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Abstract The four platelet-derived growth factor (PDGF) li-
gands and PDGF receptors (PDGFRs), α and β (PDGFRA,
PDGFRB), are essential proteins that are expressed during
embryonic and mature nervous systems, i.e., in neural pro-
genitors, neurons, astrocytes, oligodendrocytes, and vascular
cells. PDGF exerts essential roles from the gastrulation period
to adult neuronal maintenance by contributing to the regulation
of development of preplacodal progenitors, placodal ectoderm,
and neural crest cells to adult neural progenitors, in coordinat-
ing with other factors. In adulthood, PDGF plays critical roles
for maintenance of many specific cell types in the nervous
system together with vascular cells through controlling the
blood brain barrier homeostasis. At injury or various stresses,
PDGF modulates neuronal excitability through adjusting vari-
ous ion channels, and affecting synaptic plasticity and function.
Furthermore, PDGF stimulates survival signals, majorly PI3-
K/Akt pathway but also other ways, rescuing cells from apo-
ptosis. Studies imply an involvement of PDGF in dendrite
spine morphology, being critical for memory in the developing
brain. Recent studies suggest association of PDGF genes with
neuropsychiatric disorders. In this review, we will describe the
roles of PDGF in the nervous system, from the discovery to
recent findings, in order to understand the broad spectrum of
PDGF in the nervous system. Recent development of pharma-
cological and replacement therapies targeting the PDGF system
is discussed.
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Introduction

Platelet-derived growth factor (PDGF) family members in-
clude PDGF-A, -B, -C and -D, which are assembled as
disulfide-linked homo- or heterodimers. There exist two types
of PDGF receptors (PDGFR-α, -β), the PDGFRA binding A-,
B- and C-chains, while the PDGFRB binds B- and D-chains,
as reviewed (Shim et al. 2010; Heldin 2012). PDGF-AB,
the only heterodimer known to exist so far, was first
purified from human platelets and considered to be a
growth factor necessary for growth and migration of
mesenchymal cells (Hammacher et al. 1988). Most mes-
enchymal cells express both receptors, and the expression
is increased in wound healing and inflammation, especially in
chronic inflammatory diseases, i.e., atherosclerosis, rheuma-
toid arteritis, and nephritis (Heldin andWestermark 1999). All
these chains are synthesized as precursor forms and cleaved
during secretion by proteolytic enzymes, except for PDGF-C
(Shim et al. 2010).

The recently identified members differ from the tradition-
al A- and B-chains, in that PDGF-C and D-chains possess a
long N-terminal CUB (complement protein C1r/C1s, Uegf,
and Bmp1) domain, which has to be cleaved for binding to
receptors (Li et al. 2000; Bergsten et al. 2001; LaRochelle et
al. 2001; Fredriksson et al. 2004; Reigstad et al. 2005).
Structurally, PDGF-C protein may be closer to VEGF-A
than to PDGF-B. PDGFR and VEGFR also resemble each
other structurally, and VEGF-A is reported to activate
PDGFR (Ball et al. 2007; Pfister et al. 2012). Binding of a
dimerized PDGF-ligand causes receptor dimerization,
which induces autophosphorylation of intracellular kinases,
activating the downstream signaling molecules that bind to
phosphorylated tyrosine residues of the intracellular domain
of PDGF receptors in order to propagate signals (Shim et al.
2010; Heldin 2012). All four chains and the receptors are
expressed in the nervous system, and PDGFRA and -RB
transduce overlapping, but distinctive signals (Heldin et al.
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1998; Andrae et al. 2008; Ishii et al. 2008; Yao et al. 2009;
Zheng et al. 2010). A schematic drawing on the PDGF
system is shown in Fig. 1. In this review, we focus on the
roles of PDGF in the nervous system.

O-2A cells and oligodendrogenesis

The first significant paper that revealed the role of PDGF in
the nervous system reported the identification of bipotential
progenitors isolated from rat postnatal optic nerve, giving
rise to oligodendrocytes and type-2 astrocytes (O-2A cells)
in culture (Raff et al. 1988; Richardson et al. 1988). The O-
2A cells were shown to divide several times in PDGF-
containing media until cells intrinsically initiate differentia-
tion, but O-2A cells can be maintained as progenitors in the
presence of both PDGF and FGF (Bogler et al. 1990).

The type-2 astrocyte is distinguished from the so-called
type-1 astrocyte, which arises earlier and developing from
its own progenitor. The type-1 and type-2 astrocytes also
differ in their growth factor requirement, morphology, and
in vivo localization (Raff and Lillien 1988). Type-1 astro-
cytes secrete PDGF-AA stimulating O-2A to proliferate via
the expression of PDGFRA (Richardson et al. 1988). The
study has brought about an essential notion of the existence
of PDGF-responsive bipotential progenitors from the ner-
vous system, precisely and timely regulated by different
soluble factors as for proliferation and differentiation. As
O-2A adult progenitors seem to cycle slowly and divide and
differentiate asymmetrically, thus having the capacity of

self-renewal, reviewed by (Noble et al. 2003). So far, dif-
ferent types of oligodendrocyte progenitors have been iden-
tified (reviewed by Polito and Reynolds 2005).

