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The room temperature 
crystal structure of a bacterial 
phytochrome determined by serial 
femtosecond crystallography
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Oskar Berntsson1, Emil Gustavsson1, Petra Båth1, Vaibhav Modi7, Shatabdi Roy-Chowdhury8, 
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Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. 

A sequence of structural changes, which is not yet fully understood, leads to activation of an output 

domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these 

conformational changes. Here we report the room temperature crystal structure of the chromophore-

binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was 
obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron 

laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from 
conventional crystallography at cryogenic temperatures, which we also report here. The thioether 

linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but 

is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the 

phytochrome photocycle with time-resolved SFX.

Phytochromes sense ambient light levels in plants, fungi, and bacteria. �e proteins detect light and trigger intra-
cellular signalling cascades, which regulate many light-dependent phenotypes. Examples include shade avoidance 
and seed germination in plants1,2, the control of the abundance of photosynthetic proteins in cyanobacteria3, and 
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the control of carotenoid expression in bacteria4. In bacteria, the proteins o�en function as histidine kinases in a 
two-component signalling system5.

Phytochromes share a modular domain architecture. �e widely conserved photosensory core module usu-
ally consists of PAS (PER, ARNT, SIM), GAF (cGMP phosphodiesterase, adenylate cyclase, FhlA), and PHY 
(Phytochrome-speci�c GAF related) domains5. �e PAS and GAF domains hold a tetrapyrrole bilin chromo-
phore, represented by phytochromobilin, phycocyanobilin, or biliverdin in plants, cyanobacteria, or bacteria, 
respectively. �e chromophore is covalently attached via a thioether linkage to a conserved cysteine in either the 
PAS domain (bacteria) or GAF domain (cyanobacteria and plants) (Fig. 1).

Upon light absorption by the chromophore, a sequence of structural changes is initiated, which shuttles the 
protein from a red light-absorbing state (Pr) to a far-red light-absorbing state (Pfr) or vice versa. �ese structural 
changes involve at least a Z-to-E isomerization of the C15 =  C16 double bond of the chromophore with associ-
ated changes of the chromophore-binding pocket6–9 and refolding of the so-called PHY-arm6,7,10,11. It is unclear 
how these changes extend from the photosensory core into the output domains. Furthermore the details of the 
isomerization reaction and the sequence of how the conformational changes arise remain poorly understood.

Conformational heterogeneity of the chromophore has been suggested to play an important role in the pho-
tocycle. Two Pr-state conformations have been detected for a cyanobacterial phytochrome in solution with 
NMR spectroscopy12. �is �nding is contrasted by the crystal structures of phytochromes, which only show one 
chromophore conformation6,7,13,14, at resolutions approaching 1 Å (this work and ref. 9). It is not clear whether 
the crystal packing, or cryogenic temperature at which crystallographic data are recorded, favours only one con-
formation, or whether the crystal structures truly re�ect the solution structures.

SFX is an attractive method for resolving the structural changes in light-activated proteins15. In SFX, dif-
fraction data are collected from a stream of microcrystals in a liquid jet �owing across the X-ray focus. Data 
from thousands of individual microcrystals, each exposed only to a single femtosecond X-ray pulse, are sorted, 
indexed, and merged into one complete set of re�ection intensities16,17. �us it becomes possible to expose the 
crystals to an optical laser pulse prior to data collection. Structural snapshots of the protein at de�ned stages of 
the photoreaction can be recorded15,18. In this paper we report the crystal structure for the chromophore-binding 
domains (PAS-GAF) of Deinococcus radiodurans recorded by SFX. Crystallographic data are collected at room 
temperature and the crystals are not subject to signi�cant radiation damage at our resolution19,20.

