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Abstract

Modifications of DNA strands and nucleobases—both induced and accidental—are associated with unfavorable consequences 

including loss or gain in genetic information and mutations. Therefore, DNA repair proteins have essential roles in keeping 

genome fidelity. Recently, mounting evidence supports that 8-oxoguanine (8-oxoG), one of the most abundant genomic base 

modifications generated by reactive oxygen and nitrogen species, along with its cognate repair protein 8-oxoguanine DNA 

glycosylase1 (OGG1), has distinct roles in gene expression through transcription modulation or signal transduction. Bind-

ing to 8-oxoG located in gene regulatory regions, OGG1 acts as a transcription modulator, which can control transcription 

factor homing, induce allosteric transition of G-quadruplex structure, or recruit chromatin remodelers. In addition, post-

repair complex formed between OGG1 and its repair product-free 8-oxoG increases the levels of active small GTPases and 

induces downstream signaling cascades to trigger gene expressions. The present review discusses how cells exploit dam-

aged guanine base(s) and the authentic repair protein to orchestrate a profile of various transcriptomes in redox-regulated 

biological processes.
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Abbreviations

8-oxoG  7,8-Dihydro-8-oxoguanine

APE1  Apurinic/apyrimidinic endonuclease 1

AP site  Apurinic/apyrimidinic site

BER  Base excision repair

CHD4  Chromodomain helicase DNA-binding protein 4

GEF  Guanine-nucleotide exchange factor

HIF-1  Hypoxia-inducible factor-1

KRAS  Kirsten Ras

LSD1  Lysine-specific demethylase 1

NF-κB  Nuclear factor kappa B

OGG1  8-Oxoguanine DNA glycosylase 1

PQS  Potential G-quadruplex-forming sequences

ROS  Reactive oxygen species

TFs  Transcription factors

VEGF  Vascular endothelial growth factor

Introduction

DNA base damage (including deamination, oxidation, or 

alkylation) is repaired through base excision repair (BER) 

pathway, which is highly conserved in pro- and eukaryotes 

[1]. To date, BER is believed to be the simplest, thoroughly 

characterized process among all DNA repair pathways 

[2, 3]. BER is initiated by mono- or bi-functional DNA 

glycosylase(s). After base release, apurinic/apyrimidinic 

(AP) site processing, nucleotide incorporation, and nick 

sealing are successively carried out by AP endonuclease1 

(APE1), DNA polymerase β, and DNA ligase in a “hand-

off” model [2, 4, 5].

Among four DNA bases, guanine has the lowest oxida-

tion potential [6, 7]; thus, its oxidation product 7,8-dihydro-

8-oxoguanine (8-oxoG) is the most predominant oxidative 

damage and taken as a biomarker of oxidative stress [6–9]. 

Cellular and Molecular Life Sciences

 * Xueqing Ba 

 baxq755@nenu.edu.cn

1 Key Laboratory of Molecular Epigenetics of Ministry 

of Education, Institute of Genetics and Cytology, Northeast 

Normal University, 5268 Renmin Street, Changchun 130024, 

Jilin, China

2 School of Life Science, Northeast Normal University, 

Changchun 130024, Jilin, China

3 Department of Physiology, Xiangya Medicine School 

in Central South University, Changsha 410078, Hunan, China

4 Department of Microbiology and Immunology, University 

of Texas Medical Branch at Galveston, Galveston, TX 77555, 

USA

5 Sealy Center for Molecular Medicine, University of Texas 

Medical Branch at Galveston, Galveston, TX 77555, USA

http://orcid.org/0000-0002-1075-5496
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-018-2887-8&domain=pdf


3742 R. Wang et al.

1 3

8-Oxoguanine DNA glycosylase1 (OGG1), a functional 

analog of Escherichia coli protein MutM/Fpg, is tailored 

to specially remove 8-oxoG and its open-ring product 

2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) 

from DNA duplex [10–13]. 8-OxoG is pre-mutagenic, 

because it may pair with adenine instead of cytosine, result-

ing in a G:C-to-T:A transversion during DNA replication 

[14, 15]. Despite the vulnerability of guanine and the muta-

genicity of 8-oxoG, the compositional pattern of the human 

genome shows a high level of heterogeneity, and the density 

of genes is much greater in the GC-rich regions [16, 17]. 

