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MAP kinases transduce signals that are involved in a multitude of cellular pathways and functions in response to a 

variety of ligands and cell stimuli. Aberrant or inappropriate functions of MAPKs have now been identified in diseases 
ranging from cancer to inflammatory disease to obesity and diabetes. In many cell types, the MAPKs ERK1/2 are linked 
to cell proliferation. ERK1/2 are thought to play a role in some cancers, because mutations in Ras and B-Raf, which 
can activate the ERK1/2 cascade, are found in many human tumors. Abnormal ERK1/2 signaling has also been found 
in polycystic kidney disease, and serious developmental disorders such as cardio-facio-cutaneous syndrome arise from 
mutations in components of the ERK1/2 cascade. ERK1/2 are essential in well-differentiated cells and have been linked 
to long-term potentiation in neurons and in maintenance of epithelial polarity. Additionally, ERK1/2 are important for 
insulin gene transcription in pancreatic beta cells, which produce insulin in response to increases in circulating glucose 
to permit efficient glucose utilization and storage in the organism. Nutrients and hormones that induce or repress insulin 
secretion activate and/or inhibit ERK1/2 in a manner that reflects the secretory demand on beta cells. Disturbances in this 
and other regulatory pathways may result in the contribution of ERK1/2 to the etiology of certain human disorders.
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The aberrant or inappropriate function of mitogen-ac-

tivated protein kinases (MAPKs) has now been identified 
in diseases ranging from cancer to inflammatory disease to 
obesity and diabetes [1-3]. As described in more detail be-

low, MAPKs are ubiquitous elements in signaling pathways 

that control cell function [4-8]. In this review we present 

some background on MAPK pathways and then discuss key 

findings that suggest mechanisms that may link MAPKs 
to specific diseases. The focus will be on ERK1/2 because 
ERK2 has long served as the prototype to understand the 
regulation and function of MAPKs and their cascades. 

MAPK cascades

MAPKs are activated by protein kinase cascades consist-

ing of three or more protein kinases in series: MAPK kinase 

kinases (MAP3Ks) activate MAPK kinases (MAP2Ks) by 

dual phosphorylation on S/T residues; MAP2Ks then acti-

vate MAPKs by dual phosphorylation on Y and T residues. 

MAPKs then phosphorylate target substrates on select S/T 

residues typically followed by P. In the ERK1/2 cascade 
the MAP3K is usually a member of the Raf family. Many 
diverse MAP3Ks reside upstream of the p38 and the c-Jun 

N-terminal kinase/stress-activated protein kinase (JNK/

SAPK) MAPK groups, which have generally been associ-

ated with responses to cellular stress. Downstream of the 

activating stimuli, the kinase cascades may themselves be 

stimulated by combinations of small G proteins, MAP4Ks, 

scaffolds, or oligmerization of the MAP3K in a pathway. 

In the ERK1/2 pathway, Ras family members usually bind 
to Raf proteins leading to their activation [4-8].

Through these cascades, the MAPKs process signals 

from most ligands and changes in cell state, thus, af-

fecting the majority of cellular responses. Signaling by 

MAPKs affects specific events such as the activity or 
localization of individual proteins, transcription of genes, 

and increased cell cycle entry, and promotes changes that 

orchestrate complex processes such as embryogenesis and 

differentiation. These enzymes mediate acute responses 

to hormones such as changes in membrane permeability, 

cell motility, and transcription of immediate early genes; 

homeostatic responses of intermediate duration such as 

stimulus-induced long term potentiation in neurons; and 

sequenced programs required for animal development [9-
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12]. In fact, ERK2 is an essential gene. Animals that lack 
it die early in embryonic development [13]. Furthermore, 

germline mutations in the ERK1/2 cascade are associated 
with serious developmental abnormalities such as cardio-

facio-cutaneous syndrome [14]. 

Early studies implicating MAPKs in disease

Among the earliest suggestions that ERK1/2 activity 
might contribute to disease was the finding that the ERK1/2 
cascade was a downstream target for receptor tyrosine 

kinases as well as for Ras, which is commonly mutated in 
human cancers [15-17]. A wealth of studies suggest that 

ERK1/2 have an array of actions in different cancers, both 
in ones in which Ras mutations have been found and ones 
lacking Ras mutations [1, 18-22]. Many studies suggest a 

lack of correlation between ERK1/2 activation state and 
tumor growth. The ability of ERK1/2 to promote epithe-

lial-mesenchymal transition and to facilitate cell migra-

tion through effects on cell-matrix contacts is most likely 

significant even if the sustained activation of the kinases 
is not detected in tumors [23, 24]. 

