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Hyperuricemia is a common 	nding in chronic kidney disease due to decreased uric acid clearance. �e role of uric acid as a
risk factor for chronic kidney disease has been largely debated, and recent studies suggested a role of uric acid in the causation
and progression of kidney 	brosis, a 	nal common pathway in chronic kidney disease. Uric acid and xanthine oxidase may
contribute to kidney 	brosismainly by inducing in
ammation, endothelial dysfunction, oxidative stress, and activation of the renin-
angiotensin system. Besides, hyperuricemia induces alterations in renal hemodynamics via a�erent arteriolopathy and contributes
to the onset and progression of kidney 	brosis. Xanthine oxidase inhibitors may prevent kidney damage via lowering uric acid
and/or inhibiting xanthine oxidase. However, there is still no su�cient evidence from interventional clinical researches supporting
the causal relationship between uric acid and kidney 	brosis.�e e�ect and role of xanthine oxidase inhibitors in preventing kidney
	brosis and chronic kidney disease progression must be further explored by performing future large scale clinical trials.

1. Introduction

Regardless of the underlying etiology, most forms of chronic
kidney disease (CKD) are characterized by progressive 	bro-
sis as a 	nal common pathway, which eventually a�ects all
substructures of the kidney leading to a 	nal consequence of
end-stage renal disease. Although there has been a great deal
of research, a comprehensive understanding of the patho-
genetic mechanisms of kidney 	brosis remains uncertain
and this hampers the development of e�ective therapeutic
strategies [1].

Uric acid (UA) is the 	nal breakdown product of purine
degradation in humans, and elevated serum UA level, hyper-
uricemia, is causative in gout and urolithiasis due to the for-
mation and deposition of monosodium urate crystals. Hype-
ruricemia is a common 	nding in CKD due to decreased
UA clearance. Its role as a risk factor for CKD progression
has been largely debated, and it was primarily considered

as a marker or epiphenomenon of kidney damage [2, 3].
However, during the last 2 decades, accumulating evidences
have suggested a role of UA in the causation or progression of
cardiovascular diseases and CKD [3–9]. �erefore, UA low-
ering therapy with xanthine oxidase (XO) inhibitors, which
are already being widely used in the treatment of gout, could
be promising for preventing the progression of CKD even
in patients without hyperuricemia; however, solid clinical
evidence is still lacking. To promote large scale prospective
clinical trials, it is essential to accumulate experimental
evidences for the cause-e�ect relationship between UA and
kidney 	brosis.

In this review, a�er providing a brief background con-
cerning UA physiopathology, we will focus on the mechanis-
tic role of UA in kidney 	brosis. We will also review the role
of XO and the e�ect of XO inhibitors in preventing kidney
	brosis and their associated mechanisms.
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Figure 1: �e pathway of purine nucleotides degradation in humans showing the competitive inhibition of uric acid formation by xanthine
oxidase inhibitors and the site of action. AMP: adenosine monophosphate; GMP: guanosine monophosphate; IMP: inosine monophosphate;
MSU: monosodium urate; A: 5�-nucleotidase; B: AMP deaminase; C: adenosine deaminase; D: purine nucleoside phosphorylase; E:
guanine deaminase.

2. Physiopathology of Uric Acid

Cell turnover leads to the production of adenosine, inosine,
and guanosine. �ey degrade to hypoxanthine and xanthine,
which are the substrates for the widely distributed XO in
the formation of UA. XO catalyzes the oxidation of purine
substrates, xanthine and hypoxanthine, producing both UA
and reactive oxygen species (ROS). �us, XO is one of the
major enzymatic sources of ROS. Allopurinol and febuxostat
are inhibitors of XO, and they reduce uric acid and ROS
formation (Figure 1) [10].

UA is the oxidation end-product of purine metabolism in
humans and higher primates. Most other mammals, except
for the Dalmatian dogs, can degrade UA further to water-
soluble allantoin with the enzyme uricase, and as a result
serum urate levels are about 10% of those in humans [9, 11].
However, in humans and higher primates, mutations in the
uricase gene occurred during evolution and, making the
enzyme nonfunctional, resulted in higher levels of serumUA
than in other mammals [12].

