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ABSTRACT OF THE DISSERTATION 

The Role of Wnt3a in Ischemic Stroke 

by 

Nathanael Matei 

Doctor of Philosophy, Graduate Program in Biochemistry 
Loma Linda University, June 2018 

Dr. John H. Zhang, Chairperson 
 

After ischemic stroke, apoptosis of neurons is a primary factor in determining 

outcome.  Wnt3a is a naturally occurring protein that has been shown to have protective 

effects in the brain for traumatic brain injury.  Although wnt3a has been investigated in 

the phenomena of neurogenesis, anti-apoptosis, and anti-inflammation, it has never been 

investigated as a therapy for stroke.  We hypothesized that the potential neuroprotective 

agent wnt3a would reduce infarction and improve behavior following ischemic stroke by 

attenuating neuronal apoptosis and promoting cell survival through the Frizzled-

1/PIWI1a/FOXM1 pathway in MCAO rats.  229 Sprague-Dawley rats were assigned to 

male, female, and aged 9-month male MCAO or sham groups followed by reperfusion 2 

hours after MCAO.  Animals assigned to MCAO were either given wnt3a or its control.  

To explore the downstream signaling of wnt3a, the following interventions were given:  

Frizzled-1 siRNA, PIWI1a siRNA, and PIWI1a-CRISPR, along with the appropriate 

controls.  Post-MCAO assessments included neurobehavioral tests, infarct volume, 

Western blot, and immunohistochemistry.  Endogenous levels of wnt3a, Frizzled-

1/PIWI1a/FOXM1, were lowered after MCAO.  The administration of intranasal wnt3a, 

1 h post MCAO, increased PIWIL1a and FOXM1 expression through Frizzled-1, 

reducing brain infarction and neurological deficits at 24 and 72 hours. Frizzled-1 and 
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PIWI1a siRNAs reversed the protective effects of wnt3a post MCAO.  Restoration of 

PIWIL1a after knockdown of Frizzled-1 increased FOXM1 survival protein and reduced 

Cleaved Caspase-3 levels. In summary, wnt3a decreases neuronal apoptosis and improves 

neurological deficits through Frizzled-1/PIWI1a/FOXM1 pathway after MCAO in rats.  

Therefore, wnt3a is a novel intranasal approach to decrease apoptosis after stroke. 
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CHAPTER ONE 

THE ROLE OF APOPTOSIS IN ISCHEMIC STROKE 

 
Nathanael Matei1 

 

Department of 1Physiology, Loma Linda University, Loma Linda, California 92354 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Most of this chapter is taken from a review paper currently in the submission 

process.
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Introduction 

What is Stroke 

Stroke is the rapid development of disturbance of cerebral function attributed to 

the interrupted blood supply lasting longer than 24 hours. The two main types of stroke 

are ischemic and hemorrhagic, with incidences accounting for 85% and 15% respectively 

(Musuka et al., 2015).  Ischemic stroke is the 3rd leading cause of mortality globally and 

the number one cause of disability.  The incidence of stroke increases exponentially with 

age, with a 100-fold increase in rates between the 3rd and 4th decades and the 8th and 9th 

decades (Bonita, 1992). More than a third of stroke cost is due to lost productivity rather 

than actual treatment (Mackay and Mensah, 2004). 

Due to the plethora of causes for Ischemic stroke, syndrome characterization 

occurs by a rule of quarters: 25% cardioembolic, 25% arteroembolic, 25% lacunar, and 

25% due to other causes (Ay et al., 2005).  Of note, the majority of acute coronary 

syndromes result from a rupture or erosion of an atherosclerotic plaque, followed by in 

situ formation of a thrombus on the plaque, causing arterial obstruction (DeWood et al., 

1980).  Normally, ischemic stroke occurs from embolic arterial occlusion—either 

cardioembolic, caused by atrial fibrillation or valvular heart disease, or arteroembolic, 

from atherosclerotic disease in the extracranial cervical carotid or vertebral artery 

(Musuka et al., 2015).  Cerebral blood flow through collateral vessels, near the embolic 

arterial occlusion, may help prevent total ischemia and ameliorate hypoxia-induced 

damage; however, it remains inefficient in maintaining neuronal function and viability at 

the infarct core (Ay et al., 2005).  With anaerobic conditions, complex metabolic events 

result in irreversible damage and neuronal death (Lott et al., 1999).   
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Stroke Pathophysiology 

In the acute stage of oxygen and glucose depletion in the brain, decreased blood 

flow disrupts ionic homeostasis, increasing intracellular calcium stress responses, which 

releases excitatory neurotransmitters and induces mitochondrial dysfunction, leading to 

increased reactive oxygen species (ROS) generation (Kurisu and Yenari, 2017).  In the 

sub-acute stage, hours to days later, apoptotic and inflammatory pathways are initiated, 

leading to neuronal cell death.  Additionally, the increase in ROS and cytokines results in 

blood brain barrier deterioration, enabling protein and water to flood into the extracellular 

space, leading to vasogenic edema (Sun et al., 2015).  The labyrinth of sub-acute stroke 

induced pathways include apoptosis, excitotoxicity, inflammation, and oxidative stress.   

In the recent pharmacological developments for stroke, attenuation of 

microcirculatory disturbances has been targeted by ablating single factors in the 

pathogenesis, including recombinant tissue plasminogen activator (rtPA), antioxidants, 

anti-intercellular adhesion molecule-1 (ICAM-1) antibody, calcium-stabilizing agents, 

and anti-excitotoxic agents (Sun et al., 2015).  Hitherto, rtPA continues to be the only 

FDA approved pharmacological intervention approved for acute ischemic stroke despite 

multiple clinical trial exploring alternative treatments (Roth, 2011).   Although FDA 

approved, rtPA is not without side effects, and even when administered as indicated, rtPA 

causes a 5.8% increase in the incidence of symptomatic hemorrhagic transformation 

(Horn et al., 1998). With the lack of effective treatments, novel therapies may change the 

clinical management of Stroke patients and provide a foundation for future research in 

other types of strokes with similar pathologies.  Blood brain barrier damage, 
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inflammation, and apoptosis all contribute to the poor outcomes in ischemic stroke 

(Broughton et al., 2009; Jin et al., 2010; Leigh et al., 2014). 

 

Apoptosis 

With the loss of oxygen and glucose, a hypoxic state is created in the acute stage 

of cerebral infarction, and recanalization causes a stress response, triggering neuronal cell 

apoptosis and loss of biological function (Candelario-Jalil, 2009).  A major contributor to 

outcome after stroke is the survival of neurons (Lai et al., 2014).  Thus, a major 

therapeutic target for the treatment of stroke has been protection of neurons (Cerpa et al., 

2009; Lai et al., 2014).  Of particular interest, studies have reported the activation of 

extrinsic and intrinsic pathways of caspase-mediated cell death in several forms of 

transient MCAO in adult rats (Ferrer & Planas, 2003).  Stress-induced signaling events 

cause damage to DNA, cellular structures, and organelles—including cytoskeleton, 

mitotic microtubules, mitochondria, golgi, and sarcoplasmic reticulum(López-Hernández 

et al., 2006).   

Intrinsic pathways are activated when the mitochondria is damaged, causing 

membrane depolarization and permeabilization, and subsequently releasing several 

proapoptotic factors from the mitochondrial space (Ferri and Kroemer, 2001).  When 

Cytochrome c is released, due to mitochondrial damage, binding occurs between 

cytosolic apaf-1 and procaspse 9 in a dATP-dependent manner to form the apoptosome, 

resulting in the autoproteolytic activation of caspase 9 (López-Hernández et al., 2006).  

Next, caspase 9 cleaves downstream effector caspases, 3, 6 and 7, phenotypic markers of 

apoptosis (Le et al., 2002; Shabanzadeh et al., 2015).  Cleaved-caspase-3 is upregulated 



 

5 

following MCAO, and subsequently, the inhibition of caspase-3 reduces infarct size 

following transient MCAO (Ferrer & Planas, 2003).  Thus, our hypothesis is that 

attenuation of cleaved-caspase-3 and prevention of neuronal apoptosis will provide 

therapeutic benefits following ischemic stroke in rats. 

 

Effect of Sex on Stroke 

The epidemiology of ischemic stroke is sexually dimorphic, and therapeutic 

agents vary in male and female subjects.  Prevalence of ischemic stroke is higher in men 

of all age cohorts, though the significance lessens between sexes after the age of 75 years 

(Peisker et al., 2017). Prior to menopause, women exhibit a lower risk of stroke compared 

to their age-matched men, but after menopause this effect diminished, increasing the 

incidence of stroke in women (Liu and McCullough, 2011).  Estradiol has neurotrophic, 

antiapoptotic, vasodilatory, anti-inflammatory, and antioxidant effects, which has been 

shown to improved outcome in brain ischemic models of males and females 

(McCullough and Hurn, 2003).  However, the Woman’s Health Initiative, a clinical trial 

of Estradiol replacement for stroke prevention, showed an increase in stroke incidence in 

estrogen-treated women. 

 

Prevention 

Given the lack of treatments, prevention is key to reduce stroke onset.  Important 

modifiable risk factors for stroke prevention include high blood pressure, atrial 

fibrillation, high blood cholesterol levels, diabetes mellitus, cigarette smoking, heavy 

alcohol use, drug use, lack of physical activity, obesity, and unhealthy diet (Anon, 1985; 
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Sacco et al., 1997; Hankey, 1999).  The dearth of effective treatments for a disease with 

such significant morbidity, mortality, and socioeconomic consequences and the failure of 

all pharmacological trials, with the exception of rtPA, is evidence for the need to develop 

novel therapies that target other potential contributors to poor outcomes following 

ischemic stroke.   

 

Specific Aims 

The specific aims are to: Evaluate the neuroprotective effect of intranasal (iN) 

wnt3a administration after middle cerebral artery occlusion model in rats. Our main 

hypothesis is that MCAO will decrease the levels of wnt3a expression in the brain 

and administering iN wnt3a will provide beneficial effects. Animal models of 

ischemic stroke have shown an increased neuronal apoptosis following ischemic injury 

and higher expression of caspase-3 in animal models (Chacón et al., 2008; Shruster et al., 

2012; Arrázola et al., 2015).  We suggest that decreased activation of Frz-1, due to lower 

levels of circulating wnt3a following ischemic stroke, will increase neuronal apoptosis. 

Wnt3a has been shown to upregulate PIWIL1a (Reeves et al., 2012) and FoxM1 (Zhang 

et al., 2011), and studies have linked FoxM1 to inhibit apoptosis (Jiang et al., 2014).  Due 

to the dynamic stress of ischemic stroke, we will investigate the time-course expression 

of endogenous and exogenous wnt3a in the rat brain (Aim 1a), establish neuroprotective 

effects of the Frz1 receptor in MCAO (Aim 1b), determine the role of wnt3a in sham and 

MCAO rats by inhibiting wnt3a (Aim 1c), determine the best treatment regimen for 

wnt3a administration (Aim 1d), determine cell expression of Frz1 in the brain (Aim 1e), 

evaluate the sexual dimorphism in male and female rats after MCAO and treated with 
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wnt3a (Aim 1f), determine the age-related differences in young versus old MCAO rats 

(Aim 1g), and evaluate a permanent occlusion model (Aim 1h).  We expect iN wnt3a will 

improve neurological outcomes through reduction of neuronal apoptosis after MCAO.  

