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Optogenetic is a technique that combines optics and genetics to control specific
neurons. This technique usually uses adenoviruses that encode photosensitive protein.
The adenovirus may concentrate in a specific neural region. By shining light on the
target nerve region, the photosensitive protein encoded by the adenovirus is controlled.
Photosensitive proteins controlled by light can selectively allow ions inside and outside
the cell membrane to pass through, resulting in inhibition or activation effects. Due to the
high precision and minimally invasive, optogenetics has achieved good results in many
fields, especially in the field of neuron functions and neural circuits. Significant advances
have also been made in the study of many clinical diseases. This review focuses on
the research of optogenetics in the field of neurobiology. These include how to use
optogenetics to control nerve cells, study neural circuits, and treat diseases by changing
the state of neurons. We hoped that this review will give a comprehensive understanding
of the progress of optogenetics in the field of neurobiology.
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INTRODUCTION

In 2005, optogenetics was born and appeared in the public (Boyden et al., 2005). Since the
advent of optogenetics, many top medical journals have described it as a core technology for
the future of humanity (Method of the year, 2010; News, 2010; Adamantidis et al., 2015).
Optogenetics can be combined with molecular biology, viral biology and other methods to
introduce foreign light-sensitive protein genes into living cells (Amitrano et al., 2021; Di
Ventura and Weber, 2021). Therefore, optogenetics has made many achievements in the field
of neurobiology. Such as exploring unknown neuron functions (Figure 1), the discovery of
neural circuits (Figure 2), and treatment of neurological diseases (Figure 3). By using the
technology of optogenetics, the research of many difficult diseases has been advanced greatly.
Using optogenetics to induce the differentiation of neural progenitor cells, the researchers were
able to treat stroke in mice (Yu et al., 2019; Peters et al., 2021; Vassalli et al., 2021). The mice
were able to remove and reactivate a memory by changing the connections between related
neurons in the brain with different frequencies of light (Nabavi et al., 2014). Blindness can
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be treated by using optogenetics to activate the photogene
expression of the related photoactivation channels or pumps in
retinal cells (Ostrovsky and Kirpichnikov, 2019). This technology
have led us into a higher research field.

OPTOGENETIC RESEARCH METHODS

Nerve Cells
Induce Neuronal Differentiation
In 2019, Luo et al. (2019) used photoelectric fullerene-bound
photosensitive protein (HEBR) to reprogram and differentiate
human fibroblasts. In this study, researchers transfected HEBR
plastids into human fibroblasts using fullerene as a cell
culture substrate (Figure 1). Previous research has shown
that environmental stresses, such as acidity, can stimulate
cell reprogramming. When the researchers illuminated HERB
transfected fibroblasts with green light, the pH in and out of
the transfected fibroblasts changed momentously, causing the
fibroblasts to differentiate into neuron-like cells. This study has
clinical significance in nerve repair.

In other studies, researchers combined a variety of
technologies, such as optogenetics, synthetic biology
(Padmanabhan et al., 2019; Hemmati et al., 2020; Yi et al.,
2020; Zhang et al., 2020), for the first time to achieve far red
light to control the expression of genomic genes. The far-red
light-regulated CRISPR-dCas9 endogenous gene transcription
activation device was developed for the first time (Gjaltema and
Schulz, 2018), which successfully induced the pluripotent stem
cells into functional neural cells (Shao et al., 2018). By combining
BphS, which respond to red light proteins in rhodobacter,
transcription factors BldD in streptococcus, and protein dCas9
in streptococcus pyogenes, this device can accurately realize
the reversible activation of target genes inside and outside the
organism, with high precision. Meanwhile, the frequency of light
used in the study is in the physiological range and has no side
effects on organisms. In theory, the results of this research can be
widely used for precise epigenetic regulation (Hori and Kikuchi,
2019). And, in the future, this technology may be applied in
the clinical field to treat diseases such as muscular dystrophy
(Vajtay et al., 2019).

