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Abstract 

ABSTRACT 

  To grow beyond 1-2 mm in size, a tumour needs to establish an independent blood 

supply to sustain an ever-increasing demand for oxygen and nutrients. This requirement is 

fulfilled through the production of several pro-angiogenic growth factors, eventually leading 

to accelerated neo-vessel formation. While numerous pro-angiogenic factors have been 

characterized so far, Vascular Endothelial Growth Factor A, (VEGF-A) has been identified as 

a predominant regulator of tumour angiogenesis by facilitating endothelial cell (EC) 

migration, proliferation, tube formation, and survival. VEGF-A gene structure and function 

have been extensively elucidated over last decades. Notwithstanding, due to conflicting 

results both in experimental and clinical settings, VEGF-A contribution to tumour progression 

is  still  debated.  Some  controversies  arise  due  to  the  fact  that  most  of  the  studies  have  

underestimated the impact of VEGF-A gene alternative splicing, which eventually gives rise 

to several splicing isoforms. In keeping with this possibility, we previously demonstrated that 

the two most abundant VEGF-A splicing isoforms (VEGF165 and  VEGF121) have different 

biological effects in vivo. In particular, we showed that both isoforms are equally able to 

activate the local endothelium, eventually leading to capillary sprouting, but only the longer 

isoform, VEGF165, is also able to promote full vessel maturation. This ability can be ascribed 

to  the  capacity  of  VEGF165, but not VEGF121, to recruit a peculiar population of accessory 

myeloid cells, which sustains vessel maturation. We termed these cells Nrp-1 Expressing 

Mononuclear cells (NEMs) as they express Neuropilin-1 (Nrp-1), a non-tyrosine kinase co-

receptor crucially involved in their mobilization. 

  Hence, our data strongly point towards a differential contribution of VEGF-A splicing 

isoforms to tumour angiogenesis. Based on these findings, we investigated the impact of 

VEGF165 and VEGF121 on tumour angiogenesis and progression in human tumour samples. 

  To assess the relevance of VEGF-A splicing in the context of human malignancies, we 

first quantified the relative abundance of VEGF165 and VEGF121 in a set of colorectal cancer 

patients.  The  ratio  of  isoform  expression  (VEGF165/VEGF121) was analysed both in tumour 

mass and in a matched sample of healthy mucosa, harvested at least 10 cm far from the 

tumour site.  

  The  VEGF  isoform  ratios  were  not  statistically  different  in  mucosa  and  tumour.  

Similarly, no correlation with Grading (G), Stage (T), or Vascular Extra-Parietal Invasion 

(IVEP) was detected. However, the VEGF165/VEGF121 ratio was significantly higher in 
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tumours derived from patients with metastatic disease, arguing for a facilitating role of 

VEGF165 in hematogenous tumour dissemination. 

  Despite the absence of any obvious trend in VEGF-A splicing regulation, the 

VEGF165/VEGF121 ratio showed a significant degree of variability. We thus further analyzed a 

restricted group of patients who strongly up-regulated VEGF165 (VEGF165
high

 patients). 

Interestingly, these patients showed reduced lymph node infiltration but improved vessel 

morphology.  

  In accordance with the above information, tumours that strongly up-regulated 

Semaphorin3A (Sema3A - known Nrp-1 ligand and NEM recruiter) showed improved vessel 

structure and better outcome (no metastasis, no lymph node infiltration and longer survival).  

  Taken  together,  these  data  suggest  that  two  major  Nrp-1  ligands,  VEGF165 (but not 

VEGF121) and Sema3A, are able to enhance vessel maturation in tumours, possibly through 

the recruitment of NEMs. This evidence is consistent with the conclusion that improved 

tumour vascular function is detrimental for tumour growth, in concert with a number of recent 

reports highlighting the role of vessel normalization in tumour progression. According to this 

notion, high levels of either VEGF165 or Sema3A correlated with better disease outcome, as 

evaluated by lymph node infiltration and overall survival. Of interest, however, up-regulation 

of VEGF165 was not associated with a reduced metastatic spread (as Sema3A did), while, on 

the contrary, higher levels of VEGF165 were found in patients with metastatic disease. Taken 

together, these data appear fully consistent with recently published information supporting the 

concept that the vascular normalization induced by anti-angiogenic therapies indeed elicits 

tumour cell spreading and metastasis.  

  Our additional studies on human specimens and cell culture identified hypoxia as a 

crucial regulator of VEGF splicing. Ongoing experiments to further elucidate the effect of 

other environmental factors on the regulation of VEGF splicing balance is in progress.   
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1. INTRODUCTION 

1.1 Physiological and pathological aspects of angiogenesis 

Angiogenesis is the process of creating new blood vessels from the pre-existing 

vasculature. It is an intricate but tightly orchestrated series of events, that always begins with 

the proliferation of resident endothelial cells (ECs), mainly triggered by the local production of 

secreted pro-angiogenic factors. Then, newly generated ECs organize in 3D structures which 

eventually evolve into mature vessel tubes. Full vessel maturation involves lumen formation 

and the coverage of ECs with mural cells (typically pericytes and smooth muscles cells), a key 

event in the stabilization of newly formed blood vessels. This highly organized process has 

been the focus of a large body of studies, specifically due to its importance in development, 

tissue maintenance and survival, as well as in a wide range of human diseases. During last 

three decades, intensive research has obtained a large body of knowledge regarding both 

activators and inhibitors of angiogenesis. Physiological angiogenesis, as a crucial process 

during embryonic development, happens in adulthood only during wound healing, skeletal 

growth, menstrual cycle (Smith, 2001; Torry and Torry, 1997), and pregnancy. It occurs also 

in a wide range of diseases including intraocular neovascular disorders, immunogenic 

rheumatoid arthritis, psoriasis, and tumourigenesis. In addition, angiogenesis plays an essential 

role in tumour growth, invasion, and metastasis (Folkman et al., 1989). Under both 

physiological and pathological angiogenesis, a cascade of highly coordinated cellular activities 

leads to the establishment of new blood vessels in response to increased requirement for 

oxygen and nutrients (Figure 1).  

A tumour mass cannot grow beyond 2-3 mm
3
 without  angiogenesis.  Indeed,  when  a  

tumour grows up to 1-2 mm in diameter, its demand for oxygen and nutrients exceeds the local 

supply. This results in a hypoxic microenvironment that consequently cooperates with other 

oncogenic stresses to induce angiogenesis. Neovascularization provides the primary tumour 

with additional supply of nutrients and oxygen and promotes the dissemination of the tumour 

cells to distant organs.  

Most of the solid tumours do not have an intrinsic angiogenic capability, thus they 

traverse two phases of growth: an avascular phase followed by a vascular phase in which new 

capillaries penetrate the tumour resulting in its growth and progression. Since tumour 

progression occurs after extended periods of non-neovascularized tumour dormancy, the 
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existence of an “angiogenic switch” was speculated as a requirement for this to happen. This 

switch involves more than simple up-regulation of pro-angiogenic factors and seems to be the 

result of balance between positive and negative regulators. Tumour growth requires disruption 

of this balance. A wide range of factors contribute to this switch, including progenitor 

endothelial cells (PECs), crosstalk between angiogenic stimulators and their receptors, and the 

interplay between vasculogenesis and lymphangiogenesis. 

 Increased angiogenic capacity is mostly observed long before any morphological 

manifestation of neoplastic transformation (Brem et al., 1977; Gimbrone and Gullino, 1976a, 

b). In this regard, angiogenesis might be considered as an early marker of neoplastic 

transformation.  
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(Chung et al., 2010)

Figure 1. Physiological and pathological angiogenesis. a) During physiological angiogenesis, var ious

stimuli (such as hypoxia) induce an organized sequence of events that constitutes the angiogenesis

cascade. In the phase of init iation, an increase in growth factors such as VEGF-A and fibroblast growth

factor (FGF) der ived from endothelial cells leads to vessel destabi lization and ini tiation of vessel sprouting

and endothelial cell proli feration. Matr ix metalloproteinases (MMPs) faci li tate extracellular matr ix (ECM)

remodelling and increase the bioavailabi li ty of ECM-sequestered growth factors. When new vessels

establish, blood perfusion takes place and, concomitantly, levels of VEGF decline; the resolution phase

begins coincident w ith an increase in platelet-der ived growth factor (PDGF), angiopoietins (Ang), and

transforming growth factor- expression responsible for the recruitment and subsequent stabilization of

mural cells and vascular smooth muscle cells around the nascent vessel. b) Under pathological conditions,

tumour- secreted VEGF-A tr iggers the angiogenesis cascade. Tumour cells lead to increased expression of

soluble factors also responsible for activating resident fibroblasts and for infi ltrating immune cells. Such

stromal cell types are able to sustain the angiogenic process via the secretion of vascular growth- and

inflammation-promoting elements. GDSF, granulocyte colony stimulating factor ; IL-1 inter leukin-1
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1.2 Colorectal Carcinoma 

Cancer of the large bowel (also known as colorectal cancer) is one of the leading 

causes of cancer mortality worldwide. Colorectal cancer (CRC) is the third most frequently 

diagnosed cancer in men and women and the second cause of cancer-related death in the 

United States and other developed countries but occurs much less frequently in the 

developing world. It had been estimated that 141,210 men and women (71,850 men and 

69,360 women) were diagnosed with and 49,380 men and women would die of colorectal 

carcinoma in 2011 (NCI’s SEER Cancer Statistics Review). Despite all recent advances in the 

management of CRC, there is a strong need for more efficient and well-tolerated anti-cancer 

drugs. Colorectal carcinoma, similar to other sorts of cancers, requires angiogenesis to grow 

beyond few millimetres. The fact that tumour progression and metastasis is dependent on 

blood  vessels  makes  angiogenesis  a  putative  target  for  therapy.  In  this  regard,  one  of  the  

known pathways contributing to this process is the vascular endothelial growth factor (VEGF) 

and its receptors.    

 

1.3 Vascular Endothelial Growth Factors 

The VEGF gene family consists of various members, which include VEGF-A, -B, -C, 

-D, -E, PlGF, and snake venom-derived VEGFs (Dvorak, 2002; Hicklin and Ellis, 2005). The 

best characterized among all VEGF family members is VEGF-A. Vascular endothelial growth 

factor A or VEGF-A (commonly referred to as VEGF), is a potent mitogen involved in 

mitogenesis, angiogenesis, endothelial survival as well as the induction of hematopoiesis 

(Kowanetz and Ferrara, 2006). VEGF is encoded by a single gene located on chromosome 6 

in humans and consists of eight exons (Harper and Bates, 2008). It plays a crucial role in the 

morphogenesis, differentiation, and stability of vessels by regulating the proliferation, 

migration and persistence of ECs (Lamalice et al., 2007). It also contributes to vasculogenesis 

and lymphangiogenesis during embryonic development (Shibuya and Claesson-Welsh, 2006).  

The need for VEGF-A signalling during early vasculogenesis/angiogenesis has been 

emphasized by the observation that mice lacking a single VEGF-A allele die at about 

embryonic day 9.5 (Carmeliet et al., 1996; Ferrara et al., 1996), indicating a dose-dependent 

regulation of embryonic vessel development by VEGF. In 1989, Napoleone Ferrara purified 

this protein from bovine pituitary follicular cell conditioned media as a potent endothelial 
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mitogen (Ferrara and Henzel, 1989). Interestingly, the same polypeptide had been previously 

isolated as vascular permeability factor in 1983 (Senger et al., 1983). In fact, the cloning of 

VEGF  was  a  great  milestone  in  understanding  the  process  of  angiogenesis.  Besides  its  

multiple roles in several facets of vessel formation, both during development and in 

adulthood, it was more recently found to be an important trophic factor for a disparate variety 

of cell types, most notably neuronal cells (Carmeliet and Storkebaum, 2002).  

Importantly, its role as a key mediator of tumour angiogenesis is now well established 

and has been long considered a therapeutically addressable bottle-neck for tumour growth. 

This has led to decades of debates on the efficacy of anti-VEGF cancer therapy that 

eventually came to an end with the approval of the first anti-angiogenic agent, bevacizumab, 

an anti-VEGF monoclonal antibody, by the U.S. Food and Drug Administration (FDA) in 

2004, with an indication for the treatment of some types of refractory CRCs. A debate on the 

therapeutic usefulness of bevacizumab has been rejuvenated by recent discoveries shedding 

shadows on the clinical benefits of VEGF inhibitors, as discussed later in the text (Ebos et al., 

2009; Paez-Ribes et al., 2009). In fact, most of the human cancer cells express VEGF-A, and 

its major receptor (VEGFR-2) is also highly expressed by ECs involved in tumour 

angiogenesis (Kerbel, 2008). Furthermore, VEGF-A is also secreted by tumour stromal cells 

such as fibroblasts, monocytes, and platelets (Kut et al., 2007). 

All members of VEGF family have been shown to possess angiogenic capacity, 

although at dissimilar degree (Harper and Moses, 2006). VEGF-B, which only binds VEGF 

Receptor-1 (VEGFR-1), has been long considered non-angiogenic and a mere “tuning” factor 

for VEGF-A (Hirashima et al., 2003). VEGF-C and VEGF-D that bind mainly VEGF 

Receptor-3 are primarily lymphangiogenic factors (Alitalo et al., 2005). Conversely, the role 

of PlGF (Placental-derived Growth Factor) is far more ambiguous and apparently affects 

different aspects of angiogenesis (Bais et al., 2010; Luttun et al., 2002). 

1.3.1 Structure of VEGF 

VEGF-A, as the best-characterized member of the VEGF family, is a homodimeric 

glycoprotein comprised of two identical 23 KDa subunits. Among several alternatively 

spliced isoforms of human VEGF-A, VEGF165, as a heparin-binding homodimeric 

glycoprotein of approximately 45 KDa (Leung et al., 1989), has been considered as the most 

abundant  and  mitogenic  isoform  of  this  group.  Other  important  isoforms  of  VEGF-A,  

including VEGF121, VEGF189, and VEGF206 originated from alternative splicing of VEGF-A 
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gene,  which  consists  of  eight  exons  (Neufeld  et  al.,  1999).  The  longer  VEGFs  such  as  

VEGF189 and  VEGF206 bind heparin in the extracellular matrix, while the lack of basic 

residues in exon 6 and 7 in VEGF121, results in the loss of extracellular matrix segregation 

(Houck et al., 1992). Indeed, a large body of evidence indicates that the heparin-binding 

VEGF-A isoforms play  an  essential  role  in  the  initiation  of  vascular  branching  (Gerhardt  et  

al., 2003; Ruhrberg et al., 2002). In addition, VEGF165, which lacks exon 6, exists in both 

bound and freely diffusible protein (Neufeld et al., 1999). Besides being variable in 

bioavailability  and  bioactivity,  isoforms  of  VEGF  show  different  receptor  specificities.  For  

instance, VEGF165, via exon 7-encoded domains, binds to tyrosine kinase receptors 

VEGFR1/Flt1 and VEGFR2/Flk1, also neuropilin-1 (NRP-1) and NRP-2 (Ferrara et al., 2003; 

Olsson et al., 2006).  

1.3.2 Alternatively Spliced Isoforms of the VEGF-A pre-mRNA 

As briefly introduced in the previous Chapter, the VEGF mRNA undergoes alternative 

splicing to give rise to various isoforms (Houck et al., 1991). The VEGF gene consists of 8 

exons and encompasses nearly 14 Kbp (Figure 2). Basal transcription is driven by a TATA-

less promoter, specifically tuned by diverse stimuli, among which hypoxia is worth 

mentioning (Giacca, 2010). At least seven protein isoforms are produced by translation of 

various mRNAs subjected to alternative splicing of the native human VEGF-A pre-mRNA 

(Tischer et al., 1991) composed of 206, 189, 183, 165, 148, 145, and 121 amino acids (aa) 

after the removal of the signal peptide.  All VEGF isoforms are secreted as covalently linked 

homodimers.  The  three  most  abundant  isoforms  detected  so  far  in  vivo  are  VEGF121, 

VEGF165, and VEGF189.  

All the mRNAs coding for the various isoforms contain exons 1 to 5 in their 5  regions 

and are characterized by different combinations of exons 6, 7, and 8, or a portion of these, in 

their 3  regions.  In VEGF-A121, exon 5 is spliced to the 6 aa-encoding exon 8. In the mRNA 

coding for VEGF-A165, the whole exon 7 is included between exon 5 and exon 8, while in the 

case of VEGF148, the 5  part of exon 7 (7a) is spliced to exon 8, generating an open reading 

frame that terminates protein translation in exon 8 by the inclusion of an additional single 

amino acid, as schematically shown in Figure 2. The mRNA isoforms coding for VEGF-A206, 

VEGF-A189 and VEGF-A183 include complete exon 6 (coding for 41 amino acids) or parts of 

exon 6 shorter at their C-terminus. The coding mRNA for the longest VEGF-A isoform 

(VEGF-A206) contains whole exon 6, while mRNAs coding for VEGF-A189 and VEGF-A183 
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are generated using alternative 5  donor sites that reduce the coding region to 24 aa (exon 6a) 

and 18aa (exon 6a ) respectively. Only VEGF-A145 contains exon 6a inserted between exon 5 

and 7. A 1881 bp-long 3 UTR ends the transcripts, containing multiple alternative 

polyadenylation signals. This region also includes a number of AU-rich elements (AREs) 

shown to be involved in the regulation of mRNA stability under hypoxic conditions (Paulding 

and Czyzyk-Krzeska, 2000).  

Additional variability is generated when a 3  splice site distal to that typically used by 

exon 8 is utilized. This specifies a shorter exon (exon 8b), the 5  of which codes for 6 amino 

acids different from classic exon 8. This distal splice site choice can occur combined with 

exon 6 or 7 inclusion or exclusion, resulting in the generation of a family of polypeptides 

differing from the above-mentioned isoforms by the last six amino acids. The most prominent 

of these polypeptides is VEGF-A165b. Interestingly, it has been shown that the protein 

isoforms encoded by these exon 8b-containing mRNAs have inhibitory potential rather than 

stimulatory effects on the VEGF receptors (Harper and Bates, 2008).  

The N-terminal portion of VEGF-A, encoded by exons 1-5, is sufficient to bind and 

activate the typical VEGF receptors. As a consequence, all the VEGF-A splicing isoforms can 

interact with VEGFR-2 and with a 10-fold higher affinity with VEGFR-1 (Ferrara et al., 

2003). Instead, exons 6 and 7 at the C-terminus of the protein are essential in specifying its 

bioavailability and biodistribution. Particularly, the 24 aa- and 44 aa- stretches encoded by 

exons 6a and 7 are highly enriched in clusters of basic amino acids, creating the capacity to 

bind negatively charged heparin (heparin binding domains, HBDs). These HBDs determine 

the capacity to bind cell surface and extracellular matrix heparan sulfate proteoglycans 

(HSPGs) and thus crucially modulate their localization in the extracellular matrix. Various 

VEGF isoforms distribute in the environment of a VEGF-secreting cell, depending on the 

presence or absence of the heparin-binding domain (Ferrara et al., 2003). It has been 

suggested that the differential localization of VEGF isoforms in the extracellular matrix might 

regulate vascular branching pattern (Ruhrberg et al., 2002). VEGF-A121,  as  the  shortest  

isoform, lacks any HBD and is weakly acidic. According to these characteristics, it is freely 

diffusible.  In  contrast,  VEGF-A189 and  VEGF-A206 have  two  HBDs  and  are  kept  in  the  

extracellular matrix and on the cell surface. VEGF-A165, the most abundant isoform (Ferrara 

and Davis-Smyth, 1997), differs from VEGF-A121 only by the inclusion of exon 7. Its 

moderate affinity for heparin enables this isoform to be present as a soluble and a cell-bound 

factor (Krilleke et al., 2009). The functional significance of these HBDs remain elusive, but it 
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has been reasonably proposed that binding to the extracellular matrix allows the HBD-

containing VEGF-A isoforms to form a concentration gradient that extends from the ischemic 

areas which is crucial for proper angiogenic stimulation (Oshikawa et al., 2010).  