PDGF-responsive precursors were isolated from human
embryonic brain tissues by neurosphere cultures, which could
differentiate into oligodendrocytes, astrocytes and even neu-
rons, albeit with less efficiency (Chojnacki and Weiss 2004;
Chojnacki et al. 2008). The best combination of growth fac-
tors for these progenitors is shown to be bFGF and EGF, when
neural stem cells are maintained in the self-renewing condi-
tions. However, EGF without FGF appears to induce astro-
cytes (Chojnacki et al. 2008). Upon factor withdrawal, most of
the cells differentiate into neurons and some into astrocytes.
However, neural stem cells maintained with PDGF-AA in
vitro differentiate to neurons or oligodendrocytes.

There are significant differences in oligodendrocyte progen-
itor cells between rodent and human, as well as those of fetal
and adult. However, all PDGF-responsive precursors require
FGF2 and PDGF, which induce sonic hedgehog signaling, to
maintain self-renewal, similar to the cephalic multipotent neural
crest stem cells (Dupin et al. 2010). Interestingly, an adult
human corpus callosum showed that PDGFRA and FGFR2
expressing cells colocalized in the same cells (Chojnacki et al.
2008). Another study demonstrated that mice subventricular
zone (SVZ)-GFAP-positive neural stem cells could alsomigrate
into the corpus callosum and fimbria fornix, to generate a small
number of non-myelinating NG2-positive oligodendrocyte pro-
genitor cells and mature myelinating oligodendrocytes (Menn
et al. 2006). Fetal human forebrain- or iPS-derived oligoden-
drocyte progenitors enriched by PDGFRA (CD140a+) have

Fig. 1 Schematic illustration of
the hetero- and homodimers of
PDGF, and their binding
receptors. The major PDGF
intracellular receptor binding
signaling molecules are shown
together with possible other
receptors interplaying with
PDGF receptors. Examples of
the cells expressing different
PDGF-receptor combinations
are mentioned under the each
combination of the receptors. P;
phosphorylation, Ch; channel
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been shown to be most effective in both myelinating and
migratory capacities, compared with those selected by
A2B5, when transplanted to hypomyelinated shiverer
mouse brain. This suggests the myelin disorders as
promising targets of cell-based therapy (Mazzarella et
al. 2011; Goldman et al. 2012). Recent studies on in
vivo grafts confirm that PDGF-responsive neural pre-
cursors differentiate into myelinating oligodendrocytes
in spinal cord-contused adult rats and dysmyelinated
mice (Plemel et al. 2011).

Phenotypes of PDGF and its receptors in KO mice

In order to understand the individual roles of PDGFRs, exper-
iments have been carried out on knockout mice, where
each ligand and receptor and their combinations were
tested. PDGF-A−/− mice showed fewer PDGFRA-expressing
progenitors than did either wild-type or PDGF-B−/− mice
(Betsholtz 1995; Lindahl et al. 1997b), implying that prolifer-
ation of oligodendrocyte progenitors strongly depend on
PDGF-AA (Fruttiger et al. 1999). Accordingly, PDGFA−/−

mice developed with reduced numbers of oligodendrocytes,
showing a myelination defect and tremor. These results also
partly concord with PDGFRA−/− mouse embryos that
exhibited craniofacial abnormalities, spina bifida, and reduced
numbers of oligodendrocyte progenitors (Soriano 1997; Sun
et al. 2000). As was reported for O-2A progenitors (Bogler et
al. 1990), both PDGF-AA and bFGF regulate oligodendrocyte
proliferation and their differentiation into remyelinating oli-
godendrocytes after myelin damage (Murtie et al. 2005b). In
fact, in wild type mice, endogenous FGF2 is increased be-
tween the first and second postnatal weeks at the peak of
oligodendrogenesis (Murtie et al. 2005a).

Both PDGFRA−/− and PDGFRB−/− kill mice at mid-
gestation or at birth, respectively. The PDGFRA−/− pheno-
copy Patch−/− mutant mice, lacking both PDGFRA and KIT
genes, exhibit persistent truncus arteriosus, interrupted aortic
arch, and decreased thymus volumes. This is caused by defi-
cient progenitors of neural crest, but the phenotype was in-
complete (Orr-Urtreger et al. 1992; Soriano 1997). Cranial
and cardiac neural crest-specific conditional PDGFRA−/− was
created by crossing Cre recombinase under wnt1-promoter
(Dorsky et al. 1998), expressing mice and PDGFRAFL/FL

mice (Tallquist and Soriano 2003), where the loss of
PDGFRA leads to neonatal lethality due to aortic arch defects
and cleft palate. Recently, the role of PDGFRB in cardiac
NC was examined by using PDGFRB−/− mice exhibiting
ventricular septal defects (Richarte et al. 2007). Both
receptors were found expressed in cardiac neural crest
cells with slight differences in their expression patterns
between E11-E14. Loss of both receptors rendered de-
fective thymus formation as well as complete penetrance

of persistent truncus arteriosus and retroesophageal origin of
the right subclavian artery. PDGFB−/− and PDGFRB−/− mice
die of defects of early hematopoiesis and blood vessel forma-
tion. Renal defects arise due to defective development of
pericytes and kidney podocytes (Leveen et al. 1994; Lindahl
et al. 1997a; Hellstrom et al. 1999).