In addition, 72% human gene promoters are guanine-rich 

[18]. Intriguingly, the transcriptional activity of genes is 

positively correlated with the GC content in gene regulatory 

regions [16, 17]. The genes prone to be actively transcribed 

are densely distributed in high GC-content regions, whereas 

those in a tissue-dependent or developmentally regulated 

manner are usually sparsely distributed in GC-poor regions. 

The correlation of the GC content and the distribution pat-

tern of genes imply that guanine oxidation and its cognate 

enzyme OGG1 have the potential to be exploited in gene 

expression.

Recently, increasing evidence is calling attention to the 

non-repair functions of BER enzymes [19–23]. This review 

aims to discuss the significance of 8-oxoG as an epigenetic 

mark and stimuli-driven roles of OGG1 in gene expression 

modulation.

Pre-base-excision role of OGG1 
in transcription regulation

It has been well established that the intracellular reactive 

oxygen species (ROS) act as signaling molecules [24]. The 

putative mechanism of cell responses to ROS has long been 

attributed to thiol modifications on cysteine (Cys) residue(s) 

of the proteins that play key roles in intracellular signal path-

ways [25–27]. Attention has been focused on the effect of 

ROS on the redox status of reactive Cys residues located 

within the DNA-binding domain of transcription factors 

(TFs). The redox status of Cys may control the transcrip-

tional activity of the TFs, including Nuclear Factor kappa 

B (NF-κB), activator protein 1 (AP-1), transcriptional acti-

vator Myb (Myb), cyclic adenosine 3,5-monophosphate 

response element-binding protein (CREB), early growth 

response protein 1 (Egr-1), hypoxia-inducible factor 1 alpha 

(HIF-1α), and tumor protein p53 (TP53) [28–32]. Recent 

research described a unique model how ROS influence 

transcription activation, which involves guanine oxidation 

in promoter regions and a pre-base-excision role of OGG1 

in transcription.

The transcriptional activation of pro-inflammatory genes 

is mostly regulated by ROS-mediated signaling. However, 

pro-inflammatory genes usually have high GC-content pro-

moters that are readily to be oxidized under oxidative stress. 

In response to stimuli, mRNA levels of TNF-α, CXCL1, 

CXCL2, CCL20, and IL-1β were rapidly (within 30 min) and 

robustly upregulated in human HEK293 cells, murine MLE-

12 cells, and mouse lung. The induction of pro-inflammatory 

genes was significantly diminished due to OGG1 deficiency 

[33–35]. Inflammatory stimuli increase intracellular ROS, 

and consequently, the level of guanine lesions. How OGG1 

facilitates the transcription from GC-rich promoters may be 

readily explained as that ROS damage high G-content pro-

moters, and the repair of guanine lesions secures promoter 

integrity and ensures the recognition of trans factors to 

their cis elements. However, the burst of pro-inflammatory 

gene expression is coincided with the summits of intracel-

lular ROS level, as well as genomic 8-oxoG content in gene 

regulatory regions [33–35]. Guanine lesions left unrepaired 

were interpreted because of cysteine-based enzymatic inac-

tivation of OGG1 under oxidative stress, and OGG1 can 

regain its repair activity after redox balance reestablished 

[34, 36–38]. Chromatin immunoprecipitation (ChIP) and 

molecular biological assays further showed that, along with 

the increase in 8-oxoG level in promoters, OGG1 binds to 

the substrates without removal of the latter. The binding of 

enzymatically inactive OGG1 at promoters was followed by 

the assembly of transcriptional machinery. The interaction 

of OGG1 with sequence-specific TFs including NF-κB and 

specificity protein 1 (Sp1), general TFs such as TF IID, and 

phosphorylated RNA polymerase II, was induced upon the 

exposure of cells to the inflammatory cytokine TNF-α. How-

ever, these interactions were prevented by ROS scavenger 

[33]. ChIP assay showed a decreased enrichment of NF-κB 

on promoters after OGG1 depletion, which supports the role 

of OGG1 in the recruitment of components of transcriptional 

machinery [33, 34].