Differential effects of VEGF165 and  VEGF121 isoforms  were  correlated  with  their  

differential capacity to recruit, to the sites of neoangiogenesis, a novel population of CD11b
+
, 

Gr-1
- 
circulating cells deriving from bone marrow and expressing the Nrp-1 receptor. It has 

been demonstrated that VEGF165 acts as a potent chemoattractor for these Nrp-1 expressing 

mononuclear (NEM) cells, while VEGF121 fails to do so. In addition, it has been observed that 

NEMs play an important role by secreting PDGF-B, TGF-beta and other chemokines active in 

promoting vessel maturation, which in turn results in a higher degree of -SMA+/NG2+ 

mural cell coverage and decreased vascular leakiness (Zacchigna et al., 2008). Altogether, it 

is strongly suggested that VEGF-A121 is sufficient neither for normal vasculogenesis in the 

embryo development nor for adult angiogenesis and it is not only because of its incapability 

to determine a concentration gradient through HSPG binding, but also due to its failure in 

inducing peri-endothelial cell recruitment, vessel maturation and arterial specification through 

NEM recruitment via exon 7-mediated NRP-1 binding (Zacchigna et al., 2008). On the other 

hand, the regulatory role of the VEGF-A isoforms consisting of exon 8b requires further 

investigation.  For instance, VEGF-A165b differs from VEGF-A165 only in the C-terminal six 

amino acids, which gives this protein the ability of having only a weak stimulatory activity 

(Bates  et  al.,  2002).  VEGF-A165b still binds VEGF receptors with equal affinity as other 

VEGF-A ligands, however is a poor ligand of VEGFR-2, specifying a distinct tyrosine 

phosphorylation pattern, and fails to bind HSPGs and to interact with NRP-1, in a similar way 

as in the case of VEGF-A121. Therefore, VEGF-A165b may act competitively with other VEGF 

isoforms and suppress their angiogenic activity (Woolard et al., 2004). 

Collectively, it is now clear that different VEGF isoforms have dissimilar biological 

functions in vivo, and this is highly valuable to fully understand the elaborate activity of 

VEGF-A during physiological and pathological angiogenesis. Indeed, its angiogenic capacity 

has been long studied and is now well established, but the inability to translate experimental 

models to the clinic might suggest the existence of more complex, still obscure tuning of 

VEGF biological activity (Carmeliet and Jain, 2011). As discussed later in this thesis, VEGF 

alternative splicing might represent a poorly investigated mechanism partially able to justify 

such an unresolved complexity. 
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(Ladomery et al., 2007) 

Figure 2. Exon structure of the VEGF gene.

 

1.3.3 Family of VEGF receptors 

During the early 1990s, human VEGF receptors were structurally identified by cDNA 

cloning (Millauer et al., 1993; Pajusola et al., 1992; Shibuya et al., 1990; Terman et al., 1991). 

VEGF receptors were originally characterized on the surface of vascular endothelial cells, and 

for  many  years  it  was  believed  that  their  expression  was  restricted  to  endothelial  and  peri-

endothelial compartment (Ferrara, 2002). It was subsequently shown that VEGFRs exist also 

on bone marrow-derived cells such as monocytes (Shen et al., 1993) and on a large variety of 

other cell types in the body. VEGF binds two receptor tyrosine kinases (RTKs), VEGFR-1 

and VEGFR-2, which are highly homologues. VEGFR-1(Flt-1) and VEGFR-2 (Flk-1/KDR) 

both have seven Ig-like domains in the extracellular region, a single-transmembrane area, and 

a consensus tyrosine kinase sequence (Terman et al., 1991) interrupted by a kinase insert 

domain and are activated by ligand-triggered dimerization (Matthews et al., 1991). VEGFRs, 

upon ligand binding, dimerize and induce mitogen-activated protein kinase (MAPK), 

phosphoinositide-3 kinase and other pathways involved in the function of endothelial cells 

(Ferrara et al., 2003). In response to ligand binding, VEGF receptor tyrosine kinases activate a 

series of separate downstream signalling pathways (Kowanetz and Ferrara, 2006).  
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Similar to Vegfa
+
/-

 
mice, Vegfr2- null mice display early embryonic lethality and 

severe vascular defects (Shalaby et al., 1995), underscoring the pivotal role of this receptor in 

VEGF-A signalling. Whereas a large body of evidence suggests that VEGFR-2 is the key 

receptor for VEGF-A-induced endothelial cell responses such as mitogenesis and vascular 

permeability, the role of VEGFR-1 is more intricate (Shibuya, 2006). Through sequestration 

of VEGF-A, VEGFR-1 can adversely regulate VEGFR-2 signalling (Hiratsuka et al., 1998; 

Park et al., 1994). It can also promote monocyte migration (Barleon et al., 1996), endothelial 

cell secretion of proteases (Hiratsuka et al., 2002) and growth factors (LeCouter et al., 2003), 

the growth of specific cancer cells overexpressing this receptor (Lichtenberger et al., 2010; 

Wu et al., 2006), and sustain myocardial function after infarction and heart failure 

(Lahteenvuo et al., 2009; Zentilin et al., 2010), underpinning the limitations of the 

conventional  outlook  that  put  toward  VEGFR-1  as  a  simple  decoy  receptor  for  VEGF-A.  

Another member of the same family of RTKs is VEGFR-3 (Flt-4), which is not a receptor for 

VEGF-A, but instead for VEGF-C and VEGF-D and mainly contributes to 

lymphangiogenesis (Alitalo et al., 2005). 

1.3.3.1 VEGFR-1 (Flt-1) 

More than a decade ago, VEGFR-1 was the first receptor tyrosine kinase (RTK) 

identified as a VEGFR (de Vries et al., 1992). VEGFR-1 functions and signalling features 

may vary depending on the developmental stage and the cell type. Interestingly, expression of 

VEGFR-1 is up-regulated by hypoxia via a HIF-1-dependent mechanism (Gerber et al., 

1997), suggesting an independent role in VEGF signalling under stress conditions.  

VEGFR-1 binds different members of the VEGF family, namely VEGF-A, VEGF-B, 

and PlGF (Ferrara, 2004) (Figure 3). It has been long considered as a simple “decoy” 

receptor, able to weaken VEGF-A signalling, competing for its binding with VEGFR-2, 

which in turn was considered the proper VEGF-A receptor. In this respect, it has been shown 

that an alternatively spliced soluble form of VEGFR-1 (sFlt-1) is an inhibitor of VEGF 

activity, through the seizure of circulating VEGF-A (Hiratsuka et al., 1998). Indeed, Flt-1 has 

a strong affinity for its ligand; in detail, the ability of binding VEGF and PlGF has been 

referred to the second Ig-like domain of this receptor (Christinger et al., 2004). Despite this 

strong affinity, Flt-1 shows a weak tyrosine autophosphorylation activity in response to 

VEGF-A. However, it has been more recently demonstrated that VEGFR-1 can interact with 

different signal-transducing proteins and generate a mitogenic signal (Maru et al., 1998). In 
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addition, it has been suggested that a crucial function of VEGFR-1 signalling in the vascular 

endothelium is not the control of angiogenesis but, rather, the paracrine secretion of tissue-

specific growth factors (Zhang et al., 2009). 

1.3.3.2 VEGFR-2 (KDR, human; Flk-1, mouse) 

VEGFR-2 has been primarily found on endothelial cells, where it mediates all major 

angiogenic effects of VEGF-A, but it has also been detected on a subset of multipotent human 

hematopoietic stem cells (HSCs) (Kabrun et al., 1997). During early embryogenesis, VEGFR-

2 is highly expressed in vascular endothelial progenitors, whereas in later stages of 

vasculogenesis, VEGFR-2 expression decreases. However, under the conditions of 

pathological angiogenesis such as in tumours, its expression is upregulated (Matsumoto and 

Claesson-Welsh, 2001). Among the most important functions of VEGFR-2, are the 

stimulation of vascular endothelial cell survival and growth, in addition to the promotion of 

angiogenesis. Indeed, VEGFR-2 is the key mediator of the mitogenic, angiogenic, and 

permeability-enhancing roles of VEGF-A (Ferrara et al., 2003). The VEGFR-2 binding sites 

have been located in the second and third Ig-like domains. Dimerization and ligand-dependent 

tyrosine phosphorylation gives rise to its mitogenic, chemotactic signalling. Activation of 

VEGFR-2 results in endothelial cell growth through stimulation of the Raf-Mek-Erk pathway.  
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(Ruiz de Almodovar et al., 2009), modified

Figure. 3. Family members of VEGF and their receptors. A) Mammalian VEGF family members are

VEGF-A, -B, -C, -D, and PlGF. Among them, VEGF-A binds to both VEGFR1 and VEGFR2, whereas VEGF-B

and PlGF only bind to VEGFR-1. VEGF-C and VEGF-D can bind to VEGFR2 and VEGFR3. B) VEGF-A may

also bind to heterodimeric receptor complexes formed by VEGFR1 and VEGFR2. Similar ly, VEGF-C and –D

are able to bind heterodimers formed by VEGFR2 and VEGFR3. C) Neuropilin-1 and -2 function as co-

receptors for canonical VEGF-VEGFR complexes and regulate VEGF receptor activation and signalling.

Some splicing isoforms of VEGF-A bind to both Nrp-1 and Nrp-2. Among family members of VEGF, VFGF-B

only binds to Nrp-1.
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1.4 Neuropilins 

Neuropilins (NRPs) were initially discovered as neuronal receptors for class III 

semaphorins. There are two neuropilin genes, nrp1 and nrp2. Neuropilins are 130-140 KDa, 

non-tyrosine kinase receptors and have a rather large extracellular domain divided into some 

subdomains, which act as ligand binding sites. Conversely, they consist of a very short 

transmembrane domain, and a short cytoplasmic domain (Neufeld and Kessler, 2008). 

It was later demonstrated that NRP-1 has a role in vascular morphogenesis (Klagsbrun 

et al., 2002; Soker et al., 1998). They are expressed on at least tumour and endothelial cells 

and regulate angiogenesis by acting as receptors for members of the Sema3A and VEGF 

family (Bielenberg et al., 2006; Neufeld and Kessler, 2008). In general, NRP-1 and NRP-2 

are single spanning transmembrane glycoproteins with a crucial role in the development of 

neuronal and vascular systems as receptors for members of class-3 Semaphorin (SEMA3s) 

family of axonal guidance factors and at the same time for members of the vascular 

endothelial growth factor family of angiogenesis factors. NRPs were basically shown to 

contribute to the process of axonal guidance but soon after, it became evident that these 

receptors were also involved in normal blood vessel formation, tumour angiogenesis, and 

tumour progression (Ellis, 2006).  

NRP-1 is able to bind to VEGF165, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PlGF-2, 

HGF,  SEMA3A,  SEMA3B,  and  SEMA3C  while  NRP-2  ligands  are  VEGF165, VEGF145, 

VEGF-C, VEGF-D, HGF, SEMA3B, SEMA3C, and SEMA3F (Kolodkin et al., 1997; 

Sulpice et al., 2008; West et al., 2005). Since the cytoplasmic domain of NRP-1 is short, it is 

thought that its joining to the other signalling proteins is necessary for its bioactivity. The 

ligand binding domains of NRP consist of: (i) an A domain composed of two a-domain 

repeats or two complement binding (CUB) domains (a1a2), (ii) a B domain composed of two 

b-domain repeats or two coagulation factor V/VIII homology- like domains (b1b2), and (iii) a 

C domain or a meprin A5 (MAM) domain that is believed to be important for NRP 

dimerization and the neuropilins’ interaction with other membrane receptors (Chen et al., 

1997; Giger et al., 1998; He and Tessier-Lavigne, 1997) (Figure 4). The B domain of NRP is 

substantial and sufficient for binding of VEGF165 to both NRP1 and NRP2 (Gu et al., 2002). 

However, for NRP-1, simultaneous presence of the A domain enhances VEGF165 binding 

significantly. SEMA3s and VEGF165 both interact with the B domain of NRP-1. The b1 

domain that forms part of the Semaphorin-3A binding domain of NRP-1, is also required for 
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the binding of VEGF165, in addition to the b2 domain, and as a result VEGF165 and Sema3A 

compete for binding to NRP-1 (Gu et al., 2002; Miao et al., 1999; Vander Kooi et al., 2007).  

It  has  been  shown  that  VEGF-A  exon  7  is  crucial  for  NRP  binding  (Soker  et  al.,  

1996). On the other hand, VEGF121,  as  one  of  the  splice  forms  of  VEGF,  differs  from  

VEGF165 by lacking 44 amino acids encoded by VEGF exon 7, which is responsible for 

binding to NRP-1. In this respect, no binding to NRP-1 was detected by VEGF121, although 

recent studies has revealed that VEGF121 can bind NRP-1 (Pan et al., 2007), but comparing 

with VEGF165, VEGF121 is not able to “bridge” NRP-1 and VEGFR-2 (Pan et al., 2007; 

Shraga-Heled et al., 2007). It is likely that the C-terminal residues encoded by exon 8 are 

responsible for the interaction of VEGF121 with NRP-1.  

As already mentioned, Neuropilin-1 (NRP-1) is a unique multifunctional 

transmembrane glycoprotein, a receptor for vascular endothelial growth factor A165 (VEGF-

A165)  and  the  neuronal  guidance  molecule  Semaphorin3A  (SEMA3A)  with  key  roles  in  

vascular and neuronal development. It is worth mentioning that the primary structure of this 

gene is highly conserved within vertebrate species. NRP-1 was first identified in neurons of 

the developing nervous system and considered as a receptor for several class 3 Semaphorins 

as secreted proteins (i.e., Sema3A, Sema3B, Sema3C and Sema3F), which differ in their 

potential to interact with the two neuropilins and are essential for chemorepulsive and growth 

cone collapsing and repulsive signals in vitro (Chen et al., 1997; Feiner et al., 1997; Kolodkin 

et  al.,  1997).  Among  all  members  of  Semaphorin  family, Sema3A binds exclusively to 

neuropilin-1. In NRP-1 the a1 and a2 as well as the b1 domains are required for Sema3A 

binding and signal transduction (Gu et al., 2002; Vander Kooi et al., 2007) (Figure 4). 

  In addition to playing a critical role in the developing nervous systems, NRP-1 is 

expressed in a variety of non-neural cells and can mediate various intercellular signals to 

modulate diverse aspects of physiological and pathophysiologic functions (Banerjee et al., 

2000; Gluzman-Poltorak et al., 2000; Pavelock et al., 2001; Reese et al., 2000; Robert et al., 

2000; Soker et al., 1998). In endothelial cells, NRP-1 enhances the VEGF-A mediated 

biological signals via binding to VEGFR2. It was previously thought that NRPs are not able 

to transduce VEGF signals on their own, and may function only as enhancers of VEGFR2-

mediated VEGF signalling, but recently it has been reported that NRP-1 can transduce VEGF 

signals in the absence of tyrosine kinase VEGF receptors (Wang et al., 2007). 

NRP-1 has also been involved in tumour growth and angiogenesis. In tumour cells, 

which often lack VEGFR-2, it has been supposed that VEGF165 acts as an autocrine survival 
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factor through an NRP-dependent process (Soker et al., 1998). In general, transmembrane 

proteins signal through their cytoplasmic domains, however, in NRPs no signalling motif has 

been detected in their cytoplasmic regions and, consequently, whether and how this domain 

signals is not clear so far. On the other hand, NRP-1 can promote signalling in endothelial 

cells  by  its  intracellular  domain  (Wang  et  al.,  2003).  NRP-1  seems  to  mediate  a  VEGF165/ 

NRP1/ VEGF-2 pathway resulting in tumour growth. Recent studies indicate that the range of 

growth  factors  with  the  ability  of  binding  to  neuropilins  are  not  limited  to  members  of  

Semaphorin and VEGF gene families. Neuropilin-1 functions as a receptor for platelet-

derived growth factor BB (PDGFBB)(Banerjee et al., 2006), transforming growth factor  

(TGF )(Glinka and Prud'homme, 2008), and fibroblast growth factor 2 (FGF2)(West et al., 

2005). Another recently introduced ligand of Nrp-1 is galectin 1, a homodimeric lectin 

expressed in tumour-associated endothelial cells. Binding of galectin 1 to Nrp-1 stimulates 

VEGFR2 phosphorylation and triggers VEGFR2-mediated migration of endothelial cell 

(Hsieh et al., 2008). NRP-1 contains a single serine residue (S612), which can be altered by 

the attachment of a heparan sulphate or chondroitin sulphate glycosaminoglycan. This 

modification has been observed in smooth muscle cells as well as in endothelial cells and 

might modulate responses to VEGF (Shintani et al., 2006). 
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(Geretti et al., 2008)

Figure 4. Structural features and functions of Neuropilin-1 (Nrp-1). The a1a2 (pink), b1b2 (blue),

(yellow), transmembrane (orange), and cytoplasmic (purple) domains of Nrp-1, along with the ligand

binding functions and the relevant targeted amino acid residues have been shown color-coded.

1.5 Semaphorin Family 

Semaphorins and their receptors were originally characterized as factors of the 

complex regulatory system responsible for the guidance of axons during the central nervous 

system development. Semaphorin receptors were subsequently found to be expressed by 

multiple types of cells, including endothelial cells and a variety of cancer cells (Neufeld and 

Kessler, 2008).  

The Semaphorins are a large and phylogenetically conserved family of proteins 

including both secreted and transmembrane guidance cues (Yazdani and Terman, 2006). 

Semaphorins  can  either  promote  or  inhibit  tumour  progression  through  the  regulation  of  

processes such as angiogenesis, metastasis and cell survival during cancer progression (Gaur 

et al., 2009). The family of Semaphorins contains 21 vertebrate genes and eight additional 

genes found in invertebrates. All Semaphorins are characterized by the presence of an amino-

terminal domain essential for their signalling. In vivo studies in invertebrates and vertebrates 
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have definitively shown that Semaphorins serve as pivotal repulsive cues during neural 

development (Tran et al., 2007). Among all family members, class 3 Semaphorins are the 

only secreted ones in vertebrates. Sema3A, originally called “Collapsin-1”, was the first 

vertebrate Semaphorin identified and was first characterized as a neruopilin-1 ligand. Mice in 

which the Sema3A gene has been disrupted show dramatic axon guidance deficiencies 

(Kitsukawa et al., 1997). Sema3A is basically expressed in tissues that encompass peripheral 

nerves and functions as a repellent. Transmembrane Semaphorins can also act as repellents. 

Among members of Semaphorin family, Class 3 Semaphorins and specifically Sema3A are 

competitive inhibitors of VEGF165 binding to NRPs and have been recognized to negatively 

mediate tumour growth. Key members of class 3 Semaphorins, i. e. Sema3A and Sema3D are 

synthesized as homodimers linked by disulphide binds, and this dimerization is crucial for 

their bioactivity (Klostermann et al., 1998; Koppel and Raper, 1998). Specific members of 

class 3 Semaphorin family have been supposed previously to have both tumour suppressor 

(Sema3B and 3F) (Campioni et al., 2008) and anti-angiogenic (Sema3A and 3F) effects and 

to be down-regulated with tumour progression. Indeed, the expression of Sema3B and 

Sema3F is down-regulated with increasing lesion severity in ovarian cancer (Drenberg et al., 

2009; Osada et al., 2006). Additionally, increased ratio of vascular endothelial growth factor 

to Semaphorin is a poor prognostic factor in ovarian carcinomas (Joseph et al., 2010) and also 

during lung cancer progression (Campioni et al., 2008; Tomizawa et al., 2001).  

1.5.1 Semaphorin receptors 

 

 All semaphorins in higher vertebrates contain a signature Semaphorin domain of 

nearly  500  amino  acids,  which  plays  a  crucial  role  in  mediating  the  association  of  these  

lignads with signalling receptors of plexin family. Semaphorin receptor complexes are 

composed of plexins or plexins along with neuropilins (Figure 5).  The  main  receptors  for  

semaphorins are plexin family members including nine various proteins in higher vertebrates 

(Tamagnone and Comoglio, 2000) as high affinity receptors for Semaphorins. Several 

members of Semaphorin family bind plexins directly, whereas some secreted vertebrate 

semaphorins such as Sema3A, bind to the obligate co-receptors neuropilin-1 or neuropilin-2 

to form neuropilin- plexin holoreceptor complex. The neuropilins form signalling complexes 

by associating with type A plexins. In these complexes, the neuropilins serve as the binding 

receptors and the plexins as the signal-transducing elements (Takahashi et al., 1999; 

Tamagnone et al., 1999). 
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   (Capparuccia and Tamagnone, 2009)

Figure 5. Schematic representation of Semaphorin family members and their receptors

(neuropilins and plexins). A) All members of Semaphorin family are recognized by the presence of

large Sema domain and one PSI domain. Among vertebrate Semaphorins, those belonging to classes 4, 5,

and are transmembrane proteins, while those in class are membrane bound through

glycophosphatidylinositol (GPI). Instead, class -3 Semaphorins as secreted members of this family, have

C-terminal basic charged sequences required for binding to neuropi lins. Several members of Semaphorin

family contain immunoglobulin-like domains. B) Neuropi lins are transmembrane non-tyrosin kinase co-

receptors character ized by two CUB domains (also called a1 and a2 domains), two FV/ FVIII coagulation

factor-like domains (also referred to as the b1 and b2 domains) and meprin-like MAM domain or the

domain). C) Plexins consist of one Sema domain, two to three PSI domains and three IPT domains.