PDGFR in embryonic neural and neural crest stem/

progenitor cells

Ectomesenchymal cells are considered to be derived of neural
crest of cranial region (Hall and Hörstadius, 1988; reviewed
by Weston et al. 2004). Ectomesenchyme produces a variety
of craniofacial skeletal and connective tissues, which are
phenotypically different from neurogenic and melanogenic
derivatives of the neural crest (Luo et al. 2003). The mesen-
cephalic neural crest cells give rise to skeletal cells, the
periocular mesenchyme, meninges, the pericytes of all facial
and forebrain blood vessels, and also neurons and glia in the
autonomic and the sensory nerves (Dupin et al. 2010).
Embryonic ectomesenchyme-derived cells were shown to
express PDGFRA (Mercola et al. 1990; Morrison-Graham et
al. 1992; Orr-Urtreger et al. 1992; Schatteman et al. 1992;
Soriano 1997).

In the amniote embryo, it has not been clear whether the
neural crest-derived cephalic mesenchyme is derived from a
common stem cell population. Recent data, however, point
to the existence of a common pluripotent progenitor for
chondrocytes, osteocytes, neurons, glia, melanocytes, and
myofibrocytes, which persist at late embryonic and adult
periods (Dupin et al. 2010). Moreover, neural crest-related
progenitors have been isolated from the epidermal bulge of
hair follicles and the dermal papilla of mammalian adult
skin (Fernandes et al. 2004; Toma et al. 2005). These adult
progenitors differentiate in vitro into both neural, and mesen-
chymal lineages, similarly to the multipotent cephalic neural
crest cells in the early embryo period (Dupin et al. 2010). In
the peripheral nervous system, sensory and sympathetic neu-
rons originate from migrating neural crest cells. Furthermore,
it was reported that Sox1-expressing neuroepithelium from
the trunk region of E9.5 mice embryo produced mesenchymal
stem cells through a PDGFRA-positive neural crest interme-
diate stage (Takashima et al. 2007). Moreover, the Sox1 and
PDGFRA-expressing cells gave rise to two subsets of cells
distinguished by the expression of PDGFRB and A2B5.
These neural crest-derived mesenchymal stem cells decrease
during development and taken over by non-neural crest
sources. By using neural crest- and mesenchymal cell-
tracing, dental and thymic mesenchyme were composed of
either neural crest- or mesoderm-derived cells, whereas half of
the bone marrow mesenchyme was consisted of cells that
were not derived from the neural crest or mesoderm. Colony
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formation was inhibited drastically by the addition of anti-
PDGFRB antibody, regardless of the tissue and its origin
(Komada et al. 2012), suggesting that these mesenchymal
stem cells carrying similar phenotype were derived from
different sources.

Expression of PDGFR in the embryonic neural crest

and placodes

Efforts were made to identify multipotent neural crest stem
cells of cephalic origin that have capacities to differentiate
into neuron, melanocytes, chondrocytes, and osteocytes by
genetic fate mapping (Calloni et al. 2009). The cranial
neural crest forms ectomesenchyme that is characterized
by the ability to differentiate into numerous cell types nor-
mally associated with mesoderm, including muscle and
bone (Le Lievre and Le Douarin 1975; Le Douarin et al.
1998). Cranial neural crest was shown to give rise to pericytes
and smooth muscle cells to the cardiovascular system as well
as the neurons and ganglia of sympathetic and parasympathetic
nerves in the heart (Kirby et al. 1983). The remodeling of the
pharyngeal arch arteries to separate the pulmonic and systemic
circulation systems is also mediated by the cardiac neural crest
cells (Brown and Baldwin 2006). These cells give rise to
smooth muscle and pericytes in the arteries, and the neurons
of cardiac innervation. Both PDGFRs are coexpressed in
ectomesenchyme, although PDGFRA is expressed at a higher
level (Tallquist and Soriano 2003; Weston et al. 2004).

Placodes are thickening of the embryonic head ectoderm
that delaminate or invaginate to build nerve, ganglia and
sensory organs. Neural crest is formed during neurulation,
but placodes arise later in developing embryo. Recent ge-
netic fate-mapping studies suggested that neural crest might
have contributed to the formation of olfactory placodes as
well as the otic placodes in rodents (Forni et al. 2011; Freyer
et al. 2011). The neurogenic placodes generate a variety of
mechanic and sensory structures and the pituitary. PDGFRB
transcripts are expressed in the cranial ectoderm of chicken
embryo and play important roles for the induction of oph-
thalmic trigeminal placode (McCabe and Bronner-Fraser
2008). Inhibiting PDGFR signals caused disappearance of
the markers for trigeminal placode, Pax3 and CD151, and
abolished neuronal differentiation. Interestingly, at stage 8 em-
bryo, PDGFRA expression is found in the head and in somites,
in contrast to PDGFRB that is localized in ectoderm and neural
folds. At stage 10, PDGFRA is present in migrating neural
crest and somites, but PDGFRB in ectoderm. PDGFRB is also
present in the tips of stage 8 neural folds, but also found in
neural crest and neural tube. The ligand PDGF-D is expressed
in both cranial and trunk neural tube at stage 10–11, and the
ligands for PDGFRA, PDGF-A is present in the midbrain
ectoderm and PDGF-C in the presumptive mid-brain ectoderm

at stage 8 (Fig. 2; McCabe and Bronner-Fraser 2008),
suggesting distinct roles of these two receptors. Furthermore,
FGF and/or PDGF are also necessary for activating the devel-
opment of preplacodal ectoderm adjacent to the anterior neural
plate during gastulation. Preplacodal cells are pluripotent that
migrate and produce sensory structures of the head together
with neural crest (Kwon et al. 2010).