Control the Behavior of Nerve Cells
In earlier studies, optogenetics simply stimulated neurons
(Nowak et al., 2010). Early applications of optogenetic control
neurons were mainly two: driving proton pumps with light to
charge mitochondria (Hallett et al., 2016), and polarizing or
depolarizing neurons (Yao et al., 2012). By making a single
neuron hyperpolarized, the function of this neuron can be studied
(Aquili et al., 2014). In the latest study, researchers can decode
and control signaling pathways in neurons (Figure 1; Melero-
Fernandez de Mera et al., 2017). In this study, the intracellular
signaling pathways of the organism can be controlled by light,
using the main bioresonance effect of the organism. Using light
to control specific signaling pathways that regulate the behavior
of nerve cells, researchers can learn which neurons are involved
in those pathways. In related studies, we can learn more about the

JNK signaling pathway by inhibiting p38MAPK with OptoJNKI
(a photosensitive substance that inhibits p38MAPK) (Melero-
Fernandez de Mera et al., 2017). Moreira et al. (2019) managed
to control the taste of fruit flies by shining different LEDs on
different taste neurons. In this study, the researchers managed
to alter feeding behavior in fruit flies by manipulating taste
receptors. This technique can be used to study the progression
of clinical diseases and to discover new therapies.

Study Neuronal Function
Studies have shown that people with schizophrenia and other
psychiatric and neurological disorders have gamma oscillations
in their brains (Gao et al., 2021a,b). But exactly how gamma
oscillations are produced is not clear (Fan et al., 2020; Lu W.
et al., 2020; Song et al., 2020). Cardin et al. (2009) discovered
how the brain produces gamma oscillations by using optogenetics
to manipulate the activity of nerve cells. By manipulating the
interneurons’ related behavior with different frequencies of light,
the researchers were able to observe the extent of the gamma
oscillations produced by the interneurons. The research will
contribute to a range of neurological disorders.

In 2014, researchers used optogenetics to inactivate cells
in parts of the rat brain (Figure 1) to identify the neurons
responsible for behavioral decision-making (Aquili et al., 2014).
This study is the first to show that optogenetics inhibition of
nucleus accumbens neurons during reward and false feedback
can increase the behavioral complexity of individuals (Aquili
et al., 2014). In the same year, another researcher used
optogenetics to identify neurons that control aggression in the
hypothalamus of mice (Lee et al., 2014). In 2017, scientists used
optogenetics to find neurons in the brains of mice that control
hunting behavior (Han et al., 2017). Because the hypothalamus
in humans and mice is structurally similar, these findings are also
useful for studying human behavior.

Neural Circuits
The Neural Circuits That Regulate Sodium Appetite
Sodium ions are important ions in the nervous system that
regulate neurons. If sodium ion is not ingested for a long time,
it will cause symptoms such as loss of appetite, weakness of limbs
and dizziness. When a variety of animals are deficient in sodium
ions, they will consume a large amount of salt rich in sodium
ions, which is called sodium appetite (Thornton and Fitzsimons,
1995; Geerling and Loewy, 2008; Molnar and Labouesse, 2021).
After a large intake of salt, the body will produce a sense of
satisfaction to prevent further intake (Wolf et al., 1984). Previous
studies on sodium appetite were flawed and did not conform
to the single variable principle of the experiment. Until 2019,
Lee et al. (2019) demonstrated that the pre-LCPDYN neurons
are the core neurons in the regulation of sodium appetite by
combining optogenetics with other techniques, and are regulated
by the homeostatic and sense-related brain regions (Table 1 and
Figure 2). In this study, researchers used optogenetic techniques
to inhibit pre-LCPDYN neurons, and found that the pre-
LCPDYN neurons are essential in the neural circuits that regulate
sodium appetite. This experiment has revealed the mechanism of
nerve circuits regulating sodium appetite and related conclusions.
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FIGURE 1 | The study of optogenetics in the field of neurons. Using optogenetics, it is possible to induce stem cell differentiation, identify cell function, and decode
intercellular signaling pathways.

FIGURE 2 | The study of neural circuits by optogenetic methods. By targeting specific areas with light, specific neural circuits can be inhibited or activated, leading
to behavioral changes in mice, and related neural circuits can be studied.

The Nerve Basis of Compulsive Feeding
Globally, obesity (Hosseinpanah et al., 2019; Lu D. et al., 2020)
and type 2 diabetes (Broder et al., 2014; Song et al., 2020; Liu
Y. et al., 2021) are among the major diseases that endanger
human health. Bad eating habits can bring about many diseases.
Clinically, the treatment for severely obese patients is usually

gastric bypass surgery. This approach is extremely traumatic.
Optogenetics separates normal eating behavior from reward-
seeking eating (Cardi et al., 2018), providing new ideas for the
treatment of this disease.