Aim 2 will determine the role of iN Wnt3a attenuating apoptosis via up-regulation of the 

Frz1/PIWIL1/FOXM1 pathway with subsequent down regulation of Caspase-3 and 

reduction of apoptotic neuronal cells after MCAO in rats. Our hypothesis is that Frz1, 

activated by iN wnt3a, will upregulate PIWIL1a with downstream activation of 

FOXM1 and subsequent downregulation of Caspase-3 to reduce neuronal apoptosis 

after ischemic stroke.  We will investigate the effect of iN wnt3a on apoptotic neurons 

with Fluoro-Jade after ischemic stroke (Aim 2a), evaluate the levels of Frz1, PIWIL1a, 

pGSK3-β, β-catenin, FOXM1, and Caspase-3 with ischemic stroke and after treatment 

(Aim 2b), determine the effect of PIWIL1a inhibition and the combination of Frz1 

inhibition with PIWIL1a activation to establish the wnt3a mediated anti-apoptotic effect 

(Aim 2c), and determine the effect of PIWIL1a activation via CRISPR after Frz1-siRNA 

(Aim 2d).  We expect that iN wnt3a will upregulate FoxM1 and down-regulate the 

apoptotic GSK3-β induced intrinsic pathway; thus, sustaining neuronal survival after the 

post-ischemic stroke insult and improving neurobehavioral outcomes.   
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Figure 1. Proposed Aim 1 and 2 for wnt3a activation of Frizzled1 and its downstream 
targets. Briefly, wnt3a binds to Frizzled-1, increases PIWIL1a, inhibits the activation of 
GSK3β, and activates β-catenin, which translocates into the nucleus to increase the 
transcription of FOXM1. 
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Specific Aim One 

Evaluate the neuroprotective effect of iN wnt3a administration after middle 

cerebral artery occlusion model in rats (MCAO).  Our main hypothesis is that MCAO 

will decrease the levels of wnt3a expression in the brain and administering iN wnt3a will 

provide beneficial effects. Wnt3a has been shown to have protective effects in central 

nervous system diseases (Inestrosa and Varela-Nallar, 2014) as well as ischemic stroke 

(Shruster et al., 2012). To date, no studies have been done in the MCAO in-vivo stroke 

models to show if wnt3a may have similar advantageous effects.  

 

Aim1a: Determine the Endogenous Levels of Frz1, PIWIL1, GSK3-β, β-catenin, 

FOXM1, and Caspase-3 with Ischemic Stroke 

Hypothesis: MCAO in rats will decrease wnt3a-dependent activation of the 

Frz1→PIWIL1→β-catenin pathway with the increased expression of FoxM1.  

Rationale: Animal models of ischemic stroke have shown an increase in neuronal 

apoptosis following ischemic injury and higher expression of caspase-3 in animal models 

(Chacón et al., 2008).  We suggest that decreased activation of Frz-1, due to lower levels 

of circulating wnt3a following ischemic stroke, will increase neuronal apoptosis. Wnt3a 

has been shown to upregulate PIWIL1a (Reeves et al., 2012) and FoxM1(Zhang et al., 

2011), and studies have linked FoxM1 to inhibit apoptosis (Jiang et al., 2014). We will do 

quantitative analysis with western blot of the endogenous expression of (A) wnt3a, (B) 

Frz1, (C) PIWIL1a, (D) pGsk-3β, (E) FOXM1 and (F) CC3.  We postulate that iN wnt3a 

will attenuate apoptosis in neurons after ischemic stroke and that this change will be 
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accompanied by increased levels of molecules in Frz1→PIWIL1→β-catenin→FOXM1 

pathway.  

Experiments: Ischemic stroke will be induced in animals using a MCAO model. 

Plasma levels of wtn3a will be measured via Western blot at 6, 12, 24 and 72 hours after 

MCAO. Protein levels of the proposed pathway in brain samples will be measured via 

Western blot in sham at 24 hours after MCAO. Antibodies for wnt3a, Frz1, PIWIL1a, 

GSK3-β, β-catenin, FOXM1, and Caspase-3 will be used in our analysis. Experimental 

Groups: Sham, MCAO+Vehicle at 6, 12, 24, and 72 h.   

 

Aim1b: To Establish the Neuroprotective Effects of the Frizzled-1 Receptor in 

Normal and MCAO Rats  

Hypothesis:  Inhibiting the wnt3a receptor, Frizzled-1, with siRNA, will 

attenuate the protective effects of Wnt3a. Rationale: Wnt3a can signal by binding to Frz-

1 (Hendaoui et al., 2012) which is expressed in brain on neurons and microglia (Chacón 

et al., 2008). Activation of this receptor has been shown to be protective and cause cell 

survival by attenuating caspase-3 activation (Chacón et al., 2008). We expect that 

inhibition of Frz1 will further decrease PIWIL1, β-catenin, FOXM1, and Caspase-3.   

 Experiments: The Frz1 inhibitors, will be administered via ICV injection 24 hours prior 

to surgery. Animals will be sacrificed at 24 hours after MCAO for Western blot analysis 

to detect molecules involved in the Frizzled-1 dependent pathway. Western blots will be 

performed to measure the expression of wnt3a, Frz1, PIWIL1, GSK3-β, β-catenin, 

FOXM1, and Caspase-3.  
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Experimental Groups: Sham, MCAO+Vehicle, MCAO+wnt3a+Scrambled-

siRNA, MCAO+wnt3a+Frz1asiRNA. 

 

Aim1c: To Determine the Role of Wnt3a in Sham and MCAO Rats by Inhibiting 

Wnt3a 

Hypothesis: Inhibiting endogenous wnt3a with siRNA, will exacerbate the effects 

of MCAO and increase the number of apoptotic neurons.  Rationale: Animals models of 

ischemic stroke have been shown to have an increased neuronal apoptosis post-ictus, 

showing higher expression of cleaved caspase-3 (Chacón et al., 2008; Shruster et al., 

2012).  A study of wnt3a in macrophages demonstrated that cleaved caspase-3 is down-

regulated with an increase of wnt3a (Arrázola et al., 2015).   We suggest that decreased 

levels of wnt3a will result in a reduced amount of survival proteins, specifically FOXM1, 

and an increase in cleaved caspase-3 causing neuronal apoptosis.  We expect that 

endogenous protection to stroke will be further weakened and neurobehavior assessments 

will worsen as a result of wnt3a inhibition.   

Experimental Groups: Sham, MCAO+Vehicle, MCAO+wnt3a siRNA 

+Vehicle, MCAO+Vehicle+ endo-IWR 1 (wnt3a inhibitor).  Neurobehavioral tests and 

mortality will be assessed at 24 and 72 hours after MCAO.  

 

Aim1d: To Determine the Best Dosage and Route of Administration of Wnt3a and 

to Evaluate the Effects of iN Wnt3a Administration on Short-term and Long-term 

Neurological Outcomes after MCAO  
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Hypothesis: Since wnt3a targets important anti-apoptotic pathways, we 

hypothesize that iN or IP wnt3a will protect the adult rat brain as well as improve short-

term and long-term behavioral outcome after ischemic stroke. Rationale: Brain injury 

associated with ischemic stroke results in sensorimotor deficits. Wnt3a signaling is 

initiated by binding to Frz-1 (Hendaoui et al., 2012) which is expressed in brain on 

neurons and microglia (Chacón et al., 2008).  Activation of this receptor has been shown 

to be  protective and cause cell survival by attenuating caspase-3 activation (Chacón et 

al., 2008).  Qualitatively, 2.0 mm-thick slices will be stained with a redox indicator, TTC, 

and used to distinguish in-between metabolically active and inactive tissues.  Quantitative 

analysis of infarct volume at 24 hours will determine the most effective dose of wnt3a.  

Long-term behavior at 72 hours will evaluate wnt3a’s impact on infarction, modified 

Garcia, left-forelimb placement, and corner-turn.  Morris water maze data and rotarod 

tests will be conducted at 21 to 27 days after MCAO.  Experiments and Groups: sham, 

MCAO + vehicle (1h), MCAO + iN Wnt3a LD (.4ug/kg) (1h), MCAO + iN Wnt3aHD 

(1.2ug/kg) (1h).  Neurobehavior tests will be assessed at 24h, 72h and 4 weeks to 

determine the efficacy of the treatment.  

 

Aim1e: To determine the Cellular Expression of Frz1 in the Brain and How 

Expression Changes after Stroke via Immunohistochemistry 

Hypothesis: We hypothesize that predominately neurons and a few microglia will 

express Frz1 and this expression will decrease after stroke. Rationale: Wnt3a is known 

to bind to Frz1a, expressed by dendrites (Oderup et al., 2013) and microglia, which may 

play a role in the regulation of apoptosis in neurons. Additionally, GSK3β is part of the 



 

13 

destruction complex (APC, Axin, and CK1) (Minde et al., 2011) of β-catenin and can be 

regulated by these intrinsic proteins, a process in which PIWIL1a may be a significant 

player. 

 

Aim1f: To Evaluate the Sexual Dimorphism in Male and Female Rats after MCAO 

and Treatment with Wnt3a 

Hypothesis: We expect that wnt3a will help both sexes in preventing neuronal 

apoptosis and improve neurological results. Rationale: In the human population, the 

Framinham Heart Study reported that women had a lower risk of stroke compared to 

men, however in old age, women had a higher incidence of stroke and diminished 

functional outcome (Petrea et al., 2009). In rodent models, adult female rodents develop 

smaller infarct volumes and improved neurobehavioral outcomes following MCAO 

compared to their age-matched male rats; however, this effect was reversed in aged 

female rodents (Manwani et al., 2014).  Therefore, we expect female rats to have an 

improved neurological benefit with wnt3a compared to their male counterpart. 

Experimental Groups: male sham, male+MCAO+Vehicle, male+MCAO+wnt3a, 

female sham, female+MCAO+Vehicle, female+MCAO+wnt3a.  

 

Aim1g: To Determine the Age-related Differences in Young vs Old MCAO Rats 

Treated with Wnt3a 

Hypothesis: We hypothesize that wnt3a will significantly improve behavioral and 

memory results following MCAO. Rationale: The incidence of stroke increases 

exponentially with age, with a 100-fold increase in rates between the 3rd and 4th decades 
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and the 8th and 9th decades (Bonita, 1992).  Specifically, 92% of ischemic stroke occurs in 

people over the age of 65 and this needs to be simulated in the animal model.  With 

aging, there is a strong association with a significant increase in cerebral infarct size and 

high mortality in stroke (Davis et al., 1995). Therefore,  we will use middle (12 month) 

and old (18 month) aged male Sprague-dawley rats (Tan et al., 2013) to simulate the 

impact of age in stroke and drug efficacy.   

Experimental groups: Middle-aged + male + Sham, middle-aged + male + 

MCAO + Vehicle, middle-aged + male + MCAO + wnt3a. old-aged + male + Sham, old-

aged + male + MCAO + Vehicle, old-aged + male + MCAO + wnt3a.  

 

Aim1h: To Evaluate Wnt3a Treatment in a Different Permanent Occlusion Model 

Compared to the Reperfusion Model of MCAO 

Hypothesis: We hypothesize that the permanent occlusion might reduce the anti-

apoptotic effects of wnt3a, but still should see improved neurological function compared 

to MCAO vehicle. Rationale:  About half of the stroke patients in the United States 

result from large vessel occlusion (LVO, i.e. middle cerebral artery (M1 and M2 

segments), internal carotid artery) (Rai, 2015) and only 15% are treated with tPA and 

about 4% are treated with mechanical embolectomy (González et al., 2013). Therefore, 

the transient model only represents 3-10% of all large vessel stroke patients (Kahle and 

Bix, 2012) and a pMCAO model would truly see the translational effectiveness of wnt3a 

as a therapy for patients that do not receive rTPA.   Therefore, the permanent occlusion of 

the MCA will result in a decreased amount of wnt3a reaching the affected area, but, from 
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contralateral blood flow, we do expect some wnt3a to reach the penumbra and improve 

behavioral outcomes.   

Experiment: For permanent occlusion, animals will undergo MCAO as 

previously described, but will not be re-perfused, the suture will be left tied off.  The 

animal will be sutured and allowed to recover with the suture in place; behavioral results 

will be evaluated accordingly after recovery. Experimental groups: 24 h endpoints: 

Sham, permanent-MCAO+vehicle, permanent-MCAO+wnt3a.  