PDGF and adult-neural stem/progenitor cells

The existence of adult human neural stem cells in the brain
was confirmed and isolated essentially from the SVZ of the
lateral ventricles, called SVZ astrocytes because of their mor-
phology and marker expression (Lois and Alvarez-Buylla
1993). However, there are some reports that neural stem cells
originate also from other types of cells, i.e., periventricular
cells and ependymal cells (Johansson et al. 1999; Meletis et al.
2008; Chojnacki et al. 2009). Several groups have explored
the plasticity of adults mesenchymal progenitors associated
with perivascular niche (da SilvaMeirelles et al. 2006; Bianco
et al. 2008), which can be differentiated to several cell types,
including neurons. Recently, Paul et al. demonstrated that
mesenchymal stem cells with pericytes markers are present
in perivascular areas, enabling to produce multi-lineage cells
(Paul et al. 2012). It might be possible that neural crest-
derived pericytes in the vascular niche in the brain contribute
to PDGFRB-expressing neuron, although no conclusive data
is yet available.

For this reason, PDGFRB-expressing neural stem/pro-
genitors might be derived from the perivascular niches,
since PDGFRB is expressed by pericytes and the brain
contains the highest density of capillary blood vessels. In
fact, the development of neuronal cells is highly dependent
on blood vessels, which occurs interdependently by mutual
stimulation. This may indicate that PDGFRB contributes
neuroepithelial-, neural crest- and mesenchymal-derived
progenitors. It might be possible that PDGFRB plays more
refined roles, such as the complex functions of cells in the
nervous system and hematopoietic/immune system. The
phenotypes of neural stem cells resemble astrocytes than
neuron, and in development, radial glia has been considered
to be the embryonic neural stem cells. Specific neuronal
cells occurred later in the evolution, in concordance with
the large differences of brain sizes and functions between
amniotes and other vertebrates along with their varying
needs for complex coordination of growth factors.

Primary cultures studied were derived from the SVZ of
P1 and P28 mice, in which PDGFRB gene was deleted by
nestin-promoter/enhancer-driven Cre recombinase (Ishii et
al. 2008). The expression of PDGFRB in self-renewal and
neuronal differentiation was indispensable for the neonatal
neural stem/progenitors, but not in the P28 mice (Xu et al.
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2013). Furthermore, BDNF and noggin, in addition to FGF2,
were shown to be involved in PDGFRB-mediated regulation
of neonatal neural stem/progenitors. PDGF receptors are rare-
ly expressed on relatively quiescent GFAP-expressing neural
stem cells (Doetsch et al. 1999), but present on nestin-positive
and DCX-negative progenitor cells (Doetsch et al. 1999; Ishii
et al. 2008). Periventricular PDGFRA-expressing cells do not
seem to express GFAP (Chojnacki et al. 2011). PDGFR
expressing progenitors can be expanded in neurospheres and
differentiate into various types of nervous system cells,
depending on availability of growth factors. These properties
suggest that PDGFR-expressing progenitors might be the
rapidly dividing, so-called C cells (Doetsch et al. 1999) in
SVZ. PDGF and FGF act synergistically to maintain renewal
of oligodendrocyte precursors, since their downstream signal-
ings appear to reinforce mutual receptors (Ishii et al. 2008).
This synergism was previously found to be utilized also in
tumors (Nissen et al. 2007).

Cell survival roles of PDGF in the nervous system

All PDGF ligands and receptors were detected in the mamma-
lian central nervous system (CNS; Sasahara et al. 1991; Yeh et
al. 1991; Smits et al. 1991; Mudhar et al. 1993; Hutchins 1995;
Reigstad et al. 2005). Specifically, PDGF-A, -B, -C, and their
receptors also express in the peripheral nervous system, which
originates from the neural crest (Eccleston et al. 1995; Peng et
al. 2012). Increased expressions of PDGF and PDGFR were
found in the lesioned area of CNS in experimental animal
models for stroke, Huntington’s and Parkinson’s diseases
(Iihara et al. 1994, 1996, 1997; Ballagi et al. 1994; Sjöborg
et al. 1998; Ohno et al. 1999). A selective neuronal death in the
CA1 subfield of hippocampus after transient forebrain ische-
mia was preceded by a rapid decrease of PDGF-B, which was
prevented by pre-administered PDGF-B (Kaneko et al. 1998;
Iihara et al. 1997). An altered expression of PDGF receptors
has also been observed in association with various kinds of

injuries in the nervous system (Ballagi et al. 1994; Hermanson
et al. 1995), where the survival activity of PDGF signal was
shown to play an important role. Similarly, PDGF-B and
PDGF-C have a neuroprotective effect, as has been shown in
several different animal models of neuronal injury, including
ischemia (Sakata et al. 1998; Tang et al. 2010). Despite the
overall similarity between PDGFRA and PDGFRB as for
structural and downstream kinase targets, the role of these
receptors differs considerably—partly due to the cell types
expressing these receptors (Funa and Uramoto 2003). As for
signaling, PDGFRB activation appears to induce a stronger
anti-apoptotic response than PDGFRA by more strongly acti-
vating Akt, leading to survival of neurons upon injuries (Iihara
et al. 1997; Funa and Ahgren 1997; Zhang et al. 2003).

