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Abstract. Simultaneous measurements of gaseous sulfu-

ric acid and particle number size distributions were per-

formed to investigate aerosol nucleation and growth during

CAREBeijing-2008. The analysis of the measured aerosols

and sulfuric acid with an aerosol dynamic model shows the

dominant role of sulfuric acid in new particle formation

(NPF) process but also in the subsequent growth in Beijing.

Based on the data of twelve NPF events, the average forma-

tion rates (2–13 cm−3 s−1) show a linear correlation with the

sulfuric acid concentrations (R2=0.85). Coagulation seems

to play a significant role in reducing the number concentra-

tion of nucleation mode particles with the ratio of the coagu-

lation loss to formation rate being 0.41±0.16. The apparent

growth rates vary from 3 to 11 nm h−1. Condensation of sul-

furic acid and its subsequent neutralization by ammonia and

coagulation contribute to the apparent particle growth on av-

erage 45±18% and 34±17%, respectively. The 30% higher

concentration of sulfate than organic compounds in particles

during the seven sulfur-rich NPF events but 20% lower con-

centration of sulfate during the five sulfur-poor type suggest

that organic compounds are an important contributor to the

growth of the freshly nucleated particles, especially during

the sulfur-poor cases.
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(minhu@pku.edu.cn)

1 Introduction

Atmospheric aerosols influence climate through affecting the

radiative budget of the atmosphere and acting as cloud con-

densation nuclei, negatively impact human health, and de-

grade visibility. New particle formation (NPF), one of the

important sources of ambient aerosols, is frequently observed

worldwide (Kulmala et al., 2004; Kulmala and Kerminen,

2008). NPF is characterized by a sharp increase in number

concentrations of nucleation mode particles and subsequent

growth of freshly nucleated particles. Atmospheric measure-

ments show that new particle formation rates, defined for

3 nm particles, typically vary from 1 to 70 cm−3 s−1; the

growth rate of freshly nucleated particles has been measured

in the range of 1–20 nm h−1 (Kulmala et al., 2004), with the

higher values observed during summertime (Wu et al., 2007).

However, the species that participate in the nucleation pro-

cess and subsequent growth are presently not known for cer-

tain. Atmospheric observations and laboratory experiments

suggest that sulfuric acid often plays a dominant role (Bir-

mili et al., 2003; Boy et al., 2005), but other species, such

as organic compounds, have also been speculated to be im-

portant in new particle formation and growth (O’Dowd et al.,

2002; Zhang et al., 2004; Barsanti et al., 2009). Coagulation

is also important for NPF events, reducing nucleation mode

particle number concentrations but leading to particle growth

(Kerminen and Kumala, 2002). A few investigations about

NPF events have been done in China, but all of them only

reported some parameters such as the occurrence frequency,
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formation rate, and growth rate of NPF events (Wu et al.,

2007; Lin et al., 2007; Liu et al., 2008; Yue et al., 2009). The

precursors, such as sulfuric acid, and the role of coagulation

for new particle formation and growth have not been studied

in detail.

In this paper, we report simultaneous measurements of

particle number size distributions from 3 to 900 nm and con-

centrations of gaseous sulfuric acid to investigate aerosol nu-

cleation and growth during the Campaign of Atmospheric

Research in Beijing and Surrounding Areas in the summer

of 2008 (CAREBeijing-2008). An analysis of the measured

aerosols and sulfuric acid with an aerosol dynamic model is

performed to identify the species responsible for new parti-

cle formation and growth. The formation rates and apparent

growth rates of freshly nucleated particles are estimated, and

the roles of intramodal coagulation among nucleation mode

particles (i.e. self-coagulation) and extramodal coagulation

between the nucleation mode particles and preexisting parti-

cles (i.e. intermodal coagulation) are assessed.

2 Methodology

2.1 Experimental method

Regional NPF events were observed by a twin differential

mobility particle sizer (TDMPS) on the roof of a build-

ing (about 15 m above the ground level) on the campus of

Peking University (PKU), which is located in the north-

western urban area of Beijing, outside the fourth-ring road,

from 12 July to 25 September during CAREBeijing-2008.

There were twelve regional NPF events during the measure-

ment period. Simultaneous measurements of gaseous sul-

furic acid were performed by an atmospheric pressure-ion

drift-chemical ionization mass spectrometer (AP-ID-CIMS).