 

Specific Aim Two 

Determine the role of iN wnt3a in attenuation of apoptosis via regulation of the 

Frz1/PIWIL1a/FOXM1 pathway with subsequent down regulation of Caspase-3 and 

reduction of apoptotic neuronal cells after MCAO in rats.  Our hypothesis is that Frz1, 

activated by iN wnt3a, will upregulate PIWI1a with downstream activation of FOXM1 

and subsequently downregulate Caspase3 to reduce neuronal apoptosis after ischemic 

stroke. Therefore, the amelioration of neuronal cell death, post-ischemic stroke, will 

improve neurobehavioral outcomes. Two interventional approaches will be used to test 

this hypothesis: 1) siRNA inhibition of PIWIl1 and 2) a combination of siRNA inhibition 

of Frzld-1 and CRISPR activation of PIWIL1a. These hypotheses will be investigated in 

four sub-aims: A) Demonstrate that iN wnt3a induced reduction of neuronal cell death 

after ischemic stroke B) Determine the endogenous levels of wnt3a, Frz1, PIWIL1, 

GSK3β, β-catenin, FOXM1, and Caspase-3 before and after ischemic stroke C) 

Determine the effect of iN wnt3a on expression of Frz1, PIWI1a, GSK3-β, β-catenin, 
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FOXM1, and Caspase-3  after ischemic stroke D) Determine the effect of Frz1, PIWIL1 

inhibition, and rescue in the wnt3a treated groups. 

 

Aim2a: Evaluate Effect of iN Wnt3a on Apoptotic Neurons with Fluoro-Jade after 

Ischemic Stroke  

Hypothesis: iN administration of wnt3a after ischemic stroke will reduce 

apoptotic pathways and up-regulate survival mechanisms. Rationale: The goal of this 

aim is to establish the role of iN wnt3a in reducing the number of apoptotic neurons. 

Previous studies have shown that wnt3a upregulates FOXM1, which then binds to β-

catenin with subsequent migration to the nucleus (Zhang et al., 2011). Others studies 

have shown that FoxM1 has a direct impact on Caspase-3, but no mechanistic link has 

been established to this point between wnt3a and caspase-3 (Jiang et al., 2014). We 

expect these pathways to be upregulated and reduce the number of apoptotic cells.  

Experiments: Animals will be sacrificed at 1 and 3 days after surgery, based on previous 

studies that have evaluated the development of apoptosis after ischemic stroke (Xu et al., 

2006), and brain tissues will be collected for analysis via Fluoro–J to measure the 

presence of apoptotic neurons. 

Experimental Groups: Sham, MCAO + Vehicle, MCAO + iN Wnt3a with 

immunohistochemistry at 24 h after surgery. 

 

Aim 2b: Evaluate the Levels of Frz1, PIWIL1, GSK3-β, β-catenin, FOXM1, and 

Caspase-3 with Ischemic Stroke and after Treatment 

Hypothesis: MCAO in rats will decrease wnt3a-dependent activation of the 
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Frz1→PIWIL1a→β-catenin pathway with resultant increase in expression of FoxM1.  

Rationale: Animal models of ischemic stroke have shown an increased neuronal 

apoptosis following ischemic injury and higher expression of caspase-3 in animal models.  

Western blots will quantify levels of wnt3a, Frz1, PIWI1, pGsk-3β, β-catenin, FOXM1, 

and CC-3 24 and 72 h after MCAO.   

Experiments: Ischemic stroke was induced in animals using a MCAO model. 

Protein levels of proposed pathway in the brain samples will be measured via Western 

blot in sham and at 24 and 72 hours after MCAO. Antibodies for wnt3a, Frz1, PIWIL1a, 

pGSK3-β, β-catenin, FOXM1, and Caspase-3 will be used in our analysis.  

Experimental Groups: Sham, MCAO+Saline, MCAO+wnt3a. 

 

Aim 2c: Determine the Effect of PIWIL1a and Frz1 Inhibition to Establish Wnt3a’s 

Mediated Anti-apoptotic Effect  

Hypothesis: Wnt3a-induced activation of the Frz1 pathway will attenuate 

MCAO-induced caspase-3 upregulation and subsequent apoptosis; inhibition of this 

pathway will reduce the anti-apoptotic effects of wnt3a.  Rationale: Wnt3a has been 

shown to increase FoxM1 in glioma cells (Zhang et al., 2011), and PIWIL1a, a protein 

that binds to piRNA, is known to up-regulate β-catenin, but a direct link between 

PIWIL1a and FoxM1 is yet to be investigated.  To explore the postulated mechanism, we 

will utilize specific siRNAs of Frz1 and PIWI1a in combination with treatment.  

Experiments: siRNAs of Frz1, and PIWI1a will be administered 1 hour prior to ischemic 

stroke induction and 5 hours after MCAO. iN wnt3a, dose and timing optimization in 

prior aim, will be administered post-MCAO. Animals will be sacrificed at 24 hours for 
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Western blot analysis to detect molecules involved in wnt3a anti-apoptotic signaling. 

Western blots will be performed to measure the expression of wnt3a, Frz1, PIWI1a, 

GSK3-β, β-catenin, FOXM1, and Caspase-3. Antibodies for wnt3a, Frz1, PIWI1, GSK3-

β, β-catenin, FOXM1, and Caspase-3 will be used for our analysis.  

Experimental Groups: Sham, MCAO+vehicle, MCAO+wnt3a, 

MCAO+Wnt3a+scrambled-siRNA MCAO+Wnt3a+PIWIL1a siRNA, 

MCAO+Wnt3a+Frz1a siRNA+PIWIL1a CRISPR control, MCAO+Wnt3a+Frz1a 

siRNA+PIWIL1a CRISPR activation.  

 

Aim 2d: Determine the Effect of PIWIL1a Activation via CRISPR after Frz1 siRNA 

Hypothesis: We hypothesize that although Frz1 is inhibited with an siRNA, the 

activation of PIWIL1a with CRISPR will up-regulate the survival protein FOXM1 and 

rescue the cell from apoptosis.  

Experiments: siRNAs of Frz1, PIWI1a and PIWI1a CRISPR will be 

administered 24 hours prior to ischemic stroke induction. iN wnt3a, dose and timing 

optimized in prior aim, will be administered post-MCAO. Animals will be sacrificed at 

24 hours for Western blot analysis to detect molecules involved in wnt3a anti-apoptotic 

signaling. Western blots will be performed to measure the expression of wnt3a, Frz1, 

PIWIL1, pGSK3-β, β-catenin, FOXM1, and CC-3.  

Experimental Groups: Sham, MCAO+Vehicle, MCAO+Wnt3a, 

MCAO+Wnt3a+CRISPR control, MCAO+Wnt3a+Frz1a siRNA + PIWIL1a CRISPR, 

MCAO + Frz1a siRNA + PIWIL1a CRISPR. 
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Anticipated Results: We expect that iN administration of wnt3a will increase expression 

of PIWIL1a and FoxM1 in neurons. Their activity will down regulate levels of Gsk3-β, 

and Caspase-3, respectively, to reduce apoptosis in neuronal cells. Pharmacological 

inhibition of PIWIL1a will reduce the anti-apoptotic effect of wnt3a, but with the 

treatment of the CRISPER, PIWL1a should rescue the neuron via the proposed pathway, 

even after the inhibition of Frz1a. 

The long-term goal of this proposal is to provide a basis for clinical translation of 

wnt3a as an effective therapeutic alternative to protect against complications secondary to 

cerebral ischemic stroke and to improve long-term patient outcomes. 
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Abstract 

   Currently the only treatment available for stroke is tissue plasminogen activator 

and remains the only FDA approved pharmacological intervention.  Therefore, the focus 

of our proposal is to use the potential neuroprotective agent wnt3a to protect against 

neurovascular unit damage in ischemic stroke by attenuating neuron apoptotic pathways.  

Wnt3a is a glycolipoprotein that is involved in many cellular functions, ranging from 

apoptosis, neurogenesis, embryonic development, adult homeostasis, and cell polarity.  

Recently, wnt3a has been descriptively shown to play a role in focal ischemic injury in 

the murine model.  Several studies have shown wnt3a to be promising, up-regulating 

FoxM1, a survival protein.   

The focus of our proposal is to use wnt3a to attenuate apoptosis in neurons.  Our 

overall hypothesis is that wnt3a will provide therapeutic benefits following ischemic 

stroke in rats via the reduction of Gsk3β and Caspase-3 to promote neuronal survival.  

Our hypothesis is that Frz1, activated by wnt3a, will upregulate PIWIL1a with down-

stream activation of Foxm1, which will reduce Caspase-3, lowering the overall neuronal 

apoptosis after stroke.   
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Abbreviations 

LD    Low Dose (0.4 µg/kg) 

HD    High Dose (1.2 µg/kg) 

FRZ1    Frizzled-1 

MCAO   Middle Cerebral Artery Occlusion 

rtPA    Recombinant Tissue Plasminogen Activator 

BBB    Blood Brain Barrier 

CNS    Central Nervous System 

LRP5/6   Lipoprotein receptor related proteins 5 and 6 

CC-3    Cleaved Caspase-3 

CRISPR   Clustered Regularly Interspaced Short Palindromic Repeats 
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Introduction 

Stroke is an acute onset disturbance of cerebral function due to ischemia or 

hemorrhage. Ischemic stroke is the 3rd leading cause of mortality globally and the number 

one cause of disability (Mackay & Mensah, 2004).  Two approaches have been pursued 

to reduce the disease burden of stroke—neuroprotection and reperfusion (Fisher & Brott, 

2003). Of these two, only reperfusion has had success in human clinical trials in the form 

of pharmacological recombinant tissue plasminogen activator (rtPA) intervention and 

mechanical clot disruption (Rha & Saver, 2007). rtPA continues to be the only FDA 

approved pharmacological intervention approved for acute ischemic stroke despite 

multiple clinical trials exploring alternative treatments (Roth, 2011).  Thus, we evaluated 

the potential neuroprotective agent wnt3a to protect against neuronal damage caused by 

ischemic stroke.  

Wnt3a is a glycolipoprotein that controls important cellular functions  including 

apoptosis, neurogenesis, embryonic development, adult homeostasis, and cell polarity 

(MacDonald et al., 2009; Zhang et al., 2011; Wu et al., 2014). Nineteen different 

isoforms of “wnt” all bind to the N-terminal extra-cellular cysteine-rich domain of 

Frizzled (Frz) family receptor, a serpentine G-protein receptor (Rao & Kühl, 2010), 

which has its own specific isoforms.  Each wnt isoform has specific innate functions 

dependent in part on cell type.  For example, in dendritic cells the wnt3a isoform 

upregulates VEGF, whereas the wnt5a isoform induces IL-10 through alternative 

pathways (Oderup et al., 2013).  Although the wnt pathway has been studied extensively, 

the identification of new isoforms of wnt and their unique mechanistic endpoints have 
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revived therapeutic interest in wnt (Cerpa et al., 2009; Shruster et al., 2012; Inestrosa & 

Varela-Nallar, 2014). 

Recent studies have targeted GSK-3β reduction to improve outcomes after 

ischemic stroke.  In the diabetic ischemic stroke rat model, insulin, an inhibitor of the 

activation of GSK-3β (Cohen & Goedert, 2004), and TDZD-8, a selective inhibitor of 

GSK-3β, both reduced the severity of the deleterious consequences of stroke-- reducing 

the infarct volume and lowering the expression of GSK-3β (Collino et al., 2009).  