    

1.6 Tumour Microenvironment and Metastatic Disease 

A tumour is not just a bunch of cancer cells with the ability to multiply infinitely, but 

is composed of cancer stem cells, mature cancer cells, metastatic cancer cells, stromal cells, 

endothelial cells, tumour- infiltrating macrophages and a broad variety of fibroblasts, all of 

which embedded in an extracellular matrix (ECM) and constitute what is usually called the 

“tumour microenvironment” (Joyce, 2005). The microenvironment of solid tumours is a 
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heterogeneous setting with specific features such as acidic pH, low nutrient levels, elevated 

interstitial fluid pressure (IFP) and variable levels of oxygenation characteristic of abnormal 

vascular network existing in tumours (Figure 6).  

Interestingly, the tumour microenvironment, particularly in respect with the massive 

infiltration of dysregulated immune cells can promote tumour growth, angiogenesis, and 

metastasis (Joyce, 2005). It is believed that metastatic potential of tumour cells is regulated by 

interactions between the tumour cells and their extracellular environment (ECM). In fact, 

tumour microenvironment was once believed to be a simple bystander that accompanies the 

growth and the evolution of tumour masses, primarily and essentially composed of malignant 

cells, able to proliferate restlessly. Now, the other components of a tumour are known to 

actively sustain its growth, suppressing host immune response (Kusmartsev and Gabrilovich, 

2006), secreting pro-tumourigenic growth factors (Mantovani et al., 2010), modelling the 

ECM and most prominently, fostering angiogenesis (Schmid and Varner, 2007; Shojaei et al., 

2008) and promoting metastatic spread (De Palma et al., 2007).  

Angiogenesis and metastatization are invariably linked, as blood vessels constitute the 

main route for cell dissemination. Subsequently, excessive angiogenesis leads to the 

formation of a poorly efficient vasculature and the consequent establishment of a chronic state 

of hypoxia (Wilson and Hay, 2011).  

Clinical and experimental evidence suggests that altered gene expression in response 

to the hypoxic environment plays an important role in favour of metastasis (Keith et al., 

2012), as will be discussed in Chapter 1.14.  
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(Joyce and Pollard, 2009)

Figure 6. Tumour microenvironment. Tumour cells in pr imary tumours are encompassed by complex

microenvironment consisting of var ious types of cells including endothelial cells, stromal fibroblasts and

broad range of bone marrow-der ived cells (BMDCs) including macrophages, TIE-2 expressing monocytes

(TEMs), myeloid- derived suppressor cells (MDSCs), and mesenchymal stem cells (MSCs).

 

1.7 Metastasis Mechanisms 

Metastasis, the spread of malignant cells from a primary tumour to distant sites, 

creates the biggest problem to cancer treatment and is the main cause of death of cancer 

patients. It occurs in a series of distinct steps represented as a “metastatic cascade” including 

Epithelial-Mesenchymal Transition (EMT), invasion, anoikis (apoptosis in response to 

inappropriate interaction between cell and extracellular matrix), angiogenesis, transport 

through vessels and outgrowth of secondary tumours. Noteworthy, alterations that disturb 

normal  control  of  anoikis,  confer  to  the  tumour  cells  the  ability  to  live  in  completely  

inappropriate extracellular matrix environment.  

According to recent findings, beside the requirement of stem cell-like properties, the 

role  of  the  tumour  stroma  and  paracrine  interactions  of  the  tumour  with  cells  in  distant  

anatomical sites, or the existence of a “premetastatic niche” has well been established.          
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In fact, the dissemination of malignant cells from the primary tumour to secondary sites was 

consistently considered to be a late-stage phenomenon. 

However, a large body of evidence demonstrated that metastasis initiation might begin 

earlier than what was previously believed. Using advanced molecular techniques, it has been 

shown that tumour cells are very often present in the blood and bone marrow of cancer 

patients before the incidence of clinical or histopathological metastasis (Alix-Panabieres et 

al., 2008). However, a novel hypothesis suggests that premalignant cells might disseminate 

during early stages of tumour progression and prime their own microenvironments or 

metastatic niches in situ (Chin, 2003). Instead, circulating cancer cells with no metastatic 

potential, might prepare distant sites to be engrafted by more invasive cell types (Bidard et al., 

2008).  Of  the  millions  of  tumour  cells  entering  the  circulation,  only  few  of  them  will  

successfully lodge and proliferate at secondary sites (Weiss, 1980, 1990). The classical view 

on the metastatic cascade, starting from a primary epithelial neoplastic lesion includes: 

Epithelial-Mesenchymal Transition (EMT) and rupture of the basement membrane barrier; 

disaggregation of tumour cells from the tumour mass; Invasion of the adjacent tissue; 

intravasation into pre-existing and newly formed blood and lymph vessels; transport through 

vessels; extravasation from vessels; establishment of disseminated cells (which can stay 

dormant for a prolonged period of time) at a secondary anatomical site; and outgrowth of 

micrometastases and macrometastases (Figure 7). In order to successfully metastasize, tumour 

cells have to overcome all the physiological barriers caused by these steps. The necessity of a 

“premetastatic niche” at the target site, before the onset of first tumour cells to the distant site 

has been proved by different studies, although the exact time of the establishment of 

“premetastatic niche” is not known. Distant tumours induce increasing levels of the pro-

inflammatory chemokines at the secondary target sites of tumour-bearing mice, which in turn 

are infiltrated by myeloid cells that crucially modify the local environment priming it for 

subsequent localization (Hiratsuka et al., 2002; Hiratsuka et al., 2006).  

Epithelial  tissues,  representing  the  origins  of  most  solid  tumours  are  separated  from  

the stroma by a basement membrane. During metastasis, epithelial tumour cells are released 

from adjacent cells and breach the basement membrane barrier. This process is suggested to 

involve specific cell alterations which are usually referred as EMT (Christofori, 2006; Thiery, 

2002). EMT, a conserved critical process for embryonic development, concerns the release of 

epithelial cells from the surrounding tissue (Radisky, 2005). During EMT, epithelial cells 

acquire characteristics resembling those of mesenchymal cells, therefore inducing cellular 
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invasion into neighbouring tissues. Cells undergoing EMT usually acquire a spindle-shaped 

morphology. The major signalling pathways and molecules inducing EMT include Receptor 

Tyrosine Kinases (RTK), the transforming growth factor  (TGFB) superfamily, WNT, 

NOTCH, hedgehog pathway (Huber et al., 2005; Massague, 2008) and NF-kB (Huber et al., 

2004). Instead, the reverse process, Mesenchymal-Epithelial Transition (MET), seems to be 

involved in establishing secondary tumours with an epithelial appearance, reminiscent to the 

primary one (Thiery, 2002).  EMT can promote metastasis in different ways. First of all, the 

loss of cell-cell adhesion permits tumour cell invasion. Infiltration to tissues and vessels can 

be supported by a secondary property of cells that have undergone EMT, i.e. secretion of 

protein-degrading enzymes like matrix metalloproteinases (MMPs) (Jechlinger et al., 2003). 

MMPs are often overexpressed in tumours and are able to remodel the Extracellular Matrix 

(ECM) in the tumour microenvironment, eventually releasing and processing mitogenic and 

angiogenic factors sequestered by ECM. Cleavage of ECM components provides criptic sites 

that stimulate cell migration (Giannelli et al., 1997). In order to invade tissues and vessels, 

cells must reach the ability to migrate. In brief, cell migration starts with the extension of cell 

membrane projections that is driven by a continuous cycle of actin polymerization and 

depolymerization.  Invasive tumour cells can migrate either as single cells or collectively in 

the form of files, clusters or sheets.  
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(Psaila and Lyden, 2009)

Figure 7. Schematic representation of the formation of metastatic niche. The figure illustrates the

pre-metastatic, micrometastatic to macrometastatic transition. a) Secretion of growth factors including

vascular endothelial growth factor-A (VEGF-A), placental growth factor (PlGF), transforming growth

factor- (TGF- )), inflammatory S100 chemokines and serum amyloid A3 (SAA3) by the pr imary tumour

are upregulated in premetastatic areas. This can eventually result in cluster ing of bone marrow-der ived

haematopoietic progenitor cells (HPCs). HPCs secrete wide range of pre-metastatic factors such as

tumour necrosis factor- (TNF- ), matr ix metalloproteinase (MMP9), and TGF- Stimulated fibroblasts,

secrete fibronectin, pivotal adhesion protein in the niche, and lysyl oxidase (LOX) expression is also

elevated, w ith role in modulating the local extracellular matr ix. b) MTCs engraft the niche to populate

micrometastases. c) Infi ltration of endothelial progenitor cells (EPCs) to the ear ly metastatic niche

regulates angiogenic switch and facili tates the progression towards macrometastases.

1.8 Metastasis associated with Acute and Chronic Tumour Hypoxia 

The mechanisms by which tumour hypoxia might increase metastatic potential may 

include the increased rate of mutagenesis, genetic instability and enhanced epigenetic 

regulation of gene expression (Erler et al., 2006; Graeber et al., 1996; Krishnamachary et al., 

2003; Rofstad, 2000; Subarsky and Hill, 2003; Sullivan and Graham, 2007). The development 

of tumour hypoxia is essentially correlated with the formation of neovasculature. Vessels 

developed within tumour masses are immature, expanded, and tortuous (Vaupel, 2004). 

Because of an incomplete basement membrane, they are hyperpermeable and prone to 
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excessive branching, blind ends and neovascular shunts (Baluk et al., 2003; Kallinowski et 

al., 1989; Vaupel et al., 1989). For tumour cells, the consequence of being far from the 

vascular supply or so-called diffusion-limited hypoxia was proposed by Thomlinson and Gray 

in 1955 as the first concept of hypoxia in tumours (Thomlinson and Gray, 1955). It was 

proposed later that perfusion-limited hypoxia (also known as acute hypoxia), due to 

alterations in blood flow, might play an important role in solid tumours (Brown, 1979; 

Sutherland and Franko, 1980). Angiogenesis is a necessity of tumour growth.  

A key pro-angiogenic gene in this regard, is hypoxia-responsive VEGF (Dvorak et al., 

1999). Its expression is regulated by the hypoxia-inducible factor 1 (HIF-1) which is 

stabilized under hypoxic conditions (Semenza, 2001, 2007). HIF-1 has been considered as the 

master regulator of hypoxic response (Semenza, 2003) and drives expression of multiple 

genes that are involved in the metastatic process, although there are other transcriptional 

factors such as NF-kB, p53, AP-1, C/EBPb, Egr-1 and SP-1 that respond to an hypoxic 

environment (Hirota and Semenza, 2006; Mabjeesh and Amir, 2007; Subarsky and Hill, 2003; 

Zhou et al., 2006). HIFs are frequently up-regulated in cancer and metastasis since their 

downstream target genes can promote growth and survival (Maynard and Ohh, 2007). Nearly 

1-1.5% of the genome is transcriptionally regulated by hypoxia and many pro-metastatic 

genes are known to be regulated by HIF-1 . 

1.9 Tumour- Infiltrating Cells 

 Similar to other solid tumours, colon carcinomas are also infiltrated by various cell 

types including tumour-associated macrophages (TAMs), myeloid-derived suppressor cells 

(MDSCs), mast cells, cancer-associated fibroblasts (CAFs), monocytes, neutrophils, CD8 and 

CD4 T-cells, dendritic cells (DCs), natural killer (NK) cells, endothelial cells, endothelial 

progenitor cells (EPCs), platelets, and mesenchymal stem cells (MSCs) (Murdoch et al., 

2008). It was originally proposed that the presence of these cells is the remnant of a truncated 

immune response mounted by the host against the tumour that is ultimately unable to 

eradicate the malignancy. Now, tumour-infiltrating immune cells are considered as potent 

tumour-promoting agents with multiple genetic and pharmacological evidence, although 

specific contribution of each cell type is difficult to dissect, largely due to their overlapping 

functions. It is now extensively approved that tumour vessels are composed not only of 

sprouting vessels from pre-existing ones, but also of heterogeneous precursor cells(Furuya 

and Yonemitsu, 2008). Bone marrow-derived EPCs (endothelial progenitor cells) (Asahara et 
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al., 1997), tissue-derived EPCs (Bruno et al., 2006; Zengin et al., 2006), and some 

hematopoietic stem cells (HSCs) (Hattori et al., 2002; Lyden et al., 2001) are believed to 

evolve into tumour-associated endothelial cells (TECs). Comparison of molecular profiles 

between normal ECs and TECs including cDNA microarray analysis and proteomic mapping, 

have detected several key molecules as TECs-specific markers (Seaman et al., 2007; Shih et 

al., 2002). Some highly expressed molecules such as VEGFR2 which are not specific to TECs 

seem to contribute to the modulation of permeability, proliferation, migration, anti-apoptosis, 

matrix  remodelling,  and  many  other  aspects  of  tumour  neovascularization  (Bussolati  et  al.,  

2003; St Croix et al., 2000; Wang et al., 2002). Despite a general concept, not all of above 

mentioned cell populations differentiate into TECs. Some of these cells localize in close 

proximity of tumour vasculature as heterogeneous cells of uncertain differentiation capacities 

and contribute to tumour growth by mediating its proinflammatory microenvironment. In 

such a milieu, tumour vessels take advantage of specific signalling molecules (Furuya et al., 

2004), this cocktail of infiltrating cells preserves tumour associated inflammation, 

angiogenesis, and immunosuppression, which sequentially promotes tumour progression and 

metastasis. Two important factors for this breach are inflammation and soluble 

chemoatractants secreted by both tumour and stromal cells (Jedinak et al., 2010). The initial 

role of these stromal cells is not tumour promotion but instead, these cells contribute to some 

antitumour properties (de Visser et al., 2006). But during tumourigenesis, the dynamic 

interaction between stromal and tumour cells changes, eventually being in favour of tumour 

progression (de Visser et al., 2006) possibly involving an “education” of immune cells in loco 

by malignant cells. 

 

1.9.1 Tumour-Associated Macrophages 

Tumour-Associated Macrophages (TAMs) derive from blood monocytes that are 

recruited to the tumour by growth factors, chemokines, and angiogenic factors such as 

colony-stimulating factor 1 (CSF-1), and VEGF (Lewis and Pollard, 2006; Pollard, 2009; Sica 

et al., 2008). The presence of low interleukin (IL)-12 and high IL-10 levels in the tumour 

microenvironment induce the differentiation of monocytes into TAMs (Fricke and 

Gabrilovich, 2006). Macrophages are phenotypically plastic and, depending on the 

microenvironment stimuli, can acquire different functions and morphology in a continuum of 

phenotypic conditions whose edges are represented by either M1 (anti-tumour) or M2 (pro-

tumour) polarization states (Mantovani et al., 2007; Mantovani et al., 2004; Sica et al., 2006; 
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Van Ginderachter et al., 2008). TAMs with M2 polarization are a major tumour-infiltrating 

population of the cells (Coussens and Werb, 2002; Mantovani et al., 2008) and are an 

essential component of inflammation-associated carcinogenesis (Figure 8).  The  number  of  

M2 macrophages is preferentially raised in the poorly vascularized areas of the tumour, which 

are marked by low oxygen concentration. Under such a condition, these cells cooperate with 

cancer cells in regulating HIF-1 dependent transcription of angiogenesis inducers such as 

VEGF-A, FGF-2, and CXCL8 (Mantovani et al., 2002). High TAM density in tumours is now 

considered as a poor prognostic indicator in various tumours, including CRC (Bacman et al., 

2007; Bingle et al., 2002; Lewis and Pollard, 2006; Paik et al., 2004). TAMs promote tumour 

growth and metastasis through inducing angiogenesis and enhancing tumour cell 

migration/invasion and ECM degradation (Barbera-Guillem et al., 2002; Condeelis and 

Pollard, 2006; Leek et al., 1996; Shieh et al., 2009; Takanami et al., 1999). TAMs in the 

stroma express COX-2, and the relationship between COX-2 and colonic adenoma formation 

is well established (Adegboyega et al., 2004). Colon carcinoma cells induce TAMs to secrete 

VEGF, which promotes angiogenesis as well as metastasis (Barbera-Guillem et al., 2002; 

Pollard, 2004; Sickert et al., 2005). TAMs express many other pro-angiogenic factors, such as 

FGF2, TNF- , IL-1 , IL-8 (CXCL8), COX-2, platelet derived growth factor-  (PDGF- ), 

hepatocyte growth factor (HGF), matrix metalloproteinase (MMP)-7, and MMP12 (Barbera-

Guillem et al., 2002; Burke et al., 2003; Leek et al., 1996; Mizukami et al., 2007; Shieh et al., 

2009; Takanami et al., 1999). Colon carcinoma cells produce CSF-1, which recruits 

macrophages to the tumour periphery where they secrete motility and angiogenic factors that 

facilitate  tumour  cell  invasion  and  metastasis  (Green  et  al.,  2009).  TAMs  contribute  to  the  

epithelial- to- mesenchymal transition (EMT), which is a primary event for cancer metastasis 

(Bataille et al., 2008; Bates et al., 2007). TGF- , which is produced by both colon cancers 

(Paduch and Kandefer-Szerszen, 2009) and macrophages (Mantovani et al., 1992), plays a 

significant role in the process of EMT. Moreover, cancer cells can induce stromal cells 

(including macrophages) to secrete MMPs (MMP2 and MM9), cysteine cathepsins and serine 

proteases that contribute to cell invasion and intravasation by cleaving cell- adhesion 

molecules such as E-cadherin and the ECM. On the other hand, suppressive mediators 

secreted by TAMs can suppress T-cell activation and proliferation (Mantovani et al., 1992). 

Two major series of evidence connect macrophages and cancer: first, the correlation of 

chronic inflammation leading to macrophage accumulation with the initiation of cancer and 

its progression (Coussens and Werb, 2002; Mantovani et al., 2008; Robinson and Coussens, 
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2005); second, a high density of TAM is associated with poor prognosis in more than 80% of 

studies (Lin et al., 2002; Murdoch et al., 2008). Experimentally, TAM depletion by means of 

bi-phosphonate compounds (i.e. zoledronic acid) severely impairs tumour growth in different 

models of tumour growth and progression (Giraudo et al., 2004). Indeed, TAMs accumulate 

in critical regions of tumours such as hypoxic areas, and hypoxia triggers a pro-angiogenic 

plan in these cells (Murdoch et al., 2004). Macrophages are specifically noticed as 

multifunctional cells due to their diverse and opposing activities in pro- vs. anti-inflammatory, 

immunogenic vs. tolerogenic, and tissue devastating vs. tissue restoration processes. 

Macrophages from healthy or inflamed tissues are able to lyse tumour cells, to present 

tumour-associated  antigens  to  T-cells,  and  to  express  stimulatory  cytokines  for  T-  and  NK-

cells (Fidler and Schroit, 1988). The adaptability of macrophages might be taken as an 

advantage by tumour cells to acquire distinct abilities at different stages of tumour 

progression. Cancer cells can stimulate TAMs to produce matrix metalloproteinases (MMPs) 

in a paracrine manner through the secretion of different stimuli such as interleukins, growth 

factors and CD147 as an extracellular matrix metalloproteinase inducer. In addition, the 

invasiveness of the tumour cells might be supported by epidermal growth factor (EGF) 

secreted by TAMs in response to tumour-derived CSF-1, which consequently leads to the 

activation of several genes associated with the migration of tumour cells (Goswami et al., 

2005).  In fact, the invasion and chemotaxis of metastatic cancer cells as a subpopulation of 

tumour cells, relies on the co-migration of tumour-associated macrophages (Goswami et al., 

2005; Wyckoff et al., 2004; Wyckoff et al., 2007).  