The TDMPS measured the particle number size distribu-

tions from 3 to 900 nm (Stokes diameter) with a time reso-

lution of 10 min. It consisted of two Hauke-type differen-

tial mobility analyzers and two condensation particle coun-

ters (model 3010 and model 3025, TSI Inc., St. Paul, MN,

USA), as previously described by Wu et al. (2007). The rela-

tive humidity within the whole system was kept below 30%.

Size-dependent losses due to diffusion within the inlet were

corrected with empirical particle loss corrections as given by

Willeke and Baron (1993).

The AP-ID-CIMS was developed at Texas A&M Uni-

versity. Unlike a traditional AP-CIMS (Eisele and Tanner,

1993), AP-ID-CIMS utilized a special ion-drift tube (Fortner

et al., 2004) capable of operating at one atmospheric pres-

sure to confine and regulate the ion-molecular reaction be-

tween nitrate anions (NO−
3 ) and gaseous H2SO4 (Arnold and

Fabian, 1980) thus to achieve better detection precision. A

detailed description of the AP-ID-CIMS methodology was

introduced by Zheng et al. (2010a). Typically, ambient air

was sampled at 1.2 m3 min−1 through a 30 cm-long-10 cm-

diameter inlet to minimize wall loss. AP-ID-CIMS was con-

tinuously and sequentially monitoring both reagent and prod-

uct ions. Each measurement cycle was about 12 s. The cor-

responding detection limit was about 1.4×105 cm−3 based

on three times of the standard deviation (3σ) of the baseline

noise. Variation of the in-situ instrument response to pri-

mary H2SO4 standards was within 36% of the average value.

The H2SO4 data used in this work was 10 min averaged to

keep consistent with the TDMPS. More detailed information

of H2SO4 observation during CAREBeijing-2008 was dis-

cussed in a companion paper of this special issue (Zheng et

al., 2010b).

2.2 Aerosol dynamic modeling

For each particle number size distribution, the nucleation

mode was fit with a lognormal distribution, characterized by

the total mode number concentration, N , geometric mean

diameter, Dg, and geometric standard deviation, σg. Least

squares fit was performed with manually set limits and ad-

justed to capture the region around the peak of the distri-

bution (Heintzenberg, 1994). The parameters N , Dg, σg

are time dependent, as nucleation mode particles grow and

evolve.

The average formation rate (FR) is calculated from:

FR =
dN

dt
+Fcoag +Fgrowth (1)

where Fcoag is the coagulation loss of nucleation mode parti-

cles (Eq. 2), and Fgrowth is the flux of particles growing up to

over 25 nm.

Fcoag = (
∑

i

KiNi)×N (2)

where Ni is the particle number concentration of the i-th bin

and Ki is the Brownian coagulation coefficient between the

nucleation mode and the i-th bin particles.

The apparent particle growth rate (GR) is expressed as

(Heintzenberg, 1994):

GR =
1Dg

1t
(3)

This apparent growth process is mainly caused by three

mechanisms: intramodal coagulation, extramodal coagula-

tion with larger preexisting particles, and vapor condensa-

tion.

When the concentration of photochemically produced

gaseous sulfuric acid in the atmosphere is much greater than

its saturation value (Marti et al., 1997), sulfuric acid is widely

believed to participate in the nucleation process and its con-

densation will contribute to particle growth. As ammonia

is abundant in the Beijing area (2–30 ppb), neutralization of

sulfuric acid by ammonia is expected to occur readily to form

ammonium sulfate. It is also supported by the ratio of sul-

fate to ammonium ([SO2−
4 ]/2[NH+

4 ]=1.1±0.4) in particles
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from 40 to 400 nm (corresponding to 60 to 600 nm in vac-

uum dynamic diameter with the assumed particle density of

1.5 g cm−3) determined by an Aerodyne aerosol mass spec-

trometer (AMS, detailed description about AMS in Huang et

al., 2010). The rate of sulfuric acid condensation and neu-

tralization process is limited by the condensation of sulfu-

ric acid which can be modeled as coagulation between nu-

cleation mode particles and H2SO4 molecules. Coagulation

can scavenge the newly formed particles and also affect the

apparent growth rate due to the high concentrations of par-

ticles produced by nucleation and the preexisting particles

(Stolzenburg et al., 2005).