Roles of other MAPKs have been revealed more recently 
through a combination of drug studies and gene disruption 

experiments. One of the first identifications of a p38 MAPK 
was through a search for the target of an anti-inflammatory 
drug that inhibited tumor necrosis factor-alpha produc-

tion from human monocytes [25]. Thus, the efficacy of 
the drug itself provoked a search for this MAPK family 

member. One of the early studies of the c-Jun N-terminal 

kinases/stress-activated protein kinases (JNK/SAPKs) was 

the result of a search for kinases that could phosphorylate 

and activate the proto-oncogene c-Jun [26]. More recently, 

mouse studies indicated that loss of JNK1 improved insulin 

sensitivity and decreased fat deposition, demonstrating 

that JNKs are involved in obesity and insulin resistance 

[3]. JNKs are activated by increased circulating long chain 

fatty acids and can suppress insulin signaling through phos-

phorylation of insulin receptor substrate 1 (IRS1) [27]. 

Perturbations in cascade organization and cancer

The wide expression of MAPKs and their nearly univer-

sal involvement in signaling events underscore the capacity 

of these protein kinases to impact cellular function. The va-

riety of actions elicited by MAPKs is assumed to depend on 

the tissue-specific expression of targets, differences in their 
activation kinetics and subcellular localization as well as the 

context of cell state. These events are believed to account 

for the ability of very common signal transducers such as 

the MAPKs to perform with selectivity and specificity to 
contribute to ligand- and state-dependent responses. 

Localization and interactions of MAPKs are strongly 

influenced by scaffolding proteins [28]. In addition to core 

cascade components, MAPK, MAP2K, MAP3K, accessory 

proteins are required to produce ligand/context-appropriate 

responses. Scaffolds organize the core components to al-

low them to interact efficiently in multi-protein complexes. 
Most simply, a scaffold facilitates signaling by increasing 

the local concentrations of the pathway components; how-

ever, scaffolds may also actively participate in the functions 

of their binding partners. Thus, a scaffold may affect its 

MAPK by: 1) interacting directly with membrane activa-

tors; 2) localizing it to sites of action on the membrane and 

elsewhere in a cell; 3) causing allosteric changes to sensitize 

the MAPK to activation, e.g., by inducing MAPK confor-

mations that are more readily recognized by MAP2Ks or 

that mimic the active state; 4) affecting MAPK substrate 

accessibility; 5) influencing activation kinetics; 6) regulat-
ing inactivation; and 7) restricting responses by preventing 

irrelevant interactions [28-32]. 

MAPKs bind outside their active sites to many proteins 

[33-38]. Three MAPK-binding motifs have been identified 
in many ERK1/2 binding proteins: the docking or D motif 
consisting of basic and hydrophobic residues, involved, for 

example, in binding of MAP2Ks, substrates such as the ter-

nary complex factor Elk-1, and MAP kinase phosphatases 

(MKPs); the FXF motif, present in some substrates such 

as Elk-1, nuclear pore proteins, and some scaffolds; and 

a leucine-rich motif LXLXXXF found in pointed domain 

transcription factors. D motifs bind to a region called the 

common docking (CD) site across the C-terminal domain 

of ERK2 [39, 40]. These binding motifs are often required 

for efficient phosphorylation of the substrates that harbor 
them by ERK1/2 in cells [36, 41-44]. Protein binding to 

or mutation of these motifs may have an allosteric action 

on MAPKs. Almost all mutations that have been identified 
in the ERK1/2 pathway in tumors lie in upstream cascade 
elements, including receptors, Ras, and B-Raf. However, 
one mutated form of ERK2 was identified in a squamous 
cell carcinoma cell line [45]. The residue mutated is in the 

docking site for D domains and results in an increase in 

basal ERK2 activity [46]. 