NF-κB, a master regulator of gene expression, has been 

shown to be regulated by ROS that are induced by various 

inflammatory stimuli including cytokines/chemokines and 

infectious agents [39–41]. The mechanism by which DNA 

repair enzyme OGG1 engages with its genomic substrates 

is well established; however, the effect of OGG1-substrate 

engagement on NF- κB recruitment and its transcription 

activation has not been fully elucidated. The role of gua-

nine lesions located within binding motifs of TFs (such as 

NF-κB, Sp1, AP-1, and CREB1) with or without the pres-

ence of OGG1 has been investigated by utilizing synthetic 

DNA and electrophoretic mobility shift assays (EMSAs). 

In the lack of OGG1, the effects of replacement of indi-

vidual guanines for 8-oxoG in motifs of TFs resulted in the 

altered TF binding, yet the conclusions drawn from these 

studies were controversial [42–45]. Recently, it was demon-

strated that recombinant OGG1 or the nuclear extract from 

OGG1-expressing cells enhanced the binding of NF-κB to 
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DNA with 8-oxoG located several nucleotides upstream 

from the motif, whereas, 8-oxoG being within or closely 

proximal to NF-κB-binding site decreased its occupancy, 

which may involve either 8-oxoG itself or OGG1’s shield-

ing effect [34, 35]. Wang et al. analyzed the surrounding 

sequences (10 bp upstream and downstream from the motif) 

of total 70 functional human κB sites. Their data revealed 

that the frequencies of guanine existence at − 8 and − 10 

bases away from κB motif are more than 40%, notably higher 

than other positions [46], implying that the correctly posi-

tioned guanine oxidation may favor homing of TFs to sites 

through interaction with the cognate repair enzyme. Given 

that BER involves a strand break intermediate [44], a model 

how OGG1 modulates the transcription of NF-κB-targeting 

cytokine/chemokine genes may be described as follows. 

Timely oxidative inactivation of OGG1 prevents the burst 

of strand break generation in G cluster-containing promot-

ers. Despite the compromised catalytic activity, binding 

of OGG1 to its substrate still possesses the capability to 

introduce a sharp (~ 70°) bend of the DNA duplex in the 

pre-lesion-excision step of BER [47–49], which induces 

allosteric change of DNA in chromatin context and creates a 

specific interface allowing the prompt recognition of motifs 

by NF-κB and then the assembly of the transcriptional initia-

tion complex [50] (Fig. 1).

Pro-inflammatory cytokines/chemokines represent a 

typical class of innate immune response genes that can be 

immediately upregulated along with the burst of intracel-

lular ROS. Evidence is showing that, in a timely view, gua-

nine’s oxidation product is not only a lesion to be repaired 

but serves as a ligand for OGG1, and together, they play 

a role in the recruitment of TFs and the assembly of tran-

scriptional machinery [33–35], to assure a prompt launch of 

the immediately responsive transcriptome. Studies are sug-

gesting that guanine in DNA duplex is an ROS sensor, and 

OGG1 is a coordinator, to regulate the transcription from 

ROS-responding genes in the biological processes such as 

immune response [21, 51].