Convincingly establishing a role for GSK3β in stroke pathology, Kelly et al. showed that 

inhibition of GSK3β with CXhir025 in both OGD in vitro and in vivo rat MCAO models 

increased neuronal cell survival (Kelly et al., 2004).  In the intracerebral hemorrhage 

mouse model, 6-bromoindirubin-3′-oxime, a selective GSK-3β inhibitor, acutely 

administered, reduced hematoma volume by attenuating the expression of GSK-3β 

phosphorylation/activation, which increased the viability of neurons and other cell types 

(Zhao et al., 2017).  These findings suggest that the wnt/GSK-3β/β-catenin pathway may 

be further explored for treatment in the pathology of stroke.   

In this study, the novel glycolipoprotein wnt3a is used for the very first time as an 

intranasal therapy to influence the pathophysiology of stroke in the MCAO model.  Other 

studies of wnt3a have found that it prevents apoptosis (Reeves et al., 2012) and is 

neuroprotective, but the mechanistic understanding is limited.  Researchers showed that 

PIWL1a (Reeves et al., 2012) directly affects the regulation of β-catenin in a cell-survival 

pathway in lung cancer cells, but further research is needed to establish the relationship 

between PIWIL1a and wnt3a in stroke. Reports have linked β-catenin with FOXM1 

(Zhang et al., 2011), and both have been linked to the inhibition of apoptosis (Jiang et al., 
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2014).  

To date, there are 10 human G protein-coupled Frizzled receptors, but only Frz1 

has been supported in literature to be activated by the binding of wnt3a (Chacón et al., 

2008; Oderup et al., 2013; Wu et al., 2014; Arrázola et al., 2015; “Wnt Receptors & 

Pathways: R&D Systems,” 2018).  Although wnt3a is known to bind to Frz1, the 

intracellular pathway triggered within neurons remains poorly investigated. In the present 

study, we hypothesize the effect of intranasal wnt3a on its downstream targets, 

Frizzled1/PIWI1a/FOXM1, will attenuate neuronal apoptosis in the rat model of transient 

MCAO. (Fig. 1). 
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Figure 1. Proposed pathway for wnt3a activation of Frizzled1 and its downstream 
targets. Wnt3a binds to Frizzled-1, increases PIWIL1a, inhibits the activation of GSK3β, 
and activates β-catenin, which translocates into the nucleus to increase the transcription 
of FOXM1—a survival protein that inhibits apoptosis. 
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Materials and Methods 

Animals 

All experiments were approved by the Institutional Animal Care and Use 

Committee of Loma Linda University, complied with the National Institutes of Health’s 

Guide for the Care and Use of Laboratory Animals, and are reported according to the 

ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.  Animals 

were housed in a 12 h light-dark cycle, temperature-controlled room. Animals were 

divided into groups in a randomized fashion and experiments were performed in a 

blinded manner. 

 

Laboratory Animals 

Adult male (weighing 250-300g), aged male (weighing 400g at 9 months old), 

female (weighing 240-250g) Sprague Dawley rats were used in the proposed study.   

 

Experimental Design 

A total of 229 rats were used. Experiment 1 characterized the endogenous time-

course of wnt3a, Frz1, PIWI1a, p-GSK3β, FOXM1, and CC-3 in the right hemisphere at 

6, 12, 24, and 72 h after MCAO.  Twenty-six rats were used in the following groups: 

sham (n=4), 6 (n=5), 12 (n=6), 24 (n=6), and 72 h (n=5).   

Experiment 2 evaluated the role of wnt3a in the pathophysiology of MCAO as 

follows.  First, we tested the effect of iN wnt3a.  203 rats were used in the following 

groups: 24 hour endpoints: sham  (n=11), MCAO + vehicle (n=14), MCAO + wnt3a LD 

(0.4 µg/kg) (n=8), MCAO + wnt3a HD (1.2 µg/kg) (n=13), MCAO + wnt3a + scrambled 
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siRNA (n=7), MCAO + wnta3a + Frz1-siRNA (n=8), MCAO + wnt3a + PIWI-siRNA 

(n=8), MCAO + wnt3a + scrambled CRISPR (n= 7), MCAO + wnt3a + PIWI CRISPR + 

Frz1-siRNA (n= 7); female: sham  (n=6), MCAO + vehicle (n=8), MCAO + wnt3a HD 

(1.2 µg/kg) (n=8); aged-rats: sham  (n=6), MCAO + vehicle (n=7), MCAO + wnt3a HD 

(1.2 µg/kg) (n=6); pMCAO: MCAO + vehicle (n=10), MCAO + wnt3a HD (1.2 µg/kg) 

(n=9); Naïve groups: Naïve (n=6), Naïve + scrambled siRNA (n=12), Naïve + Frz1-

siRNA (n=6), Naïve + PIWI-siRNA (n=6), Naïve + PIWI1a CRISPR + Frz-1siRNA (n= 

6). 72 h endpoints: Sham (n=6), MCAO + vehicle (n=8), MCAO + wnt3a HD (n=8).  

Recombinant mouse wnt3a (abcam; ab81484), used for all molecular and behavioral 

studies, and human GST tagged wnt3a (abcam; 153563), only used in Fig. 13 to confirm 

presence and delivery, were reconstituted in ddH2O to yield 0.1 mg/ml and given at 0.4 

µg/kg for the low dose or 1.2 µg/kg for the high dose.  Five-hundred pmol of Frz1 (sc-

39977 and AM16708) and PIWI1a (sc-40677 and AM16708) were dissolved in 2 µl of 

sterilized water and injected intracerebroventricularly 24 h before MCAO. The same 

volume of scramble siRNA (sc-37007 and AM4611) was administered as control.  For 

PIWI1a-CRISPR activation, 2 ug in 2 ul (transfection medium and transfection reagent, 

described in the intracerebroventricular injection section) per animal was injected 24 h 

before MCAO (detailed in the Intracerebroventricular injection section).  The control of a 

scrambled CRISPR was used with the same volume.  

 

MCAO Model 

Rats were anesthetized intraperitoneally with a mixture of ketamine (80 mg/kg) 

and xylazine (20 mg/kg), until no pinch-paw reflex was observed, and maintained 
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throughout the experiments. Body temperature and respiration rate were monitored 

perioperatively. A vertical midline cervical incision was made, and the right common 

carotid artery was exposed and dissected. All branches of the external carotid artery were 

isolated, coagulated, and transected, and then the external carotid artery was divided 

(leaving 3-4 mm). The internal carotid artery was isolated and the pterygopalatine artery 

was ligated close to its origin. A 5 mm aneurysm clip was used to clamp the common 

carotid artery. The external carotid artery stump was reopened and a 4.0 monofilament 

nylon suture with an enlarged, round tip was inserted through the internal carotid artery; 

insertion was stopped when resistance was felt, occluding the origin of the right MCA. 

After 2 hours of occlusion, the suture was withdrawn to allow for reperfusion. The 

external carotid artery was ligated, and the aneurysm clip was removed. The skin was 

sutured (1% lidocaine was applied) and the animal was allowed to recover. Sham surgery 

included the exposure of the common, external, and internal carotid arteries with all 

ligations and transections; no occlusion occurred in the sham group (Kusaka et al., 2004; 

Chen et al., 2011).  

 

Intracerebroventricular Injection 

As described previously (Liu et al., 2007; Chen et al., 2013), rats were 

anesthetized with isoflurane (4% induction, 2.5% maintenance) and mounted on a 

stereotaxic frame. The needle of a 10 μl Hamilton syringe was inserted through a burr 

hole perforated through the skull into the left lateral ventricle using the following 

coordinates relative to bregma: 1.5 mm posterior, 1.0 mm lateral, and 3.2 mm below the 

horizontal plane of the bregma. siRNA was injected 24 h before MCAO.  According to 
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the manufacturer’s instructions, a total volume of 2 ul (500 pmol) of siRNA in sterile 

saline was injected in ipsilateral ventricle at a rate of 0.5 ul/min.  A combination of two 

siRNAs were used for Frz1 (sc-39977 and AM16708) and PIWI1a (sc-40677 and 

AM16708) providing advantages in both potency and specificity of gene silencing.  The 

same volume of scramble siRNA (sc-37007 and AM4611) was used as a negative 

control.  siRNA is a tool that induces short-term silencing of protein coding genes and 

targets a specific mRNA for degradation.  To reverse the effects of siRNA, we will utilize 

an engineered form of clustered, regularly interspaced, short palindromic repeats 

(CRISPR) associated (Cas) protein system (Jinek et al., 2012).  Briefly, in this system, 

the type II CRISPR protein Cas9 is directed to genomic target sites by short RNAs, where 

it functions as a endonuclease, which can inactivate or activate genes (Perez-Pinera et al., 

2013)—used successfully in plants and animals, both vertebrae and invertebrae (Horvath 

& Barrangou, 2010; Gratz et al., 2013; Jiang et al., 2013; Mali et al., 2013; Bortesi & 

Fischer, 2015). CRISPR will be used to activate PIWI1a expression in the rat brain.  A 

total of 4 ul of active PIWI1a CRISPR (sc-418611) was injected 24 h before MCAO.  20 

ug of CRISPR was suspended in 20ul of plasmid transfection medium (sc-108062) and 

activated with another 20 ul of transfection reagent (sc-395739), totaling 2ug per animal 

of active CRISPR.  The control scrambled CRISPR (sc-437275) followed the same steps 

and a total of 2ug per animal was given ICV.  To prevent possible leakage, the needle 

was kept in situ for an additional 10 min after completing the injection and then 

withdrawn slowly over 5 min. After removal of the needle, the burr hole was sealed with 

bone wax, the incision was sutured, and the rats were allowed to recover. 
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2, 3, 5-Triphenyltetraolium Chloride Staining 

As described previously (Hu et al., 2009),  2,3,5-triphenyltetrazolium chloride 

monohydrate staining was performed to determine the infarct volume at 24hr and 72hr 

after MCAO.  The possible interference of brain edema with infarct volume was 

corrected (whole contralateral hemisphere volume minus non-ischemic ipsilateral 

hemisphere volume) and the infarcted volume was expressed as a percentage of the 

whole contralateral hemisphere (McBride et al., 2016). 

 

Immunofluorescence Staining 

Immunohistochemistry was performed as described previously (Chen et al., 

2013).  Briefly, rats were perfused with cold PBS under deep anesthesia, followed by 

infusion of 4% formalin 24h after MCAO.  The brains were harvested and immersed in 

4% formalin at 4°C, then dehydrated with 30% sucrose for seven days, then mounted in 

OCT and frozen.  After cryosectioning into 10µm thick sections, slices were incubated 

with the primary antibodies goat anti-Frz1 (1:100) (PA5-47072), rabbit anti-NeuN 

(1:200)(ab177487), rabbit anti-GFAP (1:100)(ab16997), goat anti-ionized calcium 

binding adaptor molecule 1 (IBA1, 1:200; Abcam), followed by incubation with 

appropriate secondary antibodies conjugated with either FITC (Neun, GFAP, Iba1) or 

Rodamine Red (Frz1) (Jackson ImmunoResearch). Negative control staining was 

performed by omitting the primary antibody. The sections were visualized with a 

fluorescence microscope (Lieca).   
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Western Blots 

Western blotting was performed as described previously (Ayer et al., 2012; Chen 

et al., 2013). At each time point, rats were perfused with cold PBS, pH 7.4, solution 

delivered via intracardiac injection, followed by dissection of the brain into right frontal, 

left frontal, right parietal, left parietal, cerebellum, and brainstem. The brain parts were 

snap frozen in liquid nitrogen and stored at −80°C for subsequent analysis. Right 

hemisphere protein extraction from whole-cell lysates were obtained by gently 

homogenizing the hemisphere in RIPA lysis buffer (Santa Cruz Biotechnology) with 

further centrifugation at 14,000 × g at 4°C for 30 min. The supernatant was used as 

whole-cell protein extract, and the protein concentration was determined using a 

detergent-compatible assay (Bio-Rad). Equal amounts of protein were loaded on an SDS-

PAGE gel. After being electrophoresed and transferred to a nitrocellulose membrane, the 

membrane was blocked and incubated with the primary antibody overnight at 4°C. The 

primary antibodies were rabbit polyclonal anti-wnt3a (1:1000; ab28472), rabbit 

polyclonal anti-Frz1 (1:1000; ab126262), rabbit polyclonal anti-PIWI1a (1:1000; 

ab12337), mouse monoclonal anti-β-catenin (1:1000; ab32572), rabbit polyclonal anti- 

pGsk-3β (1:1000; ab75745), rabbit polyclonal anti-FOXM1 (1:1000; sc-376471), rabbit 

polyclonal anti-CC3 (1:1000; ab13847), rabbit polyclonal anti-GST (ab 19256), rabbit 

monoclonal anti-LRP6 (1:1000; ab134146), and rabbit polyclonal anti-phospho-LRP6 

(1:500; 2568s). For loading control, the same membranes were blotted with primary 

antibody of goat anti-β-actin (1:1000; sc-1616). Nitrocellulose membranes were 

incubated with appropriate secondary antibodies (1:2000; Santa Cruz Biotechnology) for 

30 min at room temperature. Immunoblot bands were further probed with a 
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chemiluminescence reagent kit (ECL Plus; GE Healthcare). Data was analyzed by 

blinded researchers using ImageJ software, and each protein was normalized to their 

respective β-actin bands. 