Roles of PDGF in the BBB function in the nervous

system

In the adult nervous system, functions exert as the integrated
responses of neurovascular units that are comprised of neu-
ral and vascular cells. Thus, the pathogenesis of neurological
diseases often resides in dysfunctions of neurovascular units
(Zlokovic 2010). PDGF ligands and the receptors are
expressed in both neural and vascular cells, and PDGF signal-
ing is critically involved in the physiology and pathology of
neurovascular units. Endothelial cells, pericytes, and astro-
cytes collaborate to maintain blood–brain barrier (BBB) func-
tions, and the leakage of BBB in conjunction with stroke leads
to life-threatening CNS edema. Two types of PDGFRs are
differently involved in the regulation of BBB function.
PDGF-B is expressed in vascular endothelial cells, and
PDGFRB in pericytes and smooth muscle cells (PC/vSMCs).
PDGF-B/PDGFRB axis is essential for the recruitment of
PC/vSMCs in development (Hellstrom et al. 1999). The
hypomorphic alleles of PDGF-B or PDGFRB gene decrease
PC/vSMC population in cerebral vasculature and result in
BBB dysfunction in embryo and adult brains (Armulik et al.

Fig. 2 Secreted PDGF ligand from the neural folds is necessary for
opV trigeminal placode induction at stage 8. By stage 10, many opV
trigeminal placode cells are specified (Pax3+ in green). By stage 13–
14, opV trigeminal placode cells begin to delaminate and condense to

form regions of the opV trigeminal ganglion, expressing Pax3 (green),
Hu and NF (red). TGP, opV trigeminal placode; TG, opV trigeminal
ganglion. (Courtesy of Drs. McCabe and Bronner-Fraser, The Compa-
ny of Biologists)
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2010; Bell et al. 2010; Daneman et al. 2010). These BBB
dysfunctions result in circulatory disturbances as well as pro-
gressive age-dependent vascular-mediated neurodegeneration
(Bell et al. 2010). In conditional knockout mouse with post-
natally induced PDGFRB gene inactivation, PC/vSMC popu-
lation with regard to BBB function was not affected in the
cerebral vascular system (Fig. 3; Shen et al. 2012). In this
mutant, however, the PC/vSMC recruitment to the angiogen-
esis in the ischemic lesion of the brain is largely suppressed,
where increased permeability of BBB is related to severe
symptoms after stroke. PDGFRB-mediated recruitment of
PC/vSMCs is essential for the maturation of CNS vasculature
in development and in post-ischemic adult angiogenesis
(Krupinski et al. 1997).

On the other hand, tissue plasminogen activator (tPA)
activates PDGF-CC in stroke brain. Consequently, activated
PDGFRA on perivascular astrocytes increases BBB perme-
ability, contrasting clearly to the role of PDGFRB (Su et
al. 2008). This is likely to be due to a difference in
their targets—PDGFRA primary increases permeability
but PDGFRB affects integrity of PC/vSMc. Accordingly,
the inhibition of PDGFRA after ischemic stroke amelio-
rates both cerebrovascular permeability and hemorrhagic
complications associated with late therapeutic administration
of thrombolytic tPA. Two types of conditional PDGFRB
knockout mouse, in which PDGFRB gene is inactivated in
neurons, show large ischemic lesion to a similar extent at early
time after ischemia, independent of blood-vessel associating
PDGFRB (Shen et al. 2012). This indicates that endogenously

expressed PDGFs protect nervous tissues, and that they can
function independently of type of vasculature.

PDGF signals protect neurons through multiple

mechanisms

Glutamate-NMDA receptor–mediated excitotoxicity and oxi-
dative stress are two common mechanisms associating with
most of neurodegenerative diseases. PDGF-BB inhibits
NMDA-evoked currents and excitatory postsynaptic poten-
tials that are mediated by NR2B-containing NMDA receptors
in hippocampal neurons in vitro (Valenzuela et al. 1996; Lei et
al. 1999; Beazely et al. 2009), and protects these neurons from
glutamate- or NMDA-induced excitetoxicity (Tseng and
Dichter 2005). A similar inhibition by PDGF-BB also occurs
in rat CA1 pyramidal neurons in vitro (Valenzuela et al. 1996;
Lei et al. 1999). Age-specific excitotoxicity in the immature
brain is considered to be the pathogenesis underlying hypoxic-
ischemic brain insults during the perinatal period (Whitelaw
2000). In fact, the expression of PDGF-B and PDGFRB is
upregulated in rodent neonatal and mature brain (Smits et al.
1991; Sasahara et al. 1992, 1995, 1998), where the level of
PDGF-B is inversely correlated with NMDA excitotoxicity,
and is functionally implicated in the excitotoxicity in PDGF-
BB peptide infusion and expression-inhibition studies
(Egawa-Tsuzuki et al. 2004).