OGG1-BER enzymatic activity-dependent 
promoter activation

Studies also depicted mechanisms by which OGG1 plays 

key roles in transcriptional activation depending on its BER 

activity and the removal of its substrate. Dr. Gillespie’s study 

documented that, in hypoxia, mitochondria-generated ROS 

stimulate the accumulation of hypoxic gene transcriptional 

regulator hypoxia-inducible factor-1 (HIF-1) [52], and cause 

oxidative base modifications in hypoxic response elements 

(HREs) of hypoxia-inducible genes [53]. When the hypoxia 

ROS-induced base modifications are prevented or OGG1 

expression is inhibited, HIF-1 fails to associate with the 

HRE in the vascular endothelial growth factor (VEGF) pro-

moter and gene expression at mRNA level is blunted [53]. 

The precise molecular mechanism, by which 8-oxoG formed 

in promoter upregulates VEGF expression, was dissected by 

Dr. Burrows’ group. When 8-oxoG is formed in guanine-

rich, potential G-quadruplex-forming sequences (PQS) in 

coding strand of the promoter, OGG1 yields an AP site. The 

AP site enables melting of the duplex to unmask the PQS, 

adopting a G-quadruplex fold (G4 structure/motif) that has 

regulatory role in transcription activation (Fig. 2a) [54]. 

APE1 binds to, but inefficiently cleaves AP site, inducing 

transcription activation of VEGF or endonuclease III-like 

protein 1 (NTHL1) genes, most likely with the aid of other 

activating factors [55]. In this hypoxia-induced transcrip-

tion activation model, function of OGG1 is manifested at a 

post-lesion-excision stage. In this scenario, in response to 

hypoxia-induced ROS, Hif-1 accumulation is primary for 

VEGF expression; thus, it is likely that the resume of gly-

cosylase activity of OGG1 due to the restoration of physi-

ological cellular redox status [36, 37] is the key for adoption 

of the cis element G-quadruplex fold, which is temporally 

coordinated with the accumulation of the trans factor Hif-1. 

The analyses of PQSs recently were extended to promoters 

of DNA repair genes, and results showed that PQSs exist 

at a high density. Gene expression increases when the PQS 

is in the coding strand, whereas decrease when the PQS is 

Fig. 1  OGG1 modulates the transcription of NF-κB target genes. 

Enzymatically inactive OGG1 (OGG1-SOH) by ROS binds to 

8-oxoG located in gene regulatory regions and induces allosteric 

alteration of DNA, which facilitates NF-κB occupancy and the 

assembly of the transcriptional initiation complex
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in the template strand [56]. However, 8-oxoG in the tem-

plate strand of the promoter is not repaired by BER, but 

primarily by transcription-coupled (TC)-nucleotide excision 

repair (NER) [57]. G4 formation has been observed in syn-

thetic oligonucleotide sequences derived from the human 

genome, particularly those from gene promoters and tel-

omeres. Computational predictions suggest that more than 

300,000 sequence motifs in the human genome have the 

potential to form a G4 structure [58]. While the fact that G4 

structure forms in promoter regions in vivo and whether its 

stabilization constitutes a layer of epigenetic gene expression 

regulation requires further experimental support, OGG1’s 

role in gene transcription modulation through G4 structure 

formation needs to be unscrambled in biologically relevant 

contexts.

Proto-oncogenes in human genome [such as MYC and 

Kirsten Ras (K-RAS)] have PQS in their promoters, whose 

activation is influenced by oxidative stress [59]. A recent 

study presented another role of OGG1 in G-quadruplex-

based transcription regulation, during which OGG1 behaves 

as a bona fide BER enzyme. In the promoter of the KRAS 

oncogene, there is a G-rich region, which able to fold into 

a G-quadruplex structure (G4 motif). This unusual DNA 

conformation is recognized by nuclear proteins including 

MYC-associated zinc-finger protein (MAZ) and heteroge-

neous nuclear ribonucleoprotein A1 (hnRNP A1) [59, 60]. 