 

(Calor ini and Bianchini, 2010)

Figure 8. Origin and function of M2-polarized macrophages.
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1.9.2 Myeloid-Derived Suppressor Cells 
 

Myeloid-Derived Suppressor Cells (MDSCs) (Gabrilovich et al., 2007) are a 

heterogeneous population of immature myeloid cells that have suppressive effect on adaptive 

immune responses (Nagaraj and Gabrilovich, 2008). Numbers of MDSCs are increased in the 

blood of mice and patients with cancer, including CRC (Mandruzzato et al., 2009). When 

they are immature, they express endothelial markers such as CD31 and VEGFR2 and thus 

have the ability to join the tumour endothelium. It has been demonstrated that this 

heterogeneous population of immature myeloid progenitors have tumour angiogenesis-

promoting activity in both mouse tumour models (Shojaei et al., 2007a) and  human cancers 

(Almand et al., 2001; Diaz-Montero et al., 2009). These cells are composed of neutrophils, 

monocytes, and dendritic cells. In mice they are classified by the expression of Cd11b and 

Gr1 on their surface. Subsets of these cells have the potential to prevent antitumour activities 

of T cells and Natural Killer (NK) cells (Murdoch et al., 2008). Indeed, wide range of tumour-

produced stimulators, including VEGF-A, colony stimulating factors, prostaglandins, SCF, 

S100A8, S100A9, CCL2, and a large number of interleukins can recruit Cd11b
+
Gr1

+
 cells to 

the site of tumour (Gabrilovich and Nagaraj, 2009). MDSCs may differentiate into mature 

TAMs (Movahedi et al., 2008; Umemura et al., 2008). Beside their immunosuppressive 

activities, when isolated from tumour bearing mice, these cells also express higher amounts of 

pro-angiogenic factors including matrix metalloproteinases (MMPs) (Yang et al., 2004; Yang 

et al., 2008), which consequently increases the bioavailability of VEGF-A.  It has been 

demonstrated that Cd11b
+
Gr1

+
 myeloid cells also play a role in VEGF-A- independent 

angiogenesis and growth in mouse tumours (Shojaei et al., 2007a). This effect is associated to 

the secretion of the pro-angiogenic factor Bv8, which leads to the proliferation and migration 

of  endothelial  cells  in  the  absence  of  VEGF-A  (Shojaei  et  al.,  2007b).  Recent  studies  have  

also supported a role for Cd11b
+
Gr1

+
 cells in creating a pre-metastatic niche (Yan et al., 

2010), where bone marrow-derived cells prepare the microenvironment sites prior to the 

settlement of tumour cells (Psaila and Lyden, 2009). 

1.9.3 Mast Cells 

In some human tumours, infiltration of mast cells is linked with increased vascularity 

and tumour growth, invasion and poor clinical consequences (Crivellato et al., 2008; Groot 

Kormelink et al., 2009). Recent CRC studies have shown that a lower number of mast cells in 

the site of tumour are associated with hypovascularity and better survival in CRC patients 
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(Gulubova and Vlaykova, 2009). Stem cell factor (SCF) secreted by tumour cells in vivo has 

been involved in the accumulation of mast cells in the border of growing tumours (Huang et 

al., 2008). Activated mast cells secrete many pro-angiogenic and growth stimulatory factors 

such as VEGF (Crivellato et al., 2008; Grutzkau et al., 1998), FGF-2, heparin, histamine, 

TNF- , angiopoietin-1, and proteases, thus triggering neoangiogenesis. It has been also 

shown  that  mast  cells  are  a  substantial  element  for  preneoplastic  polyp  development  

(Gounaris et al., 2007). Accordingly, the number of mast cells is significantly higher in 

primary CRCs, as well as in poorly differentiated tumours comparing with non-neoplastic 

tissues.   

 

1.9.4 Cancer Associated Fibroblasts  

 

Cancer Associated Fibroblasts (CAFs) are the major cellular component of reactive 

stroma in primary and metastatic cancer and play a key role in CRC progression (Kalluri and 

Zeisberg, 2006; Ostman and Augsten, 2009). CAFs are composed of heterogeneous 

components including tissue-resident fibroblasts, stromal smooth muscle cells and bone 

marrow (BM)-derived fibroblasts (Direkze et al., 2004). Residual tissue fibroblasts and 

fibroblast precursors stimulated by PDGF and TGF-  are also supposed to be the source of 

CAF (Peddareddigari et al., 2010).  

Cancer-associated fibroblasts are mostly specified based on the expression of -

smooth muscle actin ( -SMA), fibroblast-activated protein (FAP), fibroblast-specific protein-

1 (FSP1), neuron-glial antigen-2 (NG2), and PDGF -receptor. Studies have shown that for 

colon cancer patients with high levels of stromal FAP, the risk of having aggressive disease 

progression and developing metastases or recurrence is higher (Henry et al., 2007).  CAFs are 

a  source  of  growth  factors  and  chemokines  that  promote  tumour  growth  and  metastasis  and  

tumour cell proliferation, survival and invasion respectively (Kalluri and Zeisberg, 2006). 

Furthermore, CAF-originated chemokines recruit bone marrow-derived cells, macrophages, 

and  other  immune  cells  to  the  site  of  tumour.  The  secretion  of  VEGF,  FGF,  TGF- ),  and  

CXCL12 by CAF plays a crucial role in the promotion of tumour growth and angiogenesis 

(Dong et al., 2004; Hlatky et al., 1994).  
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1.9.5 Tie-2-Expressing Monocytes (TEMs) 

 

Tie-2, an angiopoietin receptor, mainly expressed by endothelial cells and 

hematopoietic stem cells, is also found in a class of monocytes (Venneri et al., 2007). In 

cancer patients, Tie-2 expressing monocytes (TEMs) are detected in blood and the tumour 

microenvironment, where they correspond to the main monocyte population and are distinct 

from TAMs (Venneri et al., 2007). Interestingly, TEMs have been also detected in many 

tumours including colon carcinoma (Goede et al., 2012). They contribute to tumour 

angiogenesis and growth, and likely possess a superior angiogenic capacity.  The Tie-2 

ligand, angiopoietin-2, which is mainly expressed by hypoxic tumour cells and tumour 

endothelial cells is the major factor involved in their recruitment (Lewis et al., 2007; Murdoch 

et al., 2007). 

 

1.9.6 Neutrophils 

 Infiltration of neutrophils has been detected in different stages of inflammation. In 

addition, increased number of neutrophils is evident in patients with various cancers including 

gastric and colon cancer (Roncucci et al., 2008). Remarkably, neutrophils are an essential 

element of oxidative stress-associated pathogenesis of chronic inflammatory bowel disease 

(IBD)-related RCR (Roessner et al., 2008). More recently, it has been shown that neutrophils 

are strongly involved in tumour angiogenesis.  Neutrophils are recruited into the tumour site 

from the circulation. Once inside the tumour, neutrophils can secrete factors such as 

oncostatin M, which stimulates tumour cells to secrete more vascular endothelial growth 

factor (VEGF). Tumour-associated neutrophils can modulate tumour angiogenesis by 

releasing a variety of proteases contributing to degradation and remodelling of ECM. Of these 

proteases, MMP9 has been shown to have the most effective role in mediating tumour 

angiogenesis. Proteolysis of the ECM by this MMP releases angiogenic factors such as VEGF 

and FGF-2 that are usually attached in an inactivated form to the ECM. Cytokine-activated 

neutrophils also secrete VEGF and CXCL8 by de-granulation. These potent pro-angiogenic 

factors then act directly on the nearby vasculature to promote tumour angiogenesis. Moreover, 

the interaction of neutrophils with adhesion molecules (ICAM-1) on the endothelial cell 

surface may also stimulate angiogenesis (Tazzyman et al., 2009). However, neutrophils have 

been also shown to have antitumor activities since factors released by neutrophils such as 

ROS, proteases, and cytokines such as TNF-  can kill tumour cells directly (Di Carlo et al., 
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2001a; di Carlo et al., 2001b). Thus, it was recently proposed that, depending on the tumour 

microenvironment, TANs (Tumour- associated Neutrophils) can have pro- or antitumour 

properties (Fridlender et al., 2009).  

1.9.7 Neuropilin-1 Expressing Mononuclear cells (NEMs) 

 Neuropilin-1 expressing myeloid cells were originally discovered at the site of 

angiogenesis in mouse skeletal muscles injected with AAV-VEGF-A165 (Zacchigna et al., 

2008). AAV-mediated overexpression of VEGF165 was  shown  to  recruit  a  large  number  of  

infiltrating mononuclear cells, interspersed among muscle fibres, persisted in the tissue for 

several months, and accompanied VEGF-induced angiogenesis (Zacchigna et al., 2008). 

These cells were further characterized as Nrp-1
+
/CD11b

+
/Gr1

-
 cells involved in the process of 

blood vessel maturation and normalization and then designated as NEMs. Interestingly, a 

similar cellular infiltration was observed in adult tissues of inducible VEGF transgenic mice 

(Grunewald et al., 2006), pointing towards an invariable role of NEM recruitment in 

supporting VEGF-driven angiogenesis.  

 Remarkably, ectopic expression of Sema3A in the mouse skeletal muscle through 

AAV-mediated gene transfer elicited the attraction of NEMs, even in the absence of any 

angiogenic process (Zacchigna et al., 2008). Along with the observation that VEGF121 did not 

recruit NEMs in the same model, these data strongly support a crucial role of Nrp-1 in 

mediating cell mobilization. A detailed representation of NEM infiltration upon AAV-

mediated overexpression of either VEGF165 or Sema3A is shown in Figure 9.  
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(Zacchigna et al., 2008)

Figure 9. Similar cell recruitment by VEGF165 and Sema3A in vivo. Immunohistochemistry against -

SMA antigen in mouse skeletal muscles previously injected with either AAV-VEGF165 or AAV-Sema3A

demonstrates that both VEGF165 and Sema3A, through binding their mutual co-receptor Nrp-1, can attract

NEMs to the site of angiogenesis. Formation of arter ies in muscles overexpressing VEGF165 is due to the

pro-angiogenic effect of this VEGF-A isoform, although such an effect is not detectable in mouse skeletal

muscles injected with AAV-Sema3A.

 

 Indeed, NEMs promote vessel maturation and artery formation through the secretion of 

factors causing the recruitment of smooth muscle cells to the site of angiogenesis. 

Noteworthy, gene expression profiling showed that NEMs produce relatively low levels of 

canonical pro-angiogenic factors (Carrer et al., submitted for publication), remarkably 

distinguishing this cell type from other bone marrow-derived populations sustaining 

angiogenesis.  

 NEMs can be directly purified from the bone marrow as CD11b
+
/Nrp-1

+
/Gr1

- 
cells and, 

when injected to the site of angiogenesis, they can actively sustain full vessel maturation 

(Zacchigna et al., 2008).  

 Prolonged  expression  of  VEGF165 in  the  skeletal  muscles  of  adult  rodents  induces  a  

strong angiogenic response, with an increase in the number of capillaries and newly formed 

arteries surrounded by - smooth muscle actin ( -SMA) positive cells.  

 Consistently, VEGF121 does not disply any arteriogenic capacity, as is not able to elicit 

the formation of -SMA+ vessels at physiological doses. Importantly, VEGF121 promote EC 

proliferation at an extent comparable to VEGF165, as expected by its exquisite angiogenic 

potential. Accordingly, the Molecular Medicine Laboratory proposed a working model in 

which vessel maturation is elicited specifically by VEGF165 in an indirect way, which implies 

the recruitment of NEMs as accessory cells, peculiarly able to attract mural cells thus 

allowing vessel coverage and stabilization (Figure 10). Indeed, NEMs contribute to arterial 
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formation through a paracrine effect resulting in the activation and proliferation of local 

smooth muscle cells present in the tissue. 

  

 

 

 

 

 

 

 

 

 

 

(Zacchigna et al., 2008)

Figure 10. Role of NEMs in vessel stabilization. The recruitment of NEMs by both VEGF165 and Sema3A

as ligands of Nrp-1 plays major role in vessel maturation. w ide range of growth factors secreted by this

population attracts smooth muscle cells and pericytes to the site of ongoing angiogenesis, which in turn

contr ibute to vessel coverage and stabi lization.

  

 NEMs  do  not  infiltrate  mouse  experimental  tumours,  consistent  with  their  ability  to  

favour vessel stabilization, and do not have an equivalent human counterpart so far, as Gr1 is 

a marker present only in mice. Hence, their relevance in the context of human malignancy is 

still unexplored. 

 Importantly, Sema3A has been shown to exert anti-tumour activity in a variety of 

mouse models, including xenotransplantation (Kigel et al., 2008), orthotopic implantation 

(Carrer, unpublished) and spontaneous carcinogenesis (Maione et al., 2009). Whether this 

effect could be, at least in part, due to recruitment of NEM has been extensively investigated 

at the Molecular Medicine Laboratory. Indeed, administration of purified NEMs significantly 

inhibited tumour growth (Carrer, unpublished), an event concomitant with the normalization 

of tumour vasculature and improved oxygen perfusion. Previous data strongly point towards 

NEMs as a strong normalizing agent in the context of tumour angiogenesis. NEM-induced 

improvement in tumour perfusion contributes to the inhibition of tumour progression through 

amelioration of tumour-associated hypoxia.  
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1.9.8 Lymphocytes and Dendritic Cells 
 
 It  has  been  shown  that  tumours  without  early  metastatic  invasion  signs  contain  

increased number of recruited immune cells and elevated amount of markers of T-cell 

migration,  activation,  and  differentiation  (Pages  et  al.,  2005).  In  fact,  the  type,  density,  and  

location of T-cells in some colon cancer tissue samples, has been shown to be a better 

predictor  of  patient  survival  than  histopathological  results  used  to  stage  CRC (Galon  et  al.,  

2006; Morris et al., 2008). Moreover, the role of B-cells in human CRCs is not well 

described, but B-cells may inhibit antitumor T-cell responses by antigen-nonspecific 

mechanisms (Shah et al., 2005).  Dendritic cells (DCs), both myeloid and plasmacytoid DCs 

are able to induce primary and secondary T- and B- cell responses, thanks to their antigen 

presenting capacity. Tumour-derived factors such as VEGF, -defensin, CXCL12, HGF, 

CXCL8, and PGE2 recruit  immature  DCs  (iDCs)  in  the  site  of  tumour  but  prevent  their  

maturation (Gabrilovich et al., 1998), resulting in a cellular infiltrate composed of few mature 

DCs but abundant iDCs. These iDCs promote tumour angiogenesis by releasing pro-

angiogenic cytokines and functioning as a source of endothelial progenitors (Curiel et al., 

2004). On the other hand, mature DCs may induce tumor-specific cytotoxic T lymphocyte 

(CTL) activity against colon tumor growth in vitro and in vivo (Wu et al., 2009). 

 

1.9.9 Platelets 

 

 Platelets are nucleus-less cells basically involved in hemostasis. On the other hand, they 

have  been  also  observed  to  play  a  crucial  role  in  tissue  repair  and  the  conservation  of  

endothelial function (Mazzucco et al., 2010). Moreover, evidence suggests that increased 

number of platelets can contribute to tumour progression, possibly through enhanced 

production of growth factors normally required for tissue repair. Other evidence indicates a 

role of platelets in tumour metastasis and angiogenesis (Karpatkin, 2003; Nash et al., 2002). 

In cancer patients, platelets are activated by thrombin, ADP, or by direct contact with 

molecules on the surface of tumour cell membranes. Platelet activation outcome is the 

generation of thromboxane A2 and the release of the storage contents from both alpha 

granules  and  dense  granules  that  contain  pro-angiogenic  factors  such  as  VEGF,  PDGF,  and  

CXCL12 (Stellos et al., 2009). Platelets are also involved in colon cancer metastasis by being 

accumulated on embolic tumour cells, thus protecting them from elimination by the immune 

system (Kopp et al., 2009). 
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1.9.10 Mesenchymal Stem Cells 

 Colon tumours, as many other types of solid malignancies, contain various multipotent 

cells, including Mesenchymal Stem Cells (MSCs), Endothelial Progenitor Cells (EPCs), and 

pericyte progenitor cells beside cancer stem cells (Ricci-Vitiani et al., 2009). Remarkably 

important among these are the MSCs, which are multipotent nonhemopoietic cells that reside 

in the bone marrow and can differentiate into various types of mesenchymal cells.  They are 

characterized by the expression of a large number of adhesion molecules and stromal cell 

markers including CD73, CD105, CD44, CD29, and CD90 and the absence of hematopoietic 

markers (CD34, CD45, and CD14) or endothelial markers (CD34, CD31, and vWF). MSCs 

give  rise  to  a  large  number  of  cytokines  and  growth  factors  such  as  PDGF,  FGF,  and  

CXCL12. They also express growth factor receptors and ECM proteins.  

 In bone marrow, MSCs and MSC-derived stromal fibroblasts sustain hematopoiesis. 

However, in primary tumours, they are present in large numbers and contribute to the 

formation of tumour- associated stroma. They also promote tumour growth and metastasis 

(Karnoub et al., 2007) partly by their immunosuppressive effects and pro-angiogenic 

properties. MSCs can also be differentiated into endothelial and pericyte-like cells that 

support tumour growth. In addition, MSCs have been supposed to play a role in   promoting 

the cancer stem cells’ survival (Ning et al., 2008). 

1.10 Lymphatic vasculature and its role in metastatic spread in cancer 

Lymphatic vasculature is an important gate of metastasis in various cancer types. 

Spread of tumour cells to lymph nodes has been usually recognized as an early event in 

metastatic disease relevant to the staging of the cancer (Tuttle, 2004). In addition, lymphatic 

vasculature and lymph nodes are fundamental for immune function.  

 The lymphatic capillaries are composed of an irregular basement membrane and a single 

layer of endothelial cells deprived of tight junctions. These characteristics are crucial for the 

function of lymphatic capillaries, since they simplify the ingression of lymphocytes, proteins 

and fluids into the vessels (Oliver and Detmar, 2002; Skobe and Dana, 2009). Moreover, 

pericytes or smooth muscle cells are missing in lymphatic capillaries, although the larger 

lymphatics are also composed of smooth muscle cells involved in pushing lymph through the 

vessels (Saharinen et al., 2004). In fact, preventing regional lymph node metastasis in some 

animal models has been associated with lower metastasis rate at distant sites, proclaiming the 

existence of a pathway for organ metastasis through lymph nodes (Alitalo et al., 2004; 
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Krishnan et al., 2003; Stacker et al., 2002).   

1.11 The cancer vasculature 

 As previously mentioned, tumour vessels branch in an irregular serpentine manner, with 

the tendency to connect to each other haphazardly (Baluk et al., 2005; Jain, 1988, 2005; 

Mazzone et al., 2009; Nagy et al., 2010). In addition, the tumour vasculature is highly 

heterogeneous and displays a wide range of vessel subtypes including capillaries, ‘mother’ 

vessels, which are characterized as large, leaky vessels encompassed by pericyte-depleted thin 

walls,  and  also  glomeruloid  vessel  protuberances  and  vascular  malformations(Nagy  et  al.,  

2010; Pettersson et al., 2000). Some vessels seem oversized whereas smaller vessels display 

some sort of immaturity (Fukumura et al., 2010; Jain and Stylianopoulos, 2010).  

 In  fact,  comparing  to  the  healthy  vasculature,  as  a  result  of  a  persistent,  uncontrolled  

production of angiogenic factors, which tips the balance in favour of excessively active vessel 

growth, tumour vessels are structurally and functionally abnormal (Figure 11). Tumour 

perfusion  is  chaotic  in  such  a  way  that  blood  may  flow  easily  in  certain  areas  while  being  

stagnant in others (Fukumura et al., 2010; Jain, 1988). Irregularities in the flow patterns in 

tumour vasculature, subsequently causes an interruption in the process of constant delivery of 

nutrients as well as chemotherapeutics (Jain, 2005; Jain and Stylianopoulos, 2010). Indeed, in 

some areas, ECs with indiscriminate shape are piled upon each other and block blood flow by 

extending several outgrowths, while in other locations, ECs fade away or die behind 

intracellular gaps. These abnormalities are detectable in a wide variety of tumour types but 

not every tumour demonstrates the same degree of vessel abnormality (Rocha and Adams, 

2009).    
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          (Carmeliet and Jain, 2011)

Figure 11. Tumour vessels are abnormal in their function and structure. a) In a healthy normal

tissue, well-structured vasculature is formed, which is encompassed by normal pericyte coverage of the

vessel wall.

b) Instead, in tumours, the vascular network displays structural and functional anomalies, mainly at the

level of vessel wall, resulting in poor perfusion and severe hypoxia in some certain regions. BM, EC, and

IFP stand for basement membrane, endothelial cell, and intersti tial fluid pressure respectively.