Urates are the ionized form of UA, and, at a physiologic
pH of 7.4, over 95% of UA dissociates into urates, with
98% existing as monosodium urate. �e serum urate level
depends on dietary purines, the breakdown of endogenous
purines, and the renal and intestinal excretion of urate.
Hyperuricemia is de	ned as the accumulation of serum
UA beyond its solubility point in water (6.8mg/dL), and
it develops due to UA overproduction, undersecretion, or
both [13]. �e dominating factor contributing to hyper-
uricemia is underexcretion of urate [11]. Under normal
conditions, 70% of the UA produced is eliminated in the
urine and the remaining UA is removed via biliary secretion.

In the kidney, urate is easily 	ltered through the glomerulus
and subsequently reabsorbed by the proximal tubule cells of
the kidney and a�er further absorption, about 10% of urate
is 	nally excreted [14]. An anion exchanger and a voltage-
dependent pathway seem to be the mechanisms involved in
urate transport [15].

Allopurinol, a purine inhibitor of XO, has been con-
ventionally used for urate-lowering therapy to inhibit UA
synthesis. A novel urate-lowering drug, febuxostat, is a potent
nonpurine selective inhibitor of XO, and it inhibits both the
reduced and oxidized forms of the enzyme in contrast to
allopurinol that inhibits the reduced form of the enzyme only
[16, 17]. Febuxostat is metabolizedmainly by glucuronidation
and oxidation in the liver, has its dual (urinary and fecal)
pathways in excretion (urinary and fecal excretion rates:
49.1% and 44.9%, resp.), and is e�ective and well tolerated in
patients withmild tomoderate renal and hepatic impairment
[18, 19]. Animal studies have demonstrated that febuxostat
has a greater UA-lowering e�ect than allopurinol [20, 21].
Febuxostat’s chemical structure does not resemble a pyrim-
idine or purine and is unlike that of allopurinol [22]. It does
not inhibit other enzymes involved in purine or pyrimidine
metabolism [23].

Studying the role ofUA in kidney 	brosis, a processwhich
eventually leads to CKD, is very di�cult since uric acid is
excreted primarily by the kidney, and hence a decrease in the
glomerular 	ltration rate (GFR) is inevitably accompanied by
a rise in the serumUA level. As such, studies in experimental
animals in which serum UA can be modulated are critical to
understand whether there is a role for UA in the causation or
progression of CKD [7].
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3. Experimental Studies Supporting
the Roles of Uric Acid and Xanthine
Oxidase in Kidney Fibrosis

In the past, hyperuricemia was thought to cause CKD,
the so-called urate nephropathy, by the deposition of urate
crystals in the renal interstitium. �is results in a chronic
in
ammatory response and in progressive tubulointerstitial
injury in a similarmanner as seenwith tophi in gouty arthritis
[24].However, the pathologic role of hyperuricemia in kidney
disease by a crystal-independentmechanism is somewhat less
clear.

3.1. Hyperuricemic Rat Models and Types of Kidney Injury.
Generating hyperuricemia in laboratory animals proved to
be di�cult due to the fact that most mammals have the
uricase enzyme. Rodentmodels inwhich the uricase genewas
knocked out showed renal failure due to extensive tubular
crystal deposition and 	nally death [25]. An alternative
model with milder degree of hyperuricemia without crystal
deposition, which is more applicable to human disease, was
developed using uricase inhibitor, oxonic acid (OA) [26–29].
It is also possible to lower serum UA levels using the XO
inhibitors such as allopurinol and febuxostat.

