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Abstract: Multiple sclerosis (MS) is a complex neurological condition that involves both inflammatory
demyelinating and neurodegenerative components. MS research and treatments have traditionally
focused on immunomodulation, with less investigation of neuroprotection, and this holds true
for the role of vitamin D in MS. Researchers have already established that vitamin D plays an
anti-inflammatory role in modulating the immune system in MS. More recently, researchers have
begun investigating the potential neuroprotective role of vitamin D in MS. The active form of
vitamin D, 1,25(OH)2D3, has a range of neuroprotective properties, which may be important in
remyelination and/or the prevention of demyelination. The most notable finding relevant to MS
is that 1,25(OH)2D3 promotes stem cell proliferation and drives the differentiation of neural stem
cells into oligodendrocytes, which carry out remyelination. In addition, 1,25(OH)2D3 counteracts
neurodegeneration and oxidative stress by suppressing the activation of reactive astrocytes and M1
microglia. 1,25(OH)2D3 also promotes the expression of various neuroprotective factors, including
neurotrophins and antioxidant enzymes. 1,25(OH)2D3 decreases blood–brain barrier permeability,
reducing leukocyte recruitment into the central nervous system. These neuroprotective effects,
stimulated by 1,25(OH)2D3, all enhance neuronal survival. This review summarizes and connects
the current evidence supporting the vitamin D-mediated mechanisms of action for neuroprotection
in MS.

Keywords: vitamin D; multiple sclerosis; neuroprotection; neurodegeneration; 1,25(OH)2D3

1. Introduction

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central ner-
vous system (CNS), characterized by an interplay of genetic and environmental factors [1].
Vitamin D deficiency during childhood and adolescence is a risk factor for the develop-
ment of MS [2]. Vitamin D is obtained primarily via sun exposure (UVB, wavelengths
~295–315 nm) and/or taking vitamin D supplements, with limited intake from food in most
populations. Higher MS prevalence and earlier onset are associated with geographical
locations of increasing latitude (away from the equator) and/or with reduced annual sun-
light exposure [3–8]. High consumption of fatty fish, a select dietary source of vitamin D,
is believed to help protect against this latitude gradient MS association [9–11]. Further-
more, evidence has shown that HLA-DRB1*1501, the strongest genetic association in
MS, is regulated by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) via a vitamin D response
element [12–14].

Arguably, the strongest evidence comes from large longitudinal population-based
cohorts with banked serum samples from persons with MS (pwMS) at time points prior to
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their MS onset. Using samples from large prospective cohorts of nurses and military per-
sonnel in the US, Munger and colleagues found a significant reduction in MS risk (30–60%)
associated with the highest quintile of serum 25-hydroxyvitamin D3 (25(OH)D3) [15,16].
Scandinavian registry cohorts observed similar results using banked maternal and newborn
serum samples—lower circulating 25(OH)D3 was associated with significant increases in
MS risk [17,18].

With regards to altering disease activity after MS diagnosis, some studies have
shown that vitamin D supplementation can reduce relapses and MRI lesion activity in
pwMS [19–24]. Randomized controlled trials are difficult to execute due to the requirements
of large sample size and study length, disease heterogeneity, the sensitivity of detecting dif-
ferences in clinical endpoints, retention rates, the influence of sun exposure, and vitamin D
maintenance dose in the control arms, among other challenges. Several studies have shown
promising results with respect to certain clinical endpoints with high-dose vitamin D sup-
plementation compared to placebo groups [25–29]. However, consistent results as to the
long-term clinical benefits of MS are lacking. It may be likely that RCTs with vitamin D
supplementation will never be able to assess its potential benefits, especially given that a
control arm of zero supplementation is deemed non-ethical [30].

