for the development of
novel anticancer drugs in ESCC. Actually, many drugs that focus
on diverse components of TME, including vascular endothelial
growth factor (VEGF) and immune checkpoints, have been
approved for clinical use (11, 12).

In this review, we summarize recent advances in how ESCC
cells recruit and modify cells in the immune microenvironment
to make them more conducive to metastasize and how those
factors in the TME support the ESCC invasion and metastasis.
Also, we discuss the regulation of abnormal molecular signaling
pathways and networks stimulated by tumor and TME
interactions, which might provide new diagnostic, prognostic,
or therapeutic opportunities.
2 INVASION AND METASTASIS PROCESS
OF ESOPHAGEAL SQUAMOUS CELL
CARCINOMA

Metastasis is the process by which circulating tumor cells
colonize in other tissues or organs and become diffuse tumor
cells. However, only 0.01% of circulating tumor cells have been
reported to successfully colonize and grow into diffuse tumor
cells (13, 14). It is because the circulating tumor cells are
seriously influenced by the human local microenvironment.
The “seed and soil” hypothesis raised by Paget can be used to
well characterize this process (15). Tumor cells in situ (“seeds”)
tend to stay on some specific target organs (“soil”), which have
TME beneficial to the survival of tumor cells. At present, it is
supposed that there are three main steps for the formation of a
metastasis niche: first, the primary tumors secrete some factors
around them (invasion), exosomes, and micro-vesicles
(metastasis) to create the pre-metastatic niche (16, 17). Then,
those factors induce immune cells, such as marrow-derived
suppressor cells (MDSCs), macrophages, dendritic cells (DCs),
neutrophils (18, 19), and regulatory T cells (Tregs) to polarize
into tumor-promoting cells. Also, some stromal components
such as cancer-associated fibroblasts (CAFs) promoting
angiogenesis, secreting cytokines, inducing EMT, recombining
matrix components, recruiting inflammatory cells to help
ESCC cells invade and metastasize (20, 21), and other factors
(hypoxia, etc.) (17). Finally, all those factors remodel the
microenvironment into TME, and invasion and metastasis
occur (Figure 1).

Lymphatic metastasis is the most common way of ESCC
metastasis, which is determined by the characteristics of
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lymphatic reflux in the esophageal wall (22, 23). Also, lymph
node metastasis is the most important prognostic factor of ESCC.
As to the “seeds and soil” hypothesis, lymph node metastasis is
not a simple process of direct migration of ESCC cells. Many
kinds of literature have reported that the niche of ESCC lymph
nodes has changed significantly before metastasis (24, 25). It has
been shown that the lymph node immune status of pN0 and pN1
patients is completely different. There is an obvious activated
pattern of immune response in the pN0 patients. On the
contrary, pN1 patients show a distinct pattern of inhibition,
such as reduced immune response, immune cell proliferation,
and increased immune cell apoptosis (26, 27). It means that in
the early stage of ESCC metastasis, drainage of tumor antigens to
lymph nodes results in the antitumor status. However, as time
goes on, more and more tumor secretory factors and
immunosuppressive cells will accumulate. Then, the immune
state of lymph nodes will change from antitumor to pro-tumor
mode until the tumor cells first colonize and metastasize (28).
Therefore, an in-depth study of the interaction between tumor
cells and the immune microenvironment and how it promotes
the ESCC invasion and metastasis will guide the development of
future diagnosis and treatment strategies.
3 THE ROLE OF TUMOR
MICROENVIRONMENT IN ESOPHAGEAL
SQUAMOUS CELL CARCINOMA
INVASION AND METASTASIS

3.1 Immune Modulation Promotes
Esophageal Squamous Cell Carcinoma
Invasion and Metastasis
Tumors escaping from the immune system are the key to tumor
invasion and metastasis. Tumor cells can form specific TME that
inhibits antitumor immune response by recruiting various
alternative tumor-associated immune cells or expressing
inhibitory molecular factors (Figure 2). Specific immune cell
types and influencing factors in ESCC will be discussed below.

3.1.1 Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) are the suppressive
cell population of the immune system, which play a pivotal role
in the TME (29). MDSCs can greatly inhibit the cytotoxic
function of T cells and NK cells during circulation and support
ESCC progression (30). The specific markers of MDSCs are most
often identified by the expression of CD11b and lack of HLA-DR
expression (31). In ESCC, MDSCs produce reactive
oxygen species (ROS) and peroxynitrite (ONOO−), which
block the activation and proliferation of T cells to disrupt
immune responses (32). Also, MDSCs inhibit the proliferation
of CD8+ T cells by phosphorylating T-cell receptor (TCR) and
CD8 molecules during direct interaction with T cells, which
results in the downregulation of immune activity (33, 34). In
addition, VEGF produced by MDSCs promotes tumor
angiogenesis, creates a pre-metastasis environment, and
June 2022 | Volume 12 | Article 911285
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prolongs immunosuppression (35, 36). Furthermore, it has been
demonstrated recently that MDSCs could paralyze T cells by
cell–cell transfer of the metabolite methylglyoxal, which would
reduce the antitumor immunity of T cells and promote invasion
and metastasis (37). Further research into the biology of MDSCs,
especially the functions of specific population cells, will provide
directions for therapeutic development.