A�er the year 2001, when the hyperuricemic rat model
was developed by using OA [26] and until recently, there
have been accumulating experimental evidences that hype-
ruricemia induced renal injury, which may be prevented by
lowering serum UA levels with XO inhibitors. �e 	rst study
using OA-induced hyperuricemic rat model demonstrated
that hyperuricemia induced systemic hypertension as well
as ischemic type of kidney injury with collagen deposition,
macrophage in	ltration, and increase in tubular expression
of osteopontin documented via immunohistochemical stains.
�e kidneys were devoid of urate crystals and were normal
by light microscopy. Blood pressure was lowered by reduc-
ing serum UA levels with allopurinol. Hyperuricemic rats
treated with OA also showed an increase in juxtaglomerular
renin and a decrease in macula densa neuronal nitric oxide
(NO) synthase. Both the kidney injury and hypertension
were attenuated by treatment with renin-angiotensin system
(RAS) blocker (enalapril) or a substrate for endothelial NO
synthase (L-arginine). �is study suggested that UA induced
hypertension and renal injury via a crystal-independent
mechanism with the activation of RAS and inhibition of
NO synthase [26]. Another study demonstrated that hype-
ruricemia induced arteriolopathy of the a�erent arteriole
by a blood pressure-independent mechanism. In this study,
hyperuricemic rats fed OA showed hypertension and a�erent
arteriolar thickening. Allopurinol prevented hyperuricemia,
hypertension, and arteriolopathy. Controlling blood pressure
with hydrochlorothiazide did not prevent hyperuricemia
and arteriolopathy, suggesting that hyperuricemia-induced
arteriolopathy was not mediated by blood pressure. �is
study also showed that arteriolopathy was mediated by the
direct e�ect of UAon proliferation of vascular smoothmuscle
cells with activation of RAS [27].

In another rat model with dietary intake of adenine,
whichmay be the source of the UA as a purine base, adenine-
fed rats showed hyperuricemia [30, 31]. Adenine-fed rats
also showed increased kidney in
ammation (TNF-�), 	brotic
(TGF-�), and oxidative (HO-1) markers, along with patho-
logically con	rmed kidney 	brosis. Lowering of UA levels
with allopurinol reversed the kidney damage, suggesting that
UA played a major role in the pathogenesis of kidney 	brosis
[30]. Another animal model of tubulointerstitial nephritis
(TIN) induced by excessive adenine intake exhibited sig-
ni	cant renal dysfunction and enhanced cellular in	ltration
accompanied by collagen deposition. It also showed higher
gene and protein expression of proin
ammatory cytokines.
Treatment with allopurinol led to reduced levels of uric acid,
oxidative stress, and collagen deposition and a downregula-
tion of the nuclear factor-kB (NF-kB) signaling pathway [31].

Based on the growing evidence that lowering UA lev-
els with allopurinol prevented renal injury induced by
hyperuricemia, the role of febuxostat in preventing kidney
injury was investigated. In OA-induced hyperuricemic rats,
febuxostat lowered UA levels and ameliorated systemic and
glomerular hypertension as well as preglomerular arteri-
olopathy. In normal rats without hyperuricemia, febuxostat
tended to lowerUA levels andhadno e�ect on bloodpressure,
glomerular pressure, and a�erent arteriole morphology [32].

3.2. Systemic and Glomerular Hypertension in Hyperuricemia.
�ere are some experimental studies that demonstrated the
relationship between UA and renal hemodynamics. In one
study, hyperuricemic rats fed OA not only developed sys-
temic hypertension but also glomerular hypertension.Hyper-
uricemic rats showed increased glomerular capillary pressure
with a�erent arteriole thickening. Allopurinol prevented
hyperuricemia, systemic and glomerular hypertension, and
arteriolopathy. Glomerular capillary pressure and arteriolar
thickening correlated with serum UA and systolic blood
pressure. �is study suggested that glomerular hypertension
might be mediated by insu�cient vasoconstriction of the
a�erent arteriole to systemic hypertension, allowing the
transmission of systemic pressure to the glomerular capillary
tu� [33]. In another study, hyperuricemia induced by OA
resulted in renal cortical vasoconstriction and glomerular
hypertension due to a�erent arteriole thickening in normal
and remnant kidney rats. Allopurinol prevented structural
and functional alterations in both normal and remnant
kidney rats.�is study suggested that hyperuricemia-induced
glomerular alterations caused renal ischemia, which in turn
induced tubulointerstitial in
ammation and 	brosis [28].