The time rates of change of the modal parameters due to

these three mechanisms are approximated by assuming that

the mode is in the free molecule regime and applying a first-

order transition regime correction (Stolzenburg et al., 2005).

The time derivatives of the three modal parameters are ob-

tained from the time derivatives of the zeroth, first and second

moments (Mk , k = 0, 1, 2) in particle volume (v = πD3
p/6)

of the mode where

Mk(t) ≡

∫

mode

vkn(v,t)d lnv

=N(t) ·D3k
g (t)·exp[

9

2
k2ln2σg(t)]

n(v,t)≡
dN

d lnv
=

1

3

dN

d lnDp
(4)

For intramodal coagulation, the time derivatives of the mo-

ments can be written as

dMk

dt
=

1

2

∫

v2

∫

v1

[(v1 +v2)
k
−vk

1 −vk
2]β(v1,v2)n(v2,t)

n(v1,t)d lnv1d lnv2 (5)

where β(v1,v2) is the Fuchs (1964) transition regime colli-

sion frequency function for particles of volumes v1 and v2

and both integrals are over the nucleation mode.

Extramodal coagulation depletes small particles in the nu-

cleation mode more rapidly than larger ones, thereby shifting

the modal size to larger particles and contributing to apparent

growth. For extramodal coagulation the time derivatives of

the moments can be written as

dMk

dt
=−

∫

v1

∫

v2

vkβ(v1,v2)n(v1,t)n(v2,t)d lnv2d lnv1 (6)

where the outer integral (v1) is over the nucleation mode and

the inner integral (v2) is over the extramodal region above

the nucleation mode.

The rate of sulfuric acid condensation and neutralization

process is limited by the condensation of sulfuric acid which

can be modeled as coagulation between nucleation mode par-

ticles and H2SO4 molecules. So the time derivatives can be

written as

dMk

dt
= Ns(t)

∫

v

[(v+vn)
k
−vk

]β(v,vs)n(v,t)d lnv (7)

where vn and vs are the respective volumes of (NH4)2SO4

and H2SO4 molecules, Ns is the number concentration of

H2SO4 molecules, where β(v,vs) is the Fuchs (1964) transi-

tion regime collision frequency function for nucleation mode

particles of volume v and H2SO4 molecules of volume vs,

and the integral is over the nucleation mode.

Intramodal and extramodal coagulation loss rates of the

nucleation mode particles are also separately obtained from

the Moment Method above.

Hygroscopic growth factors of the nucleation mode par-

ticles are obtained from Biskos et al. (2009), and those of

larger particles are calculated from our earlier measurements

(Wu et al., 2007).

3 Results and discussion

The NPF events have been observed at PKU with a frequency

of 10–70% based on the long-term measurement since March

2004. The NPF events usually occur in conjunction with

high speed wind from the north, low relative humidity (be-

low 45%), and intense solar radiation. A higher NPF fre-

quency and larger formation rates were observed in spring,

but a lower NPF frequency and higher growth rates were ob-

served in summer (Wu et al., 2007).

For the twelve NPF events during CAREBeijing-2008, the

average formation rates and apparent growth rates were de-

termined in the ranges of 2–13 cm−3 s−1 and 3–11 nm h−1,

respectively, which are within the corresponding ranges in

the summer from 2004 to 2008 (i.e., 2–21 cm−3 s−1 and 0.3–

12 nm h−1, respectively). The present formation rates are

lower than those of 20–70 cm−3 s−1 in Atlanta; the present

growth rates are comparable to typical particle growth rates

of 1–20 nm h−1 (Kulmala et al., 2004).

3.1 New particle formation

NPF events occurred when the sulfuric acid concentration

was relatively high, larger than about 5×106 cm−3, while the

average sulfuric acid concentration for non-NPF days was

about 2×106 cm−3. The sulfuric acid concentration neces-

sary for NPF occurrence in Beijing is similar to that pre-

viously reported (McMurry et al., 2005). Figure 1 shows

that the nucleation mode particle number concentration in-

creases quite fast following the sharp increase of sulfuric

acid concentration during NPF events. A linear correlation

between the average sulfuric acid concentrations and aver-

age formation rates for each NPF event is showed in Fig. 2

(R2=0.85), indicating that sulfuric acid plays a dominant role

in NPF in Beijing. It has been previously reported that the
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Fig. 1. Particle number size distributions, particle number concen-

trations (3–20 nm) and sulfuric acid concentrations on a NPF day,

12 August 2008 (Local Time).

mass size distributions of sulfate, ammonium, and oxalate

shifted to smaller sizes on NPF event days compared with

non-NPF event days (Yue et al., 2009) and NPF events may

involve sulfuric acid, ammonia, and oxalic acid. During

the CAREBeijing-2008 campaign, similar phenomena were

also found for sulfate and ammonium in particles from 40 to

400 nm.