Moreover, the vessel wall of tumour is also abnormal. Since their wall is compressed by 

tumour or stromal cells, diameters are asymmetrical. Tumour-associated endothelial cells 

have a unique activated phenotype compared to normal quiescent endothelial cells. Whereas 

normal vessels are lined with a tightly connected and impenetrable monolayer of endothelial 

cells aligned in the direction of blood flow, simulated tumour endothelial cells can easily 

detach from the basement membrane and pile upon each other (Baluk et al., 2005; Mazzone et 

al., 2009; Ozawa et al., 2005). Consequently, some tumour endothelial cells might die or 

dismount, resulting in the formation of some gateways to facilitate the access of escaped 

cancer cells to the blood flow through so-called ‘mosaic vessels’ (Jain, 1988) lined with both 

endothelial and tumour cells. In fact, tumour endothelial cells generate sprouts and form 



Introduction 

38

abluminal extensions, with their tip cells pervading the tissue. On the other hand, tumour 

endothelial cells go through endothelial-to-mesenchymal transition leaving their default 

position.  

 Tumour blood vessels are exposed to a distinct combination of stimuli in their regional 

environment and are controlled by abnormal signalling pathways (Figure 12). In other words, 

cancer cells by their oncogenic transformation features or response to hypoxic conditions, 

release a collection of stimuli that trigger the transformation of their local environment. These 

factors stimulate the remodelling of the extracellular matrix to facilitate tumour growth and 

progression. Tumour cells as well as stimulated endothelial cells secrete a variety of soluble 

factors involved in the mobilization and homing of bone marrow-derived myeloid cells and 

their subsequent differentiation into tumour-associated macrophages and neutrophils. In such 

an environment, receptors on the surface of endothelial cells bind factors that trigger 

intracellular signalling pathways and thus promote a cascade of phenotypic changes leading to 

migration, invasion, survival and proliferation of these endothelial cells.  
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           (Weis and Cheresh, 2011)

Figure 12. Regulators of endothelial activation and tumour angiogenic response. FN, fibronectin;

Col, collagen; VN, vitronect in; LN, laminin; TUMs, tumstatin; END, endostatin; CANS, canstatin.

  

1.12 Abnormal vessel maturation in pathological angiogenesis 

 During physiological vessel maturation, alterations in blood flow, metabolic 

requirements, and growth factor secretion results in vessel remodelling. Some vessels follow 

the process of maturation through the secretion of extracellular matrix (ECM) by endothelial 

and encompassing stromal cells ensued by recruitment of pericytes and vascular smooth 

muscle  cells  to  the  growing  vessels  (Hellstrom et  al.,  2001).  Pericytes  and  vascular  smooth  

muscle cells on their surfaces express Angiopoietin-1 (Ang-1) that subsequently binds to Tie-

2 receptors on the surface of endothelial cells. This close interaction between endothelial cells 

and mural cells (vascular smooth muscle cells and pericytes) results in the activation of TGF-
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, and consequent stimulation of basement membrane production (Holderfield and Hughes, 

2008). The basement membrane is a specialized ECM construction made of sheet-like 

matrices that are closely attached to the cells and one of its major roles is to provide structural 

support for the nascent vessels (Gustafsson and Fassler, 2000). Whereas under normal 

physiological circumstances, interaction between Ang-1and its receptor stabilizes the integrity 

of vessel junctions, secretion of high levels of Ang-2 by sprouting endothelial cells, compete 

for binding to Tie-2, leading to destabilization of pre-existing vessels (Adams and Alitalo, 

2007; Eklund and Olsen, 2006).   

 In a healthy tissue, mural pericytes with their stellate-like appearance and their unique 

ability to encompass the endothelium play a crucial role in sustaining a mechanical backbone 

for delicate endothelial channels. Pericytes are basically located around EC junctions and by 

forming umbrella-like constructions cover the gaps between ECs. Pericytes and their adjacent 

ECs are implanted within the same basement membrane and thus establish tight connections 

between each other. Additionally, among the most important functions of the basememt 

membrane, it is noteworthy to mention its crucial role in selective transport of components 

and cells and storage of angiogenic factors (Diaz-Flores et al., 2009; Eble and Niland, 2009). 

The  basement  membrane  of  the  tumour  vessel  is  deprived  of  tight  connections  with  

endothelial cells, is made of various irrelevant layers and has an abnormal thickness. As a 

result of constant tumour vessel remodelling, it is highly probable that under such a condition, 

endothelial vessels are no longer encompassed by a basement membrane.  Pericytes as shields 

of endothelial cells secrete low levels of endothelial survival factors, such as VEGF and are 

eventually responsible for blood flow irregularities. Indeed, pericyte coverage of tumour 

vasculature is much less than normal tissues and is highly variable between tumours and even 

in the same tumour. In addition, since mural cells prevent breaching of the vessel wall by the 

intravasation of cancer cells, it seems reasonable that tumour cells spread through pericyte-

deficient vessels is highly facilitated.  

 In a large number of human diseases and tumours, abnormal vessels are considered as 

one of the main characteristics of the malignancy. Indeed, an abnormal vasculature is now 

considered a hallmark of solid tumours (Jain, 2002; Jain et al., 2002). In other words, from the 

physiological point of view, the basic differences between the normal and tumour tissues 

originate from the tumour vasculature. Vascular network in tumours is composed of two 

categories of vessels: the pre-existing vessels in normal tissues into which the tumour has 

invaded; and tumour microvessels born through the process of neovascularization as a 
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consequence of increased expression of pro-angiogenic factors. In this respect, the two kinds 

of vessels form different structural and physiological abnormalities (Brown and Giaccia, 

1998). These abnormalities in concert with the compression of blood vessels by cancer cells 

(Padera et al., 2004) eventually impair blood supply to the tumour. As a consequence, blood 

flow is often sluggish or delayed and highly irregular. In addition, the vessels are exceedingly 

permeable, if compared to those in healthy tissues. The oxygen diffusion distance in solid 

tumours can be nearly 100-150 µm (Dewhirst et al., 1994). Accordingly, tumour cells away 

from the effective oxygen diffusion distance may be exposed to low oxygen tensions, thus 

affected by hypoxia. Similarly, in such a hypoxic area, anticancer chemotherapeutics could 

not efficiently reach tumour masses at toxic concentrations (Durand, 1994).  

 The clinical and pathological relevance of vessel abnormalization is further underscored 

by the fact that through up-regulation of angiogenic factors by cancer and stromal cells, which 

in turn further supports vessel disorganization, hypoxia stimulates non-productive 

angiogenesis in a constant self-reinforcing circuit. Indeed, abnormal tumour vasculature might 

disrupt the function of immune cells in tumours. As a consequence, abnormal tumour 

vasculature can cause tumour resistance to radiation therapy and a wide range of 

chemotherapeutics.  

 In this respect, traditional anti-angiogenic-based therapies focus on inhibiting the 

formation  of  new  blood  vessels  and/  or  to  demolish  existing  ones  to  starve  the  tumour 

(Folkman, 1971). Originally foreseen as a promising therapeutic approach to treat a broad 

variety of solid tumours, anti-angiogenic compounds have met a significant disappointment 

when translated to the clinical practice. Much of this setback is possibly due the aberrant 

organization of tumour vasculature and the intrinsic tumourigenic potential of tumour-

associated hypoxia. In this respect, normalizing tumour vasculature improves tumour vessel 

perfusion and oxygenation, which consequently leads to reduced metastasis rate and more 

efficient chemo and immune therapy approaches (Hamzah et al., 2008; Mazzone et al., 2009; 

Stockmann et al., 2008). In fact, preclinical evidence has demonstrated that normalization of 

vascular abnormalities might be considered as a promising therapeutic paradigm for cancer 

and other vascular diseases affecting more than half a billion people worldwide.  

1.13 Anti-angiogenic therapies 

 As mentioned before, VEGF is an essential mediator of tumour-associated 

angiogenesis. Concomitantly, in 1971, anti-angiogenic therapy was proposed as a tactic to 
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treat solid tumours. Fourteen years after the cloning of VEGF-A in 1989, the first VEGF- 

targeted agent, the anti-VEGF monoclonal antibody bevacizumab (Avastin, Genentech) as a 

VEGF-neutralizing antibody showed clinical benefits in metastatic colorectal cancer patients 

when combined with chemotherapy (Figure 13). Nevertheless, in certain cancers, the clinical 

use of VEGF blockers such as VEGF receptor tyrosine kinase inhibitors which block the 

signaling of pathways such as VEGF, are only effective when exploited as monotherapy, 

whereas they might be toxic in combination with chemotherapy (Jain et al., 2006; Jain et al., 

2009). 

  VEGF-targeted therapy might limit the permeability of the vessels induced by VEGF, 

constrict dilated ones and as a result improve blood flow.  

 To date, two main obstacles currently impede non-surgical treatment of solid tumours. 

First of all, tumour physiological barriers hinder the delivery of therapeutics at effective 

concentration to all cancer cells (Jain, 1998). Moreover, acquired drug resistance originating 

from genetic and epigenetic mechanisms decreases the effectiveness of available drugs 

(Browder et al., 2000; Klement et al., 2000). Anti-angiogenic therapy has the ability to 

overcome these problems or at least decrease their impact. This specific sort of therapy targets 

the tumour vessel network by affecting endothelial cells. In fact, a majority of cancer cells for 

their growth and survival depend on a small number of residual or circulating endothelial 

cells. Blocking VEGF or its receptor VEGFR2 results in the apoptosis of endothelial cells and 

as a consequence, a reduction in vessel diameter, density and permeability (Kadambi et al., 

2001; Tsuzuki et al., 2000; Yuan et al., 1996). 

 However, anti-angiogenic therapy seems more challenging than anticipated. Many 

patients with metastatic cancer are refractory or develop resistance to VEGF inhibitors. 

Additionally, whether anti-angiogenic therapy can cause tumour cells to become more 

malignant has yet to be further elucidated (Ebos et al., 2009; Paez-Ribes et al., 2009). Indeed, 

various anti-angiogenic techniques seem to be more effective in preclinical than clinical 

settings.  

 As mentioned before, a fraction of cancer patients are refractory to VEGF-inhibitor 

therapy (Bergers and Hanahan, 2008). The extent of resistance differs from one cancer to 

another, varies between micro and macrometastatic state, and also depends on the type of 

VEGF blocker exploited. Patients can be either intrinsically refractory or develop resistance 

during the process of treatment. In this regard, several mechanisms contributing to changes in 

tumour cells, endothelial cells or other stromal cells have been speculated to explain the 
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occurrence of resistance in both cases (Bergers and Hanahan, 2008; Carmeliet, 2005; Jain et 

al., 2006; Jain et al., 2009). At a more advanced stage, due to the production of other pro-

angiogenic factors, tumour angiogenesis might become VEGF independent and consequently 

respond poorly to anti-VEGF treatment.  

 By normalizing tumour vasculature (before its elimination), low-dose anti-angiogenic 

therapy improves the delivery of drugs and oxygen to the tumour. Whereas anti-angiogenic 

therapy alone can prevent tumour growth, a large body of evidence has demonstrated that this 

sort of therapy along with radiation and chemotherapy results in long term cures in mice 

(Browder et al., 2000; Klement et al., 2000). Since both radiation therapy and chemotherapy 

strictly rely on sufficient blood flow to the tumour to transport oxygen and drugs respectively, 

normalization of the tumour vessels through anti-angiogenic therapy can be considered as a 

putative explanation why standard anti-angiogenic therapies give rise to a better outcome 

when combined with radio/chemotherapy. In recent years, some challenging questions have 

been raised in the field of anti-angiogenic cancer therapy: in order to achieve tumour 

shrinkage and starve primary tumours from oxygen, should tumour vessels disruption be the 

focus  of  therapy,  or  instead,  should  they  be  normalized  to  improve  responses  to  routine  

anticancer therapies? Based on the fact that each individual approach has its own advantages, 

one  novel  possibility  is  to  combine  these  two  strategies  to  complement  current  anti-

angiogenic therapeutic policies. Moreover, it has been previously demonstrated that in a 

mouse model of pancreatic islet tumourigenesis, inhibition of major VEGF-A receptors 

(VEGFR1 and VEGFR2) using monoclonal antibodies could initially block angiogenesis and 

tumour growth (Casanovas et al., 2005). However, due to the resistance to anti-VEGF 

receptor therapy, successive tumour progression accompanied by revascularization of the 

tumour was observed. This resistance was then characterized by the compensatory 

upregulation of VEGF-A, FGF-1, FGF-2, FGF-7, and FGF-8, ephrin-A1, and Ang-2.  

 Despite significant investments and several small molecule inhibitors of angiogenesis 

currently  subjected  to  clinical  trials  (Ivy  et  al.,  2009),  bevacizumab,  as  an  anti-VEGF  anti-

angiogenic antibody is now used as a first line treatment only along with conventional  

chemotherapy regimens for treatment of metastatic colorectal cancer. Many retrospective 

studies now suggest that antineoplastic effects of this drug might be due to normalization of 

abnormal tumour vasculature, reduced intratumoral hydrostatic pressure along with increased 

vessel permeability, which allows more effective drug delivery to the tumour(Ferrara et al., 

2004; Jain, 2001; Willett et al., 2004). Interestingly, since radiotherapy and certain 
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chemotherapy approaches strictly rely on the formation of reactive oxidative species to hit 

tumour cells, tumour hypoxia could reduce the efficacy of conventional anticancer treatments 

(Moeller et al., 2007).  

 On the other hand, induction of hypoxia through vessel relapse after VEGF blockade 

can trigger a more invasive and metastatic pattern, while in other cases, tumour stem cells by 

acquiring extra mutations can become hypoxia-tolerant. Although HIF-1 can be considered as 

an important therapeutic target, there are other multiple pathways responsive to hypoxia. 

Moreover, in vivo studies hypothesize that alternative angiogenic pathways might be activated 

when a single factor such as HIF-1 is inhibited.  Another important influence of hypoxia is to 

induce radio/chemotherapy resistance in solid tumours. In fact, under hypoxic conditions, by 

activating HIF-1 mediated pathway, tumour cells have demonstrated an increased 

chemoresistance (Comerford et al., 2002) and radioresistance (Moeller and Dewhirst, 2006). 

On the other hand, it has been also demonstrated that chronic hypoxia can increase 

radiosensitivity due to a decreased homologous recombination capacity and DNA double-

strand break repair in hypoxic tumour cells (Chan et al., 2008). In this regard, overexpression 

of the ATP-binding cassette (ABC) transporters family members in cancer tissues have been 

shown  to  pump  anticancer  drugs  out  of  the  cancer  cells  and  thus  to  be  responsible  for  

chemoresistance to a wide range of these reagents. Indeed, HIF-1  has been described as an 

ABC transporter genes transcription regulator in tumour cells (Gottesman et al., 2002; Park et 

al., 2006). On the other side of the coin, hypoxic tumour cells secrete some amounts of 

VEGF, which is subsequently associated with progression of angiogenesis, increase in 

paracrine/autocrine growth factor secretion, tumour growth, and increase in the rate of 

metastasis.   It  has  been  also  shown  that  VEGF165 –transfected xenografts show highly 

vascularized tumours with an accelerated growth rate and enhanced chemoresistance (Zhang 

et al., 2006).  

 Altogether, these observations highlight the diversity and complexity of the tumour 

angiogenic response. As a consequence, better understanding of the full range of either HIF-

dependent or HIF-independent angiogenic mechanisms seems a basic necessity to be able to 

design optimal combinations of anti-angiogenic agents. In other words, knowing how anti-

angiogenic therapeutics act in vivo and what types of drugs can be combined to result in better 

outcome in certain patients are crucial steps in achieving successful anti-angiogenic strategies. 

Beside this, tumour vessel normalization can play a critical role in increasing the efficacy of 

anticancer therapies by ameliorating the oxygenation of the tumour and subsequent 
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modulation of the secretion of various cytokines and growth factors to the site of malignancy. 

Accumulative  body of  evidence  shows that  tumour  vessels  are  normalized  after  anti-VEGF 

therapy, resulting in fewer but more efficient vessels with proper pericyte coverage, which 

supports better drug delivery to the tissue (Dickson et al., 2007; Inai et al., 2004; Mancuso et 

al., 2006). In other words, anti-angiogenic therapies affecting both endothelial proliferation 

and vessel stabilization have been shown to be more effective on tumour progression than 

only targeting the VEGF signalling (Bergers et al., 2003). Despite the fact that prolonged anti-

VEGF therapy can eventually demolish most of the vessels, tumours can shift towards 

alternative pathways of angiogenesis and become resistant to VEGF blockade. Consequently, 

an interesting area of research at present can be to answer the question whether and how the 

normalization of vessels by anti-VEGF therapy can be sustained to achieve a prolonged 

benefit.   

 Therefore, anti-angiogenic therapy requires especial consideration of signalling 

components and receptor crosstalks among a wide range of cell types, considering the fact 

that tumour cells can persist growing in VEGF-independent manner (Shojaei et al., 2007b) by 

utilizing alternative pro-angiogenic signallings. These complicated interactions play a crucial 

role in angiogenic remodeling and can be involved in de novo or  acquired  resistance.  To  

achieve a successful anti-angiogenic strategy, it is of high importance to consider these 

signaling effects in the context of various cell types involved in the continually altering 

tumour microenvironemt. These therapeutic responses can be extended to the suppression of 

endothelial progenitor cells infiltration and damages of cancer stem cells (CSCs) niche 

located in the proximity of tumour vasculature. It is also expected that anti-angiogenic 

therapies provide better prognosis by indirect disruption of cancer stem cells (Gilbertson and 

Rich, 2007).   
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                    (De Bock et al., 2011)

Figure 13. Anti-VEGF therapy acts as normalizer for tumour vessels. Anti-VEGF treatment prunes

the immature blood vessels and thus stabi lizes the persisting vessels by enhancing their per icyte coverage

through the induction of Ang-1 and PDGFR signalling. Accordingly, neutralization of VEGF reduces

tumour vessel permeability and ameliorates tumour perfusion and oxygenation, which consequently

results in better penetration and higher efficacy of chemoterapeutics.

1.14 Role of hypoxia in physiological and pathological angiogenesis 

 Hypoxia is among the most important physiological stimuli to induce angiogenesis and, 

consistently, a substantial component of tumour progression. Hypoxia is generally defined as 

a reduction in the ambient oxygen concentration. During the process of hypoxia-induced 

tumour progression, cancer cells can establish an increased potential for invasive growth as 

well as regional and distant metastasis (Vaupel and Mayer, 2007; Vaupel et al., 2004). Indeed, 

hypoxia is established in the most interior regions of solid tumours due to abnormal 

vasculature and irregular intratumour blood flow (Yasuda, 2008). 

 In ischaemic conditions, tissue perfusion is reduced in such a way that oxygen 

availability is no longer sufficient to fulfil tissue metabolic requirements. In fact, hypoxia is a 

well-known regulator of many aspects of cell biology (Simon and Keith, 2008). Cells respond 
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to such environmental stress by activating several regulatory pathways. Expectedly, 

expression of almost all crucial angiogenic factors, including vascular endothelial growth 

factor (VEGF) is induced by hypoxia, as improving blood supply is the primary response to 

inefficient oxygen delivery (Figure14). Most of the effects of the hypoxia are associated with 

the transcriptional activity of hypoxia inducible factor-1 (HIF-1). HIF-1 mediates a 

transcriptional response in a cell type specific manner involving an organized expression of 

growth factors by diverse cell types within the hypoxic tissue. On the other hand, beside 

hypoxia, other pathways can also increase the expression of HIF-1  in tumours under 

normoxic conditions (so-called hypoxic mimicry conditions). Production of vascular 

endothelial growth factor (VEGF) in tumour cells is regulated by the activated HIF-1  

regulated system. Increased levels of VEGF subsequently induce the accumulation of HIF-1  

and promote tumour metastasis through angiogenesis. In fact, intratumoural hypoxia, as a 

frequent observation in metastatic cancers results in the activation of Hypoxia-inducible 

factors. HIFs are involved in different steps of metastatization, including metastatic niche 

formation through increasing the expression of various enzymes implicated in remodelling 

collagen at the metastatic site and recruiting bone marrow-derived cells (BMDCs) to the 

metastatic niche. In the case of breast cancer patients, overexpression of HIF-1  is associated 

with an increased risk of metastasis and mortality and may benefit from HIF-inhibitor therapy 

(Wong et al., 2012).   