Both the circulating and biologically active forms of vitamin D (25(OH)D3 and 1,25(OH)2D3,
respectively) cross the blood–brain barrier (BBB) into the CNS, where they can act on various
neuronal and glial cells [31,32]. Neurons, microglia, and astrocytes express 1α-hydroxylase
(CYP27B1), the enzyme responsible for converting 25(OH)D3 into 1,25(OH)2D3 [33–36].
Along with oligodendrocytes, these cells also all express the vitamin D receptor (VDR) [33–39].
1,25(OH)2D3 can thus be synthesized in the cytosol or diffuse through the plasma membrane
of target cells and bind to the VDR in the cytoplasm [40]. The VDR-1,25(OH)2D3 complex
then translocates to the nucleus where it couples with the retinoid X receptor (RXR) and
binds to the vitamin D response elements of target genes to regulate their expression [40].
This leads to the biological actions of vitamin D, mediated through changes in the expression
of a huge array of target genes, involved in diverse functions ranging from bone health to
CNS development to immunomodulation.

Both inflammatory demyelinating and subsequent neurodegenerative processes con-
tribute to the complex pathogenesis of MS [41]. The autoimmune component is driven by
the T-cell-mediated attack of the myelin sheath surrounding the axons of CNS neurons,
which prevents efficient impulse transmission, leading to neurological symptoms [42,43].
These abnormal immune responses in MS cause focal inflammatory demyelinated le-
sions in the CNS, and chronic myelin destruction enhances axonal damage and eventual
neuronal loss [41,44–46]. Remyelination is important in preventing permanent disabil-
ity, but the ability to restore myelin becomes increasingly impaired with progressive
MS [47]. Neuroprotective treatment strategies—aimed at preventing initial loss or pro-
moting remyelination—remain elusive in MS treatment [46,47]. Understanding the mech-
anisms by which vitamin D deficiency affects immune regulation, myelination, and neu-
rodegeneration is important to potentially altering MS risk and disease activity.

The mechanism of vitamin D-mediated immunological activity, including reducing
inflammation, is much more established in the literature than its proposed neuroprotective
benefits [48–50]. Evidence that vitamin D sufficiency is important in combatting axonal
degeneration, as well as both glial and neuronal loss in MS, has been rather limited in the
past [48,50]. However, the number of studies investigating the neuroprotective mechanisms
of vitamin D is growing. As such, the intent of this review is to examine the current state of
research in order to summarize and clarify the latest findings regarding the mechanistic
role of vitamin D-mediated neuroprotection in MS. We map out its actions via the following
mechanisms: enhancing oligodendrocyte lineage differentiation, enhancing neurotrophin
expression, attenuating aberrant microglial and reactive astrocyte activation, stabilizing the
BBB, and reducing oxidative stress.



Nutrients 2023, 15, 2978 3 of 15

2. Promoting Oligodendrocyte Proliferation and Differentiation

Oligodendrocyte dystrophy and apoptosis are significant pathological features in the
demyelinating lesions of MS [51]. Oligodendrocytes are myelin-producing glial cells that
support neurons in the CNS. During periods of tissue injury, mature oligodendrocytes have
the ability to remyelinate CNS neuronal axons to maintain saltatory conduction, which is
a prerequisite for proper brain functioning [52]. Remyelination by oligodendrocytes can
be robust and restorative, especially in early MS, but declines during later stages of the
disease [52,53]. The ability to regenerate the oligodendrocyte population depends on the
availability of neural stem cells (NSCs) and oligodendrocyte progenitor cells (OPCs) [52].
Oligodendrogenesis is the process by which NSCs commit to an oligodendrocyte lineage
and differentiate into OPCs, which ultimately differentiate into oligodendrocytes [54].
However, in MS, especially during the progressive stage, the regenerative capacity of NSCs
and OPCs to give rise to oligodendrocytes is considerably diminished, contributing to
neuronal degeneration and impaired axonal conduction [6,53,55].

It has previously been shown that OPCs and oligodendrocytes express VDR [34]. VDR-RXR
heterodimerization is present in OPCs and is necessary for OPC differentiation [37,56]. The
capacity of 1,25(OH)2D3 to promote OPC differentiation is diminished in the presence of a
VDR antagonist in a dose-dependent manner [37]. By blocking VDR, it becomes apparent
that 1,25(OH)2D3 is exerting its proposed neuroprotective effect on oligodendrocyte lineage
cells via VDR-RXR signalling [37]. In 2015, it was demonstrated that VDR is constitutively
expressed in NSCs [57]. Increasing vitamin D in vitro upregulates VDR expression in NSCs
in a dose-dependent manner [57].