Figure 1. Comparison of the crystal structures for the PAS-GAF fragment from bacteriophytochrome 
from D. radiodurans at cryogenic (LowT) and room (SFX) temperatures. �e datasets are truncated at 2.1 Å 
resolution in all panels. (a) Superimposed SFX (green) and LowT (grey) structures plotted together with the 
Fo(SFX)-Fo(LowT) di�erence map (red: negative, green: positive) at 3.8 σ . �e overall R-factor for di�erence 
map is 24.5%. (b) �e same representation zoomed into the chromophore region. �e Fo(SFX)-Fo(LowT) 
di�erence map is contoured at 3.0 σ . (c) �e LowT structure and the corresponding maps (2Fo-Fc, blue at 1.3 σ   
and Fo-Fc di�erence map at 3.3 σ ). �e extra water only present in the LowT structure is indicated by a red 
arrow. (d) �e SFX structure and the corresponding maps (2Fo-Fc and Fo-Fc maps, contour levels as in c).
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Results
Crystallisation and data collection. Modi�ed crystallisation conditions were developed to yield good 
quality macrocrystals. �e PAS-GAF fragment of the D. radiodurans phytochrome was crystallised in essentially 
the same conditions as reported elsewhere13, but the cryoprotectant 2-methyl-2, 4-pentanediol was added directly 
to the crystallisation bu�er (see methods). �ose changes resulted in the protein packing as monomers instead of 
dimers in contrast to previously published conditions13. �e space group C121 and cell dimensions were highly 
similar to the crystals from monomeric PAS-GAF21. We recorded di�raction data at cryogenic conditions at 
the European Synchrotron Radiation Facility (ESRF) and solved the structure to 1.35 Å resolution by molecular 
replacement with 4Q0H9 as a search model. We refer to this structure as “LowT”.

A protocol for the preparation of microcrystals suitable for SFX was developed based on the conditions 
described above. �e microcrystals were grown in batches of 0.5 mL in a microcentrifuge tube at 10 degrees 
Celsius (see methods). �e typical crystal size was 5–10 µ m with a narrow size distribution as judged by visual 
inspection with a microscope (see Fig. 2a). Figure 2c compares the absorption spectra of the protein in solution 
and in microcrystal suspensions. �e microcrystal spectrum is highly similar to soluble one, except for a 5 nm red 
shi� and a small shoulder at the far-red part of the 700 nm peak (Q band).

To record SFX data from these crystals, the suspensions were injected into a vacuum chamber using a gas 
dynamic virtual nozzle22 at the CXI instrument of the Linac Coherent Light Source (LCLS)23. �e stream of 
crystals was exposed to femtosecond X-ray pulses of approximately 1.8 mJ/pulse at 9.5 keV. 114409 hits were 
identi�ed using Cheetah24 and 90428 frames were indexed and merged using CrystFEL version 0.6.1 +  c9c725. 
�e structural model was solved using Phaser with 4Q0H9 as a search model. We refer to this structure as “SFX”.

Comparison of room temperature and cryogenic structure. Figure 1 compares the LowT (PDB code 
5K5B) and SFX (PDB code 5L8M) structures. For the SFX structure, X-ray data were recorded at room temper-
ature and appear essentially free of radiation damage at our resolution. �is is a consequence of the “di�raction 
before destruction” principle, where each crystal is exposed only once to a single X-ray pulse with femtosecond 
duration19. Conventional crystallography is typically performed at cryogenic temperatures and changes may 
occur upon cooling26. Also, radiation damage typically occurs, depending on the X-ray dose. Overall, we �nd 

Figure 2. Microcrystallisation of PAS-GAF. (a) Micrograph of microcrystals produced by direct 
crystallisation in microcentrifuge tubes, and (b) the microcrystals produced by crushing macrocrystals (inset) 
with seed beads. (c) Absorption spectra of PAS-GAF in solution (black) and microcrystals (blue). (d) Structure 
and atom names of the bilverdin cofactor.
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excellent agreement between our structures at cryogenic and ambient temperatures. Figure 1a shows the di�er-
ence electron density (Fo(SFX) - Fo(LowT)) at 3.8 σ  contour level for the whole protein. �e positive and negative 
peaks are mostly localized to the outer parts of the globular domains. �is is expected, since thermal motions are 
likely to be more signi�cant at these positions. However, very few di�erence density peaks are observed on the 
backbone atoms and on the chromophore, indicating close agreement between the two structures.

Figure 1b demonstrates the Fo(SFX) - Fo(LowT) map of the biliverdin chromophore and its close surround-
ings. At 3σ  the only associated positive and negative electron densities are observed close to the thioether bond 
of the chromophore. �is indicates a di�erent position of the thioether linkage in the LowT compared to the SFX 
structure. It has been shown that �ash-cooling can introduce packing and local structural perturbations and it is 
likely that the di�erences in the Fo maps re�ect such e�ects26. Moreover, this part of the structure is not uniquely 
resolved in the LowT data, and the associated negative peak are observed in the Fo-Fc maps (Fig. 1c). However, 
the Fo-Fc map of the SFX structure (Fig. 1d) does not indicate any discrepancy between data and model and a 
unique covalent bonding geometry was re�ned. �e di�use electron density in the LowT structure (Fig. 1c) could 
be due to radiation damage or to alternate conformations of the chromophore-protein bond. In any case, our SFX 
structure does not show this ambiguity. �e SFX structure con�rms, to a resolution of 2.1Å, that a single chromo-
phore geometry is present in the crystals.