Signaling imbalances and the potential role of 

ERK1/2 in polycystic kidney disease

Factors that disturb the normal relationship between 

cyclic nucleotides and ERK1/2 activity may lead to inap-

propriate actions of these kinases that exacerbate disease. 

The sensitivity of ERK1/ 2 to stimuli is influenced by cyclic 
nucleotide concentrations in a manner dependent on the 

specific cell condition, such as whether a cell is actively 
dividing, its interactions with neighboring cells, and the 
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milieu of hormones, growth factors, and cytokines [47, 

48]. MAPKs can have profound effects on gene transcrip-

tion profiles, leading to under- or over-expression of key 
proteins, and can contribute to loss of epithelial cells (such 

as by epithelial-mesenchymal transition) and expansion of 

the smooth muscle population [49, 50]. 

Mechanisms integrating inputs from cAMP to ERK1/2 
are not fully understood. The clinical relevance of under-

standing their interactions is most obvious in the change in 

ERK1/2 regulation by cAMP in polycystic kidney disease 
(PKD) [51, 52]. PKD is often caused by loss of polycystin 

1 or 2. The consequence is loss of these components from 

cilia on kidney epithelial cells which results in altered sig-

naling by these cells. Cilia are sensors of growth factors and 

other signals in many cell types and contain components of 

the ERK1/2 cascade [53-55]. Polycystin 2 is a poorly un-

derstood nonselective cation channel located in cilia which 

binds to and is regulated by polycystin 1. Polycystins are 

thought to maintain proper intracellular calcium. In normal 

kidney, ERK1/2 support growth inhibition in response to 
elevated cAMP. In PKD, ERK1/2 appear to induce prolif-
eration in response to elevated cAMP, which results in the 

formation of cysts and loss of epithelial polarity [51, 56]. 

Inhibition of the ERK1/2 pathway decreases abnormal 
proliferation. Kidney cells are routinely stimulated by 

vasopressin which causes fluid reabsorption by increasing 
cAMP. As a result, kidney cells are continuously experienc-

ing elevated cAMP. Altering intracellular calcium has been 

shown to change the interactions between cAMP and the 

ERK1/2 pathway in normal kidney cells in a manner that 
mimics the aberrant signaling in PKD [51]. 

Mislocalization of ERK1/2 in disease

Activation of ERK1/2 has different consequences in 
different cell compartments. Stimuli will direct ERK1/2 
to specified sites of action, so that they may perform func-

tions, for example, on membranes, with cytoskeletal spe-

cializations, and/or in the nucleus [57-59]. As much as half 

of ERK1/2 is bound to cytoplasmic microtubules, where 
they impact polymerization dynamics [60-62]. ERK1/2 are 
required for cell motility and are found at adherens junc-

tions and focal adhesions, sites of cell-cell and cell-matrix 

contact. Nuclear localization of ERK1/2 is essential for 
some of the phenotypic programs to which they contribute 

including differentiation, transformation and altered tran-

scription (a few transcription factors can be phosphorylated 

by ERK1/2 in the cytoplasm prior to nuclear entry) [63]. In 

the large majority of resting cells, ERK1/2 are distributed 
in the cytoplasm and the nucleus [58, 64, 65]. 

Proteins that alter the subcellular localization of ERK1/2 
have the capacity to impact disease. For example, the cyto-

plasmic retention of ERK1/2 occurs in a fraction of breast 
cancer patients and is suggested to favor long-term survival 

of these patients [66-68]. Expression of Mxi2, a p38 MAPK 

splice form, increases the concentration of ERK1/2 in the 
nucleus. Mxi2 is overexpressed in certain renal cancers and 

its effect on ERK1/2 localization may contribute to disease 
[69]. PEA-15 is a 15 kDa anti-apoptotic, death effector 

domain-containing protein originally identified as a pro-

tein enriched in astrocytes [70]. A second study identified 
PEA-15 as PED or protein enriched in diabetes [66]. Its 

increased expression was widespread in tissues in a panel of 

patients with type 2 but not type 1 diabetes. Transgenic mice 

overexpressing PEA-15 exhibit decreased glucose tolerance 

and develop diabetes on a high fat diet [71]. These animals 

also display impaired insulin secretion. Cultured pancreatic 

beta cells overexpressing PEA-15 have a reduced capacity 

for glucose-stimulated insulin secretion. Based on studies 
in other systems, PEA-15 is thought not only to promote 

nuclear export of ERK2 but also to prevent ERK2 nuclear 
entry by blocking its interaction with nucleoporins [72, 73]. 