Nieh et al. (2015) demonstrated that the hypothalamic-
ventral tegmental pathway is involved in controlling feeding in
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FIGURE 3 | To study the mechanisms of clinical diseases using optogenetics. We can introduce photosensitive proteins outside the body, or we can introduce
viruses that transmit photosensitive genes, or we can shine light directly on specific areas. This can lead to changes in cell membrane pathways in the irradiated
area, which can affect cell function. The related functions of organisms can be altered to study clinical diseases.

TABLE 1 | The study of optogenetics in neurobiology.

The field of optogenetics The specific research References

Nerve cells Induce neuronal differentiation Shao et al., 2018

Control the behavior of nerve cells Moreira et al., 2019

Study neuronal function Aquili et al., 2014

Neural circuits The neural circuits that regulate sodium appetite Lee et al., 2019

The nerve basis of compulsive feeding Nieh et al., 2015; Kim et al., 2021

Social behavioral neural circuits Zhao et al., 2017; Yang Y. et al., 2021

Body temperature regulating neural circuit Zhao et al., 2017

Spatial learning and memory circuits Yang et al., 2018; Huang et al., 2021

Neural circuit mechanisms that activate addictive memory Alaghband et al., 2014

Nervous system-based clinical
research

Nervous system Alzheimer’s disease Roy et al., 2016

Parkinson’s disease Ztaou et al., 2016

Epilepsy Chen et al., 2018

Stroke Yu et al., 2019

Skeletal system Bryson et al., 2014

Urinary system Mickle et al., 2019

Pain Samineni et al., 2017; Harriott et al., 2021

Vision Berry et al., 2019; Gilhooley et al., 2021

Memory Vetere et al., 2019

starving mice by activating or inhibiting specific neurons using
optogenetics (Jennings et al., 2015; Table 1 and Figure 2). In
this study, the researchers introduced light-sensitive proteins
that control the activity of neurons into the lateral hypothalami-
ventral tegmental region (VTA) and activated the region with
light, causing already satiated mice to take longer to eat.

In another study, Sternson et al. successfully distinguished
appetitive behavior (Sternson and Atasoy, 2014) from
neurons that satisfy behavior (Atasoy et al., 2012;

Gatto and Goulding, 2018). In the study, the mice were given
food freely or a reward for completing a task. Neuronal activity
in the lateral hypothalamus of mice was also imaged. Based on
this study, researchers were able to identify the neural basis of
compulsive eating.

In 2021, the researchers used an AVV virus vector to deliver
the ChR2 light-sensitive protein gene to a specific vagus nerve
in the stomach (Kim et al., 2021; Table 1 and Figure 2). By
using a tiny LED was inserted into the end of a flexible shaft
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in the stomach. Mice were successfully induced to feel full by
external stimulation of specific gastric vagus nerve with remote
radio frequency source. In 2022, researchers used optogenetics to
inhibit neuropod cells in mice intestinal mucosa and found that
mice consumed less sucrose (Buchanan et al., 2022). These studies
suggest that optogenetics has a role to play in understanding the
neural circuit of compulsive feeding.

Social Behavioral Neural Circuits
Social behavior is one of the characteristics of biology, but the
social behavior neural circuits of biology is hardly understood.
But through optogenetics, scientists are unraveling the mysteries
of biological social behavior. Chiang and his colleagues developed
an automatic laser tracking and optogenetic manipulation system
(Hsiao et al., 1408; Wu et al., 2014) (ALTOMS) that can be used
to study the social memory of fruit flies. After the expression
of photosensitive proteins in neurons at specific sites, neurons
involved in pain expression photosensitive pathways can be
activated when laser irradiation is applied to specific sites (Karim
et al., 2006; Table 1 and Figure 2). Using the system, the
researchers were able to get certain males to quickly learn to avoid
females, while other males continued to approach. At the same
time, automated laser tracking and optogenetic manipulation
systems (ALTOMS) (Hsiao et al., 1408; Wu et al., 2014) are
expected to help identify the neural circuits responsible for
specific drosophila behavior and understand the circuitry behind
the ability to form memories based on social interaction learning.

In the latest study, researchers implanted tiny wireless
optogenetic electronic devices into the brains of mice. The
synchrony between brain neurons in the medial prefrontal cortex
of mice induced social preference in mice (Yang Y. et al., 2021;
Table 1 and Figure 2). The micro technique used in this study
was less invasive and had less effect on the natural behavior
of mice. Now, optogenetics not only controls the behavior of
rodents but also primates (Rajalingham et al., 2021). These
studies demonstrates the broad application of optogenetics in
human social behavior circuits.