3.3. Renal Progression in Animal Models of Chronic Kidney
Disease. Hyperuricemia also contributed to renal progres-
sion in animal models of CKD. In 5/6 nephrectomy remnant
kidney model, remnant kidney rats fed OA showed more
severe renal failure, proteinuria, and histologic 	ndings
(thickening of the preglomerular arteries, glomerulosclerosis,
and interstitial 	brosis) compared to remnant kidney rats
without hyperuricemia. Allopurinol reduced serumUA levels
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and prevented the functional and histologic changes in rem-
nant kidney rats fed OA. �is study also demonstrated that
hyperuricemia accelerated renal progression by increasing
renin expression in the renal cortex and cyclooxygenase-
2 (COX-2) expression in the a�erent arteriole. In partic-
ular, this study showed that increased COX-2 expression
induced by hyperuricemia was associated with proliferation
of vascular smooth muscle cells in preglomerular arteries
[29]. In another 5/6 nephrectomy rat model, remnant kid-
ney rats treated with OA developed hyperuricemia, renal
vasoconstriction, and glomerular hypertension in association
with further aggravation of a�erent arteriolopathy compared
to remnant kidney rats that were not treated with OA.
Febuxostat prevented hyperuricemia and ameliorated renal
injury in remnant kidney rats treated with OA. Interestingly,
febuxostat had a comparable bene	cial e�ect in both rem-
nant kidney rats with hyperuricemia (treated with OA) and
remnant kidney rats without hyperuricemia (not treated with
OA) [34].

3.4. Exacerbation of Renal Injury in Animal Models of
Cyclosporine and Diabetic Nephropathy. Hyperuricemia has
also been known to exacerbate renal injury in some animal
disease models including cyclosporine (CsA) and diabetic
nephropathy. Hyperuricemia frequently complicated CsA
therapy. In one study using a model of CsA nephropathy,
the rats developed hyperuricemia with arteriolar hyalinosis,
tubular injury, and interstitial 	brosis. CsA nephropathy
rats fed OA showed higher UA levels with more severe
histologic 	ndings compared to CsA nephropathy rats that
were not treated with OA. �is study also demonstrated
that the mechanism did not involve intrarenal urate crystal
deposition and appeared to involve activation of RAS and
inhibition of intrarenalNOproduction [35]. In another study,
CsA-treated rats developed hyperuricemia with arteriolar
hyalinosis, tubular atrophy, interstitial 	brosis, increased
cell proliferation, and decreased vascular endothelial growth
factor (VEGF). Treatment with allopurinol or a uricosuric,
benzbromarone, reduced the severity of the kidney injury.
Both drugs provided comparable protection and the similar
protection observedwith both drugs suggests that the e�ect is
associatedmore with lowering UA levels than the antioxidant
e�ect of allopurinol [36]. Hyperuricemia has recently been
recognized to be a risk factor for nephropathy in the diabetic
subject. Diabetic (db/db) mice developed hyperuricemia,
albuminuria, mesangial matrix expansion, and mild tubu-
lointerstitial disease. Allopurinol treatment not only reduced
UA levels but also reduced albuminuria and ameliorated
tubulointerstitial injury. �e mechanism for protection was
shown to be due to a reduction in in
ammatory cells
mediated by a reduction in ICAM-1 expression by tubular
epithelial cells [37]. In another diabetic nephropathy model
using KK-A(y)Ta mice, lowering UA levels with allopurinol
attenuated transforming growth factor- (TGF-) �1-induced
pro	brogenic progression in the mice, suggesting that low-
ering serum UAmay be an e�ective therapeutic intervention
to prevent the progression of diabetic nephropathy [38].

3.5. Oxidative Stress and Endothelial Dysfunction in Hype-
ruricemia. While UA has been reported to be a potent
antioxidant in the extracellular 
uid [39], it has prooxidative
e�ect once inside the cell [40, 41]. According to a hypothesis
[39], the silencing of the uricase gene with an increase in
the blood level of UA provided an evolutionary advantage
for ancestors of Homo sapiens. �is hypothesis was based on
in vitro experiments which showed that UA is a powerful
scavenger of singlet oxygen, peroxyl radicals, and hydroxyl
radicals. UA circulating at an elevated level was proposed
to be one of the major antioxidants of the plasma that
protects cells from oxidative damage, thereby contributing
to an increase in life span of human species and decreasing
the risk of cancer [42]. On the other hand, a vast literature
on the epidemiology of cardiovascular disease, hypertension,
and metabolic syndrome overwhelmingly shows that, at
least among modern Homo sapiens, a high level of UA is
strongly associated with and in many cases predicts devel-
opment of hypertension, visceral obesity, insulin resistance,
dyslipidemia, diabetes, kidney disease, and cardiovascular
and cerebrovascular events [42]. Antioxidant e�ect of UA
varies according to the presence of speci	c components,
in di�erent physiochemical circumstances and in various
compartments of the human body. UA is an antioxidant only
in the hydrophilic environment and even in the plasma UA
can prevent lipid peroxidation only as long as ascorbic acid
is present [43]. Major sites where the antioxidant e�ects have
been proposed are the central nervous system [44, 45], liver
[46], and heart [47].