Increased 1,25(OH)2D3 exposure stimulates an increase in NSC proliferation and,
importantly, increases the proportion of NSCs that can differentiate into oligodendrocyte
lineage cells [57,58] (Figure 1). In a study utilizing a lysolecithin-induced model in the
corpus callosum of male rats, the group that received oral 1,25(OH)2D3 had a higher con-
centration of OPCs at lesion sites compared to sham and control groups [58]. Furthermore,
1,25(OH)2D3 administration increases the proportion of mature oligodendrocytes in a
cuprizone-induced demyelination model as well as in NSC and OPC cultures [37,57,59].
Consistent results were found in a murine experimental autoimmune encephalomyelitis
(EAE) model, where 1,25(OH)2D3 administration increased the concentration of NSCs,
OPCs, and oligodendrocytes [60]. EAE models are often considered more reflective of MS
pathogenesis than demyelination models as they exhibit both immune-mediated inflamma-
tion and demyelination [61]. Additionally, 1,25(OH)2D3 administration upregulates the
expression of myelin basic protein and proteolipid protein, which are markers of myelin
content [37,58–60]. The upregulation of these markers may suggest that demyelination is
reduced and/or remyelination is increased in response to 1,25(OH)2D3 [37,58–60].
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Figure 1. Overview of the mechanisms involved in neurodegeneration versus vitamin D-mediated
neuroprotection in MS. (A) Pathways of neurodegenerative pathogenesis in MS. In addition to the
depicted, the expression of neurotrophins and antioxidant enzymes is reduced in neurons and glia.
(B) Neuroprotective pathways elicited by vitamin D in MS. Abbreviations: Arg1, arginase 1; BDNF,
brain-derived neurotrophic factor; CNTF, ciliary neurotrophic factor; CL-5, claudin-5; GDNF, glial
cell line-derived neurotrophic factor; Hmox1, heme oxygenase 1; ICAM-1, intercellular cell adhesion
molecule-1; iNOS, inducible nitric oxide synthase; IL, interleukins; MBP, myelin basic protein; NT-3,
neurotrophin-3; PLP, proteolipid protein; ROS, reactive oxygen species; VCAM-1, vascular cell
adhesion molecule-1; TGF, transforming growth factor; TNF, tumor necrosis factor; VEGF, vascular
endothelial growth factor; ZO-1, zonula occluden-1.
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3. Enhancing Neurotrophin Expression

Reduced neurotrophin secretion is another factor that contributes to inadequate neuro-
protection in neurodegenerative disorders such as MS [62,63]. Neurotrophins are a family
of proteins that elicit protective and regenerative effects by stimulating the proliferation
and differentiation of NSCs, as well as the growth, survival, and proper functioning of
neuronal and glial cells [62,64,65]. Neurotrophins are secreted by multiple cell types, some
of which include NSCs, neurons, oligodendrocytes, astrocytes, and M2 microglia [57,65–68].
Key neurotrophins include NT-3, BDNF, CNTF, GDNF, and NGF [64].

Vitamin D has previously been demonstrated to increase neurotrophin expression [69–71].
When mouse NSCs were cultured with 1,25(OH)2D3, the expression of NT-3, BDNF, CNTF,
and GDNF was upregulated [57]. Consistent results were observed in rodent models
showing the upregulation of NGF and BDNF in CNS tissue following 25(OH)D3 sup-
plementation [71–73]. In addition, 1,25(OH)2D3 exposure stimulated oligodendrogenesis
and neurogenesis in mouse NSCs [57]. This effect may be mediated by the induction of
these neurotrophins, whereby 1,25(OH)2D3 enhances NSC proliferation and differentiation
into neurons and oligodendrocytes [57]. These neurotrophins have all been previously
associated with enhanced oligodendrogenesis and neurogenesis [74–80]. Overall, increased
neurotrophin secretion in response to vitamin D may tip the balance towards a less neu-
rotoxic environment in which CNS cells can more effectively contribute to repair and
regeneration (Figure 1).