Body Temperature Regulating Neural Circuits
Thermoregulation is important for many life activities (Davison,
1976). Human beings have known for the last century that
the thermoregulatory center is located in the hypothalamus
(Hamilton and Ciaccia, 1971), but it is difficult to use
traditional methods to analyze the thermoregulatory mechanism.
In order to elucidate the neurons and neural circuits of
hypothalamus involved in body temperature regulation, relevant
researchers used optogenetics combined with physiological
calcium signal recording (Tretyn, 1999) and other means to
conduct experiments from the level of neural circuits on the
hypothalamus of mice (Zhao et al., 2017). This study found
neurons in the preoptic region of the hypothalamus that regulate
thermally driven cooling behavior, as well as neurons in the
dorsolateral part of the dorsolateral part of the hypothalamus
responsible for the thermogenesis mechanism caused by cold
stimulation. By using optogenetics to activate vLPO neurons, the
researchers found that vLPO neurons are at the core neuron
in thermoregulatory neural circuit (Table 1 and Figure 2;

Zhao et al., 2017). In addition, a new marker for heat-
sensitive neurons, brain-derived neurotrophic factor (BDNF),
was identified (Ciszowski et al., 2016). This study provides
new clues for physiological and pathological research based on
thermoregulation.

Spatial Learning and Memory Circuits
Using techniques such as optogenetics, single synapse
tracing (Spreafico et al., 1981) and in vivo multi-channel
electrophysiological recording (Brozoski et al., 2006), the
researchers found that the excitatory pyramidal cells of the
entorhinal cortex (ECIIPN) (Shu et al., 2016) formed a
single synaptic connection(eciipn-ca1pv synapses) with the
inhibitory small abruption protein cells of the hippocampus
CA1 region (CA1PV) (Shu et al., 2016; Yang et al., 2018). In the
transgenic mouse model of Alzheimer’s disease, this memory
loop is selectively damaged (Yang et al., 2018). Researchers
used optogenetics stimulation therapy to repair eciipn-ca1pv
synaptic degeneration damage and effectively treat memory
loss in Alzheimer’s disease (Table 1 and Figure 2). This
experiment proves that this loop is involved in regulating
spatial learning and memory (Yang et al., 2018). In another
study, researchers combined optogenetic technology with multi-
channel synchronous optical stimulation and electrical recording
technology, and found a circuit of emotional influence on spatial
learning and memory in terms of structure and function (Zhang
et al., 2017). Vahaba et al. (2017) used optogenetics to manipulate
the NIF and HVC regions in the brains of zebra finches
(Spierings and ten Cate, 2014). By controlling the interaction of
these two regions, the researchers managed to encode the finches’
memories (Vahaba et al., 2017). Huang et al. (2021) (Table 1
and Figure 2), Huang et al. treated mice with phototherapy and
recorded the potential changes in the hippocampal CA1 region
of mice. The results showed that light therapy improved spatial
memory and was associated with changes in the activity patterns
of hippocampal neurons. These studies on spatial learning and
memory could provide insights into the treatment of Alzheimer’s
disease and some psychiatric disorders.

Neural Circuit Mechanisms That Activate Addictive
Memory
Drug addiction (Martinez-Gonzalez et al., 2016; Xu et al.,
2021) is an abnormal learning and memory process. Withdrawal
scenarios can reactivate the addictive memory when the patient
enters a scene that was previously associated with withdrawal
symptoms (Hellemans et al., 2006). According to previous
studies, the basolateral amygdala (BLA) plays an important role
in inducing addictive memory retrieval (Wang et al., 2014;
Khakpoor et al., 2016; Yi et al., 2021). However, its downstream
neural circuits remain unknown. In this study, researchers
combined neural tracer, optogenetics, chemical genetics and
other methods. It was found that after activation of BLA -PrL
loop, PrL was induced to transmit information back to BLA
by projecting neurons, so as to activate the increase of Arc
protein expression level in another group of BLA neurons and
cause the recall of addictive memory (Table 1 and Figure 2;
Alaghband et al., 2014). The study revealed the important role of
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the prefrontal cortex as a hub of the neural circuits in reactivating
addictive memories in withdrawal scenarios, providing support
for the treatment of drug addiction.