3.1.2 Regulatory T Cells
Tregs, a subgroup of CD4+ helper T cells identified by CD25 and
Foxp3 expression, play an immunosuppressive role in cancer.
Tregs at tenuate ant i tumor immunity by secret ing
immunosuppressive cytokines, interfering with tumor-
associated antigen presentation, and inhibiting cytotoxic cell
function (38, 39). It has been demonstrated that Foxp3
expression in ESCC means a poor prognosis (40, 41). It is
reported that FOXP3 might directly inhibit the IL-2 and
promote cytotoxic T lymphocyte-associated antigen 4 (CTLA4)
and CD25 expression (42). In ESCC, increased recruitment of
Tregs is mediated, at least in part, by chemokines CCL17 and
CCL22, secreted by tumor cells and macrophages (43). It has
been reported that IL-33, which has a high expression in ESCC,
could promote CCL2 expression via the NF-kB pathway and
then recruit Tregs to promote ESCC migration (44, 45). Treg
infiltration has been found to be prognostic, and more Tregs are
often associated with deeper tumor invasion, extensive
metastasis, and reduced survival (46, 47). Tregs have several
Frontiers in Oncology | www.frontiersin.org 3
context-dependent functions that are not well described, which
poses challenges for ESCC invasion and migration.

3.1.3 Tumor-Associated Macrophages
Tumor-associated macrophages (TAMs) promote various pro-
tumor mechanisms. Macrophages are classified into M1 and M2
types, of which M2 macrophages secreted type II cytokines to
facilitate various pro-tumorigenic mechanisms (48). The specific
markers of TAMs are most often identified by expression of
iNOS for M1 type and CD163 for M2 type. Hypoxia can induce
M2 polarization, and then TAMs will produce growth factors
and proteases that promote tumorigenesis and inhibit the
immune system, angiogenesis, invasion, and metastasis (49,
50). CD68+ PD-1+ TAMs in ESCC TME tend to be of M2
phenotype, which can result in the upregulation of PD-L1
expression in tumor cells and promote ESCC invasion and
migration (51, 52). Activation of the AKT/ERK pathway is a
driving force for ESCC cell invasion and migration, and this
pathway can be triggered by a variety of factors produced by
TAMs or cancer cells themselves (53, 54). CD163+ TAMs can
also promote ESCC cell invasion and migration by releasing
thymidine phosphorylase (TP) to augment angiogenesis and
produce IL-1b to enhance EMT (55, 56). The M2/M1
macrophage ratio of ESCC patients has also been used as a
predictor of lymph node metastasis (57). All of these suggest
potential intervention and immunotherapy strategies for TAMs
in the invasion and migration of ESCC patients.
FIGURE 1 | The process of ESCC invasion and metastasis. ESCC, esophageal squamous carcinoma; MDSC, marrow-derived suppressor cell; Tregs, regulatory T
cells; CAFS, cancer associated fibroblasts; EMT, epithelial—mesenchymal transition; TAM, tumor-associated macrophage; TAN, tumor-related neutrophil; ECM,
extracellular matrix; CSCs, cancer stem cells.
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3.1.4 Tumor-Associated Neutrophils
Tumor-associated neutrophils (TANs) are completely different
from circulating neutrophils (58). Transforming growth factor-b
(TGF-b) in TME promotes the transformation of neutrophils
from antitumor N1 to pro-tumor N2 (59). Unlike M1 and M2,
there is no suitable marker to indicate the N1 and N2 neutrophils
in the tumor (60). The study of TANs mainly focuses on the
neutrophil-to-lymphocyte ratio (NLR) (60). It has been reported
that preoperative NLR elevation was associated with lymph node
metastasis, deeper tumor invasion, and advanced TNM stage
(61). Neutrophils will undergo apoptosis after activation,
forming neutrophil extracellular traps (NETs), which have
been shown to predict the lymph node and distant metastasis
(62, 63). All of these indicate that TANs can be a good predictor
of ESCC invasion and migration.

3.1.5 Mast Cells and Eosinophils
Mast cells (MCs) and eosinophils often co-participate in
response to parasitic infections and allergic diseases (64). In
the TME of ESCC, high MC density has been found to be closely
associated with tumor angiogenesis, invasion, and metastasis and
predicts poor survival in ESCC patients (65, 66). It is reported
that trypsin release from MCs promotes tumor cell metastasis
Frontiers in Oncology | www.frontiersin.org 4
through exosomes (67). Yet the high expression of eosinophils
has been reported to be positively associated with low rates of
metastasis in early ESCC patients (68). Also, it has been
reported recently that metastasis-entrained eosinophils could
promote lymphocyte-mediated antitumor immunity (69). A
large number of new studies are needed for the mechanism of
eosinophil in ESCC, which will provide new ideas for the ESCC
invasion and metastasis and eosinophil-based immunotherapy.