In OA-induced hyperuricemic rat model, hyperuricemia
caused intrarenal oxidative stress, increased expression of
NOX-4 subunit of renal NADPH oxidase and angiotensin
II, and decreased NO bioavailability. Hyperuricemic rats
also showed systemic hypertension, renal vasoconstriction,
and arteriolopathy. Tempol (superoxide scavenger) attenu-
ated the adverse e�ect induced by hyperuricemia despite
equivalent hyperuricemia, suggesting that UA might cause
oxidative stress [48]. In another study, hyperuricemic rats
treated with OA showed decreased urinary NO metabolites
(NO2
−/NO3

−), systemic hypertension, renal vasoconstric-
tion, and preglomerular arteriolopathy. Chronic administra-
tion of L-arginine, a substrate for endothelial NO synthase,
increased the urinary excretion ofNO2

−/NO3
− andpreserved

arteriolar structures probably mediated by the antiprolifer-
ative e�ect of NO on vascular smooth muscle cells, sug-
gesting the role of endothelial dysfunction as a mediator of
renal injury induced by hyperuricemia [49]. A recent study
reported that UA-induced endothelial dysfunction was asso-
ciated with mitochondrial alterations and decreased intra-
cellular ATP concentrations [50]. An experimental model of
streptozotocin-induced diabetic rats showed that febuxostat
improved endothelial dysfunction via attenuating oxidative
stress by XO inhibition [51].

3.6. Hyperuricemia and In�ammatory Responses. UA induces
in
ammatory responses. Hyperuricemia-induced in
amma-
tory response mediates kidney injury via alteration of vascu-
lar and tubular cells in kidney. UA has the ability to induce
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monocyte chemoattractant protein- (MCP-) 1 in vascular
smooth muscle cells, suggesting that it may have a role in the
vascular changes associated with hypertension and vascular
disease [52]. UA also contributes to kidney damage through
vascular cell proliferation induced by activation of COX-2
[29] and increased expression of C-reactive protein (CRP)
[53]. UA has been known to inhibit renal proximal tubule
cell proliferation via activation of NF-�B and cytoplasmic
phospholipase A2 [54]. Hyperuricemia also increases extra-
cellular matrix (ECM) synthesis through upregulation of
lysyl oxidase (LOX) expression in renal tubular epithelial
cells [55]. UA contributes to tubulointerstitial in
ammation
by inducing expression of intracellular adhesion molecule-
(ICAM-) 1 in renal tubular epithelial cells [37].

XO has been reported to be upregulated by various
in
ammatory stimuli such as lipopolysaccharide (LPS),
hypoxia, and cytokines [56–60]. Augmented XO eventually
causes excess ROS formation, leading to tissue damage.
Pharmacological inhibitors of XO, such as allopurinol and
febuxostat, have been reported to have an anti-in
ammatory
e�ect in various diseases such as atherosclerosis, congestive
heart failure, acute lung injury, renal interstitial 	brosis, and
ischemia-reperfusion injury [61–66]. A recent study sug-
gested amolecularmechanismunderlying the involvement of
XO in in
ammatory pathways, and it also suggested that XO
mediates LPS-induced phosphorylation of JNK through ROS
production and MKP-1 inactivation, leading to MCP-1 pro-
duction in macrophages. Febuxostat signi	cantly suppressed
LPS-induced MCP-1 production in human macrophages and
in vivo in mice [56].

