Discrete Comput Geom 11:51-63 (1994)

The Rooted Tree Embedding Problem into Points in the Plane

Yoshiko Ikebe,¹ Micha A. Perles,² Akihisa Tamura,³ and Shinnichi Tokunaga⁴

¹ Department of Information Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan ikebe@is.titech.ac.jp

² Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel perles@vms.huji.ac.il

³ Department of Computer Science and Information Mathematics, The University of Electro-Communications, Chofu, Tokyo 182, Japan tamura@im.uec.ac.jp

⁴ Department of Applied Mathematics, Science University of Tokyo, Shinjuku-ku, Tokyo 162, Japan

Communicated by Imre Bárány

Abstract. In this paper we show that any rooted tree of n vertices can be straight-line embedded into any set S of n points in the plane in general position so that the image of the root is arbitrarily specified.

1. Introduction

Let T be a rooted tree with n vertices and let N be a set $\{p_1, p_2, ..., p_n\}$ of n points in general position in \mathbb{R}^2 , i.e., no three points lie on any line. We denote the root of T by r_1 , and the sets of vertices and edges of T by V(T) and E(T), respectively. We consider a bijection φ from V(T) to N and define the image of each edge $uv \in E(T)$ with respect to φ by the line segment $\overline{\varphi(u)\varphi(v)}$. Perles [3] posed the following problem.

Problem. Is there a bijection φ from V(T) to N satisfying the following two conditions?

- (C1) $\varphi(r_1) = p_1$.
- (C2) For any two nonadjacent edges u_1v_1 , $u_2v_2 \in E(T)$, line segments $\overline{\varphi(u_1)\varphi(v_1)}$ and $\overline{\varphi(u_2)\varphi(v_2)}$ are disjoint.

Here we call such a bijection a rooted tree embedding (or an rt-embedding) of T on N.

It has been proved by Pach and Töröcsik [2] that there is an rt-embedding when the number of the minimum points of N in a closed half-plane containing p_1 satisfies some specific conditions. In this paper we prove the existence of rt-embeddings by giving an algorithm that constructs one, even when p_1 does not satisfy these conditions. Furthermore, our algorithm constructs an rt-embedding in polynomial time with respect to n.

2. Preliminaries

Let N be an n-set $\{p_1, \ldots, p_n\}$ in general position in \mathbb{R}^2 . We say that a line l containing p_1 is an (a, b)-separator of $N - \{p_1\}$ if l does not contain any other point of N, and splits $N - \{p_1\}$ into a points and b points. We also say that l is an [a, b)-separator of $N - \{p_1\}$ if l contains p_1 and one other point p, and splits $N - \{p_1, p\}$ into (a - 1) points and b points. Now suppose that l is a line containing p_1 , such that one open half-plane determined by l contains as many points of N as possible. Let t be the number of points of N in the open half-plane and let s = (n - 1) - t. We remark that s corresponds exactly to what is called "the depth of p_1 " in [2]. Then the two open half-planes determined by any line containing p_1 contain at least s points of $N - \{p_1\}$. We use the notations s and t to express these minimum and maximum numbers through this paper. The next lemmas follow from the fact that no three points of N lie on any line. Proofs are omitted.

Lemma 2.1. The following statements hold.

(1) For any j with $s \le j \le t$, there is a (j, n - 1 - j)-separator of $N - \{p_1\}$.

(2) For any j with $s < j \le t$, there is a [j, n - 1 - j)-separator of $N - \{p_1\}$.

Note that s < j in (2) is the strict inequality.

Lemma 2.2. $s + 1 \le t$.

Let T be a tree rooted at r_1 . For each edge $uv \in E(T)$, u is called the *parent* of v and v a child of u if u is closer than v to r_1 . For any vertex $u \in V(T)$, let D(u) be the set consisting of u and u's descendants. We denote the number of u's children as ch(u). Let $\{v_1, v_2, \ldots, v_{ch(u)}\}$ be the set of u's children, and let $T^i(u)$ denote the subtree of T induced by $D(v_i)$ for $i = 1, \ldots, ch(u)$. We say that v_i is the root of $T^i(u)$, and assume that the order of u's children is specified to satisfy the following condition:

$$|T^{1}(u)| \ge |T^{2}(u)|, \dots, |T^{ch(u)}(u)|,$$
(2.1)

where $|T^{i}(u)|$ denotes the number of vertices of $T^{i}(u)$. For convenience, we define $T^{0}(u)$ as the subtree of T induced by V(T) - D(u).

We call r_1 the first master, and recursively define the *j*th master as the first child of the (j-1)th master when $j \ge 2$. The sequence $\{|T^1(r_j)|: j = 1, 2, ...\}$ is a strictly monotone decreasing sequence. Thus let r_k be the master such that $|T^1(r_k)| < t$ and $|T^1(r_{k-1})| \ge t$ if $k \ge 2$. The following lemma holds for master r_k .