We also note that the LowT data support a water molecule with partial occupancy close to Tyr263 (arrow 
in Figs 1c and 3). �e water is hydrogen-bonded to the A-ring carbonyl, the pyrrole water and the functionally 
important Asp207. �e electron density from SFX data did not support the modelling of the water molecule. We 
postulate that this water either exchanges rapidly with the solvent surroundings or that it is expelled by higher 
overall thermal motion of the surrounding atoms at room temperature.

Structural differences and chromophore structural properties.  In Fig. 3 our structures are com-
pared to other PAS-GAF structures. On the one hand, our structures agree well with structures of a monomeric 
variant (4IJG) of PAS-GAF, which has three mutations to block dimerization (Fig. 3a)21. On the other hand, the 
positions of the backbone atoms, the chromophore and its binding pocket di�er from a certain group of struc-
tures. �ese structures originate from crystals formed of proteins with a mutation (Y307S) to aid crystallisation 
which, by altering the crystal contacts, results in a di�erent crystal packing (see Fig. 3a,b)8,9.

In particular, we found that the D-ring of the biliverdin chromophore is more planar in our structures  
(dihedralN09,C08,C06,C04 =  64.8 degrees compared to 73.4 degrees in 4Q0H, see Fig. 2d for biliverdin nomenclature) 
and that the Tyr263 and Tyr176, which sandwich the D-ring, adjust accordingly (Fig. 3b). From Tyr176 these 
structural di�erences translate to a slight upward shi� of the backbone of residues 184–186. Tyr263 shi�s away 
from the pyrrole water, which also makes room for the extra water between the pyrrole water and the phenol ring, 
which is observed by electron density in the LowT structure (Fig. 1c). Furthermore, Met267, which is a direct 

Figure 3. Comparison of LowT and SFX structures to earlier published PAS-GAF structures. (a) 
Comparison of the biliverdin conformation and cystein24 thioether linkage of LowT and SFX structures with 
previously reported PAS-GAF structures 4IJG21, 4Q0H9, and the PAS-GAF-PHY structure 4Q0J9. 4Q0H has 
very similar conformation around the thioether bond compared to 2O9C and 2O9B8, which are not displayed 
for clarity. (b) Comparison of the SFX structure and 4Q0H9 PAS-GAF-structures reveals di�erences in the 
D- and A-ring orientation, the thioether linkage and the positions of Tyr263, Met267, Tyr173 and the residues 
17–25 and 184–186. �e grey water (marked by red arrow) is only observable in the LowT structure (see text for 
details).
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neighbour of Tyr263 appears in a di�erent position. �e density for this residue appears di�use in our LowT 
structure (data not shown) and the same residue has been modelled by others with multiple conformations9. In 
the new SFX structure, the electron density for this residue does not support multiple conformations; hence the 
di�use electron densities in the LowT structures may arise from radiation damage. Structural di�erences between 
the new structures and 4Q0H are also seen in the residues �anking Cys24 and the thioether linkage (Fig. 3b). In 
fact, many published wild-type PAS-GAF structures show di�erent conformations of the Cys24 and the A-ring of 
the chromophore, indicating enhanced conformational �exibility in this region (Fig. 3a).

Method and structural results are enforced by additional experiment. Finally, we report a second 
method to generate micron-sized phytochrome crystals for performing SFX experiments. To this end, macro-
crystals were crushed with seed beads by vortexing in a microcentrifuge tube. Microscope images revealed that 
the crystal slurry had a broad size distribution even a�er �ltering through a 20 µ m �lter and contained crystals 
sizes ranging from 5 µ m to 30 µ m (see Fig. 2b). �ese sets of crystals were dispersed in grease27 and exposed to 
short pulses of X-rays at 7 keV at the SPring-8 Angstrom Compact free electron LAser (SACLA). 30146 hits were 
recorded in 3 hours of beamtime of which 20014 were indexed using CrystFEL25. �e structure shows overall 
good agreement with the other structures reported in this paper (see Fig. 4). When comparing the di�erence 
electron density map (SFX-SACLA) at 2.5 Å resolution, only very few di�erence peaks are observed (Fig. 4b). At 
higher resolution the data recorded at SACLA starts to diverge from the SFX data set (Fig. 4a). �is is likely due to 
the fact that less frames with high resolution data were recorded at SACLA, which can be traced back to the broad 
size distribution of the crystal preparation.