3.7. Hyperuricemia and Epithelial-Mesenchymal Transition.
In the last decade, epithelial-mesenchymal transition (EMT),
a process by which fully di�erentiated epithelial cells lose
their epithelial characteristics and undergo phenotypic con-
version to mesenchymal cells, has emerged as an important
pathway leading to generation of matrix-producing 	brob-
lasts and myo	broblasts in kidney 	brosis. In addition to
kidney 	brosis, EMT has been known to play a pivotal role in
embryonic development, wound healing, tissue regeneration,
and cancer progression [67, 68].

A recent study showed that UA exerted a direct e�ect
on renal tubular cells by inducing EMT [69]. OA-induced
hyperuricemic rats showed evidence of EMT before the
development of signi	cant tubulointerstitial 	brosis at 4
weeks, as indicated by decreased E-cadherin expression and
an increased �-smooth muscle actin (�-SMA). Allopurinol
signi	cantly inhibited UA-induced changes in E-cadherin
and �-SMA with an amelioration of kidney 	brosis at 6
weeks. In cultured rat renal tubular epithelial cells (NRK
cells), UA induced EMT, which was blocked by the organic
acid transport inhibitor, probenecid. UA increased expres-
sion of transcriptional factors associated with decreased
synthesis of E-cadherin. UA also increased the degradation
of E-cadherin via ubiquitination, which is of importance
since downregulation of E-cadherin is considered to be a
triggering mechanism for EMT. �is study suggested that
UA-induced EMT of renal tubular cells might be a novel

mechanism explaining the association of hyperuricemia and
renal progression a�er taking into account that EMT is
an early phenomenon in kidney 	brosis [69–71]. Further
research is required to assess the role of UA in other
mesenchymal cell generation pathways.

4. Perspective

�eunderlyingmechanisms bywhichUA could cause kidney
	brosis have been reported in animal models since 2001, and
there has been a growing interest in this topic and numerous
retrospective and prospective observational studies have
been performed to assess the relationship between UA and
CKD. �e majority of data support the role of UA as a cause
or exacerbating factor for kidney 	brosis and progressive
CKD. Although, over the last several years, some clinical
intervention trials including randomized controlled trials
(RCTs) have further supported this mechanistic role of UA
[72–78], clinical evidence demonstrating the bene	cial e�ect
of UA lowering therapywith XO inhibitors on renoprotection
and prevention of CKD progression is not certain yet and
cannot be easily generalized. Most of the clinical studies are
limited by their retrospective study design, small sample size,
short follow-up duration, or lack of randomization, and no
adequately powered RCT has yet demonstrated the bene	cial
e�ect of UA-lowering therapy on renal and cardiovascular
outcomes inCKD [5]. Currently, there is no published clinical
trial in which febuxostat was used as a XO inhibitor for
evaluating the e�cacy of UA reduction on progression of
CKD.

With regard to the animal models in this research 	eld,
the uricase inhibitor OA-induced hyperuricemic rat model
[26–29] was mainly used during the initial several years and
all of the studies used allopurinol as a XO inhibitor. �ere-
a�er, the research was performed using animal models of
various kidney disease conditions, such as CsA nephropathy
[36], diabetic nephropathy [38, 51], obstructive nephropathy
[61], ischemia-reperfusion injury [62], and 5/6 nephrectomy
rat model [34]. Further research using diverse animal models
of CKD [79, 80] is essential not only for gaining a better
understanding of molecular mechanisms of kidney 	brosis
but also for designing more appropriate clinical studies.

Febuxostat, a chemically engineered nonpurine selective
inhibitor of XO, received approval in February 2009 from the
Food and Drug Administration for the chronic management
of hyperuricemia in patients with gout [81]. Although its clin-
ical use is increasing, febuxostat is still generally considered
as a second-line option for patients with gout who are unable
to take allopurinol due to hypersensitivity, intolerance, renal
insu�ciency, or lack of e�cacy in achieving a target serum
UA level of <6.0mg/dL. However, recently in basic research,
febuxostat has largely replaced allopurinol as a XO inhibitor,
and several animal studies have shown various bene	cial
e�ects of febuxostat in reducing in
ammation, oxidative
stress, and kidney 	brosis [34, 61, 62]. Febuxostat prevented
renal injury in 5/6 nephrectomy rats with and without
coexisting hyperuricemia [34]. But still there is little clinical
experience and there are no clinical trials with febuxostat
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Figure 2: Mechanisms by which uric acid may cause kidney
	brosis based on experimental animal studies. EMT: epithelial-
mesenchymal transition; RAS: renin-angiotensin system.

assessing the e�cacy of lowering UA on CKD progression,
and it is also more expensive than allopurinol.