Lemma 2.3. $|T^0(r_k)| \le s + 1$.

Proof. If k = 1, then $|T^{0}(r_{1})| = 0 < 1 \le s + 1$. Assume that $k \ge 2$. Since V(T) is partitioned into $V(T^{0}(r_{k}))$ and $V(T^{1}(r_{k-1}))$ and $|T^{1}(r_{k-1})| \ge t$, $|T^{0}(r_{k})| = n - |T^{1}(r_{k-1})| \le (s + t + 1) - t = s + 1$.

3. Proof of the Existence of rt-Embeddings

In this section we prove the existence of rt-embeddings. We first deal with the case where p_1 is an extreme point of the convex hull conv(N) of N. Lemmas 3.1 and 3.2 have been discovered independently by Pach and Töröcsik [2]. Here we describe their algorithms and omit proofs.

Lemma 3.1 [2]. By using the following algorithm we can find an rt-embedding of T on N when p_1 is an extreme point of conv(N).

Algorithm 1 (see Fig. 1)

- Step 1. Let p_2 be an extreme point of conv(N) adjacent to p_1 , and create the total order τ with respect to the angle $\angle p_2 p_1 p$ for $p \in N \{p_1\}$.
- Step 2. According to the total order τ partition $N \{p_1\}$ into $ch(r_1)$ subsets $N_1, \ldots, N_{ch(r_1)}$ with $|N_i| = |T^i(r_1)|$, and let p'_i be the first point in N_i .
- Step 3. Construct recursively an rt-embedding of each subtree $T^{i}(r_{1})$ onto N_{i} , such that the image of the *i*th child of r_{1} is p'_{i} .

Fig. 1. Algorithm 1.

Fig. 2. Algorithm 2.

Lemma 3.2 [2]. Suppose that p_1 is an extreme point of conv(N) and $n \ge 2$. Let p_2 be an extreme point adjacent to p_1 . Then the following algorithm constructs an *rt-embedding* φ of *T* on *N* with $\varphi(v) = p_2$ for a specified vertex $v \in V(T) - \{r_1\}$.

Algorithm 2 (see Fig. 2)

- Step 1. If v is a child of r_1 , then use Algorithm 1 to find an rt-embedding of T on N, otherwise create the total order τ with respect to the angle $\angle p_1 p_2 p$ for $p \in N - \{p_2\}$.
- Step 2. Let N_0 be the first $|T_0(v)|$ points of N with respect to τ ; $N_1 = N N_0$; and let p_3 be an extreme point of $\operatorname{conv}(N_0)$ adjacent to p_1 and visible from p_2 .
- Step 3. Construct recursively an rt-embedding of $T^{0}(v)$ on N_{0} such that v's parent u is mapped to p_{3} ; use Algorithm 1 to construct an rt-embedding of T(v) on N_{1} such that v is mapped to p_{2}

In the rest of the paper we ignore trivial cases when $n \leq 2$. Recall that r_k is the master such that

$$[|T^{1}(r_{k})| < t]$$
 and $[|T^{1}(r_{k-1})| \ge t \text{ if } k \ge 2].$ (3.1)

Now we consider the following three cases for the master r_k .

Case 1: k = 1 (in other cases we assume $k \ge 2$).

Case 2: $h \in \{1, ..., ch(r_k)\}$ exists with $s \leq |T^1(r_k)| + \cdots + |T^h(r_k)| < t$.

Case 3: otherwise.

Note that Case 1 contains the case when p_1 is an extreme point of conv(N). Now

suppose that $k \ge 2$. From the definitions of s, t, and $T^{i}(r_{k}), \sum_{i=0}^{ch(r_{k})} |T^{i}(r_{k})| + 1 =$ n = s + t + 1 and $|T^{0}(r_{k})| \leq s + 1$ (Lemma 2.3). If $s \leq |T^{1}(r_{k})|$, then we have Case 2. On the other hand if $|T^{0}(r_{k})| = s + 1$, then $s \leq |T^{1}(r_{k})| + \cdots + |T^{ch(r_{k})}(r_{k})| = t - 1$ (the inequality follows from Lemma 2.2), and again we have Case 2. Thus, from Lemma 2.3 and assumptions (2.1) and (3.1), the following conditions hold in Case 3:

$$|T^{0}(r_{k})| \leq s \text{ and } |T^{i}(r_{k})| < s \text{ for } i = 1, 2, \dots, ch(r_{k}).$$
 (3.2)

We first prove that there is an rt-embedding in Cases 1 and 2. We add here that Pach and Töröcsik, by using a different partitioning of T, have given a similar proof for what is essentially Case 2 and part of Case 1 in [2].