4. Attenuating the Activation of Pro-Inflammatory/Neurodegenerative Microglia

Microglia play a central role in normal CNS development and maintenance, including
resident immune surveillance. In MS, activated microglia are abundant in the focal plaques
of demyelination and contribute to disease progression [81,82]. The polarization of activated
microglia has typically been classified into two opposing phenotypes, which likely exist on
a continuum: M1 microglia, which are considered pro-inflammatory and neurotoxic, or
M2 microglia, which are considered anti-inflammatory and neuroregenerative [66,81,83].
The classically activated M1 phenotype contributes to neurodegeneration via the release
of reactive oxygen species (ROS) and pro-inflammatory cytokines, as well as enhancing
antigen presentation to CD4+ T cells [66,67,81,83–85].

There are various lines of evidence supporting the attenuation of the M1 pheno-
type with increased vitamin D exposure [35,39,58,59,86–89]. Firstly, the release of pro-
inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-12, as well as inducible nitric oxide
synthase (iNOS), ROS formation, and CD86 (a marker of the M1 phenotype) are reduced
in cultured microglia exposed to 1,25(OH)2D3 and in vitamin D-supplemented mouse
models of CNS disease [35,86,88–92]. A reduction in these M1 cytokines and ROS then
contributes to oligodendrocyte and neuronal survival [67,93–97]. The vitamin D-mediated
phenotypic shift also downregulates MHC II expression by M1 microglia, reducing their
antigen-presenting capacity to CD4+ T cells [39,84,88,96], which fosters an environment
that permits tissue repair.

Vitamin D helps mediate a microglial shift towards the M2 phenotype [98]. The alter-
native M2 phenotype is neuroprotective in nature, given its association with the increased
secretion of anti-inflammatory cytokines as well as the upregulation of neurotrophins and
ROS-regulating enzymes arginase 1 and heme oxygenase 1 [91,99]. In a mouse model of
Parkinson’s disease, vitamin D has been shown to increase the expression of CD163, CD206,
and CD204, which are all markers of M2 microglia [90]. Furthermore, several studies have
demonstrated that vitamin D is associated with increased concentrations of M2-associated
cytokines, IL-4, IL-10, and TGF-β1, in both EAE mice and in serum from pwMS [100–103].
These cytokines are implicated in regenerative CNS functions, such as oligodendrogenesis
and neurogenesis [104–106]. In addition, M2 microglia have a stronger phagocytic capacity
to engulf myelin debris, which is a prerequisite for myelin repair in CNS disorders (due
to the inflammatory and neurotoxic nature of myelin debris) [39,66,67,83,107]. Given that
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1,25(OH)2D3 helps to promote a shift towards the M2 microglial phenotype [88,108,109],
this could potentially also enhance the clearance of myelin debris.

The vitamin D-induced release of IL-10 from microglia is one mechanism mediating
the M1 to M2 phenotypic shift [35]. Boontanrart et al. (2016) exposed cultured microglia to
LPS, IFN-γ, and Theiler’s murine encephalomyelitis virus to induce M1 polarization [35]. In
these M1 microglial cultures, they found that 1,25(OH)2D3 stimulated microglia to release
IL-10, which binds to the microglial IL-10 receptor in an autocrine and paracrine manner
to upregulate SOCS3 [35]. SOCS3 then acts via a negative feedback loop to downregulate
TNF-α, IL-6, IL-12, and iNOS [35].

Another mechanism by which vitamin D is hypothesized to shift microglial pheno-
types is via its stimulation of neuronal factors such as IL-34 [39]. In vitro experiments
were conducted on neurons and LPS-activated M1 microglia, revealing that 1,25(OH)2D3
stimulates neurons to release factor(s) that act on microglia to influence a transition from
M1 to M2 polarization, as evidenced by downregulated IL-6, IL-1β, and MHC II, as well
as upregulated heme oxygenase 1 and arginase 1 [39]. Neuronal IL-34, in particular, is
a survival factor, contains a VDRE in its promoter region, and its expression is slightly
increased when stimulated by 1,25(OH)2D3 [39,97]. Under the influence of 1,25(OH)2D3,
neuronal IL-34 inhibited the expression of IL-6 in M1 microglia, partially contributing
to the phenotypic transition from M1 to M2 polarization [39]. This indicates that other
unknown neuronal factor(s) are likely involved in facilitating the microglial shift towards
the M2 phenotype under the influence of 1,25(OH)2D3 [39]. Overall, it is hypothesized that
vitamin D promotes a shift away from M1 and towards the M2 microglial phenotype, thus
reducing damage to neurons and oligodendrocytes, promoting greater potential for repair
and recovery (Figure 1).