At present, drug therapy for asymptomatic hyperuricemia
is not actively recommended, and this negative approach
is mainly due to the absence of evidence from adequately
powered RCTs on the causality between hyperuricemia and
the onset or progression of CKD. Considering the large
sample size required for an adequately powered trial, an
international collaboration is necessary.

Current research interests focus on developing new e�ec-
tive anti	brotic drugs to slow progression or even reverse
chronic kidney injury, and several compounds which target
various components of the 	brotic pathway, from signal-
ing molecules that include TGF-�, phosphatidylinositide-
3-kinase, and chemokines to microRNAs, are undergoing
clinical trials [82, 83]. Although, at present, UA may be one
of the ignored risk factors for CKD and the clinical use of
UA-lowering drugs which include allopurinol and febuxostat
is largely con	ned to gout management, discovering the
potential value of XO inhibitors for preventing kidney 	brosis
and CKD progression will provide additional valuable tools
for managing CKD.

5. Conclusion

A�er taking into account the results of all the important
experimental studiesmentioned above, UA andXOmay con-
tribute to kidney 	brosis mainly by inducing in
ammation,
endothelial dysfunction, oxidative stress, and activation of
RAS (Figure 2). Besides, hyperuricemia induces alterations
of renal hemodynamics via a�erent arteriolopathy and con-
tributes to the onset and progression of kidney 	brosis. Many
experimental studies have shown that XO inhibitors may
prevent kidney damage by lowering UA and inhibiting XO.
However, there is no su�cient evidence from interventional
clinical researches supporting the causal relationship between
UA and kidney 	brosis, a 	nal common pathway of CKD
progression. �us, the time is not quite appropriate for rec-
ommending the widespread clinical use of XO inhibitors for
preventing CKD progression in patients with hyperuricemia

and more so in patients without hyperuricemia. �e e�ect
and role of XO inhibitors in preventing kidney 	brosis and
CKD progression must be further explored by performing
future large scale clinical trials.
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ruricemia induces vasoconstriction and maintains glomerular
hypertension in normal and remnant kidney rats,” Kidney
International, vol. 67, no. 1, pp. 237–247, 2005.

[29] D.-H. Kang, T. Nakagawa, L. Feng et al., “A role for uric acid in
the progression of renal disease,” Journal of the American Society
of Nephrology, vol. 13, no. 12, pp. 2888–2897, 2002.

[30] V. Diwan, A. Mistry, G. Gobe, and L. Brown, “Adenine-induced
chronic kidney and cardiovascular damage in rats,” Journal of

Pharmacological and Toxicological Methods, vol. 68, no. 2, pp.
197–207, 2013.

[31] M. Correa-Costa, T. T. Braga, P. Semedo et al., “Pivotal role
of toll-like receptors 2 and 4, its adaptor molecule MyD88,
and in
ammasome complex in experimental tubule-interstitial
nephritis,” PLoS ONE, vol. 6, no. 12, Article ID e29004, 2011.

[32] L. G. Sánchez-Lozada, E. Tapia, V. Soto et al., “Treatment with
the xanthine oxidase inhibitor febuxostat lowers uric acid and
alleviates systemic and glomerular hypertension in experimen-
tal hyperuricaemia,” Nephrology Dialysis Transplantation, vol.
23, no. 4, pp. 1179–1185, 2008.

[33] L. G. Sánchez-Lozada, E. Tapia, C. Avila-Casado et al., “Mild
hyperuricemia induces glomerular hypertension in normal
rats,”�eAmerican Journal of Physiology—Renal Physiology, vol.
283, no. 5, pp. F1105–F1110, 2002.

[34] L. G. Sánchez-Lozada, E. Tapia, V. Soto et al., “E�ect of febux-
ostat on the progression of renal disease in 5/6 nephrectomy
rats with and without hyperuricemia,” Nephron—Physiology,
vol. 108, no. 4, pp. p69–p78, 2008.