The ratio of coagulation loss to formation rate is

0.41±0.16, suggesting that coagulation between particles de-

creases the formation rate by about 40%. Hence, coagulation

is important for NPF events, since this process decreases the

nucleation mode particle number concentration but leads to

apparent growth of newly nucleated particles. Moreover, it

affects the contribution of NPF to CCN formation. Besides

a couple of theoretical analyses (Pierce and Adams, 2007;

Kerminen et al., 2004), the quantitative role of coagulation

scavenging in CCN production was investigated in only one

field study (Kuang et al., 2009). The ratio of coagulation loss

to the formation rate here also suggests that coagulation will

decrease the contribution of NPF to CCN formation by about

40%, as the growing nucleation mode particles during NPF

events dominate the CCN number concentrations, account-

ing for up to 80% (Wiedensohler et al., 2009).

The sum of intramodal and extramodal coagulation losses

estimated with the Moment Method agrees well with the

coagulation loss calculated with Eq. (2) and their ratio is

0.98±0.26, indicating that the two methods are consistent

and comparable. The contributions of intramodal coagula-

tion and extramodal coagulation to the coagulation loss are

similar, with a ratio of 0.97±0.48. Both preexisting parti-

cles and high number concentrations of the nucleation mode

particles explain the loss of nucleation mode particles, sup-

pressing the existence of the freshly nucleated particles.

Low condensational sink (corresponding to low particle

surface area concentration) is one of the key factors for the

NPF occurrence in Beijing (Wu et al., 2007). On one hand,

the preexisting particles and nucleation process compete for

the precursors such as sulfuric acid. On the other hand, the

preexisting particles coagulate with newly formed particles.

Therefore, “cleaner” air with less preexisting particles plays

Fig. 2. Relationship of average formation rate (FR) and sulfuric

acid concentration (a) and relationship of average coagulation loss

(Fcoag) and formation rate (b) during NPF events. Min and Max

are the minimum and maximum values from June through August

from 2004 to 2008, respectively.

an important role in the occurrence of NPF events. During

the Olympics with the restrictions imposed on industry and

traffic, lower levels of particle mass concentrations in the ur-

ban area of Beijing were observed, offering an plausible rea-

son for the frequent occurrence of NPF events during this

period (25%), which was about twice of that before and after

the Olympics (about 13%).

3.2 Growth of the freshly formed particles

If the growth of nucleation mode particles is only caused by

condensation of sulfuric acid and subsequent neutralization

by ammonia to form (NH4)2SO4, the calculated growth rates

of the nucleation mode particles can not explain the higher

apparent growth rates. Similar phenomena were also re-

ported by Stolzenburg et al. (2005): sulfate and ammonium

were found to be the only constituents of the 6–10 nm par-

ticles (Smith et al., 2005) but could not explain the particle

growth in Atlanta. Another study by Korhonen et al. (2005)

also concluded that coagulation growth is non-negligible

when considering particle growth. During some of the cases,

the particle growth process lasted through the whole after-

noon and the particles grew up to about 100 nm, which would

impose an important effect on the properties of the CCN ac-

tivity.

The apparent growth rates and calculated growth rates

caused by the condensation and neutralization of sulfuric

acid, intramodal coagulation, and extramodal coagulation on

different NPF days during CAREBeijing-2008 are depicted

in Fig. 3, showing that these three mechanisms account for

Atmos. Chem. Phys., 10, 4953–4960, 2010 www.atmos-chem-phys.net/10/4953/2010/
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79±31% of the apparent growth rates, with the contribu-

tions of condensation and neutralization of sulfuric acid to be

45±18% and coagulation to be 34±17%. The contributions

of intramodal and extramodal coagulation are comparable,

accounting for 19±12% and 15±7%, respectively. Sulfate

and ammonium account for (52±14) % and organic matters

take up (36±13) % in 40–400 nm particles during these NPF

events with their total contribution being (89±8) %. It sug-

gests that organic matters may also contribute to the particle

growth significantly.