MAZ recognizes runs of guanines, unfolds the G-quadru-

plex, and leads to the transformation of G-quadruplex into 

duplexes [60]. Guanine oxidation is shown to be higher in 

a sequence able to fold into G4 motif compared with other 

G-rich regions [59]. The incorporation of 8-oxoG in a G-tet-

rad enhances the recruitment of MAZ and hnRNP A1, and 

destabilizes the G-quadruplex [59]. OGG1 is recruited to 

the KRAS G4 motif region that carries 8-oxoG more than 

non-G4 regions when the cells are treated with hydrogen 

peroxide  (H2O2) or nuclear factor (erythroid-derived 2)-like 

2 (NRF2) inhibitor that causes increased cellular ROS 

[59]. In this scenario, 8-oxoG itself first plays a positive 

role in promoting the recruitment of MAZ and hnRNP A1, 

whose first role is to unfold the inhibitory G-quadruplex 

into duplex. And then, 8-oxoG becomes negative due to its 

impediment to the sequence recognition of MAZ, hnRNP A1 

(whose roles are as TFs at this stage), as well as other com-

ponents of transcriptional machinery; thus, OGG1, maybe 

plus APE1, removes the obstacle, augmenting the promoter 

occupation of the transcriptional machinery (Fig. 2b).

A previous study also documented that the productive 

transcription is achieved upon the formation of the strand 

break generated through OGG1-BER [61]. Estrogen (E2) 

treatment induced estrogen receptor alpha (ERα) binding 

to estrogen-responsive DNA elements (EREs), as well as 

loop formation between the promoter of anti-apoptotic gene 

bcl-2 and the ERE enhancer. In parallel, the lysine-specific 

demethylase1 (LSD1)-triggered demethylation of K3K9me2 

at promoter and enhancer sites resulted in the production 

of ROS. Estrogen-caused rapid genomic accumulation of 

8-oxoG was tightly linked to LSD1 activation, because it 

was inhibited by monoamine oxidase inhibitor pargyline or 

LSD1 knockdown. Systematic analysis of chromatin down-

stream from bcl-2 EREs revealed that OGG1 and topoi-

somerase IIβ accumulated preferentially at the promoter and 

ERE sites, which was dependent on E2-induced activation 

of LSD1. Removal of the oxidized guanines by OGG1 gen-

erates transient nicks that function as the entry points for 

topoisomerase IIβ, triggering DNA conformational change 

to accommodate the transcription initiation complex to 

achieve transcription [61] (Fig. 3). In vitro studies demon-

strated that OGG1 has glycosylase and AP-lyase activity, the 

latter cleaving the phosphodiester backbone at 3′ of the dam-

aged base [42, 43]. However, in vivo studies documented 

Fig. 2  Roles of OGG1 in 

modulating transcription from 

G-quadruplex-containing 

promoters. a OGG1-initiated 

8-oxoG removal from the cod-

ing stand of promoter allows 

transformation of PQS into 

G-quadruplex and transcrip-

tional activation. b 8-oxoG in 

the KRAS PQS facilitates the 

reconstitution of the double 

helix. OGG1 excises 8-oxoG 

from PQS in double helix and 

thereby facilitates the bind-

ing of nuclear factors to their 

cognate sequences, resulting in 

activation of transcription. PQS 

potential G-quadruplex-forming 

sequences
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that OGG1 behaves as a monofunctional DNA glycosylase 

[44, 45]; thus, catalyzing DNA strand cleavage for the entry 

of topoisomerase IIβ may need further assistance of APE1.

The roles of OGG1 in chromatin 
modi�cations

DNA and histone modifications represent the predominant 

aspects of epigenetic transcription regulations. A recent 

study revealed that OGG1 can recruit chromatin remodelers 

and modifiers to modulate gene expression [62]. Chromo-

domain helicase DNA-binding protein 4 (CHD4), a com-

ponent of nucleosome remodeling and deacetylase (NuRD) 