3.1.6 Th17 Lymphocytes
Th17 lymphocytes are a branch of CD4+ helper T cells, and IL-17
is its main effector molecule. IL-17A expressed by Th17 cells can
induce the production of chemokines in ESCC cells, such as
CCL20, CXCL-9, CXCL-10, and CXCL13 (70, 71). These
chemokines could promote the proliferation and differentiation
of Th17 lymphocytes in ESCC TME (72). Also, increased Th17
lymphocytes are positively associated with more lymph node
metastasis (73). It has been reported that IL-17A can activate
MMP-2 and MMP-9 through the ROS/NF-kB signaling pathway
(74), while matrix metalloproteinases (MMPs) could catalyze the
degradation of extracellular matrix and promote ESCC migration
and metastasis (75, 76). The role of Th17 lymphocytes in ESCC
invasion and metastasis needs to be further investigated.
FIGURE 2 | How tumor microenvironment support ESCC invasion and metastasis. ESCC, esophageal squamous carcinoma; MD.SC, man-our-derived suppressor
cell; DC, dendritic cell; Treg, regulatory T cell; CAE, Cancer associated fibroblast; VEGF, vascular endothelial growth factor; NK cell, natural killer cell; TAM, tumor-
associated macrophage; TAN, tumor-related neutrophil; ECM, extracellular matrix; CSCs, cancer Stem cells.
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3.2 Stromal Components Facilitate
Esophageal Squamous Cell Carcinoma
Invasion and Metastasis
In addition to immune cells, stromal components and CAFs play
a critical role in ESCC invasion and metastasis (77) (Figure 2).
Fibroblast activation protein-a (FAP) and a-smooth muscle
actin (a-SMA) are often used as the markers for the activated
phenotype of CAFs, of which the process is induced by ESCC
secreting TGF-b (78, 79).

CAFs have been proved to promote ESCC invasion and
metastasis by secretion of cytokines, induction of EMT,
recruitment of immune cells, and other mechanisms to
reconstruct TME (80). IL-6 secreted by FAP+ CAFs not only
can promote ESCC cell invasion and EMT but also can recruit
FoxP3+ T cells and induce TAM M2 polarization to promote
metastasis (81, 82). The presence of CAFs in ESCC patients is
associated with increased micro-vessel density, TAMs, and
EMT, which are critical for ESCC invasion and metastasis (83,
84). A number of genes have been shown to promote ESCC
invasion and metastasis via the CAF transformation and EMT
process (85, 86). Also, it has been demonstrated that CAFs
promote ESCC invasion by secreting hepatocyte growth factor
(HGF) and infiltrating MDSCs (87, 88). Also, CAFs have been
reported to be associated with low 3-year survival and ESCC
progression after chemoradiotherapy (89). FAP-a has been
reported to be an important regulator in ESCC lymph node
metastasis (90). HGF and TGF-b are closely related to tumor
invasion and metastasis (91). It has been demonstrated
that CAFs could express HGF and TGF-b1 and then
promote ESCC invasion and metastasis via the HGF/Met
and TGFb1/Smad pathways, respectively (92, 93). It has been
confirmed that infiltrating MDSCs activate CAFs to promote
ESCC invasion (94). Interaction between CAFs and immune
cells to promote ESCC invasion and metastasis needs
further research.

Due to the high heterogeneity of ESCC, traditional genomic
and transcriptome analyses tend to ignore some signals
displayed by specific cell populations or cell states. However,
with the development of single-cell sequencing technology,
several single-cell studies about ESCC and TME have been
published in recent years. It has been reported that single-cell
transcriptome sequencing was performed in 11 ESCC patients
to analyze the TME. Heterogeneity was found in most ESCC
interstitial cell types, particularly between fibroblasts and
immune cells. Also, tumor-specific CST1+ myofibroblast
subpopulations had been identified to have prognostic values
and potential biological significance (95). Also, the main
association framework between cancer cells and various non-
cancer cells in TME has been established via single-cell
transcriptome sequencing, which contributes to the further
investigation of ESCC progression and prognosis (96).
Furthermore, a comparison between esophagus non-
malignant t issues and ESCC tissues via single-cel l
transcriptome network analysis has shown that energy
supply-related pathways are pivotal in cancer metabolic
reprogramming for TME. Immune checkpoints, which are
Frontiers in Oncology | www.frontiersin.org 5
potential targets for ESCC immunotherapy, have been found
to be significantly overexpressed in ESCC, including LAG3 and
HAVCR2 (97). At present, there are no single-cell studies
specifically for ESCC invasion and metastasis, which needs
further investigation.
4 THE ROLE OF CELLULAR
COMMUNICATION IN ESOPHAGEAL
SQUAMOUS CELL CARCINOMA
INVASION AND METASTASIS

4.1 Tumor Cells Remodel Tumor
Microenvironment to Promote Esophageal
Squamous Cell Carcinoma Invasion and
Metastasis
4.1.1 Cytokine/Chemokine Network
Metastasis is a multistep process that requires tumor cells to
separate from the primary tumor and migrate through the
lymphatic or blood circulatory system to target distant organs
(98). There is increasing evidence that primary tumors can
prepare the cytokine/chemokine network for invasion and
metastasis (99, 100) (Figure 2).

CXCL12 is a chemokine that functions through CXCR4 and
plays an important role in ESCC invasion and metastasis (101). It
is noteworthy that CXCR4 is expressed only in ESCC tissues but
not in the normal esophageal epithelium (102). Expression of
CXCL12 or CXCR4 in ESCC patients is significantly related to
ESCC invasion, lymph node metastasis, and poor survival (103,
104). It has been shown that ESCC cells could secrete large
amounts of CXCL12 via an autocrine way and increase their
receptor CXCR4 expression compared with normal cells (105).
Also, ESCC cells could enhance the activation of the p-ERK1/2
pathway via the CXCL12/CXCR4 axis to promote ESCC
invasion and metastasis (106).