Discussion
Here we report the crystal structure in a new crystal form of the phytochrome PAS-GAF domains from D. radio-
durans. Compared to other structures of the same protein fragment, these crystal conditions did not require mon-
omerizing mutations28 or mutations to stabilise the crystal packing8,9. �e 1.35 Å resolution to which the LowT 
structure has been determined is the highest reported so far for a wild-type PAS-GAF fragment. Importantly, 
the LowT structure corroborates the SFX structures. �e comparison is very direct, because the crystallisation 
conditions for the SFX and conventional crystallography were identical (SACLA) or highly similar (LCLS). More 
generally, this implies that a large body of structural conclusions, which were drawn from crystal structures 
obtained at cryogenic temperatures, are also valid at ambient conditions6,7,9,10,14,29.

Except for the ambiguity in the thioether bond in the LowT data, the SFX and LowT data support only one 
chromophore conformation (Fig. 3a). �is is further con�rmed by composite omit maps (Fig. 5). �is �nding is 
in agreement with other reported structures, which all found only one conformation6–9,13,30. However, the confor-
mation of the chromophore and its thioether linkage reported here di�ers from the previously solved structures 
of the same phytochrome fragment (Fig. 3)8,9,13. �ese crystals had a di�erent packing and thus the di�erences 
in conformation are most likely introduced by packing e�ects. �e structures presented in this paper con�rm 
that the chromophore and protein can, in principle, adopt an alternative conformation. It is therefore likely that 
the protein in solution adopts, at least, both conformations. �ese �ndings are in qualitative agreement with the 
previous reported results that a cyanobacterial phytochrome in Pr exists in at least two conformations12 and that 
the spectroscopic evolution supports heterogeneous conformations31.

In order to record SFX data, the microcrystals have to be delivered to the beam. �ere are currently two 
main approaches to achieve this. In one method, a bu�er solution is used as the carrier medium to generate a 
thin jet that propagates at high �ow rates22. In the second approach, viscous media such as grease or lipid/water 
mixtures, are used, which facilitates signi�cantly slower �ow rates27,32. �e slow �ow conserves protein. Here we 
demonstrate how phytochrome microcrystals can be used with both methods to obtain SFX crystal structures. 
We have developed two ways of producing phytochrome microcrystals, by crushing macrocrystals and by directly 
growing microcrystals in batch mode. �is versatility allows upcoming SFX experiments on phytochromes to be 
optimised for hit rate, crystal quality and ease of crystal production. Although we have not veri�ed the integrity 
of the crystals in grease spectroscopically, the SFX structures presented here con�rm the structural integrity of 
the protein in both delivery methods.

Figure 4. Structural overlay of the SFX (green) and SACLA (sand) structures plotted together with the 
Fo(SFX)-Fo(LowT) di�erence map (red: negative, green: positive) at 3.8 σ. (a) data truncated at 2.2 Å 
(overall R-factor 14.6%) and (b) data truncated at 2.5 Å (overall R-factor 11.6%).
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It is currently unclear which conformational changes in the protein and the chromophore govern photo acti-
vation. To investigate this further, the microcrystals could be subjected to femtosecond time-resolved SFX. In 
the experiment, photo activated states are prepared by femtosecond optical laser pulses, which arrive at a de�ned 
delay time prior to the X-ray exposure. Time-resolved spectroscopy experiments of phytochromes33,34 indicate 
that high concentrations of the excited state can be prepared, but that the quantum yield of entering the photo-
cycle upon return to the ground state is only on the order of 10–15%. �us, it may be easiest to detect structural 
changes in the excited state, which lasts for a few hundreds of picoseconds. Observing conformational changes 
by crystallography also requires su�cient resolution. �e resolution of 2.1 Å, which we demonstrate here, should 
be �ne enough to detect the isomerisation reaction in the chromophore, changes in water positions, and move-
ment of amino acids side chains. �e homogeneity of the crystal size and shape will be crucial since it a�ects laser 
penetration and excitation e�ciency. �erefore the development of batch crystallisation for highly homogeneous 
microcrystals is important. �e study presented here shows that the excellent di�raction data of the resting states 
of phytochromes can be recorded by SFX and encourages time-resolved SFX experiments.