ATP-dependent remodeling complex, is recruited by OGG1 

to oxidative DNA damage sites. Then CHD4 recruits repres-

sive chromatin proteins, including DNA methyl-transferases 

(DNMTs), enhancer of zeste 2 polycomb repressive com-

plex 2 subunit (EZH2), and euchromatic histone lysine 

methyl-transferase 2 (EHMT2, also known as G9a) to DNA 

damage site, where DNMTs impose de novo DNA methyla-

tion on cytosines, whereas EHMT2 and G9a catalyze key 

repressive histone modifications H3K27me3 and H3K9me2, 

respectively. Repressive chromatin proteins help to main-

tain transcriptional silencing of tumor suppressor genes 

[61], which may account for tumorigenesis under chronic 

oxidative stress (Fig. 4). Importantly, although 8-oxoG accu-

mulates, CHD4 fails to bind with tumor suppressor gene 

promoter in OGG1-deleted cells, indicating the prior role 

of OGG1 over 8-oxoG in facilitating the evolution of cancer 

epigenetic abnormalities.

Comparing data between OGG1-ChIP-Seq (accession 

#: GSE89017) [51] and DNA methylation by reduced 

representation bisulfite-Seq from ENCODE (accession #: 

GSE27584) [63], authors of this review also noticed an 

intriguing correlation between OGG1 peaks and DNA meth-

ylation sites in promoter regions of genes, such as those 

related to tissue remodeling and epithelial–mesenchymal 

Fig. 3  OGG1-BER-generated strand break activates transcription. 

The enzymatic activity of the lysine-specific demethylase LSD1 gives 

rise to a localized generation of  H2O2, which oxidize G to 8-oxoG. 

Subsequently, OGG1-initiated base excision creates strand break, 

which serves as an entry for Top IIβ, triggering DNA conformational 

changes to accommodate the transcription initiation complex. LSD 

lysine-specific demethylase1, Top IIβ topoisomerase II beta

Fig. 4  OGG1 recruits chromatin remodelers and modifiers to affect 

gene expression. CHD4 is recruited by OGG1 to interact with oxi-

dative DNA damage sites. Then CHD4 recruits repressive chromatin 

proteins including DNA methyl-transferases (DNMT1, 2) and histone 

H3K27 methyl-transferases (EZH2 and G9a) to DNA damage sites 

and help to maintain DNA hypermethylation-associated transcrip-

tional silencing of tumor suppressor genes. CHD4 chromodomain 

helicase DNA-binding protein 4, DNMT DNA methyl-transferase, 

EZH2 enhancer of zeste 2 polycomb repressive complex 2, G9a 

euchromatic histone lysine methyl-transferase 2
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transition (Fig. 5). OGG1 peaks are highly correlated with 

the sites hypermethylated in Smad7 and α-SMA promoters, 

and importantly, treatment with pro-inflammatory stimuli 

cytokine TNF-α induced a nearly twofold of increase in 

OGG1 recruitments. It still requires further investigation to 

understand the correlation of OGG1 peaks with cytosine 

methylation sites as well as the implication of inducible 

increase in OGG1 enrichment to the chromatin imposed by 

cytosine methylation.

OGG1 binds with promoter-located substrate followed 

by either recruitment of TFs or chromatin remodelers, sug-

gesting diverse mechanisms of OGG1-mediated modulation 

of gene transcription. Accumulating studies suggested that 

OGG1 targets are wide-ranging. Indeed, system analysis of 

the genomic enrichment of OGG1 by ChIP-seq revealed that 

OGG1 peaks were primarily located in regulatory regions, 

especially, guanine-rich promoters; and OGG1-enriched 

promoters are linked to genes involved in cellular processes 

such as response to oxidative stress, immune response, sig-

nal transduction, and cellular homeostasis [21, 51].