It has been reported that CCR7, combined with CCL21,
supports a metastatic niche directly (107). A number of studies
have shown that high levels of CCR7 are related to ESCC
metastasis and poor survival (108). It has been investigated
that co-expressed CCR7 and MUC1 could facilitate ESCC
invasion and metastasis via the ERK1/2 pathway (109, 110).
Some studies have also demonstrated that there is an interaction
between CCR7 and VEGF-C, and their expression can be used as
the predictor for ESCC lymphatic metastasis (111).

Many studies have indicated that high levels of CXCL8 and
CXCR2 in ESCC patients are associated with metastasis and poor
prognosis (112). It has been shown that CXCL8 is upregulated in
TAMs and promotes ESCC invasion and metastasis via CXCR1/
CXCR2 receptors to activate AKT and ERK1/2 signaling
pathways (52). Also, a clinical study has shown that CXCL8
expression is significantly associated with metastasis and the
increase of CXCR2- and CD204-positive macrophages (108,
113). It is necessary to further investigate the biological
significance of cytokine/chemokine networks in ESCC and
their potential use as future drug targets.
June 2022 | Volume 12 | Article 911285
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4.1.2 Exosome
Exosomes are nanovesicles (30–150-nm diameter) that are
secreted by various cell types (114). Recently, it has been
shown that exosomes play important roles in ESCC invasion
and metastasis (115). It is reported that exosomes released by
ESCC can enrich miR-320b and promote ESCC lymph node
metastasis via programmed cell death 4 (PDCD4) through the
AKT signaling pathway (116). Exosome-shuttling miR-21 has
been shown to promote ESCC invasion and metastasis by
targeting PDCD4 via the c-Jun N-terminal kinase (JNK)
signaling pathway (117). Clinical data have also displayed that
serum exosomal hsa_circ_0026611 expression is significantly
upregulated with ESCC lymph node metastasis (118). Exosome
long non-coding RNA (lncRNA) LINC01711 promotes ESCC
invasion via FSCN1 upregulation and miR-326 downregulation
(119). Also, it has been reported that T cell-derived exosomes
promote ESCC metastasis via promoting EMT by b-catenin and
NF-kB/snail signaling pathways upregulation (120). However,
there is still a long way to the mechanisms of how these exosomes
are involved in ESCC invasion and metastasis.

4.1.3 Vascular Endothelial Growth Factor
VEGF is the keymediator of angiogenesis, which has the function of
triggering endothelial cell proliferation, migration, and breakdown
of the extracellular matrix for new blood vessels. It has been
reported that when tumor cells overexpressing HMGB1 co-
cultured with B cells, the proliferating B cells can be induced to
express VEGF and then elevate angiogenesis (121). A significant
decrease in VEGF-C has been found in high tumor lymphocytic
infiltration (122). It is reported that low expression of CD80 can be
associated with VEGF overexpression. CD80 impairment in the
ESCC tissues is correlated with poor survival, which indicates the
dysfunction of the immune system and promotes the ESCC
progression (123). Some studies have confirmed that VEGF-C, a
lymphangiogenic factor, is associated with survival, tumor depth,
stage, and lymph node metastasis of ESCC (124, 125). Also, many
genes have been reported to promote ESCC invasion and metastasis
via VEGF-related pathways or axis (126, 127). Development of new
angiogenesis inhibitors and regulation of tumor vascular
microenvironment are still possible ways to treat ESCC invasion
and metastasis.

4.2 The Interaction Between Immune Cells
Promotes Esophageal Squamous Cell
Carcinoma Invasion and Metastasis
In addition to the interaction between various immune cells and
ESCC cells, there is an important interaction among various
immune cells, which indirectly promotes ESCC invasion and
metastasis. For example, Th-2 could secrete many cytokines (IL-
6 and IL-13) to recruit MDSCs in the ESCC TME (128, 129).
Also, IL-4 and IL-13 derived from Th-2 could promote
macrophages polarizing into M2 macrophages (130). MDSCs
with high CD38 levels have been reported to inhibit the cytotoxic
effect of ESCC-activated T cells (131). MDSCs could also induce
Tregs and CAFs to inhibit the antigen-presenting cells (APCs)
and indirectly inhibit the cytotoxic effect of ESCC-activated T
Frontiers in Oncology | www.frontiersin.org 6
cells (42, 132). In addition, ESCC cells could produce RCAS1 to
induce DC, promote tumor-infiltrating lymphocyte apoptosis,
and inhibit CD8+ T-cell activity (133). IL-17A-producing cells
could enhance CD1a+ DC infiltration of TME via the release of
CCL2 or CCL20, which is associated with better survival in ESCC
patients (134). Th17 cells and MCs in ESCC TME have been
shown to secrete IL-17 to promote ESCC cells to release CXCL9/
10, CXCL2/3, and CCL2/20, which could facilitate NK cell
infiltration and activity (66). PD-1, a member of the CD28
family, is mainly expressed on activated T cells (135). When
PD-1 is combined with its ligand (PD-L1 or PD-L2), which can
be expressed by tumor cells, immune cells (i.e., macrophages),
and endothelial cells, then T-cell activation will be inhibited (136,
137). TME contains a variety of immune cells, which form a
complex regulatory network through receptor-ligand binding or
the release of various immune factors, thus affecting the invasion
and metastasis of ESCC.
5 TARGETING TUMOR
MICROENVIRONMENT FOR
ESOPHAGEAL SQUAMOUS
CELL CARCINOMA INVASION
AND METASTASIS

Targeting approaches using different methods to remodel the
TME and then inhibit ESCC invasion and metastasis are
discussed as follows (Figure 3).