[35] M.Mazzali, Y.-G. Kim, S.-I. Suga et al., “Hyperuricemia exacer-
bates chronic cyclosporine nephropathy,” Transplantation, vol.
71, no. 7, pp. 900–905, 2001.

[36] F. C. Mazali, R. J. Johnson, and M. Mazzali, “Use of uric acid-
lowering agents limits experimental cyclosporine nephropathy,”
Nephron—Experimental Nephrology, vol. 120, no. 1, pp. e12–e19,
2012.

[37] T. Kosugi, T. Nakayama, M. Heinig et al., “E�ect of lowering
uric acid on renal disease in the type 2 diabetic db/db mice,”
�e American Journal of Physiology—Renal Physiology, vol. 297,
no. 2, pp. F481–F488, 2009.

[38] S. M. Kim, Y. W. Choi, H. Y. Seok et al., “Reducing serum uric
acid attenuates TGF-�1-induced pro	brogenic progression in
type 2 diabetic nephropathy,” Nephron Experimental Nephrol-
ogy, vol. 121, no. 3-4, pp. e109–e121, 2012.

[39] B. N. Ames, R. Cathcart, E. Schwiers, and P. Hochstein,
“Uric acid provides an antioxidant defense in humans against
oxidant- and radical-caused aging and cancer: a hypothesis,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 78, no. 11, pp. 6858–6862, 1981.

[40] D. B. Corry, P. Eslami, K. Yamamoto, M. D. Nyby, H. Makino,
and M. L. Tuck, “Uric acid stimulates vascular smooth muscle
cell proliferation and oxidative stress via the vascular renin-
angiotensin system,” Journal of Hypertension, vol. 26, no. 2, pp.
269–275, 2008.

[41] Y. Y. Sautin, T. Nakagawa, S. Zharikov, and R. J. John-
son, “Adverse e�ects of the classic antioxidant uric acid in
adipocytes: NADPH oxidase-mediated oxidative/nitrosative
stress,”�eAmerican Journal of Physiology—Cell Physiology, vol.
293, no. 2, pp. C584–C596, 2007.

[42] Y. Y. Sautin and R. J. Johnson, “Uric acid: the oxidant-
antioxidant paradox,” Nucleosides, Nucleotides and Nucleic
Acids, vol. 27, no. 6-7, pp. 608–619, 2008.

[43] B. Frei, R. Stocker, and B. N. Ames, “Antioxidant defenses and
lipid peroxidation in human blood plasma,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 85, no. 24, pp. 9748–9752, 1988.

[44] Z. F. Yu, A. J. Bruce-Keller, Y. Goodman, and M. P. Mattson,
“Uric acid protects neurons against excitotoxic and metabolic
insults in cell culture, and against focal ischemic brain injury in
vivo,” Journal of Neuroscience Research, vol. 53, no. 5, pp. 613–
625, 1998.



8 BioMed Research International

[45] D. C. Hooper, S. Spitsin, R. B. Kean et al., “Uric acid, a
natural scavenger of peroxynitrite, in experimental allergic
encephalomyelitis and multiple sclerosis,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 95, no. 2, pp. 675–680, 1998.

[46] K. Tsukada, T. Hasegawa, S. Tsutsumi et al., “E�ect of uric acid
on liver injury during hemorrhagic shock,” Surgery, vol. 127, no.
4, pp. 439–446, 2000.

[47] B. F. Becker, N. Reinholz, T. Ozcelik, B. Leipert, and E. Gerlach,
“Uric acid as radical scavenger and antioxidant in the heart,”
P�ugers Archiv European Journal of Physiology, vol. 415, no. 2,
pp. 127–135, 1989.

[48] L. G. Sánchez-Lozada, V. Soto, E. Tapia et al., “Role of oxidative
stress in the renal abnormalities induced by experimental
hyperuricemia,” �e American Journal of Physiology—Renal
Physiology, vol. 295, no. 4, pp. F1134–F1141, 2008.

[49] L. G. Sánchez-Lozada, E. Tapia, R. López-Molina et al., “E�ects
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