Post-repair signaling by OGG1·8-oxoG 
complex

Promoter-located 8-oxoG plays an epigenetic role in tran-

scription activation; on the other hand, the excised free 

8-oxoG base along with its cognate enzyme OGG1 has 

been shown to induce post-repair cell activation signaling 

[64–66]. Results from studies in Dr. Boldogh’s laboratory 

Fig. 5  OGG1 peaks are highly correlated with the sites hypermethyl-

ated in promoter regions of selected genes. a Smad7 and b α-SMA 

genes were represented. Upper panels in a and b, OGG1-ChIP-Seq 

data (accession #: GSE89017) show the enrichment of OGG1 on 

indicated genes in cells with or without 30-min treatment of cytokine 

TNF-α. Images were directly taken from integrative genome viewer 

(IGV). Lower panels in a and b, DNA methylation by reduced repre-

sentation bisulfite-Seq data from ENCODE (accession #: GSE27584) 

show the methylated sites on indicated genes in A549, HepG2, and 

HL-60 out of 22 cell lines visualized by genome data viewer
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documented the unexpected link between OGG1-initiated 

BER and cellular signaling via the RAS and RAS homol-

ogy family GTPases. The role of free 8-oxoG was not obvi-

ous until it was observed that OGG1 binds 8-oxoG base 

(OGG1·8-oxoG complex) with high affinity. FapyG base, a 

nearly as good substrate for OGG1 when situated in DNA, 

is not bound by OGG1, and neither is 8-oxoguanosine. This 

supports the specificity of OGG1 and 8-oxoG base inter-

action [67]. The implication of these observations became 

evident from the results, showing that 8-oxoG-induced 

conformational change in OGG1 allows its interaction with 

small GTPases. OGG1·8-oxoG complex causes replacement 

of GDP with GTP in K-RAS, Neuroblastoma RAS viral 

oncogene homolog (N-RAS), and Harwey-RAS (H-RAS). 

Follow-up studies documented that OGG1·8-oxoG also 

catalyzes the GTP → GDP release, so it induces nucleotide 

releases and allows rebinding [67]; thus, OGG1·8-oxoG 

functions as a guanine-nucleotide exchange factor (GEF). 

8-OxoG base exposure of cells or its in cellulo release from 

genome upon activation of OGG1-BER increases the levels 

of RAS-GTP. RAS-GTP then induces phosphorylation of 

cellular homolog of viral raf gene (RAF1), MAPK kinase 

(MEK1/2), phosphatidylinositol-3-kinases (PI3K), and 

extracellular signal-regulated kinase (ERK1/2), as well as 

the nuclear translocation of ERK1/2 [66]. It was reported 

that the OGG1-initiated repair of genomic 8-oxoG and con-

sequent formation of OGG1·8-oxoG via MAPK and IP3K 

kinases lead to activation of TFs including NF-κB, increase 

the expression of pro-inflammatory cytokines/chemokines, 

and induce robust innate inflammation (Fig. 6). Mice defi-

cient in Ogg1 showed significantly decreased inflamma-

tory cell recruitment to the airways, whereas a lack of Nei-

like DNA glycosylases 2 (NEIL2) increased inflammatory 

responses [66]. RAS activation by 8-oxoG administration 

was also observed in mouse C2C12 myoblasts, which was 

followed by activation ERK1/2 and an increase in DNA 

binding of myogenic regulatory factor D (MyoD) with Myo-

genin promoter. This led to the upregulation of Myogenin 

and the accumulation of its targets (Dr. Ba’s unpublished 

data). These data provided the evidence for the hypothesis 

that exercise-generated ROS could be beneficial for regen-

eration of adult skeletal muscle [68].

The RAS homology (RHO) family of small GTPases 

has been shown to interact with OGG1·8-oxoG complex in 

a guanine-nucleotide-free form, while the Ras-related C3 

botulinum toxin substrate 1 (RAC1) interacts with it in GDP-

bound form. The latter interaction led to an increased level 

of RAC1-GTP, but not to GTP → GDP exchange in contrast 

to H-, K-, or N-RAS. Activation of RAC1 led to increased 

activity of nuclear membrane-associated NADPH oxidase 

type 4, consequently to distinct site-specific generation of 

ROS in the nuclei of cells [69]. These data imply that OGG1-

BER → OGG1·8-oxoG → RAC1 activation → site-specific 

ROS generation is a part of an integrated circuit for genomic 

8-oxoG regeneration, which is serving as an epigenetic mark 

for gene expression.