5.1 Targeting Angiogenesis for Esophageal
Squamous Cell Carcinoma Invasion and
Metastasis
Angiogenesis plays a crucial role in the development of ESCC, by
delivering oxygen and nutrients to tumors, and its key mediator is
VEGF (138). Distant vascular metastasis is another way of tumor
progression. Many VEGF/VEGFR inhibitors have been developed
to induce vascular normalization and make patients more sensitive
to chemotherapy (139). It has been found that low doses of VEGF
inhibitor (apatinib) could regulate the TME, relieve hypoxia, and
increase the number of T cells at the tumor site, thereby enhancing
the efficacy of PD-1/PD-L1 inhibitors, while excessive doses do not
produce such an effect (140). However, this theory has not been
tested in ESCC. The development of new angiogenesis inhibitors
and regulation of vascular TME are still possible ways to avoid
ESCC invasion and metastasis.

5.2 Targeting Immune Markers for
Esophageal Squamous Cell Carcinoma
Invasion and Metastasis
5.2.1 Immune Checkpoint Inhibitors
PD-1 is an immune checkpoint that inactivates T-cell immune
function. Its two ligands, PD-L1 and PD-L2, combined with the
PD-1 receptor, could induce depletion of PD-1 signaling
pathways and associated T cells and inhibit T-cell activation
and proliferation reversibly (141). Many studies have reported
June 2022 | Volume 12 | Article 911285
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that the expression of both PD-L1 and PD-L2 is elevated in
ESCC. In fact, in ESCC patients, increased PD-L1 or PD-L2
expression in ESCC cells is correlated with reduced survival,
while increased PD-L1 expression is associated with increased
depth of tumor invasion and worse survival (142, 143). In
addition, the expression of PD-L2 is related to decreased CD8+

T-cell infiltration. The increased PD-L2 expression is induced by
tumor-promoting Th2 cytokines such as IL-13 or IL-4 (144).

The expression of CTLA4 is another immune checkpoint that
inactivates by inhibiting TCR signaling (145). CTLA4 is
expressed not only in tumor-infiltrating immune cells but also
in cancer cells, which is a key part of immune escape (146).
Existing evidence already suggests that PD-1 inhibitors show
therapeutic promise in lung cancer and melanoma and might
also be used in ESCC (147). Also, many studies are targeted at
how to regulate other immune cells in TME to improve the
efficacy of immunotherapy (148, 149).

5.2.2 Other Immune Cells
TAMs can produce a variety of tumor-promoting factors, such as
colony-stimulating factor-1 (CSF-1), so they might be attractive
targets for remodeling immune responses within TME (150). In
recent years, targeting TAM therapies such as CSF-1 or CSF-1R
Frontiers in Oncology | www.frontiersin.org 7
blockade have attracted extensive attention in tumor research. The
combination of CSF-1R blockade and PD-1/PD-L1 inhibitors is
underway (NCT02323191) (151). IL-6 secreted by FAP+ CAFs not
only can promote ESCC cell invasion and EMT but also can recruit
FoxP3+ T cells and induce TAM M2 polarization to promote
metastasis (81, 82). Using CAF-targeted NIR-PIT to eliminate
CAFs could interfere with ESCC invasion and metastasis
effectively. The combination of the CAF-targeted NIR-PIT with
traditional anticancer drugs might be a promising choice (152).

5.3 T-Cell Modification for Esophageal
Squamous Cell Carcinoma Invasion
and Metastasis
Chimeric antigen receptor (CAR) T-cell therapy means that T cells
are modified into CAR T cells by genetic engineering to specifically
recognize and attack tumor cells (153). Ephrin type A receptor 2
(EphA2) and HER-2, highly expressed in ESCC, are common
targets of CAR T-cell therapy and have been verified to effectively
kill esophageal cancer cells (154, 155). Enhanced MUC1-CAR T
cells have been shown to have better antitumor activity because they
can survive longer in vivo, which means they have long-lasting
antitumor effects (156). Also, it has been recently reported that
IDO1 inhibitor-loaded nanosheets could enhance CAR T-cell
FIGURE 3 | How to re-educate the tumor microenvironment for treating ESCC invasion and metastasis. ESCC, esophageal squamous carcinoma; MDSC, mallow-
derived suppressor cell; Treg, regulatory T cell; CAF, cancer associated fibroblast; VEGF, vascular endothelial growth factor; TAM, tumor-associated macrophage;
TAN, tumor-related neutrophil; ECM, extracellular matrix; CSCs, cancer stem cells; PID-1, programmed cell death protein 1; CTLA4, T lymphocyte-associated
antigen 4; CSF-1, colony-stimulating factor-1.
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effectiveness in ESCC and CD276 suppress CAR T-cell function
(157, 158). The selection of different solid tumor-specific antigens
and the delivery of CAR T cells are still the disadvantages of CAR T-
cell therapy (159).
6 CONCLUSION