These studies suggest that the mislocalization of ERK1/2 
may contribute to the dysregulation of glucose-sensing in 

pancreatic beta cells.

Potential roles of ERK1/2 in diabetes

In pancreatic beta cells, glucose regulates insulin secre-

tion as well as insulin production at transcriptional and 

translational levels. The same nutrients and hormones that 

stimulate insulin secretion also increase ERK1/2 activity 
[74, 75]. Glucose uptake and metabolism are required 

for ERK1/2 activation. Depolarization of beta cells with 
K+ or with sulfonylurea antidiabetic drugs also activates 

ERK1/2, but with kinetics different from glucose [75, 76]. 

Calcium entry through voltage-gated calcium channels is 

essential for maximal ERK activation by a rise in glucose 
concentration [74, 76-78]. The calcium- and calmodulin-

dependent phosphoprotein phosphatase calcineurin is es-

sential for ERK1/2 activation by glucose, other nutrients, 
and the anticipatory hormone glucagon-like peptide I 

(Glp1) [77, 79]. 

The normal physiological range of glucose concentra-

tions stimulate insulin gene transcription. This stimulatory 

effect of glucose requires ERK1/2 [11, 80]. Glucose-re-

sponsive elements in the insulin gene promoter have been 

found in the region proximal to the transcription start site. 

E and A elements are the most glucose sensitive and exist 

in two regions of the insulin gene promoter. Several tran-

scription factors contribute to beta cell differentiation and 

insulin gene transcription and some of these, e.g., Beta2, 
PDX-1, and MafA, display tissue restricted expression 

[81, 82]. These tissue restricted factors bind to the glucose 
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sensitive regions and are responsible for beta cell-specific, 
glucose-induced insulin gene expression. All three of these 

factors are in vitro substrates for ERK1/2, and functional 
changes due to phosphorylation, in particular DNA bind-

ing, have been shown for all. Mutations in two of these 

factors, PDX-1 and Beta2, are associated with maturity 
onset diabetes of the young (MODY) type 4 and type 6, 

respectively [82]. 

Glucose concentrations that remain elevated for pro-

longed times, more than 24 h, inhibit insulin gene transcrip-

tion [83, 84]. The inhibitory effect is also dependent on 

ERK1/2 activity [80]. Long term exposure to abnormally 

high glucose induces expression of CCAAT/enhancer-

binding protein beta (C/EBP-β). This protein binds to the 
insulin gene promoter in an ERK1/2-dependent manner 
and changes the composition of other transcription factors 

bound to the promoter, contributing to inhibition of insulin 

gene transcription. The mechanisms by which ERK1/2 
control the interactions of the stimulatory and inhibitory 

transcription factors with promoter DNA have not been 

completely defined. Taken together, these findings suggest 
that the impairment in insulin gene transcription that occurs 

in type II diabetes is due in part to the phosphorylation of 

factors that inhibit the insulin gene promoter by ERK1/2. 
The large amount of insulin produced by beta cells 

makes them highly susceptible to endoplasmic reticulum 

(ER) stress [85]. ER stress can lead to beta cell death. 
The C/EBP-β homologous factor CHOP is induced by 
cell damage and exacerbates ER stress by poorly defined 
mechanisms that may include a reversal of the translation 

block that characterizes the initial ER stress response [86, 

87]. CHOP knockout prolongs beta cell survival during 

ER stress [88]. 

ERK1/2 activity suppresses CHOP transcription [89]. 

The CHOP gene promoter contains a sequence similar to 

the region of the insulin gene that binds MafA. MafA binds 

to the CHOP promoter in cells exposed to normal physi-

ological glucose concentrations [89]. Binding of MafA 
to the CHOP gene is decreased by inhibition of ERK1/2 
activity and MafA binding suppresses CHOP promoter 

activity in reconstitution assays. Inhibition of ERK1/2 
activity increases expression of CHOP protein, consistent 

with the idea that MafA suppresses CHOP transcription in 

beta cells. Thus, ERK1/2 regulate the expression of genes 
both positively and negatively that are important for beta 

cell function. 
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