 Additionally, it has been found that loss of HIF-1  in endothelial cells decreases nitric 

oxide (NO) synthesis, delays tumour cell migration through endothelial layers, and reduces 

tumour cell metastasis whereas loss of HIF-2  has opposite effects (Branco-Price et al., 

2012). These contradictory effects stem from differential regulation of NO homeostasis that 

subsequently modulates VEGF expression in an NO-dependent response loop, but still 

highlight  the  pivotal  role  of  HIF-mediated  transcriptional  program  for  the  regulation  of  

tumour angiogenesis. 

 



Introduction 

48

 

               (Latham et al., 2010)

Figure 14. Factors regulating the blood concentration of VEGF-A. VEGF-A is produced and secreted by

inflammatory cells of the tumour microenvironment under hypoxic stress. This results in the

establishment of VEGF-A concentration gradient in the blood. Excess VEGF-A can be metabolized and

eliminated as nitrogenous waste. However, VEGF-A is also removed from the bloodstream through

binding to endothelial receptors (VEGFR1 and 2) and co-receptors (HSPGs, neuropilins) or sequestered

within the bloodstream by the soluble form of VEGFR1, sFlt-1.
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2. AIM OF THE STUDY 

The  target  of  this  research  was  primarily  to  unravel  the  roles  of  the  two  major  

expressed  isoforms  of  VEGF-A  (termed  as  VEGF-A165 and VEGF-A121) in human tumour 

angiogenesis, development and prognosis. Previous findings of the Molecular Medicine 

laboratory have demonstrated that these two VEGF-A splicing isoforms have divergent 

effects in mouse models of both physiological and pathological angiogenesis. In particular, 

despite a comparable capacity to activate the local endothelium, only VEGF-A165 successfully 

elicited full maturation of newly-formed blood vessels. Indeed, VEGF-A165 overexpression 

resulted in improved vessel architecture and function whereas VEGF-A121 primarily 

stimulated mere capillary sprouting. This difference is particularly relevant during tumour 

angiogenesis, as in such a context abnormal vascularization is favourable and leads to 

accelerated tumour growth and increased invasiveness. Thus, using tissue specimens of 

colorectal carcinoma (CRC) as a pathological model of angiogenesis, the initial idea was to 

assess whether human malignancies display a preferential expression of one of these isoform 

and to correlate it with the outcome of CRC in a predefined and statistically representative set 

of the patients. The expression levels of the two isoforms in the tumour mass were compared 

with levels in a matched, non-malignant tissue sample. The VEGF-A165 /VEGF-A121 ratio was 

then correlated with the clinical outcome and with patient prognosis.  

Moreover, biological diversity of VEGF isoforms intriguingly is correlated with their 

differential ability to recruit a peculiar myeloid sub-population of bone marrow-derived 

myeloid cells (subsequently characterized as NEMs), which in fact exert a potent paracrine 

activity on pericytes and smooth muscle cells, by promoting the coverage and consequent 

stabilization of neoformed blood vessels. When mice skeletal muscles were pre-conditioned 

with VEGF165 as one of the recruiters of NEMs, challenging the same location with malignant 

cells resulted in two chronological predominant outcomes: first, the significant infiltration of 

Nrp-1
+
/CD11b

+
 BM-derived cells to the site of tumour angiogenesis, and second, the 

indicative prevention of tumour growth through its vascular network normalization. In other 

words, when recruited to the tumour microenvironment, an outstanding role of this unique 

Nrp-1
+
/CD11b

+
 myeloid cells is to contribute to the maturation of tumour vasculature. 

Recruitment or ectopic administration of NEMs in mouse tumours results in decreased 

tumour growth, possibly as a final outcome of normalization of tumour vasculature. We thus 

also  explored  the  possibility  that  human  tumours  expressing  abundant  levels  of  VEGF165 
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indeed exhibited improved clinical outcome and NEM infiltration. In this respect, another 

novel aspect was to evaluate the existence of NEMs at the sites of human tumours expressing 

abundant levels of VEGF165.  

Subsequently, we investigated the expression of Semaphorin-3A (Sema3A) in human cancers, 

as it has been described as a potent NEM recruiter, similarly to VEGF165, but differing for the 

absence of any angiogenic activity. 
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3. MATERIALS AND METHODS 

3.1 Patients recruitment  

Consecutive patients scheduled to undergo surgical resection of tumour mass at the 

Department of Surgery of the Azienda Ospedaliero-Universitaria ‘Ospedali Riuniti di Trieste’ 

of Trieste, Italy were recruited for this study, with no specific criteria for exclusion. All 

patients were enrolled according to protocols approved by the Ethical Committee of the 

Azienda Ospedali- ero-Universitaria ‘Ospedali Riuniti di Trieste’, after written informed 

consent was obtained. The tumour mass was entirely removed and samples were frozen at      

–80°C. Apparently healthy mucosa samples were harvested for each patient, at least 10 cm 

away from the tumour mass.  

For each patient, tumour paraffin inclusions were sectioned and analysed by an 

independent group of pathologists. Tumour diagnosis and staging were determined according 

to commonly accepted criteria, including TNM and Dukes’ classification, UICC staging, 

grade, vascular and lymphatic extra-parietal invasion, as routinely determined in all patients 

with colorectal cancer.  

3.2 RNA Extraction Procedure 

Total  RNA  from  the  CRC  biopsy  specimens  was  extracted  using  TRIzol  reagent  

(Invitrogen) according to manufacturer’s instructions. RNA extraction was then followed by 

DNase  treatment  using  DNaseI  (Roche)  to  remove  DNA  contamination.  The  isolated  RNA  

was then subjected to the synthesis of first-strand cDNA using hexameric random primers 

(Invitrogen). Reverse transcription was carried out using Moloney murine leukaemia virus 

reverse transcriptase (MLV RT). The cDNA was then used as a template for PCR 

amplification to detect the expression level of VEGF165 and VEGF121.  

3.3 Relative quantification of VEGF splicing isoforms 

VEGF-A165 and VEGF-A121 relative  abundance  was  quantified  through  semi-

quantitative PCR. A set of primers matching exon 3 and exon 8 (thus able to amplify all 

VEGF isoforms) was employed. Primers sequences: CAG CAC AAC AAA TGT GAA TGC 

(Forward  primer)  and  GAG  GCT  CCT  TCC  TCC  TGC  (Reverse  primer). Thermal cycling 

conditions were 94°C for 5 min, followed by 40 cycles of 94°C for 15 sec, 65°C for 15 sec, 
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and 72°C for 15 sec. The obtained amplicons were then separated using polyacrylamide gel 

electrophoresis and visualized by ethidium-bromide staining. Band intensity was measured 

using VersaDoc imaging system (BioRad) as volume intensity/area (mm
2
). Values were 

normalized against background signal. When either mucosa or tumour sample could not be 

visualized, corresponding patient was discarded from the study. 

3.4 Quantification of total VEGF-A and Sema3A mRNA 

To assess the abundance of VEGF-A and Sema3A transcr ipts in human tumours

and matching mucosae, cDNA was amplified by Real-Time PCR (BioRad), using human

specific TaqMan assay (Applied Biosystems). Following assays were used:

Hs00173626_m1 (for VEGF-A) and Hs00173810_m1 (for Sema3A). The reaction was

per formed according to manufacturer ’s instructions. GAPDH transcr ipt abundance was

similar ly assessed using human GAPDH-specific TaqMan assay (Applied Biosystems)

and uti l ized as house-keeping gene to normalize expression values.

3.5 Histology 

   Samples for histological evaluation were formalin-fixed and paraffin-embedded for 

routine post-surgical analysis at the Department of Anatomo-Pathology at Cattinara Hospital, 

in Trieste. A small subset of samples was snap-frozen in liquid nitrogen, as indicated in the 

text. 

   For immunohistochemistry, 5-µm sections were hydrated and different antigen 

retrieval  methodologies  were  performed  as  listed  in  Table  2  in  the  chapter  of  Results.  The  

following  anti-Nrp-1  antibodies  were  tried  at  different  dilutions  and  different  incubation  

conditions (clone EPR3113, ABCAM; clone EPR3113, EPITOMICS; Immunogen NS0-

derived rh Neuropilin-1, R&D). After treatment, slides were rinsed in PBS and signals were 

developed using 3, 3’-diaminobenzidine as a substrate for peroxidase chromogenic reaction 

[DAB Plus Substrate System (Thermo Scientific)]. 

   For vessel immunofluorescence, 5-µm paraffin-embedded sections were stained with 

the following antibodies were used: anti-vWF (Polyclonal Rabbit Anti-Human Von 

Willebrand Factor, DakoCytomation), Cy3-conjugated anti- -SMA (clone 1A4, Sigma), 

diluted 1:100 in PBS + 2% BSA. Antigen retrieval was performed using citrate buffer. Nuclei 

were counterstained with DAPI. Images were acquired using a Leica MLB upright 

fluorescence microscope (Leica Microsystems, Wetzler, Germany) equipped with a Coolsnap 
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CF  CCD  camera  (Roper  Scientific,  Evry,  France).  Signals  were  quantified  by  the  use  of  

ImageJ software. 

   For NEM detection, 4-µm frozen sections were air dried and post-fixed with Zinc 

solution (BD Pharmingen). The following antibodies were diluted 1:100 in PBS supplemented 

with 2% BSA: anti-Nrp-1 (clone EPR3113, ABCAM) and anti-CD11b (clone M1/70, BD 

Pharmingen). Nuclei were counterstained with DAPI. Images were acquired using a Leica 

MLB upright fluorescence microscope (Leica Microsystems, Wetzler, Germany) equipped 

with a Coolsnap CF CCD camera (Roper Scientific, Evry, France). 

3.6 Cell culture and treatments 

 HUVEC (human endothelial cell line) were purchased from Clonetics (San Diego, CA) 

and cultured in their own medium, provided by the manufacturer. 4T1 (mouse breast cancer 

cell line), T241 (mouse fibrosarcoma cell line) and B16.F10 (mouse melanoma cell line) were 

all purchased from ATCC (Rockville, MD) and cultured in RPMI medium 1640 (4T1) or 

Dulbecco’s modified Eagle’s medium (T241 and B16.F10), both supplemented with 10% 

Foetal Bovine Serum. 

 5x10
5
 cells were seeded onto 60-mm tissue culture dish and, upon reaching 70-80% 

confluency, were submitted to environmental stress. 

 Hypoxic conditioning was achieved through incubation in a dedicated hypoxic chamber 

for the indicated periods of time. An anoxic chamber and an O2-controlled hypoxic incubator 

(Ruskinn INVIVO2 200) were employed. 

3.7 HIF-1  quantification 

 RNA was extracted from cell cultures using Trizol Reagent (Invitrogen) according to 

manufacturer instructions. cDNA was obtained through retro-transcription as described above 

and utilized as template for Real-Time PCR. HIF-1a expression was quantified using SYBR 

Green  technology  employing  the  following  primer  set:  GAA  TGC  TCA  GAG  GAA  GCG  

AAA  (Forward  primer)  and  ACA  GTC  ACC  TGG  TTG  CTG  CA  (Reverse  primer).  Data  

were normalized against -actin gene expression. 
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3.8. Statistical analysis 

 One-way ANOVA and Benferroni/Dunn’s post-hoc test was used to compare multiple 

groups.  Pair-wise comparison between groups was performed using the Student’s t test. 

P<0.05 was considered statistically significant. Graphs report ± SEM in each column. 
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4. RESULTS 

4.1 Sample collection from colorectal cancer patients  

In  this  study,  colorectal  carcinoma  (CRC)  was  considered  as  a  human  model  of  

pathological angiogenesis. Biopsies of tumour and adjacent healthy mucosa were harvested 

from 78 colorectal cancer patients scheduled to undergo surgical resection of the primary 

tumour mass. This cohort of patients was homogeneous for sex and tumour location, and 

included mostly patients with advanced malignancy (Stage III and IV). For a detailed 

description of the cohort of enrolled patients, see Table 1 (Appendix).  

 Collected  samples  were  then  stored  in  TRIzol  at  -80°C  until  RNA  extraction  was  

performed. Notably, among these analysed specimens, for a small set of CRC patients (n=19), 

an additional biopsy corresponding to the peripheral zone of the primary tumour was 

collected. To avoid any contamination at the moment of surgical resection, mucosa was 

harvested at least 10 cm far from the core lesion, reasonably allowing to consider it as a 

normal, “healthy” mucosa (Figure 1).  

 Next,  by  employing  the  competitive  PCR  method,  all  known  VEGF-A  isoforms  were  

amplified, using primers designed to amplify all splicing variants (annealing at the level of 

two exons, 4 and 8, always included in the final transcript, as shown in Figure 2). By 

measuring the intensity of the corresponding bands (volume intensity/mm
2
) on ethidium 

bromide-stained polyacrylamide gel, the relative abundance of the two mainly expressed 

splicing isoforms of VEGF-A, i.e. VEGF-A165 and  VEGF-A121,  was  then  assessed.  In  

practice, the intensity of the bands corresponding to these two isoforms was separately 

measured, subtracted from the background intensity, and then used for further calculations. In 

this way, the ratio between VEGF-A165 and VEGF-A121 was calculated in both mucosa and 

tumour of 78 CRC patients. Such a balance is hereafter indicated as the VEGF-A165/VEGF-

A121 ratio. Importantly, this technique permits to specifically investigate the relative 

abundance of different VEGF-A isoforms in the same sample. Absolute quantification of 

mRNA  levels  was  not  considered  in  these  settings,  since  the  objective  of  this  study  was  to  

specifically correlate the ratio between the two isoforms, and not their absolute levels, with a 

series of clinical and histological parameters. In this respect, the VEGF-A165/VEGF-A121 ratio 

might represent a very informative parameter to understand if the expression of one isoform 

or another is favourable in certain clinical settings. Indeed, as extensively discussed in the 

“Introduction”, cell transformation and microenvironmental stimuli can alter isoform usage to 
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Fig. 2. Primer design. pr imer pair was designed on exon (Forward pr imer) and exon

(Reverse pr imer) in order to ampli fy all splicing isoforms of VEGF-A with pro-angiogenic

effects. Localization in respect to VEGF gene structure is schematically shown in the Figure.

The length of the resulting PCR amplicons has been repor ted in the adjacent table.

sustain tumour progression. 

 

 

 

 

 

 

 

 

Fig. 1. Sample collection. In set of colorectal cancer patients, biopsy specimens from the core of the

lesion and adjacent healthy mucosa were collected at the moment of surgical resection and processed for

analyses. In small category of the CRC patients, additional biopsies from the per iphery of the lesions

were harvested to assess the difference between the expression level of VEGF165 and VEGF121 isoforms

corresponding to the location of the malignancy.
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4.2 Evaluation of primer efficiency 

Competitive PCR is a well-established and widely used technique for semi-quantitative 

analysis (Zentilin and Giacca, 2007). It allows precise and reproducible measurements, but its 

accuracy is strongly affected by primers specificity: in this respect, it is crucial that primers 

amplify both competitors with the same efficiency (Zentilin and Giacca, 2007). In the specific 

case of VEGF isoform amplification, the two primers perfectly match to all isoforms, and thus 

these act as internal competitors for the reaction. 

 The  efficacy  of  PCR  primers  was  assessed  by  amplifying  PCR  serial  dilutions  of  a  

mixture containing equimolar concentrations of two plasmids carrying either VEGF165 or 

VEGF-A121 cDNA (pAAV- VEGF165 and pAAV- VEGF-A121, respectively – previously 

utilized in the Molecular Medicine Laboratory). Gel analysis confirmed that our primer set 

was indeed able to amplify either isoform with the same efficiency, as clearly shown in Figure 

3, where both bands are equally intense for any of the tested reactions.  

 

 

 

 

Fig. 3. Primers efficiency assessment. Electrophoresis on polyacrylamide gel demonstrates the

equivalent efficacy of the designed pr imers to amplify two different isoforms of VEGF-A by PCR. Serial

di lutions of mixture, containing equimolar concentrations of two plasmids carrying either VEGF165 or

VEGF121 cDNA were used as templates for ser ies of PCR reactions. The relevant PCR products were then

loaded in adjacent wells (1-5). Bands corresponding to VEGF165 and VEGF121 display equal intensity in all

tested PCR conditions. As negative control, dH2 was used as template for this reaction (line 6). 100 bp

molecular weight was loaded in the first well. Quanti fications are shown in the graph on the r ight.
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4.3 Robustness of the band intensity quantification 

 In order to evaluate the accuracy and reproducibility of technique exploited for 

quantification  of  VEGF-A  isoforms,  in  a  randomly  selected  subset  of  samples,  VEGF-

A165/VEGF-A121 ratio was repetitively measured 3 to 4 times per each and the mean of these 

values was calculated. As shown in the Figure 4, the vast majority of the measurements 

displayed only minimal variations, almost entirely encompassed in a 25% confidence interval 

(C.I.).  

 In keeping with these data, the above described methodology was considered as a robust 

and reliable procedure for VEGF-A isoform quantification and further applied to the whole 

sample set to assess the VEGF-A165/VEGF-A121 ratio. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 4. Robustness of VEGF splicing analysis. Twelve randomly selected tumour samples were subjected

to repeated quantification of VEGF165/ VEGF121 ratio. After RNA extraction and consequent PCR

amplification of the two isoforms, VEGF165/ VEGF121 ratio was measured, and this methodology was

repeated up to three to four times for each individual sample and loaded on different polyacrylamide gels.

The mean value of all the measurements for each sample was calculated. Var iance of VEGF165/ VEGF121

ratio from mean value was evaluated for each measurement and plotted as squared dots in the graph

above.
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4.4 VEGF121 is the most abundant VEGF-A isoform in both healthy mucosa and tumour 
samples 

As the first novel observation, and in disagreement with published data (Ferrara, 2010), it was 

unveiled that VEGF121 was the most abundant isoform expressed in CRC specimens. In fact, 

after  PCR  amplification  and  gel-electrophoresis,  the  VEGF121-related amplicon was 

constantly found to be more abundant than that corresponding to VEGF165 (Figure 5).   

Graphical representation of PCR band quantification is shown in Figure 6, where average 

intensity of either VEGF121- or VEGF165-related bands are plotted. The graph clearly shows 

that VEGF121 is  significantly  more  expressed  than  VEGF165, both in mucosa (mean= 33037 

vs. 14945 Int/ mm
2
) and tumour (mean= 35628 vs. 17904 Int/ mm

2
).  

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

4.5 Lack of significant difference between VEGF-A splicing isoforms in CRC and paired 

mucosa samples 

 The VEGF165/VEGF121 ratio in tumour and in mucosa was assessed for 78 patients. The 

mean of these values for mucosal and tumour samples were 0.442 ± 0.207 and 0.483 ± 0.226 

respectively (no statistically difference was observed) (Figure 7). Further, the ratio between 

VEGF165/VEGF121 in  the  tumour  and  VEGF165/VEGF121 in its paired mucosa 

({VEGF165/VEGF121 Tumour}/{VEGF165/VEGF121 Mucosa}) was evaluated for each patient 

(hereinafter  referred  to  as  T/M  distribution),  and  plotted  in  Figure 8 (each dot represents a 

single patient).  

Fig. 5. Representative image of PCR-

amplified VEGF isoforms. Band intensi ty

(coloured rectangles) was evaluated and

normalized for background value. VEGF121

(lower bands) is invar iably the most

abundant isoform expressed in colorectal

cancer specimens.

Fig. 6. Isoform quantification. Quantification of

VEGF121 and VEGF165 expression in both healthy

mucosae and tumour mass specimens. Values are

expressed as arbitrary units of band intensity. Bars

show mean s.e.m.
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VEGF-A isoforms balance did not appear obviously regulated in CRC patients. Indeed, 

the VEGF165/VEGF121 ratio average was unaffected upon malignant transformation 

({VEGF165/VEGF121 Tumour}/{VEGF165/VEGF121 Mucosa} 1). As a consequence, T/M 

distribution was clearly centred on 1 (Figure 8). However, the aforementioned patient 

distribution was broad, reflecting the high heterogeneity of VEGF isoforms proportion in 

CRC patients.  This was more evident in Figure 9, where changes in VEGF165/VEGF121 ratio 

were shown for each of the analysed patient. The vast majority of the samples showed a 

marked variation in VEGF-A isoforms content between normal and malignant tissue 

specimens,  thus  clearly  suggesting  that  carcinogenesis  has  a  strong  impact  on  VEGF-A  

splicing, even though this phenomenon does not follow an obvious trend. 