Methods
Protein purification.  Wild-type chromophore-binding domain (PAS-GAF) from Deinococcus radiodurans 
was expressed and puri�ed following methods already described elsewhere10,35. Brie�y, (His)6-tagged PAS-GAF 
was produced in E.coli strain BL21 DE3. �e protein production was induced with IPTG, and biliverdin was 
added to the lysed cells to be incorporated overnight. �e holoprotein was then puri�ed with Ni-NTA a�n-
ity chromatography (HisTrap, GE healthcare) and size-exclusion chromatography (HiLoad 16/600 Superdex 
GE healthcare). �e puri�ed protein was concentrated to 25–30 mg/ml in bu�er (30 mM Tris, pH 8.0) and was 
�ash-frozen in liquid nitrogen.

Crystallisation. All crystals were set up and grown in complete darkness or under green safe light. Before 
crystallisation, the protein sample (PAS-GAF) was thawed and �ltered with 0.2 µ m centrifugal �lter units. Vapour 
di�usion crystallisation was performed, where 20 mg/ml protein in bu�er (30 mM Tris, pH 8.0) was mixed in a 
1:1 ratio with reservoir solution using conditions previously described (67 mM Sodium acetate pH 4.95, 3.3% 

Figure 5. �e omit maps of the chromophore (blue) contoured at a 1.5 σ. (a) �e LowT structure in grey (b). 
�e SFX structure in green. (c) SACLA in sand.
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PEG 400, 1 mM DTT)13, except for 30% 2-methyl-2, 4-pentanediol, which was included directly in the reser-
voir bu�er. 2 µ l hanging drops were equilibrated against 800 µ l of reservoir solution. A�er 48 h incubation at 
room temperature, the formed crystals were �ash-frozen in liquid nitrogen in cryoloops for crystallographic data 
collection.

For batch crystallisation of microcrystals, which was used in the LCLS experiment, 50 µ l protein (25 mg/ml) 
were mixed with 450 µ l of reservoir solution (60 mM Sodium acetate pH 4.95, 3.3% PEG 400, 1 mM DTT and 
30% 2-methyl-2, 4-pentanediol) in 1.5 ml microcentrifuge tubes followed by immediate vortexing. �e tubes were 
then constantly mixed on a rocking table at 12 °C for ~36 h, yielding homogenous mixture of microcrystals of 
10–20 µ m size. �e crystals were concentrated by centrifugation into a crystal concentration up to 20% to increase 
crystal hit rate and �ltered directly before injection to minimize clogging of the jet.

For preparation of microcrystals by crushing macrocrystals, which were used at SACLA, the above vapour 
di�usion crystallisation conditions were used, but the macrocrystals were grown in sitting drops with 40 µ l total 
volume. �e crystal-containing drops were pooled in a microcentrifuge tube and the crystals were crushed by 
vortexing with seed beads (Molecular dimensions) for 30 s, a�er which the tubes were cooled on ice. �e size of 
the crystals was estimated under the microscope to be ~10–20 µ m, and oversized crystals were excluded with a 
20 µ m cuto� centrifugal �lter (Partec). Crystals were concentrated and mixed with a grease (Superlube, Syncho 
chemical corp.) prior to loading into the syringe pump injector as described elsewhere27.

Data collection and processing at the ESRF. �e low temperature (LowT) macrocrystal data were 
acquired at beamline ID23-1 of the European Synchrotron Radiation Facility (ESRF), in a 100 K cryostream and 
with an X-ray wavelength of 0.980 Å. Di�raction data were processed using the XDS program package version 
January 10, 201436. �e LowT crystal belong to monoclinic space group C121 with one monomer in an asymmet-
ric unit. �e di�raction data were cut at a cross-correlation (CC1/2) value of 0.7637, which corresponds the high 
resolution limit of 1.35 Å. �e statistics of data collection, processing, structure determination and re�nement of 
all data sets are summarized in Table 1.

Data collection and processing at the LCLS. SFX data of microcrystals were collected at the coherent 
X-ray Imaging CXI beamline at Linac Coherent Light Source (LCLS) using 1.8 mJ/pulse at 9.5 keV X-rays with a 
pulse duration of ~35 fs and a repetition rate of 120 Hz23. A�er concentrating and �ltering through a 20 µ m cuto� 
�lter, the crystal suspensions were injected into the X-ray beam with gas virtual dynamic nozzles ranging from 
50 µ m to 100 µ m diameter22, using a pressurized reservoir mounted on an antisettling device (available at LCLS). 
�e �ow rates of the liquid gas and shielding gas were adjusted to obtain a stable jet with a �ow rate averaging 
around 30 µ l/min. �e time between �ltering and injection was kept minimal to avoid excessive clogging of the 
reservoir and tubing.