5. Reducing Reactive Astrogliosis

Astrocytes comprise a large portion of the glial cell population in the CNS [110].
They elicit essential functions, such as metabolically assisting neuronal growth, signalling
immune cell entry into the CNS, and forming a critical component of the BBB [110]. When
CNS injury occurs, astrocytes become reactive and divide rapidly, also termed astrogliosis,
which has both positive and negative consequences [110,111]. Reactive astrocytes aid in
recovery by encompassing the site of demyelination, resulting in the construction of a glial
scar, which prevents the injury from expanding [112]. However, after a certain point, the
abnormal increase in the number of reactive astrocytes is detrimental, as it contributes
to the development of MS lesions [110,113,114]. Reactive astrocytes release a number of
pro-inflammatory cytokines and ROS, which can be neurotoxic to OPCs, oligodendrocytes,
and neurons [115].

Reducing the activation and abundance of astrocytes may make the neurodegenerative
microenvironment more conducive to repair processes [67,116]. MS plaques with fewer
reactive astrocytes exhibit elevated OPC content and greater remyelination [116]. The
expression of VDR and CYP27B1 were upregulated in the astrocytes of LPS-stimulated rats,
supporting a potential response via vitamin D [36]. In rodent models of cuprizone-induced
demyelination and LPS injection, it was shown that the concentration and activation of
astrocytes were decreased in mice that were administered intraperitoneal injections of
25(OH)D3 and 1,25(OH)2D3 [36,59]. Findings from other rodent CNS disease models
have similarly supported a decrease in GFAP expression and astrocyte activation upon
supplementation with oral or injected vitamin D [36,71]. More specifically, 25(OH)D3
and 1,25(OH)2D3 downregulated iNOS, TLR4, TNF-α, and IL-1β in cultured astrocytes
and EAE [36,117,118] (Figure 1). Additionally, the in vitro exposure of mouse NSCs to
1,25(OH)2D3 reduces NSC differentiation into astrocytes [57] (Figure 1). This is interesting,
as vitamin D has the opposite effect of increasing NSC differentiation into oligodendrocytes
and neurons (discussed above) [57], consistent with its role in neuroprotection.
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6. Stabilizing the Blood–Brain Barrier

The BBB regulates the movement of blood-borne molecules, ions, and cells into the
CNS, leading to the stabilization and protection of the neuronal microenvironment [119–122].
Breakdown of the BBB and consequent hyperpermeability occurs early in MS [123]. When
stimulated by pro-inflammatory cytokines from various immune cells, endothelial cells of
the BBB downregulate tight junctions and upregulate cell-adhesion molecules, which desta-
bilizes the BBB and increases leukocyte recruitment into the CNS, respectively [124]. Reac-
tive astrocytes also play a role in BBB instability [120,125,126]. Pro-inflammatory cytokines,
including TNF-α and IL-1β, secreted from reactive astrocytes stimulate the endothelial
cells to downregulate tight junctions and upregulate cell-adhesion molecules [120,125,126].
The reactive astrocytes also detach their endfeet processes from the capillary endothelium,
making the BBB more permeable [127]. Interestingly, in a neurodegenerative environment,
reactive astrocytes release vascular endothelial growth factor (VEGF), which signals en-
dothelial cells to lower tight junction expression, which destabilizes the BBB [128]. As a
result of BBB hyperpermeability, CD4+ Th1 and Th17 cells are able to translocate into the
CNS, where their secreted cytokines prompt the degeneration of oligodendrocytes and
myelinated axons [123].