In this review, we have summarized how ESCC invasion and
metastasis occur and discussed how the major cell populations,
stromal components, and their interaction in the TME promote
ESCC invasion and metastasis. Also, we summarized recent
therapies targeting TME for ESCC invasion and metastasis.
Looking forward, it is critical to further investigate how cancer
cells transfer to the new environment and adapt surrounding cells
and components into a suitable environment for tumor invasion
and metastasis. At present, there are few diagnostic methods and
new drugs targeted for ESCC invasion and metastasis. Advances in
these areas promise improved treatment options and better
outcomes for this deadly disease.
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75. Garcıá-Varona A, Fernández-Vega I, Santos-Juanes J. Immunohistochemical
Expression Analysis of MMP-1, TIMP-2 and P53 in Barrett's Esophagus,
Dysplasia and Esophageal Adenocarcinoma. Pol J Pathol (2021) 72(1):48–56.
doi: 10.5114/pjp.2021.106443

76. Chen N, Zhang G, Fu J, Wu Q. Matrix Metalloproteinase-14 (MMP-14)
Downregulation Inhibits Esophageal Squamous Cell Carcinoma Cell
Migration, Invasion, and Proliferation. Thorac Cancer (2020) 11(11):3168–
74. doi: 10.1111/1759-7714.13636

77. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk Between
Cancer-Associated Fibroblasts and Immune Cells in the Tumor
Frontiers in Oncology | www.frontiersin.org 10
Microenvironment: New Findings and Future Perspectives. Mol Cancer
(2021) 20(1):131. doi: 10.1186/s12943-021-01428-1

78. Peng L, Wang D, Han Y, Huang T, He X, Wang J, et al. Emerging Role of
Cancer-Associated Fibroblasts-Derived Exosomes in Tumorigenesis. Front
Immunol (2022) 12:795372. doi: 10.3389/fimmu.2021.795372

79. Kalluri R, Zeisberg M. Fibroblasts in Cancer. Nat Rev Cancer (2006) 6
(5):392–401. doi: 10.1038/nrc1877

80. Wang J, Zhang G, Wang J, Wang L, Huang X, Cheng Y, et al. The Role of
Cancer-Associated Fibroblasts in Esophageal Cancer. J Transl Med (2016)
14:30. doi: 10.1186/s12967-016-0788-x

81. Kato T, Noma K, Ohara T, Kashima H, Katsura Y, Sato H, et al. Cancer-
Associated Fibroblasts Affect Intratumoral CD8+ and FoxP3+ T Cells Via
IL6 in the Tumor Microenvironment. Clin Cancer Res (2018) 24(19):4820–
33. doi: 10.1158/1078-0432.CCR-18-0205

82. Higashino N, Koma YI, Hosono M, Takase N, Okamoto M, Kodaira H,
et al. Fibroblast Activation Protein-Positive Fibroblasts Promote
Tumor Progression Through Secretion of CCL2 and Interleukin-6 in
Esophageal Squamous Cell Carcinoma. Lab Invest (2019) 99(6):777–
92. doi: 10.1038/s41374-018-0185-6

83. Shimizu M, Koma YI, Sakamoto H, Tsukamoto S, Kitamura Y, Urakami S,
et al. Metallothionein 2a Expression in Cancer-Associated Fibroblasts and
Cancer Cells Promotes Esophageal Squamous Cell Carcinoma Progression.
Cancers (Basel) (2021) 13(18):4552. doi: 10.3390/cancers13184552

84. Du X, Xu Q, Pan D, Xu D, Niu B, Hong W, et al. HIC-5 in Cancer-
Associated Fibroblasts Contributes to Esophageal Squamous Cell Carcinoma
Progression. Cell Death Dis (2019) 10(12):873. doi: 10.1038/s41419-019-
2114-z

85. Fang L, Che Y, Zhang C, Huang J, Lei Y, Lu Z, et al. PLAU Directs
Conversion of Fibroblasts to Inflammatory Cancer-Associated Fibroblasts,
Promoting Esophageal Squamous Cell Carcinoma Progression via uPAR/
Akt/NF-kb/IL8 Pathway. Cell Death Discovery (2021) 7(1):32. doi: 10.1038/
s41420-021-00410-6

86. Cai R, Wang P, Zhao X, Lu X, Deng R, Wang X, et al. LTBP1 Promotes
Esophageal Squamous Cell Carcinoma Progression Through Epithelial-
Mesenchymal Transit ion and Cancer-Associated Fibroblasts
Transformation. J Transl Med (2020) 18(1):139. doi: 10.1186/s12967-020-
02310-2

87. Grugan KD, Miller CG, Yao Y, Michaylira CZ, Ohashi S, Klein-Szanto AJ,
et al. Fibroblast-Secreted Hepatocyte Growth Factor Plays a Functional Role
in Esophageal Squamous Cell Carcinoma Invasion. Proc Natl Acad Sci U S A
(2010) 107(24):11026–31. doi: 10.1073/pnas.0914295107