Lemma 3.3. In Case 1 there is an rt-embedding of T on N.

Proof. We first consider the case when $s \leq |T^1(r_1)|$. From (1) of Lemma 2.1, we can use a clockwise ordering around p_1 to partition $N - N_1$ so that it satisfies

$$\operatorname{conv}(N_i \cup \{p_1\}) \cap \operatorname{conv}(N_j \cup \{p_1\}) = \{p_1\} \quad \text{if} \quad i \neq j$$
(3.3)

(see Fig. 3). Since p_1 is an extreme point of the convex hull of $N_i \cup p_1$ for each *i*, we can use Algorithm 1 to construct an rt-embedding of T on N.

If $|T^{1}(r_{1})| < s$, then $|T^{i}(r_{1})| < s$ for all i from assumption (2.1). Let p_{2} be any point of $N - \{p_1\}$. In the same manner as above, we partition N into $\{N_1, \ldots, N_{ch(r_i)}\}$ with $|N_i| = |T^i(r_1)|$ for $i = 1, \ldots, ch(r_1)$ according to a clockwise ordering on $N - \{p_1\}$ around p_1 beginning from p_2 (see Fig. 4). Since $|T^i(r_1)| < s$ for each i, the partition satisfies (3.3). Thus, we can construct an rt-embedding of T on N.

Lemma 3.4. In Case 2 there is an rt-embedding of T on N.

Proof. Let T^1 and T^0 denote the subtrees of T induced by

$$V(T^1(r_k)) \cup \cdots \cup V(T^h(r_k)) \cup \{r_k\}$$

Fig. 3. Case 1.

Fig. 5. Case 2.

and $V(T^{0}(r_{k})) \cup V(T^{h+1}(r_{k})) \cup \cdots \cup V(T^{ch(r_{k})}(r_{k})) \cup \{r_{k}\}$, respectively. Then E(T) is partitioned into $E(T^{1})$ and $E(T^{0})$. From (2) of Lemma 2.1, there is a $[|T^{1}|, n-1-|T^{1}|]$ -separator l of $N - \{p_{1}\}$ because $s < |T^{1}| \le t$. Suppose that p_{2} is the point distinct from p_{1} on l. Let N_{1} be the subset of N consisting of p_{2} and the $(|T^{1}|-1)$ points in an open half-plane determined by l, and let N_{1} be the points of N in the opposite closed half-plane (see Fig. 5). Then $|N_{0}| = |T^{0}|, |N_{1}| = |T^{1}|,$ and $\operatorname{conv}(N_{0}) \cap \operatorname{conv}(N_{1}) = \{p_{2}\}$. Since p_{2} is an extreme point of $\operatorname{conv}(N_{0})$ adjacent to p_{1} , we may construct an rt-embedding φ_{0} of T^{0} on N_{0} with $\varphi_{0}(r_{k}) = p_{2}$ by using Algorithm 2. On the other hand, by using Algorithm 1 we may construct an rt-embedding φ_{1} of T^{1} on N_{1} with $\varphi_{1}(r_{k}) = p_{2}$ because p_{2} is an extreme point of $\operatorname{conv}(N_{1})$. Then the bijection φ from V(T) to N defined by φ_{0} and φ_{1} is an rt-embedding of T on N.

Before discussing the proof for Case 3, we give some definitions and a lemma. In Case 3 the inequality $t \leq |T^{1}(r_{k})| + \cdots + |T^{ch(r_{k})}(r_{k})|$ holds; from (3.1) the right-hand side is greater than or equal to s and if it is less than t, then we would have Case 2. Therefore, there is an $h \in \{2, \ldots, ch(r_{k})\}$ such that

$$|T^{1}(r_{k})| + \dots + |T^{h-1}(r_{k})| < s < t \le |T^{1}(r_{k})| + \dots + |T^{h}(r_{k})|.$$
(3.4)

Let T^0 and T^1 be the subtrees of T induced by $V(T^0)$ and $V(T^1)$ defined as

$$V(T^{0}) = \{r_{k}\} \cup V(T^{h+1}(r_{k})) \cup \cdots \cup V(T^{ch(r_{k})}(r_{k})) \cup V(T^{0}(r_{k})),$$
$$V(T^{1}) = \{r_{k}\} \cup V(T^{1}(r_{k})) \cup \cdots \cup V(T^{h-1}(r_{k})).$$

From the above definitions, E(T) is partitioned into $E(T^0)$, $E(T^1)$, $E(T^h(r_k))$, and the edge $r_k r$, where r is the root of $T^h(r_k)$ (see Fig. 6). We obtain the next lemma.

Fig. 6. Decomposition of tree.