On the basis of the calculated and the apparent growth rate,

we classify NPF events into two categories: if the condensa-

tion and neutralization of sulfuric acid contributes more than

50% to the apparent growth rate subtracting the coagulation

growth, the particle chemical compositions are mainly sul-

fate (the sulfur-rich type). In contrast, if the condensation

and neutralization of sulfuric acid contributes less than 50%,

other species other than sulfur dominate the growth process

(the sulfur-poor type). However, in absolute terms, sulfuric

acid concentrations and mass concentrations of sulfate are

not necessarily higher during the sulfur-rich events. During

the CAREBeijing-2008 campaign, seven events of the sulfur-

rich type and five events of the sulfur-poor type are identified

(Fig. 3a). The condensation and subsequent neutralization of

sulfuric acid accounts for 54±15% of the apparent growth

rates during the sulfuric-rich NPF events and 27±6% during

the sulfuric-poor ones. While the magnitude of the coagu-

lation growth rate for sulfur-rich and -poor cases are nearly

identical; coagulation growth is responsible for 30–50% and

10–30% in the measured growth rates for these two cases,

respectively. The concentration of sulfate in 40–400 nm par-

ticles is about 30% higher than organic compounds during

the sulfuric-rich NPF events, but is about 20% lower for

the sulfuric-poor cases (Fig. 3c). Hence, we conclude that

the unaccountable apparent growth rate (the apparent growth

rate subtracting the contribution of the condensation and neu-

tralization of sulfuric acid and coagulation) is mainly con-

tributed by organic compounds. It is also reported that or-

ganic compounds rather than sulfate dominate the composi-

tion of 10–33 nm particles during NPF events in Tecamac,

Mexico (Smith et al., 2008).

The sulfur-rich NPF events occurred with slightly higher

sulfuric acid concentrations ((8±1)×106 cm−3) than sulfur-

poor type ((7±2)×106 cm−3). The sulfur-rich NPF events

corresponded to a higher formation rate but lower apparent

growth rate than the sulfur-poor type by 17% and 45%, re-

spectively (Fig. 3b). The average ratio of intramodal coag-

ulation growth to the extramodal coagulation growth during

the sulfur-rich NPF events was 1.6±0.7, significantly higher

than that during the sulfur-poor type (0.7±0.3). There are

several plausible explanations for such a difference. First,

higher formation rates of the sulfur-rich NPF events rapidly

increase the number concentrations of nucleation mode par-

ticles and lower apparent growth rates suppress the transfer

of aerosols from the nucleation to the Aitken mode, both

Fig. 3. Apparent growth rates of NPF events and the growth rates

caused by the three different mechanisms (a) and comparison of im-

portant parameters (b, c) during the two types of NPF events. GR

means growth rate; GRcond is the growth rate caused by the conden-

sation and neutralization of sulfuric acid; GRcoag,1 and GRcoag,2

are the intramoal coagulation growth rate and extramodal coagu-

lation growth rate, respectively. SO2−
4

and Org are mass concen-

trations of sulfate and organic compounds in 40–400 nm particles,

respectively.

leading to higher number concentrations of nucleation mode

particles, promoting the intramodal coagulation process, and

causing higher intramodal coagulation growth rates. Alter-

natively, the condensational sinks of preexisting particles of

these two type NPF events were similar, indicating nearly

identical surface area concentrations during these two types

of NPF events. The surface area concentration reflects one of

the key elements of the extramodal coagulation.

Earlier studies on NPF events at rural, remote, or forest

sites (e.g. Weber et al., 1997; Birmili et al., 2003; Boy et

al., 2005; Smith et al., 2008) show that the contribution of

sulfuric acid to the apparent growth of the new particles is

typically below 30%. However, such contribution is found

to be larger in Beijing especially for the sulfur-rich cases as

investigated in this paper and in Atlanta, US, about 60% on

average (Stozenberg et al., 2005). One possible explanation

is that the concentration of SO2 is lower in the non-urban

area than in the urban area, leading to a lower concentration

of H2SO4 and suppressing the contribution of H2SO4 to new

particle growth. Also, it has been shown by Kiendler-Scharr

et al. (2009) that isoprene suppresses the formation but en-

hances the growth of nucleation mode particles. Hence,

abundant isoprene in the non-urban area will contribute more

www.atmos-chem-phys.net/10/4953/2010/ Atmos. Chem. Phys., 10, 4953–4960, 2010
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Fig. 4. Particle number size distributions (a, b), particle volume size distributions (c, d), sulfate mass size distributions (e, f), and comparison

of average mass size distributions between sulfate and organic compounds from 14:00 to 18:00 LT (g, h) on sulfur-rich and sulfur-poor NPF

event days, respectively.