NERVOUS SYSTEM-BASED CLINICAL
RESEARCH

Central Nervous System
Alzheimer’s Disease
Currently, none of the drugs used to improve cognitive function
can fundamentally treat Alzheimer’s disease, but can only
alleviate the symptoms. In 2016, Roy’s team successfully restored
memory in mice using optogenetics (Table 1 and Figure 3;
Roy et al., 2016). In the study, the researchers implanted light-
sensitive proteins into the hippocampus of mice with memory
loss. In response to light, memory cells in the hippocampus of
the mice were activated. The next day, without light, the mice lost
their memory again. As shown in the study, the hippocampus
of the memory recovery mice established a strong connection
with the entorhinal cortex (Meda et al., 2013) which is missing
in Alzheimer’s patients (Liu and Zhang, 2019; Vallee et al.,
2020). Another study used optogenetics stimulation therapy to
repair eciipn-ca1pv synaptic degeneration damage and effectively
treat memory damage caused by Alzheimer’s disease (Figure 3;
Yang et al., 2018). At the same time, an important research
achievement in Alzheimer’s disease is the treatment of cognitive
dysfunction with near-infrared bioluminescence (Saltmarche
et al., 2017; Arenas et al., 2020). Up to now, many studies have
demonstrated that near-infrared bioluminescence therapy can
improve cognitive function (Chao, 2019; Kinouchi et al., 2021).
The above research may provide ideas for the radical cure of
Alzheimer’s disease.

Parkinson’s Disease
Parkinson’s disease is a chronic disease with no clinical cure
(Guo et al., 2019; Altinoz et al., 2020). However, Parkinson’s
disease can be alleviated and treated with optogenetics. Ztaou
et al. (2016) found that bilateral activation of indirect pathway
MSNs by optogenetics can produce Parkinson’s-like presentation.
However, activation of MSNs in the direct pathway alleviates
symptoms such as freezing, bradykinesia, and difficulty in
initiating movement (Kravitz et al., 2010; de Almeida and da
Silva, 2021; Malaquias et al., 2021; Yang X. et al., 2021). Yang
et al. (2018) found that the use of optogenetics combined with
deep brain stimulation (DBS) (Castano-Candamil et al., 2019) to
stimulate the afferent axons of the subthalamic nucleus region at
high frequency can significantly treat Parkinson’s disease (Table 1
and Figure 3). Carter et al. (2010) used optogenetic targeting
to control the LC-NE region of the cerebral cortex of mice, and
were able to treat sleep disorders in mice with Parkinson’s disease
(Figure 3). Steinbeck et al. (2015) induced rapid and reversible
reactivation of motor defects in mice that had recovered from
Parkinson’s motor defects induced by injury (Figure 3). And a
recent study showed that photogenetic stimulation of the deep
brain can relieve Parkinson’s disease in rats (Ingram et al., 2020;

Yu et al., 2020). These studies suggest that optogenetics has great
potential in the clinical treatment of Parkinson’s disease.

Epilepsy
More than 20% of epileptic patients develop stubborn resistance
to epileptic drugs (Zhou et al., 2013; Murawiec et al., 2020),
which eventually develops into refractory epilepsy (Martinez-
Juarez et al., 2012; Tsai et al., 2021). The researchers injected
green light-emitting nanoparticles into the hippocampus of mice
(Roet et al., 2019), and irradiated the cranium surface with
infrared light, and found that the epileptic neurons of mice were
effectively silenced (Table 1 and Figure 3; Chen et al., 2018). The
nanoparticles used in this experiment are stable, biocompatible
and can be used for a long time. Lu et al. (2016) conducted
in vivo and in vitro experiments, and the excitatory photosensitive
protein was expressed in inhibitory neurons to inhibit epileptoid
activity up to 70.0 and 82.4%, respectively. These studies indicate
that optogenetic techniques are superior to other methods in the
treatment of epilepsy.