Moreover, NMDA excitotoxicity was increased in neural
cell-specific conditional knockout mouse of PDGFRB in adult

Fig. 3 Increased vascular permeability correlates with the loss of
PC/vSMCs owing to PDGFR-β deletion after cerebral ischemia.
Confocal microscopic images of FITC-labeled albumin (green),
α-SMA (red), and PDGFR-β (blue) stainings in the ischemic
border in Floxed and Esr-KO mice at 6 days after MCAO. Scale

bars = 100 μm. α-SMA, α-smooth muscle actin; FITC, fluores-
cein isothiocyanate; MCAO, middle cerebral artery occlusion;
PC/vSMC, pericyte/vascular smooth muscle cell; PDGFR, plate-
let-derived growth factor receptor. (Courtesy of Journal of Cere-

bral Blood Flow and Metabolism)
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period (Ishii et al. 2006). Through both in vivo and in vitro
studies, the PDGF-BB/PDGFRB axis is assumed to be an
endogenous modulator of neuronal excitability. However,
the mechanism to suppress excitotoxicity seems not merely
to be due to direct inhibition of the NMDA receptor, since the
maximum effects of PDGF-mediated suppression on the
NMDA receptor reaches 40 min (Valenzuela et al. 1996), in
contrast to the neuroprotective effects that take 24 h to reach
maximum (Tseng and Dichter 2005).

This mechanism might be related to other signaling path-
ways. Induction of downstream prosurvival genes including
GSK3β and the phosphatidylinositol 3-kinase K (PI3-K)/Akt
is important for the anti-excitotoxicity effects of PDGF, be-
sides direct inhibition of NMDA receptor (Peng et al. 2008;
Tang et al. 2010). Activation of PI3-K/Akt and MAP kinase is
also involved in PDGF-mediated neuroprotection fromH2O2–

mediated oxidative stress in vitro (Zheng et al. 2010). ROS
accumulated in cerebral lesions has been shown tomediate the
tissue damage in NMDA-induced cerebral injury (Küçükkaya
et al. 1996; Bolaños et al. 1997). PDGF attenuates neuronal
death due by glucose-deprivation and oxidative injury in
hippocampal cultures by increasing activity of antioxidant
enzymes (Cheng and Mattson 1995). Pretreatment with
PDGF-BB, but not PDGF-AA, can counteract 6-OHDA-
induced degeneration ofmesencephalic DA neurons in culture
(Pietz et al. 1996). Similarly, PDGF-BB, but not PDGF-AA,
substantially prevented hippocampal neuronal cell death after
transient forebrain ischemia in vivo (Iihara et al. 1997).
PDGF-BB rescues primary neurons from H2O2 induced oxi-
dative stress more potently than PDGF-AA, and deletion of
PDGFRB substantially ameliorated the effect of PDGF-BB
(Zheng et al. 2010). The anti-oxidative effect of PI3-K/Akt
may be one of the mechanisms to prevent excitotoxic neuronal
death. Thus, neuroprotective effects of PDGF should be con-
sidered in a broader time period from an increased neuronal
cell survival early after insult, to later tissue responses includ-
ing neurogenesis, angiogenesis, and gliosis, which can be
important targets of PDGF (Mohapel et al. 2005; Shen et al.
2012).

Additional neuroprotective mechanisms downstream of
PDGFRB have been reported, i.e., the increased expression
of glutamate transporters on neurons (Figiel et al. 2003) and the
involvement of transient receptor potential (TRP) C1 and
TRPC6 channels (Yao et al. 2009). Endogenously and exoge-
nously given PDGF-CC rescues neurons from apoptosis in
brain and retina subjected to different injuries, and the rescue
is mediated by PDGFRA and PDGFRB (Tang et al. 2010).
Thus, depending on the type of noxious stimuli or locus of
injury, the involved PDGF ligand and receptor may be differ-
ent. In addition to neurons subjected to ischemia, the
neuroprotective role of PDGF is relatively well characterized
in dopaminergic neurons, both in vivo and in vitro (Nikkhah et
al. 1993; Mohapel et al. 2005; Funa and Ahgren 1997; Tang et

al. 2010). PDGF replacement therapy might become applicable
to treat stroke, neurodegenerative diseases, and diseases involv-
ing dopaminergic neurons such as Parkinson’s. Small molecule
ligands for serotonin-7 receptor suppress excitotoxicity via
induction and activation of PDGFRB (Vasefi et al. 2013). For
a future neuroprotective strategy, these BBB-permeable small
molecules can hopefully become tools to enforce endogenous
growth factor signals in the CNS in order to prevent tissue
insult.