to the growth of the new particles and reduce the fraction of

the contribution of H2SO4. As the environments are complex

and different at diverse sites, other factors, such as the con-

centration of OH radicals, can also be important and deserve

further investigation.

Recent laboratory studies have shown that initial growth

of newly nucleated particles (<4 nm) involves most likely

sulfuric acid (Zhang et al., 2009), whereas heterogeneous re-

actions of certain classes of organics, such as gloyxal, large

aldehydes, and amines, lead to growth of particles larger than

4 nm, by forming non-volatile oligomers, polymers and alky-

laminium sulfates in the particle phase (Wang et al., 2010).

3.3 Case study of sulfur-rich and sulfur-poor NPF

events

The NPF event on 31 August is a typical sulfur-rich

NPF event. The corresponding average formation rate is

6 cm−3 s−1 and apparent growth rate is 4 nm h−1. An ob-

vious growth of the particle volume size was also observed.

When the newly formed particles grow into the size that can

be detected by AMS, the growth of sulfate was observed

subsequently (Fig. 4), while it is not true for other compo-

sitions. Moreover, the average mass size distributions show

that the mass concentration of sulfate is significantly higher

than that of organic compounds during the event (between

14:00 and 18:00 LT, Fig. 4g). This confirms that sulfate is

the most important contributor to the particle growth during

this sulfur-rich NPF event: the condensation of sulfuric acid

and its subsequent neutralization accounts for about 60% of

the apparent growth rate (cf. Fig. 3a).

The NPF event on 18 September with an average for-

mation rate of 2 cm−3 s−1 and an apparent growth rate of

6 nm h−1 belongs to the sulfur-poor type (Fig. 4a). In con-

trast to the case on 31 August, the mass concentration of or-

ganic compounds is significantly higher than that of sulfate

during the event, as shown in Fig. 4h. It means that the con-

tribution of organic compounds to particle growth is larger

than that of sulfate.

At the start of the NPF event on 18 September, the nu-

cleation mode particles were observed to grow from above

10 nm (geometric mean diameter), in contrast to 31 August

from sub-10 nm. Transport of particles from the surround-

ing areas to the PKU site and fast growth of small particles

during the start of this NPF event on 18 September are possi-

ble reasons, although further investigation is needed to verify

this observation.

4 Conclusions

Twelve regional NPF events were discerned and analyzed

based on the measured aerosols and sulfuric acid with an

aerosol dynamic model during the CAREBeijing-2008 cam-

paign. Sulfuric acid plays a dominant role both in the new

particle formation and subsequent growth processes. It has a

Atmos. Chem. Phys., 10, 4953–4960, 2010 www.atmos-chem-phys.net/10/4953/2010/
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linear correlation with the average formation rates (R2=0.85)

during the NPF events; its condensation and subsequent neu-

tralization by ammonia contributes 45±18% to the apparent

growth rate on average. Coagulation plays a significant role

in reducing the number concentration of nucleation mode

particles and contributing to the apparent growth of the

freshly formed particles. On average, the ratio of coagulation

loss to the formation rate is 0.41±0.16 and coagulation con-

tributes 34±17% to the apparent growth rate. The condensa-

tion and neutralization of sulfuric acid together with coagu-

lation accounts for 80–100% of the apparent particle growth

rate among seven sulfur-rich NPF events, during which sul-

fate is the major composition of the ultrafine particles. While

for the five sulfur-poor NPF events, the concentrations of sul-

fate in ultrafine particles is significantly lower than those of

organic compounds, that is to say organic compounds are the

major composition. Organic compounds are responsible for

the particle growth, besides condensation and neutralization

of sulfuric acid and coagulation, especially during the sulfur-

poor NPF events.