Stroke
Cerebral apoplexy (Ng et al., 2019) is caused by the obstruction
of blood flow to the brain tissues caused by vascular obstruction,
which often occurs suddenly, with such symptoms as fainting,
hemiplegia, and slant of the tongue, with a high mortality and
disability rate. There is still a lack of effective treatment drugs,
and transplantation of nerve progenitor cells is a good way to
restore the function of nerve neurons in the brain (Cabral-Costa
and Kowaltowski, 2020; Ostolaza et al., 2020; Roy-O’Reilly et al.,
2020). Yu et al. (2019) provided luciferin CTZ to the brain of mice
by intranasal administration (Table 1). When CTZ encounters
luminescent proteins, it emits the required light. This study
showed that survival rates for the growth and differentiation of
neural progenitor cells increased significantly, more intact axons
and nerve connections were produced, and better responses
to electrical stimulation were achieved. The affected limb also
showed better recovery. In young mice, stroke affected limb
function was restored to normal levels, and even in older mice,
stroke symptoms were partially recovered (Table 1 and Figure 3).
The findings offer hope for an effective treatment for stroke.

Memory
A memory can bring either pleasure or fear (Kirmayer et al.,
1995; Riksen and Netea, 2020). And relevant neurobiological
studies have shown that an experience can cause changes in
multiple brain areas, such as the cerebral cortex, hippocampus
and amygdala, thus producing memory (Josselyn et al., 2015).
In the following studies, optogenetics can manipulate memories
and erase bad memories by manipulating neurons in the brain. In
2014, researchers successfully removed and reactivated a certain
memory by changing the connections of related neurons in
the brain of rats with different frequencies of light (Table 1
and Figure 3; Nabavi et al., 2014). In 2017, researchers used
optogenetic technology in conjunction with electrophysiological
technology and behavioral experiments (Ishikawa and Sakaguchi,
2013) to study the role of specific neural pathways in fear memory
(Klavir et al., 2017; Yilmaz et al., 2020). In 2019, relevant studies
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for the first time found the subgroup of neurons that regulate
the new memory of fear extinction, which improved people’s
cognition of fear memory (Lacagnina et al., 2019). Also, in 2019,
people used optogenetic methods to manipulate memory-related
neurons to encode memory imprinting without experience for
the first time (Table 1 and Figure 3; Vetere et al., 2019). The
above research indicates that optogenetics plays an important
role in the study of the mechanism of memory generation and
memory-related diseases.

Peripheral Nervous System
Skeletal System
In the past, electric stimulation was often used for patients who
lost motor function, and the electric stimulation treatment was
prone to muscle fatigue and inaccurate discharge (Asakawa et al.,
2021). However, optogenetics can stimulate a certain muscle fiber
accurately and with low trauma, which can be used to study the
treatment of motor system injury. In 2010, researchers started
to apply optogenetics to the treatment of motor impairment
(Table 1 and Figure 3). Llewellyn et al. (2010) utilized light
stimulation of muscle fibers, and after 20 min of light stimulation
of muscle fibers, the muscle still maintained a third of the
maximum stress (Table 1 and Figure 3). Bryson et al. (2014)
constructed a mouse model of muscle loss innervation and
transplanted the embryoid containing ChR2 motor neurons into
the mouse. By shining blue light on the transplant site, the
researchers were able to restore leg muscle function (Table 1
and Figure 3). Srinivasan et al. (2018) used tiny LED lights to
control light-sensitive proteins expressed in the legs of mice. The
study succeeded in controlling ankle movement in mice. These
studies suggest that optogenetics has great potential in controlling
biological motor systems, especially in the treatment of paralysis
and the treatment of muscle degeneration.

Urinary System
Related researchers developed a full closed-loop optogenetic
control system (Mickle et al., 2019) and implanted it into female
mice with drug-induced bladder dysfunction. This system can
detect bladder filling, and the system can also irradiate the
bladder for optogenetic control (Kessler et al., 2019). Shown in
the study, photosensitive proteins are expressed in nerve cells
of the bladder in mice by optogenetics technique, which makes
the neurons in the bladder of mice in a hyperpolarized state.
For 7 days after the system was implanted, the mice did well.
Finally, the rats returned to normal bladder function (Table 1
and Figure 3; Mickle et al., 2019). Through further research and
testing, this method is of clinical value.