 

Neurobehavioral Testing 

Neurobehavioral outcomes were assessed by a blinded observer at 24 and 72 h 

post-MCAO using the Modified Garcia Score (Kusaka et al., 2004; Chen et al., 2010).  

Animal scores for sensorimotor functions evaluated six parameters: spontaneous activity, 

symmetry in the movement of all four limbs, forepaw outstretching, climbing, body 

proprioception, and response to vibrissae touch. A maximum score of 21 was given with 

higher scores indicating better performance. 

 

Left-forelimb Testing 

Vibrissae evoked forelimb placing test was assessed by a blinded observer at 24 h 

and 72 h post-MCAO.  Left fore-limb testing assesses for asymmetry in the sensorimotor 

cortex and striatum.  The experimenter holds the animal so that all four limbs hang freely 

and the vibrissae are stimulated by sweeping each side against the edge of a table.  This 

elicits an ipsilateral forelimb response to place the paw on the table top.  The rat is 

stimulated 10 times on each side, and the total number of paw placements is recorded. 

Water Maze. Activity was evaluated for long term memory and learning. Briefly, the rat 

was placed in a pool (110 cm diameter) filled with water up to 15 cm from the upper 

edge. A platform (11cm diameter) was then submerged into the pool. An overhead 

camera was used to record the swim path, allowing for quantification of swim distance, 
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swim speed and time spent in the probe quadrant by a computerized tracking system 

(Noldus Ethovision; WA). The rats were first be trained using a cued water maze test. 

This test was used as a control to assess any sensorimotor and/or motivational deficits. In 

the cued test, the platform was made visible 5 mm above the water surface. The rat was 

released into the water and allowed to find the platform. Next, the spatial water maze test 

was performed in 5 blocks. In this test, the platform was submerged 1 cm below the 

surface of water. The location of the platform was changed for each block. Lastly, the rat 

was released into the water opposite the platform, and allowed to swim in the water to 

find the platform. 

 

Fluoro-Jade C Staining 

FJC staining was performed to detect degenerating neurons with a modified FJC 

ready-to-dilute staining kit (Biosensis, USA) according to the manufacturer’s instructions 

(Schmued et al., 2005).  FJC-positive neurons in a 0.56mm2 region of the ischemic 

boundary zone next to the ischemic core were counted in four randomly selected 

microscopic fields by an independent observer.  Quantified analysis was performed by 

blinded researchers using Image J software.  The data was presented as the number of 

FJC-positive neurons in the field of view.  

 

Statistical Analysis 

Quantitative data are presented as mean ± SD. One-way ANOVA with post-hoc 

Tukey test was used to determine significant group differences among groups at each time 

point for infarction volume and Western blot data.  For non-parametric data, One-way 
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ANOVA-Wallis with Dunn’s post-hoc was used to analyze neurobehavioral data after 

deviation from normality was confirmed. p < 0.05 was considered statistically significant.  

GraphPad Prism 6 (La Jolla, CA, USA) was used for graphing and analyzing all data.  

 

Results 

All sham-operated rats survived, but the overall mortality of MCAO was 21.94%.  

The mortality was not significantly different among the experimental groups (data not 

shown).   

 

Endogenous Expressions of wnt3a and FRZ1/PIWI1/FOXM1 were Decreased in 

Neurons 24 hours after MCAO, While the Proteins Caspase 3 and GSK3-β were 

Increased 

Western blot was used to detect time-course expression of wnt3a, Frzd1, PIWI1a, 

FOXM1, pGSK-3β, and CC-3 in brain tissue at baseline, 6, 12, 24, and 72 h after MCAO 

(Figure 2). Representatives immunoblots are shown in Fig. 2A.  The expression pattern of 

wnt3a (Fig. 2B) and Frz1 (Fig. 2C) showed a significant decrease from 6 to 72 h after 

MCAO (Fig. 2B).  PIWI1a was significantly decreased from 12 to 24 h after MCAO, but 

indistinguishable at 72 h compared to sham (Fig. 2D).  After MCAO, p-GSK3β increased 

significantly from 12 to 72 h compared to sham (Fig. 2E).  Survival protein FOXM1 was 

significantly decreased from 6 to 72 h after MCAO (Fig. 2F).  In contrast, apoptotic 

protein CC-3 was significantly increased from 6 h to 72 h after MCAO (Fig. 2G).  

Extended Fig. 2-1 reports the specific statistics for each group comparison. 
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Figure 2.   Time course of wnt3a, Frz1, PIWI1a, pGsk-3β, FOXM1, and CC3 in the right 
hemisphere of the rat brain after MCAO. (A) Representative Western blots.  Quantitative 
analysis with western blot showed that the expression of (B) Wnt3a and (C) Frz1 
significantly decreased by 6 hours.  (D) PIWI1a was decreased by 12 hours and returned 
to sham levels by 72 hours. (E) However, pGsk-3β was increased after MCAO.  (F) 
FOXM1 was decreased after MCAO, but (G) CC3 was increased. Each column 
represents the mean ± SD (n=4/group). *p<0.05 vs. Sham, #p<0.05 vs 6Hr. Extended Fig. 
2-1 reports the specific statistics for each group comparison. 
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Table 2-1.  P values from each comparison in time-course study (Figure 2).  One-way 
ANOVA with Tukey’s multiple comparisons tests were run on western blot groups and 
the mean differences shown (n=4/group).  *p<.05, **p<0.01, ***p<0.001, 
****p<0.0001. 
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Effects of wnt3a on Infarction Size and Neurobehavioral Function 24 h after MCAO 

 Qualitative images of infarction volume in various groups are shown in Fig 3A, 

and quantitively, there was a significant reduction in infarction volume with high dosage 

(1.3 ug/kg) compared to vehicle (One-way ANOVA; Tukey’s test; n=6-9; F (3, 20) 

=23.44; p=0.0153) (Fig 3B).  Wnt3a restored modified Garcia (Fig 3C) scores to sham 

levels and caused significant improvement in left-forelimb placement (Fig 3D) compared 

to vehicle (One-way ANOVA; Kruskal-Wallis with Dunn’s post-hoc; n=6-9; p=0.0031) 

at 24 h.  With the loss of oxygen and glucose, a hypoxic state is created in the acute stage 

of cerebral infarction, and recanalization triggers an apoptotic neuronal stress response 

(Candelario-Jalil, 2009).  Neuron survival is a key contributor to outcomes after stroke 

(Lai et al., 2014).  Thus, neuron protection is an important therapeutic target for the 

treatment of stroke (Cerpa et al., 2009; Lai et al., 2014). To evaluate the effects of 

intranasal (iN) wnt3a on neurological outcomes in transient focal cerebral ischemia, 

infarction volume and neurobehavior were assessed. 
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Figure 3.  Wnt3a attenuated infarct volume and improved neurological function 24 hours 
after MCAO.  (A) Representative TTC staining images of coronal sections.  (B) Wnt3a 
HD (1.2 µg/kg) effectively reduced the infarct volume. (C)  Modified Garcia Scores 
showed that low and high dose of wnt3a decreased neurological deficits.  (D) Left-
forelimb placement was improved in both the low and high doses of wnt3a. Each column 
represents the mean ± SD (n=6-9/group). *p<0.05 vs. Sham, #p<0.05 vs vehicle. 
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Wnt3a Reduced Apoptotic Cells after MCAO 

Brain coronal sections obtained 24 h after MCAO were stained with Fluro-Jade-C 

(FJC) to present the number of degenerating cells in the penumbra of the cortex after 

ischemia/reperfusion (Fig 4A). Higher levels of FJC staining were observed in the 

MCAO group compared to the Sham group.  Wnt3a significantly decreased the FJC 

positive cells in the penumbra compared to vehicle (67.00±14.24/field vs 

193±30.84/field, One-way ANOVA; Tukey’s test; F (2,6) =72.44; n=3; p<0.05, for each) 

(Fig 4B).  

 



 

47 

Figure 4. The effects of wnt3a on neuronal damage at 24 h after MCAO. (A) 
Representative microphotographs of Fluoro-Jade C staining (FJC)-positive neurons. (B) 
Quantitative analysis of JFC-positive cells was performed in the penumbra of the cortex. 
(C) FJC-positive neurons significantly increased after MCAO induction.  Wnt3a 
significantly reduced the number of FJC-positive cells compared with vehicle (p<0.05).  
Data was presented as mean ±SD. Scale bar =  50 µm, n=3 per group. *p<0.05 vs. Sham, 
#p<0.05 vs vehicle. 
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Immunofluorescence of the Receptor Frz1 in the Penumbra at 24 h 

Staining at the edge of the infarction (Fig. 5A) at 24 h probed neurons (NeuN), 

astrocytes (GFAP), and microglia (Iba1). In the sham group, immunoreactivity of Frz1 

(red) was present in NeuN and GFAP, but not Iba-1 (Fig. 5B).  Vehicle expression of 

Frz1 in Neun, GFAP, or Iba-1 could not be detected after MCAO.  HD wnt3a treatment 

(1.2 µg/kg) demonstrated strong immunoreactivity of Frz1 colocalized with NeuN (Fig. 