During some cases the growth processes last through the

whole afternoon, causing the particles grow up to 100 nm,

which will impose significant effect on CCN. However, co-

agulation reduces the efficacy of CCN formation contributed

by NPF because coagulation decreases the number concen-

tration of nucleation mode particles significantly. In addi-

tion, the different shares of sulfate and organic compounds

in these particles will lead to different hygroscopic growth

property and CCN activity.

It is also very interesting and important to investigate the

role of organic compounds such as pinic acid and ketopinic

acid in the early stage of NPF events. Further research is

necessary based on the measurement of the potential organic

precursors and the chemical compositions in the very small

particles, for instance 3–10 nm.
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O’Dowd, C., Aalto, P., Hämeri, K., Kulmala, M., and Hoffmann, T.:

Atmospheric particles from organic vapours, Nature, 416, 497–

498, 2002.

Pierce, J. R. and Adams, P. J.: Efficiency of cloud condensation

nuclei formation from ultrafine particles, Atmos. Chem. Phys.,

7, 1367–1379, doi:10.5194/acp-7-1367-2007, 2007.

Smith, J. N., Moore, K. F., Eisele, F. L., et al.: Chemical compo-

sition of atmospheric nano-particles during nucleation events in

Atlanta, J. Geophys. Res., 110, D22S03, doi:10.1029/2005JD00,

2005.

Smith, J. N., Dunn, M. J., VanReken, T. M., et al.: Chemical com-

position of atmospheric nanoparticles formed from nucleation in

Tecamac, Mexico: Evidence for an important role for organic

species in nanoparticle growth, Geophys. Res. Lett., 35, L04808,

doi:10.1029/2007GL032523, 2008.

Stolzenburg, M. R., McMurry, P. H., Sakurai, H., et al.: Growth

rates of freshly nucleated atmospheric particles in Atlanta,

J. Geophys. Res., 110, D22S05, doi:10.1029/2005JD005935,

2005.

Wang, L., Khalizov, A. F., Zheng, J., et al.: Atmospheric nanopar-

ticles formed from heterogeneous reactions of organics, Nature

Geosci., 3, 238–242, doi:10.1038/NGEO778, 2010.

Weber, R. J., Marti, J. J., McMurry, P. H., et al.: Measurements

of new particle formation and ultrafine partile growth rates at a

clean continental site, J. Geophys. Res., 102(D4), 4375–4385,

1997.

Wiedensohler, A., Cheng, Y. F., Nowak, A., et al.: Rapid aerosol

particle growth and increase of cloud condensation nucleus activ-

ity, J. Geophys. Res., 114, D00G08 doi:10.1029/2008JD010923,

2009.

Willeke, K. and Baron, P. A.: Aerosol Measurement Principles,

Techniques, and Applications, Van Nostrand Reinhold, Hobo-

ken, NJ, 1993.

Wu, Z., Hu, M., Liu, S., et al.: New particle formation in Beijing,

China: Statistical analysis of a 1-year data set, J. Geophys. Res.,

112, D09209, doi:10.1029/2006JD007406, 2007.

Yue, D., Hu, M., Wu, Z., et al.: Characteristics of aerosol size dis-

tributions and new particle formation in the summer of Beijing,

J. Geophys. Res., 114, D00G12, doi:10.1029/2008JD010894,

2009.

Zhang, R., Suh, I., Zhao, J., et al.: Atmospheric new particle forma-

tion enhanced by organic acids, Science, 304(5676), 1487–1490,

2004.

Zhang, R., Wang, L., Khalizov, A. F., et al.: Formation

of nanoparticles of blue haze enhanced by anthropogenic

pollution, P. Natl. Acad. Sci. USA, 106, 17650–17654,

doi:10.1073/pnas.0910125106, 2009.

Zheng, J., Khalizov, A., Wang, L., et al.: Implementation of atmo-

spheric pressure ion-drift tube in chemical ionization mass spec-

trometry for detection of trace gas species, in preparation, 2010a.

Zheng, J., Yue, D. L., Zhang, R. Y., et al.: First gaseous sulfu-

ric acid measurement in a Chinese mega-city: study of sulfate

aerosol formation and homogeneous nucleation rate during the

CAREBeijing-2008 campaign, to be submitted to Atmos. Chem.

Phys., 2010b.

Atmos. Chem. Phys., 10, 4953–4960, 2010 www.atmos-chem-phys.net/10/4953/2010/