Pain
Pain is one of the common clinical symptoms. Prolonged severe
pain can seriously affect the patient’s quality of life. At present,
photogenetic technology can solve the pain problem very well.
In 2017, a new in-spinal optogenetics device was used for
pain treatment and research (Table 1 and Figure 3; Samineni
et al., 2017; Mai et al., 2020). Using this device, the researchers
activated the afferent nerve of trpv1-chr2 channel protein,
causing pain response behavior in mice (Jacob and Szerb, 1951;

Zhu et al., 2020; Ji et al., 2021; Zhang et al., 2021). The researchers
then ran a real-time comparison experiment, and the results were
the same. Now that the device’s function is clear, it can be widely
used in pain research. Another study used the selective silencing
of related neurons by a wirelessly controlled electro-optical
system to reduce ongoing pain and induced skin allergic reactions
in mice under cystitis conditions (Table 1 and Figure 3; Samineni
et al., 2017). And it had no bad effect on the mice. Hua et al.
(2020) discovered a class of inhibitory neurons called “CeAga.” It
turns off pain. Inhibition of the expression of CeAga neurons by
optogenetics stopped the pain behavior in mice (Mai et al., 2020).
Due to its high accuracy and low side effects, optogenetics may be
widely used in the field of pain in the near future.

Vision
Special neurons in the retina react to light and transmit it to
the brain to produce vision (Pozarickij et al., 2020; Creeden
et al., 2021; Liu H. et al., 2021; Yu et al., 2021; Elkhalifa et al.,
2022). When neurons in the retina stop working properly, the
eye can’t work properly. Nowadays, optogenetic can be used to
treat eye diseases such as color blindness (Table 1 and Figure 3;
Cideciyan et al., 2016). The researchers sensitized the cells to
light by the expression of light genes that encode light-activated
channels or pumps in the remaining retinal cells (Ostrovsky
and Kirpichnikov, 2019; Blomeier et al., 2021; He et al., 2021;
Kramer et al., 2021; Mickoleit et al., 2021). Relevant research has
achieved good results in recent years. In 2017, Russian scientists
injected drugs with certain genetic structure into the blind eyes
of experimental rodents, and the sight of experimental animals
was partially restored (Aung et al., 2017). Berry et al. (2019)
restored vision to blind mice (Table 1 and Figure 3). In 2021,
the company of Bionic Sight successfully used optogenetics to
enable patients with advanced retinitis pigmentosa to see light
and motion (Harris and Gilbert, 2022).

CONCLUSION, CHALLENGES AND
PERSPECTIVES

Since the advent of optogenetics, the technology has occupied the
research field of neurobiology. Using optogenetics, researchers
have decoded many neural circuits that cannot be decoded
with other techniques. Such as social behavioral neural circuits,
body temperature regulating neural circuits, spatial learning and
memory circuits and so on. In view of the minimally invasive and
high accuracy of optogenetics, optogenetics has a broad prospect
in clinical treatment. Many irreversible diseases, especially
neurodegenerative changes, can be solved by optogenetics. And
the related research has entered the clinical trial stage.

Although optogenetics has achieved a lot in many fields, it
still faces many challenges. Many scientists have proposed that
exogenous light exposure causes neurons to respond in a non-
physiological way, leading to incorrect physiological conclusions
(Oh et al., 2021). And whether exogenous photosensitive proteins
can have potential effects on nerve cells. Due to economic
and other factors, optogenetics is mostly used in mouse
experiments. Clinical trials of optogenetics are rare. Therefore,
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it will take a long time to prove that optogenetics can be widely
applied to humans.

At present, optogenetics continues to flourish. Photogenetic
treatments for retinal degeneration (Cehajic-Kapetanovic et al.,
2019; Gilhooley et al., 2021) and pain (Harriott et al., 2021) are
also in clinical trials. Researchers are also developing more precise
(Adesnik and Abdeladim, 2021) and less invasive optogenetic
devices, such as SOUL (Gong et al., 2020). At the same time,
optogenetics has strong compatibility, it can be used to study a
variety of diseases, such as diabetes (Li et al., 2021), inflammation
(Baumschlager and Khammash, 2021; Bhat et al., 2021; Dos
Santos et al., 2021; Jamaluddin et al., 2021; Michoud et al.,
2021; Santos et al., 2021; Senok et al., 2021), tumors (Kim
et al., 2017; Adampourezare et al., 2021; Esmaeili et al., 2022),
depression (Hare et al., 2019), epilepsy (Zhang and Wang, 2021)
and so on. And in 2020, 45 laboratories around the world
integrated all optogenetics resources and create an optogenetics
experimental database (Tremblay et al., 2020). According to
the current progress, optogenetics has a broad prospect. It is

believed that soon, optogenetics will become a major technique
in neurobiology.
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