 

 

  

 

 

 

 

 

 

 

 

 Band intensity quantification in either normal mucosa or tumour mass specimens 

revealed that there was no significant difference in the total expression level of 

VEGF165/VEGF121 between tumour and its paired mucosa in a large set of colorectal cancer 

patients. In other words, despite a massive inter-personal variability in isoform ratio, no 

obvious trend in the modulation of VEGF-A splicing was observed. However, considering the 

mucosa and tumour sample of each patient, a large variability could be observed within the 

ratio of VEGF165/VEGF121 in mucosa vs. its matched tumour sample; this ratio has been either 

elevated in some tumour samples comparing their paired mucosae or dramatically decreased 

in the rest of the specimens.  

Fig. 7. Isoform quantification in mucosae and tumours. VEGF- splicing

balance was expressed as the ratio between VEGF165 and VEGF121

VEGF165/ VEGF121 ratio in mucosae and tumours was calculated for the entire

sample set. Bars show mean s.e.m. No statist ical difference was observed

between mucosae and tumours.
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Fig. 8. Patient distribution according to T/ M ratio. Using band quantification approach,

VEGF165/ VEGF121 ratio was separately measured in healthy mucosa and tumour sample of each patient.

The obtained value from tumour was then divided to the corresponding value in the mucosa. As shown

here, the final ratio values, (VEGF165/ VEGF121 in tumour divided to VEGF165/ VEGF121 in mucosa of each

patient) was plotted in scatter graph. Each dot corresponds to an analysed patient. Values were

distr ibuted around value 1, indicating the fact that in the major ity of the patients, VEGF165/ VEGF121 ratio

had been remained unchanged between mucosae and their tumour counterparts.

 

 

 

 

 

 

Fig. 9. Variability in VEGF165/ VEGF121 ratio between mucosa and tumour mass of each patient. Large

heterogeneity was observed in the data set. Black lines denote individual patients whose ratio has been

found substantially unchanged between normal and malignant tissue. Conversely, red and blue lines

denote decreased and increased ratios, respectively.

Ratio (T/ M)
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4.6 The correlation between VEGF165/VEGF121 ratio and tumour grading in colorectal 

cancer patients 

 Primary  aim of  this  project  was  to  correlate  the  VEGF isoforms balance  with  clinical  

tumour outcome in the cohort of the CRC patients, seeking for a parallelism between the 

observed molecular and clinical heterogeneity, although clinical data was not available for 

some of the patients for whom experimental analysis was performed (see Table 1 in Appendix 

for complete clinical evaluations of the recruited patients).  

 Tumour grading and other major clinical parameters had been routinely assessed at the 

moment of surgical resection by independent pathologists. Based on above described 

quantifications, the mean VEGF165/VEGF121 ratio  was  calculated  in  two  groups  of  CRC  

patients with low grading and high grading tumours (G=0&1 and G=2&3, respectively). In 

both cases, VEGF165/VEGF121 ratio in tumour mass was higher than in mucosa, even if this 

trend did not reach statistical significance. Comparing the average VEGF165/VEGF121 ratio in 

tumours from the two subgroups of patients, it was noticeably lower in high grading tumours, 

although this difference did not reach statistical significance (Figure 10). 

   

  

 

 

 

 

Fig. 10. VEGF splicing and tumour grading. VEGF165/ VEGF121 ratio in low grading and high grading CRC

patients. VEGF165/ VEGF121 ratio was calculated in mucosae and tumours of patients showing differentiated

tumours (G=0 and G=1, assessed by independent pathologists). The same was assessed in patients with

grading level of and (G=2&3). Coloured bars show mean s.e.m. Interestingly, in patients with higher

grading level, this ratio had been decreased in both mucosae and tumour specimens compared to G=0&1.
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Fig. 12. VEGF splicing and tumour staging. T/ M

ratio in patients accrued according to cancer staging

at the moment of surgery.

Fig. 11. VEGF splicing and lymph node infiltration.

T/ M ratio (VEGF165/ VEGF121 in tumour vs. mucosa) in

patients showing lymph node infiltration (N+ is lower

if compared to patients who were diagnosed with no

lymph node infiltration (N-). Bars show mean s.e.m.

Lymph node infiltration (N) is another important hallmark of poor clinical outcome. 

Interestingly, T/M ratio was lower in patients with infiltrated lymph nodes (N 1), as shown in 

Figure 11, even if this decrease did not reach statistical significance. 

Both observations, even though statistically not relevant, might imply that higher VEGF165 (or 

lower VEGF121) expression to some extent hurdles tumour progression towards poorly 

differentiated stages.  

 It is worth mentioning the fact that this correlation is not maintained for other clinical 

parameters, most notably tumour stage (S), as shown in Figure 12. 
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4.7  Patients  with  higher  VEGF165/VEGF121 expression ratio in their tumour mass 

demonstrate better outcome 

 

 Exploiting AAV-mediated gene transfer, it was demonstrated that VEGF165 or VEGF121 

conditioning clearly exerts distinct effects on tumour growth in mouse animal models, as 

detailed in the Introduction section. In particular, VEGF165 acts in a peculiar and rather 

surprisingly tumour suppressive manner, hampering tumour growth through the recruitment 

of NEMs and eventual vessel normalization (Carrer et al., submitted).  Although in the CRC 

samples we did not detect any obvious correlation between higher VEGF165 expression and 

better prognosis, possibly due to the vast dispersal of data, we nevertheless selected a 

restricted  subset  of  CRC  patients  (n=6),  in  whom  the  VEGF165/VEGF121 ratio was strongly 

higher in the tumour mass, compared to its paired normal mucosa. In particular, these patients 

were selected because their T/M ratio exceeded a 90% C.I., shown as green dots in Figure 13. 

 Strikingly, this small subset of patients (hereinafter referred to as VEGF165
hi

) displayed 

a significantly reduced lymph node infiltration, compared to the rest of the patients in the 

selected cohort (Figure 14). In contrast, the patients who conversely expressed higher levels 

of VEGF121 (T/M ratio exceeding 90% C.I., violet dots in Figure 13, hereafter VEGF121
hi

) did 

not exhibit any difference compared to the whole residual dataset (hereafter VEGF165
int

, black 

dots in Figure 13). This is in agreement with experimental evidence, supporting a differential 

impact of VEGF isoforms on tumour progression.  

 

 

 

 

Fig. 14. Lymph node infiltration in VEGF165
hi

patients. Number of positive lymph nodes in

VEGF165
int (black dots), VEGF121

hi (purple dots)

and VEGF165
hi (green dots) patients is shown in

this graph. VEGF165
hi patients show no lymph

node infi ltration.

Fig. 13. Patient distribution according to VEGF

splicing. Patients were divided into groups.

Individuals showing T/ M ratio that exceeds 90% CI

were denoted as VEGF165
hi (green dots) and VEGF121

hi

(purple dots), for highest and lowest ratios,

respectively. Remaining patients were denoted as

VEGF165
int (black dots). Lines denote median ± 90% CI.
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4.8 VEGF165
hi patients exhibited a more mature tumour vasculature 

 Preliminary evidence in experimental animal models clearly demonstrates that 

VEGF165-driven tumour inhibition is correlated with an improvement in the tumour 

vasculature maturation, as mentioned before. In order to assess whether the clinical 

amelioration observed in VEGF165
hi
 patients was linked to improved tumour vascularization, 

immunofluorescence (IF) analysis was performed on paraffin-embedded tumour specimens, 

routinely  harvested  at  the  time  of  surgical  resection  for  standard  histopathological  analysis.        

The morphology of the vascular network in patients with high expression level of VEGF165 

was compared with the cohort of the patients with high expression level of VEGF121.    

Double immunostaining against von Willebrand factor (vWF) and alpha-smooth muscle actin 

-SMA) was employed; the former as a marker of endothelial cells and the latter as a marker 

of mural cells (specifically smooth muscle cells). As it is appreciated in the following images 

(Figure 15), vessels of VEGF165
hi
 tumours appeared more normalized and mature in respect to 

those of VEGF121
hi
 patients. In this regard, -SMA was considered as an indicator of vessel 

maturation, numerically expressed as a ratio between -SMA and vWF fluorescence (both 

measured as pixels over a fixed threshold) displaying higher value for VEGF165
hi
 sample 

(Figure 16). Moreover, the intensity of vWF was also measured in tumour vessels of all 

subsets of the patients showing higher intensity in the sample belonging to VEGF121
hi
 patient 

(Figure 17). Importantly, the number of vessels was not affected by isoform selection (data 

not shown), and CD31 positivity assessed independently by routine histopathological analysis 

did not show any variation (data not shown). This again points toward a specific role of 

VEGF165 in promoting full vessel maturation, despite the fact that it retains the strong 

angiogenic capacity common to all VEGF-A isoforms. 

 Unfortunately,  given the paucity of VEGF165
hi
 samples it was not possible to establish 

any significant correlation with effectiveness of neo-adjuvant therapy, a clear and definitive 

indicator of vessel normalization (Carmeliet and Jain, 2011). 
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Fig. 15. Tumour vessel analysis. Double immunostaining against vWF and -SMA in paraffin-embedded

tumour sections harvested from VEGF121
hi (panels above) and VEGF165

hi (panels below). Anti-vWF

antibody labels endothelial cells (EC) and is shown in green, whereas antibody against -SMA labels

mural cells and is shown in red. As displayed in r ight-hand panels above, in VEGF121
hi patients, vessels are

scantly covered with smooth muscle cells indicating poor ly mature vascular network. In left-hand panels,

this observation has been shown with lower magnification. In contrast, in the panels below,

immunofluorescence experiments for VEGF165
hi patients are shown. Most of the vessels show high

coverage of smooth muscle cells and per icytes -SMA+ both at lower (left-sided panels) and higher

(r ight-sided panels) magnifications. Spli t anti-vWF (green) and anti- -SMA (red) signals were also shown

besides merged images. Nuclei are counterstained in blue with DAPI.
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Fig. 16. Quantification of IF analysis. Quantitative evaluation of IF

analyses in VEGF165
int VEGF121

hi and VEGF165
hi patients according to

the ratio of -SMA/ vWF. Bars show mean s.e.m. Aster isk denotes

statistical significance (p<0.05). VEGF165
hi patients clear ly show

enhanced vessel maturation.

Fig. 17. Quantification of vascular area. vWF intensity in VEGF165
int

VEGF121
hi and VEGF165

hi tumours. Bars show mean s.e.m. Aster isk

denotes statistical significance (p<0.05).
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4.9  The  effect  of  higher  VEGF165/VEGF121 ratio on the occurrence of metastasis in 

colorectal cancer patients  

 There is an ample consensus that hypoxia consequent to impaired vessel functionality 

results in reduced tumour cell growth and subsequent reduced tumour mass, however whether 

normalization is beneficial in impeding tumour metastasis or, on the contrary, favours the 

metastatic process is still unclear (De Bock et al., 2011). Hence, in keeping with the 

observation that VEGF165 elicits vessel stabilization, the correlation between the presence of 

distant metastasis and the ratio of the expression of VEGF165/VEGF121 was investigated. We 

found that, in metastasis-free patients (M=0), the VEGF165/VEGF121 ratio  was  significantly  

lower when compared to metastasis-bearing patients (M=1), as shown in Figure 18 A. These 

data appear consistent with recently published data supporting the concept that vascular 

normalization induced by anti-angiogenic therapies might elicit tumour cell spreading and 

metastasis in some settings (Ebos et al., 2009; Paez-Ribes et al., 2009). In this respect, it is 

worth mentioning the role of hypoxia in the up-regulation of VEGF165 and in hypoxia-induced 

tumour metastasis, which will be discussed in subsequent sections.  

  Further exploring the issue, it was evident that in patients with no sign of metastasis, 

the mean value of VEGF165/VEGF121 expression in both mucosa and tumour did not show any 

significant difference (see Figure 18A). However, in M=1
 
patients this value was decreased in 

mucosae when compared to the tumour samples, and, notably, equally reduced if compared 

with mucosae from M=0 patients (Figure 18B). This was completely unexpected, as mucosa 

samples should represent “normal” tissue specimens, unaffected by either tumour presence or 

its outcome. It might be conceptualized that the down-regulation of VEGF165 or, instead, the 

up-regulation of VEGF121 in the mucosa sample of metastatic patients sets some sort of 

predisposition in CRC patients to develop very aggressive tumours. Since there are no clues to 

better understand the abundance of which one of these isoforms is more affected during the 

process of metastasis, this topic needs to be better elucidated.  
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Fig. 18. VEGF splicing and metastasis A) T/ M ratio in metastasis positive (M=1) and negative (M=0)

patients. Ratio was elevated in M=1 patients. B) VEGF165/ VEGF121 ratio in mucosae and tumours of M=0

and M=1 patients. Bars show mean s.e.m.

4.10 Detection of NEMs in tissue sections of CRC patients 

 In our laboratory, using a mouse model of tumour xenotransplantation, we unveiled a 

dissimilar  and  somewhat  opposite  effect  of  VEGF165 and VEGF121 on tumour growth, by 

which the former decreased tumour growth while the latter increased it, compared to 

untreated animals. This difference was ascribed to the diverse ability of these two isoforms to 

recruit NEMs to the site of angiogenesis (Carrer et al., submitted). As previously mentioned in 

the “Introduction”, Neuropilin-1 Expressing bone marrow-derived Myeloid cells (NEMs) 

have been recently considered as a crucial population of BM-originated cells recruited to the 

site of physiological and pathological angiogenesis. NEMs have been recognized as 

CD11b
+
Nrp1

+
Gr1

-
 cells in diverse animal models (Carrer et al., unpublished;  Maione et al., 

unpublished), but their detection and characterization in humans have been hampered by 

several  obvious  difficulties,  above  all,  the  lack  of  Gr-1  homologs  in  humans  and  the  

impossibility to overexpress VEGF165 or Sema3A in human tissues.  

 In respect of the above issue, partial but critical focus of this project was to detect the 

presence of NEMs in human tumours, taking advantage of the fact that a handful of tumours 

did express above-the-average levels of VEGF165 (see Figure 13),  a well-known attractor of 

NEMs (Zacchigna et al., 2008). For this purpose, 5 µM-thick sections of paraffin-embedded 

CRC tissues from VEGF165
hi

 patients were analysed. Immunohistochemistry (IH) experiments 

were performed using an anti-Nrp-1 antibody. Unfortunately, despite using various antigen 

A

M=0 M=1

0.0

0.2

0.4

0.6

0.8
M ucosa
Tumour

V
E

G
F

1
6

5
/ 

V
E

G
F

1
2

1

B



Results 

70

retrieval procedures in order to unmask Nrp-1 antigen and trying different protocols, results of 

IH experiments were not satisfying. Some representative images are shown in Figure 19 and a 

complete list of unmasking solutions used for antigen retrieval is detailed in Table 2. 

 The feasibility of such an approach was reasonably hindered by original sample 

processing. As these samples were initially collected for routine histopathological analysis, 

they underwent strong, automatized fixation and processing, not compatible with poorly 

sensitive immunostaining. In this respect, it is important to note that Nrp-1 is a poor 

immunogen, and good staining antibodies have not been developed yet.   

Fig. 19. IHC analysis. Immunohistochemistry exper iments on paraffin-embedded tissue sections of CRC

patients: anti-Nrp-1 immunostaining was tentatively performed on paraffin-embedded tumour sections.

Representative images unveiling negative results are shown.

 

 

Table 2. Reagents used for Nrp-1 antigen retrieval on CRCparaffin-embedded tissue sections.

To overcome these problems, we took advantage of the commonly recognized fact that 

commercially available Nrp-1 antibodies work almost exclusively on freshly-frozen tissues. 

For  this  reason,  an  additional  set  of  CRC  patients  (n=19)  were  recruited  for  the  above  

described VEGF isoforms analysis. For each of these patients, a frozen biopsy was harvested 

at the time of surgical resection, and kept at -80°C for further immunofluorescence (IF) 

analysis. Five- M cryosections were randomly obtained from some of these samples and then 

subjected to IF staining to check whether the freezing procedure of the specimens in the 

hospital  was  reliable  enough  to  maintain  the  morphological  features  of  the  tissue.  IF  

experiments were performed using anti-CD11b and anti-Nrp-1 antibodies, in order to unveil 

IHC Paraffin-embedded tissue sections L.A.B solution

IHC Paraffin-embedded tissue sections Citrate buffer PH6

IHC Paraffin-embedded tissue sections EDTA PH8 Tr is-HCl PH8

IHC Paraffin-embedded tissue sections Trypsin working solution PH11

IHC Paraffin-embedded tissue sections Proteinase K

IHC Paraffin-embedded tissue sections Proteinase and Trypsin
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eventual double positive cells, which might be considered as putative human NEMs.  

Unfortunately, quantification of VEGF isoforms revealed that none of these recently collected 

samples showed strong expression level of VEGF165. Instead, all of them showed a balanced 

VEGF165/VEGF121 ratio  between tumour  and  mucosa  (as  shown in  Figure  20,  where  all  the  

dots fall within a 90% C.I. calculated on the entire sample set). In keeping with this 

observation, and despite the fact that a significant number of infiltrating CD11b
+
 cells could 

be appreciated around the tumour vessels, no double positive cells (CD11b
+
/Nrp-1

+
) could be 

found in the tested cryo-sections (Figure 21).  

Fig. 20. T/ M distribution according to VEGF165/ VEGF121 ratio in small subset of newly collected

CRCsamples. None of these samples showed high VEGF165/ VEGF121 rat io
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Fig. 21. NEMs are not found in tumours that do not up-regulate VEGF165 Double immunostaining

against Nrp-1 and CD11b was performed in newly collected CRC frozen samples. No evidence of the

presence of Neuropi lin-1 expressing bone marrow-der ived mononuclear cells was found, as expected

standing the low expression levels of VEGF165 isoform.

4.11 Quantification of Sema3A abundance in human CRC 

 To further explore the hypothesis that NEM recruitment contributes to better cancer 

outcome, and based on the fact that Nrp-1 has basically been recognized as a co-receptor for 

Semaphorin3A, in parallel, we evaluated Sema3A expression in the same cohort of patients 

recruited for the VEGF isoform analysis. Noteworthy, Sema3A, similar to VEGF165, has been 

demonstrated to be a potent NEM recruiter (Zacchigna et al., 2008). The obtained cDNAs 

were thus used as templates for real-time PCR amplification to detect the expression levels of 

the Sema3A gene, both in tumours and normal mucosae. For each patient, expression of 

Sema3A was calculated as a ratio between tumour- and mucosa-expressed Sema3A. In the 

whole  data  set,  Sema3A  expression  did  not  show  any  obvious  shift  towards  up-  or  down-

regulation in the tumour mass, with only a modest tendency to down-modulation (Figure 22).  

Nonetheless, in a restricted group of patients (n=8), Sema3A appeared far up- regulated in the 

tumour mass (above 90% CI). Strikingly, these patients (hereinafter referred to as Sema3A
hi

) 

had more benign tumours as compared to the remaining patients (hereinafter referred to as 
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Sema3A
low

). In particular, as shown in Figures 23 and 24, Sema3A
hi

 patients  showed  a  

reduced lymph node infiltration, decreased metastatic spread and longer survival (all patients 

are alive 36 months after surgery). Remarkably, these Sema3A
hi

 tumours showed enhanced 

vessel maturation, as unveiled by vWF/ -SMA double immunostaining (data not shown). 

These data are in perfect concordance with the anti-tumorigenic effect of Sema3A, previously 

observed in tumour xenograft animal models and even more remarkably, with the possibility 

that it might recruit tumour-hampering NEMs also in human malignancies.  

  

Fig. 22. Distribution of accrued patients according to T/ M ratio of

Sema3A expression. Tumour expression did not show any tendency

towards up- or down-regulation. Patients exceeding 90% CI were

denoted as Sema3Ahi and labelled as red dots. Remaining patients were

identi fied as Sema3Alow (black dots). Lines denote median 90% CI.
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Fig. 23. Lymph node infiltration in Sema3Ahi patients. Number of

positive lymph nodes in Sema3Ahi and Sema3Alow patients.

Infi ltration was markedly reduced in the former group.

Fig. 24. Occurrence of distant metastases in Sema3Ahi and

Sema3Alow patients. Metastasis positive patients were

represented as proportion of the entire subset of patients (in

black within white column in the Figure).
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Next  we  determined  the  levels  of  Sema3A  expression  in  the  additional  set  of  CRC  

tumours and mucosa pairs (n=30, including the 19 samples described above) for which 

cryopreserved samples were available. Distribution of the results obtained is shown in Figure 

25. Only one of these patients showed a level of expression falling above the 90% CI that was 

considered in the previous experiments, and was thus chosen for further examination. Double 

immunostaining against Nrp-1 and CD11b was performed on 5 µM cryosections of this 

sample. As shown in Figure 26, in this single sample, putative NEMs, defined as double 

positive cells for CD11b and Nrp-1, could be recognized. Their distribution was sparse and 

mostly concentrated in perivascular locations. Of note, double positive cells were evident only 

in this single sample out of 10 tested, out of which the other 9 displayed neither VEGF165 nor 

Sema3A overexpression.  