5B).  Although literature agrees with Iba-1 expression on microglial cells, our 

observations suggest that the expression of Frz1 on Iba-1 may need to be evaluated at 

later time-points, peaking from 72h to 7days after MCAO (Michalski et al., 2012; 

Kawabori et al., 2015; Taylor & Sansing, 2013). 
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Figure 5.  Expression of Frz1 (red) in neurons (NeuN, green), astrocytes (GFAP, green), 
and microglia (Iba1, green) in sham, vehicle, and treatment.  Expression of Frz1 
decreased in vehicle at 24 HR after MCAO in neurons but was increased with treatment.  
Sham showed minimal expression of Frz1 in astrocytes but no expression in microglia; 
however, vehicle and HD treatment (1.2 µg/kg) had no Frz1 expression in astrocytes, but 
minimal expression in microglia (n=1 per each group). DAPI (blue) indicates 4′,6-
diamidino-2-phenylindole, dihydrochloride.  Scale bar: 50µm. 
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Effects of wnt3a on Frz1, p-GSK3β, β-catenin, PIWI1a, FOXM1, CC-3 

Pathway at 24 h and 72 h after MCAO 

Of particular interest, recent studies have shown activation of extrinsic and 

intrinsic pathways of caspase-mediated cell death in several forms of transient MCAO in 

adult rats (Ferrer & Planas, 2003).  Cleaved-caspase-3 is upregulated following MCAO, 

and subsequently, the inhibition of caspase-3 reduces infarct size following transient 

MCAO (Ferrer & Planas, 2003).  Thus, our hypothesis is that wnt3a will provide 

therapeutic benefits following ischemic stroke in rats via attenuation of cleaved-caspase-3 

and prevention of neuronal apoptosis.  To investigate the effects of Frz1 activation with 

the specific HD wnt3a (1.2 µg/kg) agonist administered intranasally (iN) at one hour after 

reperfusion, western blot was performed on the right-hemisphere of the brain, 

representative images in Fig 6A.  In the 24 h MCAO + vehicle group the proteins: wnt3a, 

Frz1, PIWI1a, and FOXM1 were significantly decreased compared to sham group 

(p<0.05; Fig 6B, C, D, G), while p-GSK3β and CC-3 were significantly increased 

compared to the sham group (p<0.05; Fig 6E, H).  Additionally, at 24 h, HD wnt3a (1.2 

µg/kg) iN treatment after MCAO significantly up-regulated the expression of Frz1, β-

catenin, PIWI1a, and FOXM1 compared to vehicle groups (p<0.05; Fig 6B-D, F, G), 

while p-GSK3β and CC-3 were significantly attenuated compared to the vehicle group 

(p<0.05; Fig 6E, H).  The 72 h MCAO + vehicle group wnt3a, Frz1, and FOXM1 were 

significantly decreased compared to sham (p<0.05; Fig 6B, C, G), while p-GSK3β, β-

catenin, and CC-3 were significantly increased compared to the sham group (p<0.05; Fig 

6E, F, H).  In the 72 h MCAO + iN wnt3a (1.2 µg/kg) group, wnt3a, Frz1, β-catenin, and 

FOXM1 levels were significantly increased compared to vehicle groups (p<0.05; Fig 6B, 
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C, F, G); there was no change in PIWI1a levels at 72 h.  Wnt3a expression was higher in 

vehicle groups at 24 and 72 h compared to endogenous expression levels after MCAO in 

Fig. 2B, which could be explained by two key observations.  First, with a sample size of 

4 in Fig 2B, the protein expression levels provided statistical significance to merit further 

mechanistic investigation into the significance of the pathway.  Nonetheless, there still 

remains an opportunity for rather marked variation among small sample sizes despite 

statistically significant comparisons. With an increased sample size of 6, a more 

quantitative evaluation of the model and wnt3a expression could be observed.  Second, 

the vehicle solution may have slightly increased the expression of endogenous wnt3a, but 

this expression was still significantly lower compared to sham.  Additionally, iN wnt3a 

(1.2 µg/kg) significantly decreased levels of p-GSK3β, and CC-3 compared to the vehicle 

group (p<0.05; Fig 6E, H). Extended Fig. 6-1 reports the specific statistics for each group 

comparison. 
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Figure 6.  Wnt3a prevented apoptosis through Frz1/PIWI1a/ β-catenin /FOXM1 pathway 
after MCAO in rats.  (A) Right hemisphere representative Western blots of the rat brain.  
Wnt3a (B) and Frz1 (C) were increased after HD treatment (1.2 µg/kg) in both 24HR and 
72HR endpoints. (D)  PIWI1a was increased by wnt3a at 24HR but not lost its 
significance at 72HR. (E) pGsk-3β was increased in vehicle groups but reduced by the 
wnt3a treatment. (F)  β-catenin was increased by wnt3a at both time points. (G) FOXM1 
was brought back to sham levels by HD wnt3a treatment and (H) CC-3 was therefore 
reversed in the treatment groups. Each column represents the mean ± SD (n=6/group). 
*p<0.05 vs. Sham, #p<0.05 vs vehicle. Extended Fig. 6-1 reports the specific statistics for 
each group comparison 
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Table 6-1. P values from each comparison in treatment study looking at 24hr and 72hr 
endpoints (Figure 6).  One-way ANOVA with Tukey’s multiple comparisons tests were 
run on western blot groups and the mean differences shown (n=6/group).  *p<.05, 
**p<0.01, ***p<0.001, ****p<0.0001. 
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Effects of wnt3a on Infarct Size and Neurobehavioral Function 72 h 

after MCAO 

To evaluate the effects of iN wnt3a high dose (1.2 ug/kg) on long-term 

neurological outcome, infarct and neurobehavior were assessed at 72 h. With 

administration of wnt3a, infarction volume was significantly reduced compared to 

vehicle (One-way ANOVA; Tukey’s test; F (2, 15) =25.20; n=6; p=0.0084) (Fig 7A).  

Wnt3a restored modified Garcia (Fig 7B), left-forelimb placement (Fig 7C), and corner-

turn (Fig 7D) scores to sham levels.  In the 72 h MCAO + vehicle group, infarction 

volume was significantly increased and neurobehavior scores for: modified Garcia (One-

way ANOVA; Kruskal-Wallis with Dunn’s post-hoc; p=0.023; Fig 7B), left-forelimb 

placement (One-way ANOVA; Tukey’s test; F (2, 15) =8.59; n=6; p=0.003; Fig 7C), and 

corner-turn (One-way ANOVA; Tukey’s test; F (2, 15) =5.86; n=6; p=0.0102; Fig 7D) 

were significantly decreased compared to sham.   
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Figure 7. Wnt3a decreased infarct volume (A) and improved neurological function 72 
hours after MCAO.  (B) Cerebral infarct quantification was carried out on the TTC 
stained images of coronal sections, (C) modified Garcia neuroscore, (D) left-forelimb 
placement, (E) corner turn test showed that high dosage of Wnt3a decreases infarction 
and neurological deficits 72 hours after MCAO. Each column represents the mean ± SD 
(n=6/group). *p<0.05 vs. Sham, #p<0.05 vs vehicle. 
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Impact of Frz1-siRNA, PIWI1a-siRNA and PIWI CRISPR on the 

Function of the wnt3a/Frz1/PIWI/FOXM1 Pathway at 24 h after MCAO 

To elucidate the molecular mechanisms modulated by wnt3a downstream of its 

receptor Frz1, two inhibitor groups were used, Frz1-siRNA and PIWI siRNA.  At 24 h, 

MCAO+wnt3a+Frz1-siRNA significantly decreased the protein expression of wnt3a, 

Frz1, PIWI1a, and FOXM1 compared to the wnt3a treated group (p<0.05; Fig 8B-D, F); 

pGSK3β, and CC-3 were significantly increased compared to the wnt3a treated and 

scrambled control groups (p<0.05; Fig 8E, G).  In the MCAO+wnt3a+PIWI siRNA 

group, Frz1, PIWI1a, and FOXM1 were significantly decreased compared to the treated 

and scramble control groups (p<0.05; Fig 8C, D, F); wnt3a, pGSK3β, and CC-3 were 

significantly increased compared to the treated and scramble control groups (p<0.05; Fig 

8B, E, G). In the MCAO+wnt3a+Frz1-siRNA+PIWI CRISPR group, protein expression 

of PIWI1a and FOXM1 was significantly increased compared to vehicle group (p<0.05; 

Fig 8D, F); wnt3a, Frz1, pGSK3β, and CC-3 were significantly decreased compared to 

wnt3a treated group (p<0.05; Fig 8B, C, E, G). Extended Fig 8-1 reports the specific 

statistics for each group comparison.   
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Figure 8.  Effect of Wnt3a preventing apoptosis through the Frz1/PIWI1a/FOXM1 
pathway at 24Hr after MCAO. (A) Right hemisphere representative Western blots of the 
rat brain for the pathway. (B) After siRNA treatment of Frz1, Wnt3a returned to vehicle 
levels and (C) Frz1 expression was dependent on the presence of wnt3a, which was 
significantly reduced with Frz1-siRNA and PIWI-siRNA.  With the increased expression 
of PIWI1a (D) through treatment or CRISPR, pGsk-3β (E) was decreased. (F) FOXM1 
was increased in expression through treatment and decreased through Frz1-siRNA and 
PIWI-siRNA. (G) CC3 was decreased after treatment but restored to vehicle levels by the 
inhibition of the Frz1/PIWI1a/FOXM1 pathway with both Frz1-siRNA and PIWI-siRNA.  
Each column represents the mean ± SD (n=6/group).  *p<0.05 vs. Sham, #p<0.05 vs. 
vehicle, &p<0.05 vs. wnt3a. Extended Fig. 8-1 reports the specific statistics for each 
group comparison. 
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Table 8-1.  P values from each comparison in the intervention pathway analysis (Figure 
8).  One-way ANOVA with Tukey’s multiple comparisons tests were run on western blot 
groups and the mean differences shown (n=6/group).  *p<.05, **p<0.01, ***p<0.001, 
****p<0.0001. 
 

C 
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Sexually Dimorphic Comparisons of Infarct Size and Neurobehavioral 

Function 24 h after MCAO in Female Rats 

To evaluate for sexually dimorphic differences after treatment, infarct and 

neurobehavior were assessed at 24 h in female rats. With administration of wnt3a, 

infarction volume was significantly reduced compared to vehicle (One-way ANOVA; 

Tukey’s test; F (2, 15) =53.11; n=6, p=0.0079) (Fig 9B).  Wnt3a restored modified 

Garcia (Fig 9C) and left-forelimb placement (Fig 9D) scores to sham levels.  HD wnt3a 

(1.2 ug/kg) treatment after MCAO had significantly therapeutic effects in both sexes, 

with no major inter-sex differences in infarct and behavioral evaluations. 
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Figure 9. Wnt3a attenuated infarct volume and improved neurological function 24 hours 
after MCAO in female rats.  (A) Representative TTC staining images of coronal sections 
in female rats.  (B) Wnt3a HD effectively reduced the infarct volume. (C) Modified 
Garcia showed that wnt3a improved neurological function.  (D) Left-forelimb placement 
was improved with wnt3a. Each column represents the mean ± SD (n=6/group). *p<0.05 
vs. Sham, #p<0.05 vs vehicle. 
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Age-related Effects on Infarct Size and Neurobehavioral Function 24 h 

after MCAO 

 To assess the age-related effects after MCAO, neurological outcome, infarct and 

neurobehavior were assessed at 24 h in 9-month old aged male rats. With administration 

of wnt3a, infarction volume was significantly reduced compared to vehicle (One-way 

ANOVA; Tukey’s test; F (2, 15) =115.8; n=6; p=0.0124) (Fig 10B).  Wnt3a had no effect 

on Modified Garcia (Fig 10C), and both vehicle (One-way ANOVA; Kruskal-Wallis with 

Dunn’s post-hoc; n=6; P=0.0053) and treatment (One-way ANOVA; Kruskal-Wallis with 

Dunn’s post-hoc; n=6; P=0.0181) Modified Garcia scores were decreased compared to 

sham. Wnt3a restored left-forelimb placement (Fig 10D) scores to sham levels. Overall, 

HD wnt3a (1.2 ug/kg) treatment in aged rats was not as advantageous when compared to 

younger treated MCAO cohorts; however, significant reduction of infarction and 

improved Left-Forelimb placement was observed. 
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Figure 10.  9-month-old aged rats were evaluated at 24 hours after MCAO and showed a 
reduction in infarct volume with an improved Left-forelimb placement after wnt3a 
administration. (A) Representative TTC staining images of coronal sections in aged rats.  
(B) Wnt3a effectively reduced infarct volume compared to vehicle.  (C) Modified Garcia 
was not able to detect an effect after wnt3a administration compared to vehicle.  (D) Left-
forelimb placement was improved with wnt3a.  Each column represents the mean ± SD 
(n=6/group). *p<0.05 vs. Sham, #p<0.05 vs vehicle. 
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Wnt3a Effects on Infarct Size and Neurobehavioral Function at 24 h in 

a Permanent Middle Cerebral Artery Occlusion (pMCAO) Model 

To evaluate the model variation effects on neurological outcome, infarct and 

neurobehavior were assessed at 24 h in a permanent middle cerebral artery occlusion 

(pMCAO) model. With administration of wnt3a, no significant improvement was seen in 

infarction compared to vehicle (One-way ANOVA; Tukey’s test; F (2, 15) =59.35; n=6, 

p=0.8816; Fig 11B).  Both modified Garcia (Fig 11C) and left-forelimb (Fig 11D) 

placement showed no significant difference in treatment compared to vehicle (One-way 

ANOVA; Kruskal-Wallis with Dunn’s post-hoc; n=6).   
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Figure 11. Infarct volumes 24 h post-pMCAO.  (A) Representative TTC staining images 
of coronal sections.  (B) Wnt3a HD had no effect on infarct in the pMCAO compared to 
vehicle. (C) Modified Garcia showed no improvement in neurological function after 
wnt3a administration. (D) Left-forelimb placement showed no improvement after wnt3a 
treatment compared to vehicle. Each column represents the mean ± SD (n=6/group). 
*p<0.05 vs. Sham, #p<0.05 vs vehicle. 
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Impact of Frz1-siRNA, PIWI1a-siRNA and PIWI CRISPR in Naïve 

Animals 

Naïve animals were used to evaluate the effectiveness of siRNAs and CRISPR.  