LOWT PAS-GAF, ESRF SFX PAS-GAF, LCLS SACLA PAS-GAF, SACLA

PDB Code 5K5B 5L8M 5LBR

Data Collection

 Collection Temperature 100 K 293 K 293 K

 Space group C121 C121 C121

Cell dimensions

 a, b, c (Å) 93.76, 54.28, 70.15 94.10, 54.80, 69.90 96.22 55.49 71.63

 α , β , γ  (°) 90.00, 92.20, 90.00 90.00, 92.60, 90.00 90.00 92.84 90.00

 Resolution (Å) 46.97–1.35 (1.38–1.35)† 38.20–2.10 (2.15–2.10) 71.55–2.20 (2.28–2.20)

 Rmerge (%) 3.60 (56.0) — —

 Rsplit (%) N/A 9.19 (85.43) 11.9 (67.7)

 I/σ I 18.37 (2.31) 7.77 (1.80) 5.62 (0.68)

 CC(1/2) 99.9 (76.5) 98.0 (49) 97.6 (60.4)

 Completeness (%) 98.07 (95.69) 99.97 (99.8) 100 (100)

 Redundancy 4.36 (4.23) 819 (526) 81.2 (24.1)

 Number of hits N/A 114409 30146

 Number of indexed hits N/A 90428 20014

Re�nement

 Resolution (Å) 39.37–1.35 (1.39–1.35) 38.20–2.10 (2.15–2.10) 71.55–2.20 (2.26–2.20)

 Number of re�ections 72086 (5211) 18732 (1202) 18389 (1326)

 Rwork/Rfree 0.141/0.171 (0.260/0.288) 0.176/0.218 (0.299/0.297) 0.182/0.203 (0.496/0.483)

 Number of atoms 2720 2505 2492

 Average B factor (Å2) 25.47 42.92 50.26

R.m.s. deviations

 Bond lengths (Å) 0.010 0.007 0.008

 Bond angles (°) 1.506 1.313 1.287

Table 1.  Data Collection and Re�nement Statistics. †Highest resolution shell is shown in parenthesis.
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�e di�raction images were recorded with Cornell-SLAC Pixel Array detectors, consisting of 64 tiles (each 
194 pixels by 185 pixels) with a pixel size of 110 ×  110 µ m2. A crystal “hit” was de�ned as an image containing a 
minimum of 20 di�raction peaks. Crystal hits were identi�ed using the so�ware package Cheetah24. �e crystal 
hit rate was typically 2–5% and appeared to be limited by the tendency of the crystals to aggregate, which blocked 
the tubing or reservoir. �e collected data were processed using Cheetah24 and CrystFEL25. �e indexing rate was 
stable at around 70–80%. �e crystals belonged to C121 space group with highly similar cell parameters to LowT 
crystals (Table 1).

SFX data collection and processing at SACLA. SFX di�raction data were collected at the BL3 beamline 
at SACLA38 using 7.0 keV X-rays with a pulse duration of < 10 fs and a repetition rate of 30 Hz. �e syringe-pump 
injector was installed in the di�raction chamber �lled with helium39. Phytochrome crystals were dispersed in 
grease27 and extruded through 110 µ m diameter nozzle at a �ow rate of 500 nl per minute. Di�raction patterns 
were recorded on a multiport CCD detector with an eight sensor module40. �e crystal hit rate varied between 5 
and 15%. �e raw images were �ltered and converted by Cheetah pipeline adapted for SACLA41 and the process-
ing was performed as described above. For further details on number of indexed patterns etc., see Table 1.

Structure determination and refinement.  �e structures were solved by molecular replacement with 
Phaser42 using the high-resolution structure of D. radiodurans PAS-GAF fragment 4Q0H9 as a search model. �e 
models were built in Coot43, and structural re�nement was performed with REFMAC5 version 5.8.013544. In 
all re�nements, the same topology/parameter (CIF) �le for the chromophore was used as in ref. 9. In the LowT 
structure re�nement, the X-ray matrix-weighing term of 0.5 was used. �e structure was re�ned with anisotropic 
temperature factors, resulting �nal Rwork/Rfree of 14.2/17.0%. Ramachandran statistics of the �nal LowT struc-
ture had 97.8% in preferred and 2.2% in allowed regions with 0% outliers. In SFX structures (LCLS and SACLA) 
re�nement, the weighing term of 0.05 was used. All structure �gures were generated using PyMOL (DeLano 
Scienti�c, San Carlos, California, USA). All structure have been deposited to Protein Data Bank.
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