 

Fig. 25. T/ M distribution according to Sema3A expression in newly collected CRC patients. One

sample displayed features equivalent to Sema3Ahi patients described in Figure 22 and is labelled as red

dot in the Figure.
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Fig. 26. NEMs infiltrate tumours expressing high levels of Sema3A. Detection of NEMs as double

positive cells for Nrp-1 and CD11b antigens. Immunofluorescence analysis showed the presence of NEMs

(highlighted by white arrows) in patient overexpressing Sema3A. Spli t signals were shown besides

merged images. Gates (#) denote vessels. Nuclei were counterstained in blue with DAPI.



Results 

77

4.12 VEGF165/VEGF121 ratio in lung cancer patients 

 Next we became interested in assessing whether our observations in colorectal 

carcinoma had any relevant implication in other human malignancies. For this purpose, thanks 

to a collaboration with the Institute of Genetics and Molecular Oncology (Istituto Oncologico 

Veneto-IRCCS) in Padova, a number of frozen lung cancer specimens were collected (n=42). 

The expression levels of VEGF165 and  VEGF121 isoforms were measured employing the 

approaches described in Chapter 3. As shown in Figure 27,  the  VEGF165/VEGF121 ratio 

showed a wide distribution also in this sample set (mean value=0.27±0.16). In the case of 

lung  carcinoma,  the  expression  level  of  VEGF121 was  consistently  higher  than  that  of  

VEGF165. Furthermore, a restricted subset of patients displayed a significantly increased 

VEGF165/VEGF121 ratio (above 90% C.I.). Similar to the case of colorectal carcinoma, in lung 

cancer patients with the higher expression level of VEGF165 (VEGF165
hi
), no lymph node 

infiltration was detected (Figure 28).   
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Fig. 27. VEGF isoforms in lung cancer. In cohort of lung cancer patients,

VEGF165/ VEGF121 rat io was measured. This rat io demonstrates broad distr ibution

among the patients and similar to the cohort of colorectal cancer patients, again small

subset of the patients shows higher level of expression of VEGF165

Fig. 28. Number of positive lymph nodes in VEGF165
int VEGF165

hi

and VEGF121
hi lung cancer patients.
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4.13 Analysis of Sema3A expression in the same set of lung cancer patients 

 Normalized Sema3A expression (over GAPDH) in the same cohort of lung cancer 

patients was also assessed by quantitative PCR approach. Sema3A expression was then 

plotted as in Figure 29, again unveiling a restricted number of the patients (4 out of 40) who 

expressed tumour levels of Sema3A significantly above average (exceeding 90% C.I.). 

Amongst these samples, one (ACP29) showed up-regulation in both VEGF165 content and 

Sema3A expression.  

 

4.14 Hypoxia induces specific VEGF165 up-regulation   
 As previously mentioned, three distinct biopsies (from the healthy mucosa, periphery 

and core of the lesion) was collected in a small subset of the CRC patients (n=19). It is widely 

recognized that the marginal (“periphery”) and the central (“core”) areas of a tumour mass 

possess clearly distinct features, at both structural and molecular level. To assess whether 

these differences affect VEGF165/VEGF121 ratio, standard isoform quantification was applied 

to this restricted set of samples. 

Fig. 29. T/ M distribution of lung cancer

patients according to Sema3A expression.
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 The VEGF165/VEGF121 ratio was consistently up-regulated in the core of the lesion 

compared to the periphery and mucosa samples of the same patients. As shown in Figure 30, 

VEGF165/VEGF121 ratio in mucosa displayed a significant degree of homogeneity, being most 

samples gathered close to an average value of 0.53±0.12 (23% Coefficient of Variation). The 

average value of VEGF165/VEGF121 ratio was increasingly higher in the periphery and the 

core of the tumour (0.61±0.19 and 0.66±0.2, respectively). Heterogeneity was also increased 

in tumour datasets (both in periphery and core), displaying 32% and 37% as Coefficient of 

Variation, respectively. 

Once more, these data demonstrate that malignant transformation has a profound 

impact on VEGF-A alternative splicing regulation. Progression towards a less structured, less 

vascularised and more chaotic area of tumour mass consistently entails an up-regulation of 

VEGF165. 

It is generally conceived that the most interior part of the tumour mass is more 

hypoxic. Due to poor and inefficient vascularization in the core of the tumour, it was 

originally envisaged that hypoxia might induce a specific preference for VEGF165, an isoform 

specifically involved in vessel maturation as widely discussed throughout this thesis.  

This issue was further investigated to unveil the molecular events leading to VEGF 

isoform selection in a highly hypoxic environment. 

Fig. 30. VEGF splicing depends on local

environment. VEGF165/ VEGF121 ratio was

evaluated in normal epithelial t issue (mucosa,

light grey dots), border of tumour mass

(per iphery, dark grey dots) and inter ior of

tumour mass (core, black dots). Hor izontal lines

denote mean s.e.m. Progressive increase in

VEGF165/ VEGF121 ratio was observed.
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4.15 Effect of hypoxia on the expression levels of VEGF-A isoforms in different tumour 

cell lines 

 In order to assess the putative impact of low oxygen tensions on VEGF-A alternative 

splicing,  two  sets  of  experiments  were  performed.  In  a  preliminary  experiment,  in  order  to  

create a hypoxic environment, a classic hypoxic chamber was employed. Two different cell 

lines (4T1 breast carcinoma and HUVEC endothelial cells) were subjected to a strong hypoxic 

conditioning for 2 or 24 hours. Wild-type cells were maintained in normoxia for the duration 

of the experiment. Then, using TRIzol, the RNA was extracted and, after cDNA preparation, 

the VEGF165/VEGF121 ratio was quantified. In fact, prolonged hypoxia conditioning induced 

the up-regulation of VEGF165 in  a  time  dependent  manner  in  both  cases,  whereas  VEGF121 

expression was not significantly affected, as shown in Figure 31.  

 Noteworthy, the above described experiment was performed exploiting an old hypoxic 

chamber that essentially creates an anoxic environment, using N2 to replace O2 into the 

chamber. This represents a largely non physiological condition, thus a further experiment was 

performed employing an advanced hypoxia incubator chamber, in which the concentration of 

CO2 and N2 was finely tuned during the experiment’s duration. In this respect, three various 

tumour cell lines were employed; T241 (fibrosarcoma), 4T1 (breast carcinoma), and B16-F10 

(melanoma). Cells were exposed to hypoxia conditioning (1% O2 tension), for 2 and 18 hours. 

Isoform quantification analysis revealed that, in all three conditions, VEGF165 was the 

preferred isoform compared to the shorter isoform, and that hypoxia significantly increased 

the isoform balance towards VEGF165 (Figure 32).  

 Both experiments clearly demonstrated that malignant cells respond to hypoxia by 

altering the balance between VEGF isoforms, preferentially producing VEGF165. This effect is 

consistent in all tumour cell lines tested so far, but its kinetic and magnitude vary 

significantly. The reason for this variability is currently under investigation; upon hypoxic 

conditioning, the HIF pathway was equally activated in all three cell lines, as revealed by 

negative feedback regulation of HIF-1  mRNA and shown in Figure 33. Similarly, VEGF-A 

total mRNA was equally up-regulated in all cases (data not shown).  
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Fig. 31. Hypoxia and VEGF splicing. 4T1 (breast cancer) and HUVEC

(endothelial) cell lines were exposed to hypoxic conditioning for and 24

hours using routine hypoxic chamber. VEGF165/ VEGF121 ratio was assessed

by PCR approach: gel electrophoresis results are shown on the r ight.

Quantifications are shown on the left as column graphs. Noticeable increase

was observed upon severe hypoxic conditioning.
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Fig. 32. Hypoxia affects VEGF splicing. Using hypoxia incubator chamber, var ious cancer cell lines

were exposed to hypoxia to assess the effect of low oxygen levels on the regulation of alternative splicing

of VEGF isoforms in time-dependent manner. As control, cells were cultured under normoxia

condition. In the case of T241 cell line, the expression level of VEGF165 was clear ly increased after 18 hours

of hypoxia conditioning. B16-F10 cell line shows up-regulation of VEGF165 but in slightly different

manner. As evident in the gel image, VEGF165 has been overexpressed dur ing hypoxia exposure time,

however, based on band quantification data, visible switching towards VEGF165 up-regulation might need

longer than 18 hours of exposure to hypoxia. Instead, in 4T1 cell line, based on the band quantification

analysis, this continuous modulation towards the overexpression of VEGF165 was evident.
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Fig. 33. HIF- is negatively regulated upon hypoxic conditioning. Using Real- Time PCR

approach, the effect of hypoxia on the expression of HIF-1 was assessed in three

aforementioned cancer cell lines. In fact, under prolonged hypoxia, all three cell lines showed

HIF-1 negative feedback in response to hypoxia in time-dependent manner.
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5. DISCUSSION 

The  project  described  in  this  thesis  primarily  examines  the  balance  of  the  two  most  

expressed splicing isoforms of VEGF-A, specifically VEGF165 and VEGF121, on the 

pathology  of  CRC.  In  our  study,  CRC  was  considered  as  an  example  of  pathological  

angiogenesis and used to assess the specific roles of two isoforms of VEGF-A, certainly the 

best characterized among the several of pro-angiogenic factors known.  

Indeed, VEGF165 and VEGF121 have well-recognized different biological properties. 

Most notably, VEGF121 is freely diffusible in the extracellular matrix, whereas the longer 

isoform is more strongly bound to the extracellular matrix, and released upon enzymatic 

digestion of ECM components by metalloproteinases. In addition, VEGF165 and  VEGF121 

differ in their capacity to bind Neuropilin-1 (Nrp-1), an important co-receptor able to enhance 

VEGF-A binding to canonical receptors. Consistently, compelling evidence now suggests that 

VEGF165 and VEGF121 in fact elicit significantly different angiogenic response in vivo, in 

terms of magnitude, vessel structure, kinetic and functional outcome. We thus wondered 

whether tumours might preferential express one specific isoform to sustain the highly atypical 

vascularization that invariably distinguishes all solid tumours. To tackle this issue, 78 CRC 

patients were recruited in this study and, at the moment of therapeutic surgical resection, a 

biopsy of tumour mass was dedicated to RNA analysis.  Similarly,  for each patient,  a paired 

sample of normal, healthy mucosa was collected. VEGF165 and VEGF121 relative abundance 

was evaluated in tumour and matched mucosa samples. No clear tendency toward up-

regulation of either isoforms could be detected. A striking variability in isoform balance was 

observed: VEGF165/VEGF121 ratio was decreased impaired in the malignant tissue in the vast 

majority of the samples. Alteration in VEGF splicing balance was appreciable in a significant 

number of patients, although the relevance of this phenomenon for cancer biology and 

progression remains somehow elusive.  

Others have described increased VEGF121 expression in bladder cancer (Catena et al., 

2007), an event associated with enhanced angiogenesis and worse outcome. Previous 

experiments performed at the Molecular Medicine Laboratory on xenotransplanted tumour 

models, suggest that conditioning the microenvironment with VEGF121 results in accelerated 

tumour growth. More remarkably, VEGF165-conditioning significantly inhibits tumour 

growth,  consistent  with  a  specific  anti-tumour  activity  of  VEGF165. Importantly, such 

inhibitory activity is due to a modification of the local microenvironment, notwithstanding the 
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potent pro-angiogenic activity of all VEGF-A isoforms. This in fact, unravels a level of 

complexity in VEGF biology.  

In  CRC  samples,  VEGF121 was invariably found to be more expressed compared to 

VEGF165, both in tumours and mucosa samples, contrary to the general assumption that 

considers the latter the most abundant VEGF-A isoform in vertebrates. Whether this feature 

reflects a tissue-specific characteristic or underpins a sort of predisposition in individuals who 

will develop CRC, is probably worth further investigations. 

We assessed the correlation between tumour grading (G) and the relevant 

VEGF165/VEGF121 ratio, both in the mucosa and tumour samples of the CRC specimens 

studied during this project. Although not statistically significant, for the patients for whom 

clinical data were available, we observed that the VEGF165/VEGF121 ratio was higher in both 

mucosae and tumour counterparts of the samples belonging to the patients categorized with 

the low grading level (a distinction that joins in the same category G= 0 and G= 1 patients). 

Conversely, in the samples with grading levels evaluated as 2 and 3 (intermediate and high), 

VEGF165/VEGF121 ratio was reduced. This finding might suggest an inverse correlation 

between tumour grading and VEGF165 expression. In addition, in patients displaying a lower 

tumour grade, the expression level of VEGF165 was higher in both tumour and its 

corresponding mucosa. In higher levels of grading, cells are morphologically very abnormal 

and poorly differentiated; they grow more quickly, and they may metastasize easily 

(www.cancer.gov). In this case, the VEGF165/ VEGF121 ratio resulted decreased in both 

tumour and matched mucosa, consistent with a possible role of VEGF121 in promoting tumour 

progression. Due to the high variability of the results, it is unlikely that the determination of 

VEGF121 levels might possess prognostic or predictive value, however it appears important to 

unravel the molecular mechanisms of tumour growth and local invasion.  

Considering metastasis as another important clinical feature in the context of CRC, we 

compared VEGF165/VEGF121 ratio in mucosa and tumour samples of each CRC patient with 

or without metastasis (M) occurrence. In this regard, total VEGF165/VEGF121 ratio in tumour 

vs. mucosa of metastasis
 
negative (M

-
) patients was evidently lower than in the patients with 

the occurrence of metastasis. Since VEGF165 promotes vessel normalization, this observation 

appears to be in line with recent findings indicating that the presence of a more mature 

vascular network, while decreasing tumour growth, on the contrary increases the propensity to 

metastatic spread. In particular, this was highlighted by recent observations in patients who 

received anti-angiogenic treatment (Loges et al., 2009). As a result of vascular normalization, 
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it is plausible that cancer stem cells or metastatic cancer cells have the opportunity to enter the 

blood circulation through large, mature blood vessels, carrying a regular flow, rather than 

exploiting small, narrow, stagnant branches of a disorganized vascular network. Noteworthy, 

extravasation  of  cancer  cells  invariably  requires  physical  endorsement  at  the  level  of  

extracellular matrix, which works as tracks for spreading cells. In this respect, mature vessels, 

sheathed with more structured ECM components, might represent a more suitable route for 

invasion (Naito et al., 2012).  

Not taking into account the concept of vessel normalization, it might more simply be 

speculated that the overexpression of VEGF165 might favour metastasis through different 

mechanisms. Accordingly, it has been recently demonstrated that VEGF acts as a negative 

regulator of pericytes (Greenberg et al., 2008). We have also previously reported the 

formation of aberrant vascular structures upon AAV-mediated overexpression of VEGF165 

(Zacchigna et al., 2007). 

At a closer look, examining the VEGF isoform balance, uniquely in mucosa samples, 

it was clearly evident that the VEGF165/VEGF121 ratio in the normal tissue of metastatic (M
+
) 

CRC patients was markedly lower when compared to the equally “normal” tissue of non-

metastatic (M
-
)  patients.  Indeed,  the  VEGF165/VEGF121 ratio was substantially comparable 

when comparing the two datasets relative to M+ and M- tumours. This finding raises the 

intriguing possibility that high VEGF121 expression sets a predisposition in normal epithelial 

tissues towards the development of highly metastatic malignant diseases. This hypothesis is 

consistent with the superior tumorigenic potential of VEGF121 revealed by tumour 

xenotransplantation experiments in mouse models (Carrer et al., submitted).  

 One of the most recent, novel findings of our laboratory was the detection of a unique 

population of bone marrow-derived myeloid cells mobilized to the site of human tumour 

malignancies through VEGF165 expression. These cells (Neuropilin-1 Expressing Monocytes, 

NEMs) are characterized as a subset of CD11b
+
Nrp1

+
Gr1

-
 myeloid cells. By attracting NEMs, 

VEGF165 induces the pericyte coverage of the newly-formed blood vessels (Zacchigna et al., 

2008). NEMs secrete a broad range of cytokines and growth factors involved in the 

recruitment of mural cells (pericytes and vascular smooth muscle cells) to nascent blood 

vessels. This phenomenon plays a crucial part in the stabilization and maturation of new 

vascular network.   

To understand whether VEGF165 retains the above described properties also in the 

context of human malignancies, we identified a small subset of the patients (n=6) who 
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expressed particularly high levels of VEGF165. We compared vascular morphology in such 

tumours with the one present in tumours showing a singularly reduced VEGF165/VEGF121 

ratio. Interestingly, no sign of lymph node infiltration was detectable in the VEGF165
hi

 

patients, consistent with a protective role of this longer VEGF isoform. Moreover, 

immunofluorescent analyses of the tumour samples belonging to this subset of the patients 

revealed that their vessels were covered with an increased number of -SMA
+
 cells; unveiling 

the more mature structure of the vascular network in tumours specifically expressing high 

levels of VEGF165.  

It  was  not  possible  to  assess  the  presence  of  Nrp-1
+
 myeloid cells in VEGF165

hi
 

tumours, due to technical reasons. Hence, the question whether NEM recruitment in fact 

accounts for blood vessel maturation in those tumours still remains unresolved. More 

interestingly, with respect of metastasis, our data might imply that NEM recruitment indeed 

favour invasiveness, as many other tumour-infiltrating myeloid cells. 

Very similar to the case of AAV-mediated delivery of VEGF165, massive cellular 

infiltration of NEMs was also promoted by AAV-Sema3A injection in the mouse skeletal 

muscle (Zacchigna et al., 2008). Hence, we wondered whether the same effects on the 

maturation of tumour vessels could be observed as a consequence of the spontaneous Sema3A 

overexpression in tumour masses. A small group of patients bore tumours that overexpressed 

Sema3A. Remarkably, these Sema3A
hi
 patients displayed improved clinical outcome and 

longer survival and their tumours exhibited a more mature vascular network, as unveiled by 

immunofluorescence analysis. In a set of recently collected frozen samples of CRC patients 

(none of which up-regulating VEGF165),  the  presence  of  NEMs  as  CD11b
+
/Nrp-1

+
 myeloid 

cells could also be assessed in patients overexpressing Sema3A. This represents the first 

evidence of the presence of NEMs at the site of angiogenesis in human malignancies. 

Another  section  of  this  study  was  dedicated  to  evaluate  the  effect  of  hypoxia  on  the  

splicing regulation of VEGF-A in vitro. Since the cores of the CRC lesions were reasonably 

more  hypoxic,  we  wondered  whether  this  condition  might  affect  the  regulation  of  VEGF165 

isoform production. In particular, arising from the observation that the VEGF165/VEGF121 

ratio was increased in the core of the tumour samples, we hypothesized that environmental 

stresses might favour the selection of the longer isoform. Thus, a set of hypoxic conditioning 

experiments using different cell lines (including endothelial and tumour cell lines) was 

performed. Collectively, the results of these experiments revealed that hypoxic conditioning 

up-regulated the levels of VEGF165 in a time-dependent manner. VEGF165 up-regulation could 
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be conceived as the result of massive HIF-1  activity likely established in hypoxic, poorly 

vascularised tumours. There might be a strict link between this finding and the observation 

that the tumours with higher levels of VEGF165 are more prone to metastasize, since HIF-1  

loss-of-function results in decreased tumour growth, vascularization and invasiveness (Du et 

al., 2008; Lee et al., 2009a; Lee et al., 2009b; Liao and Johnson, 2007; Maxwell et al., 1997; 

Ryan et al., 1998; Stoeltzing et al., 2004). Further experiments are clearly needed to further 

address this issue and define the molecular mechanisms linking hypoxia, HIF-1 up-regulation 

and the regulation of VEGF precursor RNA splicing.  

Taken together, the results of this thesis demonstrate that the modulation of VEGF 

splicing  is  a  very  complex  process,  which  ultimately  affects  several  aspects  of  tumour  cell  

biology. The different VEGF isoforms modulate the tumour microenvironment by both 

directly influencing tumour vessel formation and by stimulating the tumour infiltration by 

specific circulating cell populations. A better understanding of the factors affecting VEGF 

pre-mRNA processing is required to shed light into this intricate network of interactions. 
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