Role of PDGF in synaptic functions

PDGFRB is localized in pre- and post-synaptic structures of the
adult mouse hippocampus (Shioda et al. 2012), regulating
synaptic plasticity and function, and is intimately implicated
as a neuromodulator in different neurological activities. A brief
application of PDGF-BB produces a long-lasting inhibition of
NMDA-evoked currents and excitatory postsynaptic potentials
in rat CA1 pyramidal neurons in cell culture and in hippocam-
pal brain slice (Valenzuela et al. 1996). PDGFRB activation
decreases NMDA-evoked current in cultured neurons through
a feed-forward inhibitory mechanism, and the inhibitory effects
are dependent on PDGF-induced release of intracellular calci-
um (Valenzuela et al. 1996; Lei et al. 1999). Along this line,
PDGF-BB treatment inhibits NR2B-containing NMDA recep-
tor currents in CA1 hippocampal neurons, and enhances LTD
in an NR2B subunit-dependent manner in hippocampal brain
slice (Beazely et al. 2009). The activation of PDGFR β-
receptor occurs through the transactivation by D2-like dopa-
mine receptor that may underlie dopamine receptor-mediated
inactivation of NMDA receptor in acutely isolated CA1 hippo-
campal neurons and hippocampal brain slice, as well as in
prefrontal neurons (Kotecha et al. 2002; Beazely et al. 2006).

On the other hand, PDGF-BB suppressed AMPA-mediated
excitatory postsynaptic currents evoked by electrical stimula-
tion of the tractus solitarius in mouse nTS second-order neu-
rons (Ohi et al. 2007). This suppressive effect of PDGF-BB is
abolished by PDGFRB gene knockout. The single activation of
NMDA receptors is not sufficient for the efficient Ca2+ influx
to neuron, but the AMPA receptor-mediated depolarization is a
prerequisite for this process (Herron et al. 1986). In the nTS
tract, PDGF-B/PDGFRB effectively suppresses glutamatergic
excitatory signaling through coordinate suppression of AMPA
and NMDA receptors, which has important functional impli-
cations in acute hypoxic ventilatory response and subsequent
functional adaptations and synaptic plasticity phenomena
(Gozal et al. 2000; Zhang et al. 2003). Pharmacological inhi-
bition or diminished expression of PDGFRB abolishes the
typical ventilatory decline (= ventilatory roll-off) that charac-
teristically occurs with ongoing hypoxia. Similarly, this venti-
latory roll-off disappears in conditional knockout of PDGFRB
(Tsunekawa et al. 2009).
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In the hippocampus, PDGFRB colocalizes with both
presynaptic synaptophysin and postsynaptic density-95
(PSD-95). Consistent with these observations, hippocampal
long-term potentiation (LTP) and hippocampus-dependent
memory formation were impaired by depletion of PDGFRB
from neural cells in embryonic period (Shioda et al. 2012).
In these mice, post-synapse-related proteins, including PSD-
95 and phosphorylated Akt and ERK, are decreased in
hippocampal CA1 pyramidal neurons. In a different report,
PDGF induces Arc/Arg3.1 gene expression via the induc-
tion of immediate early gene Egr-1 in hippocampal neurons,
and enhances LTP in CA pyramidal neurons in hippocampal
slice (Peng et al. 2010). In stimulated neurons, translation of
the dendritically localized mRNA, Arc, is required for con-
solidation of LTP and stabilization of nascent polymerized
actin (Bramham 2008). Na+/H+ exchanger regulatory factors
(NHERFs) are scaffold proteins distributed in dendritic
spines and in axon terminals of hippocampal pyramidal
neurons (Paquet et al. 2006). PDGFRB specifically binds
to NHERFs, independently of receptor activation (Demoulin
et al. 2003), and crucially contributes to the actin reorgani-
zation (James et al. 2004; Theisen et al. 2007). Accordingly,
PDGFRB may contribute to dendritic spine morphogenesis
or plasticity, an event crucially regulated by the postsynaptic
actin cytoskeleton (Svitkina et al. 2010), through PDGFRB-
activation in both dependent and independent manners.

PDGF exerts neurotrophic effects on both γ-aminobutyric
acid(GABA)ergic and dopaminergic neurons (Smits et al.
1991, 1993; Othberg et al. 1995). Aberrant development of
GABAergic circuits has been implicated in various neuro-
developmental and psychiatric disorders such as schizophrenia
(Lewis et al. 2005), autism (Belmonte et al. 2004; Dani et al.
2005) and Tourette’s syndrome (Kalanithi et al. 2005). As
deduced from these, nestin–Cre mediated PDGFRB gene
knockout in neural cells in embryonic periods reduces the
number of parvalbumin (calcium-binding protein)-positive
(i.e., putatively GABAergic) neurons in the amygdala, hippo-
campus, and medial prefrontal cortex of adult mouse brain
(Nguyen et al. 2011). These mice show behavioral and elec-
trophysiological abnormalities characteristic to autism or
schizophrenia, including defective social behavior, spatial
memory and sensory-evoked gamma oscillations. Genetic
linkage analyses have shown PDGFRB to be located on
chromosome 5q31–q32 (Kalanithi et al. 2005), which contains
susceptibility genes for schizophrenia (Silverman et al. 1996;
Shaw et al. 1998; Gurling et al. 2001; DeLisi et al. 2002;
Devlin et al. 2002; Sklar et al. 2004; Herzberg et al. 2006).
Three single nucleotide polymorphisms and 2 haplotypes of
PDGFRB are associated with schizophrenia (Kim et al. 2008),
and the serum levels of PDGF-BB are high in autistic boys
(Kajizuka et al. 2010). After all, PDGF/PDGFR signal may
have etiological implications in neurodevelopmental and psy-
chiatric disorders.