Vitamin D is thought to counteract BBB hyperpermeability through multiple mecha-
nisms (Figure 1). In a study using human brain endothelial cells, the effects of 1,25(OH)2D3
exposure were examined following exposure to TNF-α and exposure to sera derived from
MS patients [129]. It was found that 1,25(OH)2D3 can act directly on endothelial cells to
upregulate tight junction proteins (zonula occluden-1 and claudin-5) and downregulate
cell adhesion molecules (ICAM-1 and VCAM-1) [129]. These two outcomes both contribute
to BBB stabilization [129]. More recently, de Oliveira et al. (2020) reported similar findings,
observing that 1,25(OH)2D3 supplementation in EAE mice upregulated zonula occluden-1
and lowered BBB permeability, alongside symptom improvement [88]. They also analyzed
immune cell entry into the CNS and axonal loss; 1,25(OH)2D3-stimulated BBB stabilization
was associated with the limited migration of immune cells into the CNS and reduced
demyelination scores [88]. Additionally, reactive astrocytes exposed to 25(OH)D3 demon-
strate decreased expression of TNF-α, IL-1β, and VEGF, which may help further stabilize
the BBB [36,120,125,126,128] to promote neuroprotection.

In addition to reducing BBB permeability by upregulating tight junction proteins
and downregulating cell-adhesion molecules, 1,25(OH)2D3 has been shown to lower the
expression of matrix metalloproteinase-9 (MMP-9) in mouse-brain endothelial cells and
in a rat model of ischemic stroke [130,131]. Various cell types, including endothelial cells,
CNS cells, and leukocytes, release MMPs [132]. MMPs are responsible for breaking down
extracellular matrix components (such as collagen, fibronectin, and laminin) and tight junc-
tion proteins, thereby contributing to BBB instability [132–135]. As such, reducing MMP-9
expression may be another underlying mechanism by which vitamin D promotes BBB
stabilization [98]. It has also been demonstrated that 1,25(OH)2D3 reduces the apoptosis of
human endothelial cells exposed to MS sera, which may indicate a further protective effect
of vitamin D on the BBB [98,136].

7. Reducing Oxidative Stress

Another significant contributor to the pathogenesis of MS is oxidative stress [137].
Normally, ROS, such as hydrogen peroxide, nitric oxide, and superoxide, are generated
during cellular respiration when a small quantity of electrons “leak out” of the electron
transport chain and react with oxygen [137,138]. Under physiological conditions, ROS
that are produced in low amounts are neutralized by antioxidant enzymes present in
cells [137]. However, when ROS production exceeds neutralization, the excess ROS can
oxidize nucleic acids, proteins, lipids, and carbohydrates, contributing to cell injury and
death [137,139]. In MS, the inflammatory environment continually activates a number
of cells, including peripheral immune cells, microglia, and astrocytes, that release ROS
and pro-inflammatory cytokines, further enhancing inflammation in a positive feedback
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loop [137]. Microglia and peripheral macrophages are the greatest generators of ROS in
MS [96,137]. While ROS production is increased in MS, ROS neutralization is decreased due
to lower antioxidant enzyme expression [140,141]. In the CNS microenvironment, excessive
ROS are particularly damaging to oligodendrocyte lineage cells and neurons, as these cell
types do not have sufficient antioxidant enzymes to neutralize the ROS [96,97,142]. Injuring
OPCs and neurons can impair remyelination, leading to neurodegeneration [143].

Vitamin D has been shown to mitigate oxidative stress in the CNS tissue of EAE
mice [88]. 1,25(OH)2D3 treatment reduced the biomarkers of oxidative stress (lipid hy-
droxides and protein carbonyls), while the expression of antioxidant enzymes (glutathione
peroxidase, superoxide dismutase, and catalase) was restored to normal levels [85]. Sim-
ilarly, vitamin D sufficiency and supplementation have been associated with decreased
oxidative stress and increased antioxidant biomarkers in both animal models [144–147]
and human studies [148–152] of other health conditions, including Type II Diabetes. In
addition, as discussed, vitamin D helps decrease the M1 microglial population, a potent
contributor to elevated nitric oxide and reactive oxygen intermediates in MS. 1,25(OH)2D3
can downregulate iNOS in activated microglia in culture and in reactive astrocytes from
EAE mice [35,118]. In contrast, 1,25(OH)2D3 may promote the ability to neutralize ROS in
microglia by upregulating the expression of heme oxygenase 1 and arginase 1 [39].