To examine overall significance of OGG1·8-oxoG com-

plex-driven signaling at system level of gene expression, 

whole transcriptome analysis was undertaken [70, 71]. 

Summary of these results allows authors to speculate that 

OGG1-BER and consequent activation of signaling cas-

cades are links between oxidative stress and post-repair 

cellular responses, including reestablishment of homeo-

stasis. Indeed, genes activated by OGG1·8-oxoG → RAS/

RHO/RAC signaling include ATPases participating in set-

ting electrolyte tone of cells, collagen types, and G protein-

coupled receptors—all of which were previously associated 

with homeostatic states. Another overrepresented biological 

process is immune system process mediated by C–C and 

C–X–C cytokines and chemokines—a special composi-

tion of mediators that are associated with reestablishment 

of pre-exposure homeostatic state. These findings lead to 

a hypothesis that post-repair OGG1·8-oxoG → RAS/RHO/

RAC signaling is essential for survival and homeostasis [40, 

41]. In addition, OGG1-BER mimicked by repeatedly expos-

ing human diploid lung cells to 8-oxoG base led to G1 cell 

cycle arrest and pre-matured senescence. High-throughput 

analysis showed that over 1000 genes were differentially 

expressed and nearly 90% of genes were identical to those 

Fig. 6  Post-repair signaling by OGG1·8-oxoG complex. A complex 

of OGG1 with the excised free base (8-oxoG) acts as a guanine-

nucleotide exchange factor (GEF) for small GTPases (such as RAS) 

and thus stimulates signal transduction and activates gene transcrip-

tion
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in naturally senesced cells [72]. Gene ontology analysis has 

identified biological processes driven by small GTPases, 

PI3Ks, and MAPKs, which led to the hypothesis that chronic 

OGG1-driven post-repair signaling potentially results in cel-

luar senescence [72]. Taken together, post-repair signaling 

by OGG1·8-oxoG complex is an important process, the pri-

mary function of which is to reestablish pre-exposure cel-

lular/tissue physiological state, but when it is repeated, it 

may contribute to chronic diseases as well as accelerated 

aging processes.

Conclusion

There is mounting evidence, showing that genomic 8-oxoG 

is not only a pre-mutagenic DNA base lesion but also has 

an essential role in the modulation of gene expression along 

with its cognate repair OGG1. As illustrated in Figs. 1, 2, 

3, 4, 5, 8-oxoG may serve as an epigenetic mark. OGG1 

interacts with the substrates, with or without 8-oxoG exci-

sion, inducing conformational changes in adjacent DNA 

sequences and making easy access of TFs, or recruiting 

chromatin modifiers/remodelers to their binding sites. Fig-

ure 6 shows a second mechanism, which differs from the 

first by formation of a post-repair complex that is capable 

of activating small GTPases, and, consequently, downstream 

cellular signaling. The early studies have linked the accu-

mulation of oxidized guanines to changes in molecular and 

biological processes, including development of the central 

nervous and cardiovascular system, Huntington’s disease, 

obesity-metabolic disorders, mitochondrial dysfunction, 

and decreased innate and allergic inflammation in OGG1-

deficient/Ogg1 KO mice [73–76]. These epidemiological 

findings were conventionally explained by genotoxicity of 

guanine lesions; however, in the view of new evidence, it 

appears that cells are utilizing 8-oxoG and its cognate repair 

protein OGG1 to orchestrate a variety of transcriptomes in 

redox-regulated biological processes. Thus, we may con-

clude that the deviations/variations from the coordination 

between the OGG1-initiated repair and transcriptional regu-

lation other than mutagenicity of 8-oxoG account for the 

etiologic link of 8-oxoG to pathological processes related 

to immunity, metabolism, cancer or degenerative disorders.
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