Pharmacological use of PDGF-signal modifiers

Various PDGFR tyrosine kinase inhibitors (TKIs), mostly
ATP competitors, have been found to be small-molecule
inhibitors. Examples of such molecules that have been in-
vestigated are the indole-2 ones (SU6668), the quinoxalines
and their derivatives, 3-(indol-3-yl)quinoxalin-2-ones, the
tyrophostines (AG1295, RG50864), the pyridylpyrimidines
(STI-571), the quinolines and quinazolines (CT52923), the
indoles, the imidazoles (CP-868596, TAK593), and the
pyrazoles (ABT-869) (see Aoki et al. 2007). These drugs
are mostly applied in therapies of cancer and cardiovascular
diseases, but also in some inflammatory conditions and
fibrosis. Several TKIs, especially those against EGFR and
VEGFR, have been used against aggressive brain tumors,
e.g. glioblastoma multiforme. However, the tumor cells
treated by these inhibitors usually develop resistance.

Increased sensitivity to the PDGFR inhibitor STI571 in
chemoresistant glioma cells is associated with enhanced
PDGF-mediated signaling and STI571-induced Akt inactiva-
tion (Servidei et al. 2006). In fact, de-repression of PDGFRB
was found to promote resistance to EGFRTKIs in glioma cells
(Akhavan et al. 2013). For this reason, combined therapy with
the PDGFRTKI might provide benefits. The VEGFR inhibitor
sunitinib decreased phosphorylation of Akt and mTOR (Saito
et al. 2012). PDGFR also induces strong downstream path-
ways, such as PI3-K, Akt, and mTOR, hence certain PDGF
inhibitors might act in a similar fashion. Several multi-targeted
receptor TKIs with activity against various intracellular kinases
with anti-angiogenic mechanisms have been used with
better results in neuroblastoma (Dai et al. 2008; Nilsson
et al. 2010). Many of these TKIs have shown better
clinical activity in combination with chemotherapy, as
well as with inhibitors of mTOR, angiopoietin/TIE2,
integrin, Notch, Wnt/β-catenin and vasculogenesis path-
ways. Those signaling molecules are shown to be im-
portant for maintenance of quiescent cancer stem cells,
which could be targeted by their inhibitors in combina-
tion with the TKI (Li and Bhatia 2011).

The use of kinase inhibitors in other diseases than tumors
may need higher specificity for the target kinase. It is also
possible to block one or a few intercellular kinases downstream
of the PDGFR kinase, when the major disease symptoms
depend on such kinases. For example, when PI3-K is to be
targeted, the inhibitors wortmannin and LY294002 can be
effective. By doing so, the other receptor kinases also activat-
ing PI3-K, such as VEGFR, IGFR, and Her2/Her3, can be
inhibited (Dell et al. 2006). In the case of disruption of the
blood–brain barrier, involving activation of PDGFRA, the
impairment was reversed by the p38 MAPK inhibitor,
SB203580 (Ma et al. 2011).

Several methods are under development to counteract, e.g.,
insufficient production of PDGF, being a major mechanism in
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disease. Examples include degeneration of neurons and oligo-
dendrocytes. Replacement therapy has been suggested, using
in vitro differentiated neuroprogenitors or iPS-derived cells
cultured with PDGF and/or other factors (Johnson et al.
2010). In addition, recent technical development has en-
abled controlled delivery of PDGF-BB into the infarcted
myocardium of mouse by the use of PDGF-BB-bound
self-assembling nanofibers (Hsieh et al. 2006). These types
of methods could be used to control the differentiation of
induced pluripotent stem (iPS) cells in order to eliminate a
risk to induce tumors from transplanted cells (Brederlau et
al. 2006). For iPS cell therapy, it is also possible to
replace a fragment of genes not only to repair mutations,
but also conditionally induce certain gene expression by
targeted genomic integration using zink-finger nucleases
(Gantz et al. 2012). This can be applied for in vitro
selection of certain types of differentiated iPS by inserting
reporter genes downstream of PDGFRA or PDGFRB
promotor (Funa and Uramoto 2003), depending on differ-
entiation of the desired cell type (Wang et al. 2012).

In summary, PDGFs and/or PDGFRs can be expressed
in neural progenitors, neurons, astrocytes, oligodendro-
cytes, and vascular cells (Fig. 1). PDGF exerts diverse
but specific functions in the nervous system, covering
neurogenesis, cell survival, synaptogenesis, modulation
of ligand-gated ion channels, and development of specific
types of neurons. Future development of specific drugs
will target PDGFR, as well as a controlled delivery of
PDGF, in the diseased tissues, and/or be combined with
iPS-based replacement therapies. These new therapies
would promise to ameliorate the prognosis of patients
suffering from these malignant nervous system tumors
as well as neurodegenerative diseases. These major dis-
orders still lack efficient therapies.
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