NAÏVE+Frizzled siRNA significantly reduced Frizzled-1 protein levels compared to both 

NAÏVE and NAÏVE+Scrambled siRNA (One-way ANOVA; Tukey’s test; F (2, 15) 

=34.15; n=6, p<0.05; Fig 12A).  In the Naïve+PIWI1a siRNA group, PIWI1a levels were 

significantly attenuated compared to NAÏVE and Naïve+Scrambled siRNA (One-way 

ANOVA; Tukey’s test; F (3, 20) =24.51; n=6, p<0.05; Fig 12B).  This effect was 

reversed and restored to sham levels in the Naïve+PIWI1a CRISPR+Frz1siRNA group 

(One-way ANOVA; Tukey’s test; F (3, 20) =34.15; n=6, p<0.05; Fig 12B).    
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Figure 12. Naïve treated animals showed a significant reduction of Frizzled-1 with Frz 
siRNA.  (A) Representative western blots of the right hemisphere of the rat brain and 
quantitative analysis showed that the expression of Frizzled-1 significantly decreased at 
24 hours after Frizzled-siRNA administration compared to Naïve and Naïve+Scrambled-
siRNA (p<0.05). Each column represents the mean ± SD (n=6/group). *p<0.05 vs. Naive, 
#p<0.05 vs Naïve+Scrambled-siRNA. 
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Evaluation of Exogenous Recombinant wnt3a in Treated Animals  

Since the recombinant mouse wnt3a (ab81484) protein was used for all molecular 

and behavioral studies, due to its homology to rat wnt3a, and could not be distinguished 

from the endogenously expressed wnt3a, a human recombinant wnt3a (ab 153563) 

protein with a specific tag was intranasally administered, 1.2 µg/kg, 1 h post 

recanalization to check delivery and presence of our drug.  The human recombinant 

wnt3a protein was made by the parasite Schistosoma japonicum and had GST3 bound to 

the N-Terminus to distinguish it from proteins expressed by the rat.  A specific GST 

antibody without binding affinity for the rat Glutathione S-transferase P protein (GSTP1 

also known as GST3) was used to assess the amount of recombinant protein (ab153563) 

in our treated animals.  Representative western blots and quantitative analysis showed 

that the amount of recombinant wnt3a GST-specific protein was significantly higher 

compared to non-treated groups, both sham and vehicle (One-way ANOVA; Tukey’s 

test; F (2, 15) =285.4; n=6, p<0.05; Fig 13A).  Although exogenous delivery was 

confirmed in our study, further research is needed to thoroughly evaluate the 

pharmacokinetics of exogenous wnt3a administered after MCAO.  Better 

pharmacokinetic understanding will be essential in the development of clinical 

applications and strengthening of wnt3a’s translational impact.            
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Figure 13.  Western blot confirmed the delivery of wnt3a in our treated animals.  (A) 
Right hemisphere representative Western blots of the rat brain and quantitative analysis 
showed that the expression of recombinant GST-specific tagged wnt3a protein was 
significantly higher compared to non-treated groups, both sham and vehicle.  Each 
column represents the mean ± SD (n=6/group). *p<0.05 vs. Sham, #p<0.05 vs vehicle. 
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Wnt3a and Alternative Co-receptor LRP6 Binding 

When wnt proteins bind to Frizzled cell surface receptors, the transmembrane 

lipoprotein receptor related proteins 5 and 6 (LRP5/6) are recruited, and, in the canonical 

wnt pathway, cytoplasmic protein Dishevelled (Dvl) is activated, which leads to the 

inhibition of GSK3 and prevention of the phosphorylation, degradation of β-catenin 

(Bhanot et al., 1996; Abe et al., 2013). Therefore, we further investigated the regulation 

of LRP6 after wnt3a treatment in MCAO.  iN wnt3a (1.2 µg/kg) was administered at one 

hour after reperfusion in treatment groups, and western blot was performed on the right-

hemisphere of the brain, representative images in Fig 14A.  LRP6 levels were not 

significantly different between: sham, vehicle, MCAO+wnt3a, 

MCAO+wnt3a+scrambled-siRNA, and MCAO+wnt3a+Frz1-siRNA groups.  However, 

the phosphorylated LRP6 levels were significantly higher in the HD (1.2 µg/kg) wnt3a 

groups compared to vehicle (One-way ANOVA; Tukey’s test; F (4, 25) =17.76; n=6, 

p<0.05; Fig 14A). This effect was reversed, significantly attenuating the pLRP6 

expression in the MCAO+wnt3a+Frz1siRNA group compared to MCAO+wnt3a (One-

way ANOVA; Tukey’s test; F (4, 25) =17.76; n=6, p<0.05; Fig 14A).  This suggests that 

the phosphorylation of LRP6 is dependent on wnt3a-Frz1 binding, which is supported in 

literature-- wnt3a has a 2-3x stronger affinity towards Frz1 compared to LRP6 (Bourhis 

et al., 2010).  Phosphorylation of LRP6 may be responsible for additional regulation of 

GSK3 in our proposed neuronal pathway.   
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Figure 14.  LRP6 expression and activation after MCAO in rats.  (A) Right hemisphere 
representative Western blots of the rat brain for LRP6, pLRP6, and actin.  Overall LRP6 
(A) expression was not significant between groups. However, phosphorylation of LRP 
significantly increased in the HD treatment (1.2 µg/kg) treated groups, which was 
reversed in the Frz1-siRNA at 24HR after MCAO.  Each column represents the mean ± 
SD (n=6/group). *p<0.05 vs. Sham, #p<0.05 vs vehicle, &p<0.05 vs. wnt3a + Scr 
siRNA. 
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Wnt3a Treatment Improved Long-term Neurobehavioral Outcome after 

MCAO 

To evaluate the significance of wnt3a in attenuating long-term neurological 

deficits, we performed Morris water maze and rotarod tests at day 21 to 27 after MCAO. 

The three groups-- sham, vehicle, and wnt3a (HD)-- exhibited no significant difference in 

latency to escape onto the visible platform and swimming distances during the first day of 

visible platform tests (Fig. 12 A; One-way ANOVA; Tukey’s test; n=8-12; P>0.05). For 

the hidden platform and the probe trials, rats in vehicle group did not learn to find the 

escape platform as rapidly, traveled longer distances, and spent less time in the target 

probe quadrants compared to sham (Fig. 12 A; One-way ANOVA; Tukey’s test; n=8-12; 

P<0.05 vs Sham). Treatment with wnt3a significantly decreased the latency to find the 

platform, travel distance, and increased the time in the target quadrant compared to 

vehicle (Fig. 3A-C; One-way ANOVA; Tukey’s test; n=6; P<0.05). 

In the rotarod test, MCAO+vehicle rats had significantly impaired motor 

coordination compared to sham (Fig. 12 B; One-way ANOVA; Tukey’s test; n=8-12; P < 

0.1). Wnt3a improved performance in the 5 RPM and 10 RPM rotarod tests and restored 

performance to sham levels (Fig. 12 B). 
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Figure 12.  Watermaze data shows significance on day 4 (day24 from MCAO) for 
treatment compared to sham N=8-12/group, Mean ± SD, One-way ANOVA;  # p<0.05 vs 
vehicle.  For RotaRod, significance was observed in treatment with a *p<0.1vs Sham. 
N=8-12/group, Mean ± SD, One-way ANOVA  
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Discussion 

 In the present study, we made the following observations: (1) endogenous wnt3a 

and its downstream targets, Frz1/PIWI1a/FOXM1, were significantly decreased, while 

pGSK3β, and CC-3 were significantly increased in the brain at 24 h after MCAO; (2) 

intranasal wnt3a decreased infarct volume and improved neurobehavioral function at 24 h 

after MCAO; (3)  immunofluorescence confirmed that neurons express the receptor of 

wnt3a, Frz1; (4) exogenous iN wnt3a administered one hour after MCAO significantly 

up-regulated the expression of Frz1, β-catenin, PIWI1a, and FOXM1 compared to vehicle 

groups and decreased CC-3 levels; (5) 72 h after MCAO, infarct size and neurobehavioral 

function improved after a single dose of wnt3a; (6) specific siRNAs showed links 

between Frz1, PIWI1a, and FOXM1 at 24 h after MCAO; (7) The same efficacy of wnt3a 

after stroke was seen in female rats, but the effect was diminished in aged rats; (8) In the 

pMCAO model, no significant difference was observed between vehicle and wnt3a 

groups.   

Wnt3a caused significant increase in PIWI1a and FOXM1 and a decrease in CC-3 

at 24 h after wnt3a administration.  At 72 h, in the vehicle group, PIWI1a levels were 

restored to pre-stroke levels.  This result suggests that either the modest recovery of 

endogenous wnt3a levels at 72 h or an alternate pathway is responsible for the 

upregulation of β-catenin, PIWI1a and FOXM1 levels 72 h after MCAO.  In literature, 

although β-catenin expression was endogenously elevated at 72 h after SAH, neuronal 

survival was not significantly improved (Chen et al., 2015), neuronal survival was not 

significantly improved. In this study, the higher β-catenin expression after wnt3a 

treatment significantly reduced apoptosis at 24 and 72 h endpoints.   
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To confirm that PIWI1a regulates FOXM1, a specific inhibitor of PIWI1a, 

PIWI1a-siRNA, was administered with wnt3a.  This intervention caused a significant 

decrease in FOXM1 expression at 24 h.  To further investigate the possibility of an 

alternative pathway, two groups were added: wnt3a+Frz1-siRNA+MCAO and 

wnt3a+Frz1-siRNA+PIWI1a-CRISPR-activation+MCAO.  In the cohort of wnt3a+Frz1-

siRNA+MCAO, we saw a significant reduction of PIWI1a and FOXM1; however in 

wnt3a+Frz1-siRNA+PIWI1a-CRISPR-activation+MCAO, PIWI1a levels were 

significantly increased with an associated increase in FOXM1 levels and a reduction in 

CC-3.  These mechanistic studies support a link between PIWI1a and FOXM1. 

Studies have shown a significant association between PIWIL1a and regulation of 

β-catenin (Reeves et al., 2012), but PIWIL1a has not been mechanistically linked with 

wnt3a or downstream signaling after stroke.  We found that PIWI1a significantly 

decreased the levels of active p-GSK3β and significantly rescued levels of survival 

protein β-catenin.  Inhibition of PIWI1a significantly increased levels of p-GSK3β, 

suggesting that PIWI1a is an upstream regulator of GSK3β.  A link between Frz1 and p-

GSK3β is supported by increased p-GSK3β secondary to Frz1-siRNA.  To confirm 

PIWI1a’s role downstream of Frz1, PIWI1a was upregulated via CRISPR in combination 

with siRNA Frz1 knockdown.  This upregulation of PIWI1a significantly down-regulated 

p-GSK3β.   