88. Stairs DB, Bayne LJ, Rhoades B, Vega ME, Waldron TJ, Kalabis J, et al.
Deletion of P120-Catenin Results in a Tumor Microenvironment With
Inflammation and Cancer That Establishes it as a Tumor Suppressor Gene.
Cancer Cell (2011) 19(4):470–83. doi: 10.1016/j.ccr.2011.02.007

89. Chen Y, Li X, Yang H, Xia Y, Guo L, Wu X, et al. Expression of Basic
Fibroblast Growth Factor, CD31, and a-Smooth Muscle Actin and
Esophageal Cancer Recurrence After Definitive Chemoradiation. Tumor
Biol (2014) 35(7):7275–82. doi: 10.1007/s13277-014-1987-9

90. Li F, Wu X, Sun Z, Cai P, Wu L, Li D, et al. Fibroblast Activation Protein-a
Expressing Fibroblasts Promote Lymph Node Metastasis in Esophageal
Squamous Cell Carcinoma. Onco Targets Ther (2020) 13:8141–8. doi:
10.2147/OTT.S257529

91. Labib PL, Goodchild G, Pereira SP. Molecular Pathogenesis of
Cholangiocarcinoma. BMC Cancer (2019) 19(1):185. doi: 10.1186/s12885-
019-5391-0

92. Xu Z, Wang S, Wu M, Zeng W, Wang X, Dong Z, et al. Tgfb1 and HGF
Protein Secretion by Esophageal Squamous Epithelial Cells and Stromal
Fibroblasts in Oesophageal Carcinogenesis. Oncol Lett (2013) 6(2):401–6.
doi: 10.3892/ol.2013.1409

93. Ozawa Y, Nakamura Y, Fujishima F, Felizola SJ, Takeda K, Okamoto H, et al.
C-Met in Esophageal Squamous Cell Carcinoma: An Independent
Prognostic Factor and Potential Therapeutic Target. BMC Cancer (2015)
15:451. doi: 10.1186/s12885-015-1450-3

94. Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, et al. Cancer-
Associated Fibroblasts Promote Immunosuppression by Inducing ROS-
Generating Monocytic MDSCs in Lung Squamous Cell Carcinoma. Cancer
Immunol Res (2020) 8(4):436–50. doi: 10.1158/2326-6066.CIR-19-0507
June 2022 | Volume 12 | Article 911285

https://doi.org/10.7150/jca.38179
https://doi.org/10.3390/cancers11040564
https://doi.org/10.3390/cancers11040564
https://doi.org/10.2147/CMAR.S171035
https://doi.org/10.2147/CMAR.S171035
https://doi.org/10.1152/physrev.00012.2018
https://doi.org/10.1172/jci.insight.128008
https://doi.org/10.3389/fcell.2021.752350
https://doi.org/10.1007/s12029-013-9550-2
https://doi.org/10.1007/s00262-013-1460-4
https://doi.org/10.1186/s12885-019-6203-2
https://doi.org/10.1158/0008-5472.CAN-21-0839
https://doi.org/10.1158/0008-5472.CAN-21-0839
https://doi.org/10.3390/cells9092106
https://doi.org/10.3390/cells9092106
https://doi.org/10.21873/anticanres.11866
https://doi.org/10.21873/anticanres.11866
https://doi.org/10.1016/j.humimm.2012.07.333
https://doi.org/10.1016/j.cellimm.2011.10.015
https://doi.org/10.3892/or.2017.5426
https://doi.org/10.5114/pjp.2021.106443
https://doi.org/10.1111/1759-7714.13636
https://doi.org/10.1186/s12943-021-01428-1
https://doi.org/10.3389/fimmu.2021.795372
https://doi.org/10.1038/nrc1877
https://doi.org/10.1186/s12967-016-0788-x
https://doi.org/10.1158/1078-0432.CCR-18-0205
https://doi.org/10.1038/s41374-018-0185-6
https://doi.org/10.3390/cancers13184552
https://doi.org/10.1038/s41419-019-2114-z
https://doi.org/10.1038/s41419-019-2114-z
https://doi.org/10.1038/s41420-021-00410-6
https://doi.org/10.1038/s41420-021-00410-6
https://doi.org/10.1186/s12967-020-02310-2
https://doi.org/10.1186/s12967-020-02310-2
https://doi.org/10.1073/pnas.0914295107
https://doi.org/10.1016/j.ccr.2011.02.007
https://doi.org/10.1007/s13277-014-1987-9
https://doi.org/10.2147/OTT.S257529
https://doi.org/10.1186/s12885-019-5391-0
https://doi.org/10.1186/s12885-019-5391-0
https://doi.org/10.3892/ol.2013.1409
https://doi.org/10.1186/s12885-015-1450-3
https://doi.org/10.1158/2326-6066.CIR-19-0507
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zheng et al. Tumor Microenvironment in ESCC
95. Dinh HQ, Pan F, Wang G, Huang QF, Olingy CE, Wu ZY, et al. Integrated
Single-Cell Transcriptome Analysis Reveals Heterogeneity of Esophageal
Squamous Cell Carcinoma Microenvironment. Nat Commun (2021) 12
(1):7335. doi: 10.1038/s41467-021-27599-5