Additionally, Nrf2 is an intracellular factor that helps protect cells against oxidative
stress by inducing the transcription of various antioxidant enzymes [50,153]. It has been
found that the induction of EAE in a mouse model progresses more quickly and more
severely in Nrf2 knockout mice compared to wild-type mice [154]. iNOS levels were also
significantly increased in the Nrf2 knockout mice versus the wild-type mice [154]. Nrf2
expression is high in the active MS lesions, especially in the neurons and glia, of post-
mortem brain tissue in pwMS [155]. 1,25(OH)2D3 has been demonstrated to increase the
expression of Nrf2 alongside heme oxygenase-1 and NAD(P)H quinone oxidoreductase-1
in the CNS tissue of a neurodegenerative mouse model [153]. It has been hypothesized
that 1,25(OH)2D3 simulates the activation of Nrf2, after which Nrf2 translocates into the
nucleus to bind to the antioxidant response element to upregulate antioxidant enzyme
expression [50,153]. In summary, vitamin D-mediated antioxidant synthesis and reduced
ROS production provide a path by which CNS cells reduce oxidative stress to promote
neuroprotection (Figure 1).

8. Conclusions

MS continues to have a large impact worldwide, with an estimated 2.9 million people
living with MS [156]. There are two key intertwined facets of MS pathophysiology: inflam-
mation and neurodegeneration. The bulk of MS research and therapeutic targets focus
primarily on immunomodulation, while research on how to combat the neurodegenerative
components of MS remains much more limited. Neuroprotective strategies continue to
represent a promising area of research that could yield strategies to directly target specific
cell types and components of the nervous system. Intentional neuroprotective strategies,
either on their own or in conjunction with immunomodulatory therapies, may be effective
in attenuating the neurodegenerative processes in MS [2,45].

Vitamin D is a proposed neuroprotective agent in MS. We summarized a number of re-
cent studies that investigated the neuroprotective effects of vitamin D, reporting favourable
results [36,37,39,57–60,85,89]. Overall, vitamin D supports the neuronal population in
various ways. Under the influence of vitamin D, NSCs express various neurotrophins,
namely NT-3, BDNF, CNTF, and GDNF [57]. These neurotrophins then stimulate neu-
rogenesis and protect neurons from degeneration and apoptosis [57,64]. In addition to
increasing neurotrophin expression, vitamin D helps promote a shift in the microglial
population towards the M2-like phenotype, which is associated with the secretion of anti-
inflammatory cytokines to help counteract neuronal damage [35,100–103]. Vitamin D also
promotes neuronal survival by suppressing M1 microglia and reactive astrocytes, thus
decreasing the secretion of pro-inflammatory cytokines and ROS, sparing neurons from
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harm [35,36,39,58,59,87–89]. In addition, vitamin D helps preserve the integrity and pro-
motes the stabilization of the BBB, decreasing the entry of autoreactive T-cells with the
potential to target neurons. Collectively, we see that evidence supports that vitamin D
acts via various pathways, implicating a variety of CNS cell types, to promote neuronal
integrity and survival.

Combined, these neuroprotective effects elicited by vitamin D promote a more stable
microenvironment in which CNS glial cells can more easily participate in repair and
recovery processes to help restore the structure and functioning of neurons. One limitation
of the proposed mechanisms is that much of the supporting evidence comes from animal
models, and potential differences in neuroprotective pathways in humans remain to be
discovered [46,82,157]. Future directions for research include extending this work in
cultured human neuronal and glial cells, with a potential for some of the findings to be
studied in post-mortem brain tissue. With respect to prospective studies employing vitamin
D supplementation, assessing endpoints that better capture neuroprotective benefits would
be a useful avenue to explore.

This review has connected and mapped out current evidence to summarize the pro-
posed mechanisms of vitamin D neuroprotection in MS. The aim is to promote a better
understanding of the potential interactions between CNS cell types stimulated by vitamin
D, neuroprotection in MS, and overall outcomes. The combined evidence further suggests
that vitamin D supplementation and promoting vitamin D sufficiency at a population level,
alongside the development of new neuroprotective agents, remains a worthwhile pursuit
in the fight against MS.
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