Frz1 has been reportedly activated by wnt3a and shown to be neuroprotective 

against Aβ oligomers (Chacón et al., 2008). We confirmed the presence of Frz1 in 

neurons using immunohistochemistry and noticed an increased expression of Frz1 in the 

penumbra of wnt3+MCAO compared to vehicle+MCAO group. Western blots also 
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supported that iN administration of wnt3a significantly increased the expression of Frz1 

at 24 and 72 h.  These findings suggest a positive feedback loop involving wnt3a and 

Frz1.  Additionally, the inhibition of PIWI1a with siRNA resulted in decreased 

expression of Frz1, indicating that Frz1 may be transcriptionally regulated downstream of 

PIWI1a.  Congruently, the canonical wnt3a/Frz1 pathway in cancer tissues significantly 

decreased certain miRNAs (eg. miR-204 for Frz1) which may be a variable in the 

increased expression of the Frz1 receptor (Ueno et al., 2013).  The Frz1 positive-

feedback loop requires further investigation.  Inhibition of Frz1 down-regulated wnt3a, 

PIWI1a, β-catenin, and FOXM1, while upregulating p-GSK3β and CC-3 expression at 

24h.  

Interestingly, wnt3a protein expression was significantly reduced in the Frz1-

siRNA group. In support of this finding, miR-34 was observed to directly attenuate wnt3a 

protein expression in breast cancer tissues (Song et al., 2015). Additionally, in gastric 

carcinoma cells, TGF-β induces caspase-8 activation and apoptosis by phosphorylating 

R-Smads-- which form complexes with their common mediator, Smad4, and enter the 

nucleus to regulate gene expression (Moustakas & Heldin, 2005).  This Smad-complex 

has been shown to attenuate the wnt expression in cancer cell lines (Tian et al., 2009; 

Voorneveld et al., 2015).  A potential upstream link exists via the ability of GSK3β to 

phosphorylate and activate Smad4 to lower the expression of wnt3a, an effect which is 

reversed after wnt3a treatment in HEK cells (Demagny et al., 2014).  Despite several 

promising hypotheses, further research is needed to elucidate the gene regulation of 

wnt3a after Frz1 siRNA treatment in neurons after MCAO in the rat model.  Although 
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these limitations, we can conclude that wnt3a exerts neuroprotective effects on PIWI1a/β-

catenin/FOXM1 through the Frz1 receptor. 

In the present study, we investigated two pro-apoptotic proteins, pGSK3β and 

CC-3.  GSK-3β is reported to participate in neuron death through PI3K/AKT and wnt/β-

catenin signaling pathways after stroke (Chen et al., 2016).  Also, after MCAO, CC-3 

significantly increased and caused apoptosis in neurons (Li et al., 2017).  Paralleling 

these findings, we observed an increase in pGSK3β and CC-3 at 24h and 72h after 

MCAO. These effects were directly reversed with iN wnt3a treatment.  This reduction in 

neuronal apoptotic proteins with wnt3a administration was associated with significant 

neurobehavior improvement in forelimb placement and recovery of Modified Garcia 

scores to sham levels.  Studies have shown that MCAO causes deleterious neurological 

effects on Modified Garcia (Wang et al., 2017), and left fore-limb placement (Senda et 

al., 2011), tests that correlate the cerebral infarction.  We examined the neuropathological 

damage at 24 and 72 h after MCAO and found our model to create significant 

neurological deficits. Wnt3a had a significant reduction of infarction volumes and 

neurological deficits in female rats.  Efficacy of wnt3a diminished with age, but 

significant benefits were seen in both infarct volume and fore-limb placement.  In a 

permanent occlusion model, there was no change after wnt3a administration in infarct 

volume and neurological outcome. This may be due to lack of wnt3a flow to the infarcted 

core. The proposed mechanism of action of wnt3a requires interaction of wnt3a with 

receptors, and thus direct sanguineous exposure to the area of infarction is likely required 

for therapeutic effect. While the penumbra of the infarction zone receives some perfusion 

and thus wnt3a exposure in models of permanent occlusion, without reperfusion, there is 
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limited opportunity for rescue of severely hypoxic penumbra. In agreement with our 

findings, a significant number of proposed neuroprotective agents have only 

demonstrated effectiveness in animal models of transient occlusion (Min et al., 2013).  

Behavior was restored to sham levels after low dose wnt3a and high dose wnt3a 

administration in the following neurological tests: modified Garcia, left forelimb 

placement, and corner turn.  In vehicle groups, performance was significantly worse in all 

groups compared to sham.  When compared to treated groups significance was only seen 

on left-forelimb placement tests.  This coincides with previous research that infarct 

volume affects neurobehavior tests, but sometimes these tests are not as sensitive to 

evaluate the total damage in the pathology of stroke since each test is only sensitive to 

specific focal neurological deficits (Senda et al., 2011); nonetheless, this treatment shows 

promise in improving the neurobehavioral rehabilitation of patients. 

Due to the filtering nature of the blood brain barrier (BBB), treatments targeting 

the central nervous system (CNS) that are administered outside of the CNS must be able 

to efficiently cross the BBB (Thorne & Frey, 2001). iN administration of 

neuroprotectants has previously been established as a viable route of administration for 

stroke with the benefit allowing rapid delivery to the CNS and ease of administration (Lin 

et al., 2009).  We found that wnt3a’s delivery via an iN route was feasible and provided 

neuroprotection after stroke. Thus, iN administration of wnt3a is a clinically translatable 

route of administration, lowering risk of systemic side-effects caused by other less 

desirable routes of administration.  

One limitation of this study is that the design and results do not fully exclude the 

possibility of alternative pathways that act on wnt3a and downstream mediators; thus, 
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further research will need to investigate the relationship between PIWI1a, β-catenin, 

FOXM1, and the canonical apoptosis pathway to fully exclude or incorporate alternative 

pathways that may play a role in wnt3a physiology.  For example, β-catenin canonically 

is known to translocate into the nucleus and act as a transcriptional coactivator of 

transcription factors that belong to the TCF/LEF family (Rao & Kühl, 2010).  Wnt3a is 

known to bind to Frz1a, expressed by dendrites (Oderup et al., 2013) and microglia, 

which may play a role in the regulation of apoptosis in neurons. Additionally, GSK3β is 

part of the destruction complex (APC, Axin, and CK1) (Minde et al., 2011) of β-catenin 

and can be regulated by these intrinsic proteins, a process in which PIWIL1a may be a 

significant player.  Further mechanistic studies of these three proteins independently 

needs to be investigated to fully understand the role of PIWIl1a in the wnt3a pathway. 

 In conclusion, intranasal administration of wnt3a was efficacious in 

neuroprotection against transient cerebral ischemia in rats.  New pathway links between 

Frz1, PIWI1a, and FOXM1 have been established by which wnt3a works in neurons to 

inhibit caspase-3 dependent apoptosis.  A working model of these relationships is shown 

in Fig 1.  Given the lack of treatment options for ischemic brain injury after stroke, these 

findings provide a basis for clinical trials to advance the clinical management of stroke 

and a foundation for future research in similar pathologies.  Wnt3a intranasal delivery 

should be investigated further as a potential therapeutic option for ischemic stroke. 
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Discussion 

The glycolipoprotein hormone wnt3a is highly innovative as a therapy in the 

pathophysiology of stroke. Although the canonical wnt pathway has been extensively 

investigated, the identification of new isoforms of wnt and their unique mechanistic 

endpoints has revived therapeutic interest in wnt (Cerpa et al., 2009; Shruster et al., 2012; 

Inestrosa & Varela-Nallar, 2014).  Therefore, wnt3a has potential as a neuroprotective 

therapy after stroke.  As mentioned before, a mouse model was recently used to look at 

focal brain ischemia, induced by 1µl of the vasoconstrictor endothelial-1 and 

descriptively reported that wnt3a can produce significant neurogenesis (Shruster et al., 

2012), but an improved model, such as MCAO, was needed to assess the immediate 

apoptotic implications and clinically translatable impact of wnt3a in a long-term study.  

The intracellular pathway by which wnt3a mediates its effects in neurons was poorly 

understood.  Our study proposed a working model of the pathway for wnt3a in neurons.  

Specifically, wnt3a binds to Frz1, increasing PIWI1a, which inhibits the activation 

GSK3β and activates β-catenin, and translocates into the nucleus to increase the 

transcription of FOXM1—a survival protein that inhibits apoptosis.  We believe that the 

recent discovery of new immune and apoptotic modulating functions for wnt3a, along 

with an incompletely detailed mechanism, especially in the stroke model, makes wnt3a 

an innovative candidate for treatment of stroke.   

Currently, only 5% of patients receive rTPA to recanalize the blood vessel after 

stroke.  No current therapy is given to help neuroprotection and promote neuronal cell 

survival in stroke. Due to the significance in our findings, wnt3a shows promise in 

preventing neuronal apoptosis.  Given the lack of treatment options for ischemic brain 



 

93 

injury after stroke, this dissertation, if substantiated, may change the clinical management 

of stroke patients and provide a foundation for future research in other types of strokes 

with similar pathologies.  

 

Translational Impact for Advancement of the Field 

In 2015, several landmark clinical trials comparing the efficacy pharmacological 

and mechanical thrombectomy for treatment of large vessel ischemic stroke were 

published (Goyal et al., 2016). These studies support mechanical thrombectomy as the 

standard of care for rapidly diagnosed large vessel stroke. Given the results of these 

studies, networks of care will continue optimization to maximize the fraction of patients 

presenting within the appropriate time window to receive pharmacological 

thrombectomy, and when available, mechanical thrombectomy.   Furthermore, recent 

trials have extended the eligible time window for reperfusion to 16 hours and beyond 

given appropriate magnetic resonance imaging selection criteria (Leslie-Mazwi et al., 

2016; Albers et al., 2018). These findings have significant translational relevance to our 

findings in animal models of stroke. Wnt3a treatment showed limited efficacy in 

permanent occlusion, but promising reduction in infarction volume and improvement in 

neurobehavioral outcomes in the context of reperfusion. In the clinical context, wnt3a 

would thus best be applied in patients eligible for pharmacological or mechanical 

thrombectomy. Increasingly more patients will be screened with early magnetic 

resonance imaging to identify patients with adequate collateral blood supply allowing for 

delayed rescue of the penumbra (Jovin et al., 2017). These patients will be ideal 

candidates for therapies such as wnt3a that pair optimally with reperfusion. 
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Clinical research has established the principle of “time is brain,” meaning that 

time delay before intervention is proportional to the loss of brain tissue (Saver, 2006). 

This principle emphasizes the need for early intervention in stroke, especially in patients 

with poor collateral blood supply. In practice, this requires that the planned intervention 

be feasible and easily deployed in the field. Although further research is needed to 

understand the pharmacokinetics and develop optimum dosing schedules, intranasal 

administration of wnt3a would theoretically allow rapid deployment following positive 

findings on computed tomography screening or even administration by emergency 

response personnel in cases of high pre-test probability of ischemic stroke. 

 The magnitude of stroke incidence justifies further investigation of interventions 

with potential for notable effect sizes (Rahlfs et al., 2014). Even small improvements in 

treatment of ischemic stroke will, nonetheless, have profound effects at the level of 

populations. Balancing the effect size of wnt3a intervention against the absence of 

observed side-effects in our animal models, wnt3a is a promising candidate for 

translation and has strong potential to advance the field of stroke therapy in combination 

with recent advancements in reperfusion therapy. 
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