96. Zhang X, Peng L, Luo Y, Zhang S, Pu Y, Chen Y, et al. Dissecting Esophageal
Squamous-Cell Carcinoma Ecosystem by Single-Cell Transcriptomic
Analysis. Nat Commun (2021) 12(1):5291. doi: 10.1038/s41467-021-
25539-x

97. Chen Z, Zhao M, Liang J, Hu Z, Huang Y, Li M, et al. Dissecting the Single-
Cell Transcriptome Network Underlying Esophagus non-Malignant Tissues
and Esophageal Squamous Cell Carcinoma. EBioMedicine (2021) 69:103459.
doi: 10.1016/j.ebiom.2021.103459

98. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y, et al. Molecular
Principles of Metastasis: A Hallmark of Cancer Revisited. Signal Transduct
Target Ther (2020) 5(1):28. doi: 10.1038/s41392-020-0134-x

99. Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, et al.
Cytokine-Chemokine Network Driven Metastasis in Esophageal Cancer;
Promising Avenue for Targeted Therapy. Mol Cancer (2021) 20(1):2. doi:
10.1186/s12943-020-01294-3

100. Yao M, Brummer G, Acevedo D, Cheng N. Cytokine Regulation of
Metastasis and Tumorigenicity. Adv Cancer Res (2016) 132:265–367. doi:
10.1016/bs.acr.2016.05.005

101. Wu X, Zhang H, Sui Z, Wang Y, Yu Z, et al. The Biological Role of the
CXCL12/CXCR4 Axis in Esophageal Squamous Cell Carcinoma. Cancer Biol
Med (2021) 18(2):401–10. doi: 10.20892/j.issn.2095-3941.2020.0140

102. Yang X, Lu Q, Xu Y, Liu C, Sun Q, et al. Clinicopathologic Significance of
CXCR4 Expressions in Patients With Esophageal Squamous Cell Carcinoma.
Pathol Res Pract (2020) 216(1):152787. doi: 10.1016/j.prp.2019.152787

103. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, et al.
The E-Cadherin and N-Cadherin Switch in Epithelial-To-Mesenchymal
Transition: Signaling, Therapeutic Implications, and Challenges. Cells
(2019) 8(10):1118. doi: 10.3390/cells8101118

104. Fedele M, Sgarra R, Battista S, Cerchia L, Manfioletti G. The Epithelial-
Mesenchymal Transition at the Crossroads Between Metabolism and Tumor
Progression. Int J Mol Sci (2022) 23(2):800. doi: 10.3390/ijms23020800

105. Wang X, Cao Y, Zhang S, Chen Z, Fan L, Shen X, et al. Stem Cell Autocrine
CXCL12/CXCR4 Stimulates Invasion and Metastasis of Esophageal Cancer.
Oncotarget (2017) 8(22):36149–60. doi: 10.18632/oncotarget.15254

106. Mortezaee K. CXCL12/CXCR4 Axis in the Microenvironment of Solid
Tumors: A Critical Mediator of Metastasis. Life Sci (2020) 249:117534. doi:
10.1016/j.lfs.2020.117534

107. Zhang M, Zhou S, Zhang L, Ye W, Wen Q, Wang J, et al. Role of Cancer-
Related Inflammation in Esophageal Cancer. Crit Rev Eukaryot Gene Expr
(2013) 23(1):27–35. doi: 10.1615/CritRevEukarGeneExpr.2013006033

108. Cai QY, Liang GY, Zheng YF, Tan QY, Wang RW, Li K, et al. CCR7
Enhances the Angiogenic Capacity of Esophageal Squamous Carcinoma
Cells In Vitro via Activation of the NF-kb/VEGF Signaling Pathway. Am J
Transl Res (2017) 9(7):3282–92.

109. Wang Q, Zou H, Wang Y, Shang J, Yang L, Shen J, et al. CCR7-CCL21 Axis
Promotes the Cervical Lymph Node Metastasis of Tongue Squamous Cell
Carcinoma by Up-Regulating MUC1. J Craniomaxillofac Surg (2021) 49
(7):562–9. doi: 10.1016/j.jcms.2021.02.027

110. Shi M, Chen D, Yang D, Liu XY. CCL21-CCR7 Promotes the Lymph Node
Metastasis of Esophageal Squamous Cell Carcinoma by Up-Regulating
MUC1. J Exp Clin Cancer Res (2015) 34:149. doi: 10.1186/s13046-015-
0268-9

111. Song Y, Wang Z, Liu X, Liu X, Jiang W, Shi M., et al. CCR7 and VEGF-C:
Molecular Indicator of Lymphatic Metastatic Recurrence in Pn0 Esophageal
Squamous Cell Carcinoma After Ivor-Lewis Esophagectomy? Ann Surg
Oncol (2012) 19(11):3606–12. doi: 10.1245/s10434-012-2419-y

112. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The CXCL8-CXCR1/2
Pathways in Cancer. Cytokine Growth Factor Rev (2016) 25(2):61–71. doi:
10.1016/j.cytogfr.2016.08.002

113. Waugh DJ, Wilson C. The Interleukin-8 Pathway in Cancer. Clin Cancer Res
(2008) 14(21):6735–41. doi: 10.1158/1078-0432.CCR-07-4843

114. Mathieu M, Martin-Jaular L, Lavieu G, Théry C, et al. Specificities of
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