Lemma 3.5. If there are subsets M_0 , M_1 , M_h of N and points p, $q \in N$ such that

$$|M_0| = |T^0|, \qquad |M_1| = |T^1|, \qquad |M_h| = |T^h(r_k)|,$$
 (3.5)

$$\operatorname{conv}(M_0) \cap \operatorname{conv}(M_1) = \{p\},\tag{3.6}$$

$$\operatorname{conv}(M_0) \cap \operatorname{conv}(M_h) = \emptyset, \tag{3.7}$$

$$\operatorname{conv}(M_1) \cap \operatorname{conv}(M_h) = \emptyset, \tag{3.8}$$

$$\operatorname{conv}(M_0) \cap \overline{pq} = \{p\},\tag{3.9}$$

$$\operatorname{conv}(M_1) \cap \overline{pq} = \{p\},\tag{3.10}$$

$$\operatorname{conv}(M_h) \cap \overline{pq} = \{q\},\tag{3.11}$$

p and p_1 are extreme points of $conv(M_0)$ adjacent to each other, (3.12)

then there is an rt-embedding of T on N (see Fig. 7).

Proof. We may argue in the following way from the fact that N is in general position. From assumption (3.6), p is an extreme point of $conv(M_0)$, also of $conv(M_1)$. Then there are rt-embeddings φ_0 of T^0 on M_0 and φ_1 of T^1 on M_1 with $\varphi_0(r_k) = \varphi_1(r_k) = p$, by Lemmas 3.1 and 3.2 and by assumptions (3.5) and (3.12). Since q is an extreme point of $conv(M_h)$ from (3.11), an rt-embedding φ_h of $T^h(r_k)$ on M_h exists with $\varphi_h(r) = q$ where r is the root of $T^h(r_k)$, by Lemma 3.1 and assumption (3.5). Then the bijection from V(T) to N defined by φ_0 , φ_1 , and φ_h is an rt-embedding of T on N by assumptions (3.6)–(3.11).

٦

In order to prove the existence of rt-embeddings, it is enough to show that N can be distributed so that all the conditions in the above lemma hold.

We select any point p_2 from $N - \{p_1\}$ so that the line $l(p_1p_2)$ passing through p_1 and p_2 is an [s + 1, t - 1)-separator. Without loss of generality, assume that p_2 is directly above p_1 and that the right-hand side of the line belongs to s points of N. Let τ be a clockwise ordering on $N - \{p_1\}$ around p_1 beginning from p_2 . According to this total order τ , we can partition $N - \{p_1, p_2\}$ into three subsets $\{N_1, N_h, N_0\}$ such that $|N_1| = |T^1| - 1$, $|N_h| = |T^h(r_k)|$, and $|N_0| = |T^0| - 2$ because $|T^1| + |T^h(r_k)| + |T^0| = n + 1$. Let $M_0 = N_0 \cup \{p_1, p_2\}$, $M_1 = N_1 \cup \{p_2\}$, and $M_h = N_h$. Then (3.5) holds for M_0 , M_1 , and M_h . We write the first and last points of N_h with respect to τ as p_3 and p_4 , respectively. From (3.2) and (3.4), angles $\angle p_2 p_1 p_3$, $\angle p_2 p_1 p_4$, and $\angle p_3 p_1 p_4$ are less than π . More precisely, the following relations hold:

$$p_{2} \in (l^{+}(p_{1}p_{3};p_{2}) \cap l^{+}(p_{1}p_{4};p_{2})),$$

$$p_{3} \in (l^{-}(p_{1}p_{2};p_{4}) \cap l^{-}(p_{1}p_{3};p_{2})),$$

$$p_{4} \in (l^{+}(p_{1}p_{2};p_{4}) \cap l^{-}(p_{1}p_{3};p_{2})),$$

$$M_{0} \subset (\bar{l}^{+}(p_{1}p_{2};p_{4}) \cap \bar{l}^{-}(p_{1}p_{3};p_{2})) - \{p_{4}\},$$

$$M_{1} \subset (\bar{l}^{-}(p_{1}p_{2};p_{4}) \cap \bar{l}^{+}(p_{1}p_{3};p_{2})) - \{p_{1},p_{3}\},$$

$$M_{h} \subset (\bar{l}^{-}(p_{1}p_{3};p_{2}) \cap \bar{l}^{-}(p_{1}p_{4};p_{2})) - \{p_{1}\}.$$
(3.13)

Here, for distinct points $p, q, r \in N$, we write the closed (or open) half-plane determined by the line l(pq) including r as $\overline{l}^+(pq; r)$ (or $l^+(pq; r)$) and the opposite closed (or open) half-plane as $\overline{l}^-(pq; r)$ (or $l^-(pq; r)$). From (3.13), it follows that conditions (3.6)–(3.9) and condition (3.12) hold by setting $p = p_2$ and $q = p_3$. The definition of p_3 implies (3.11). Thus the sets M_0 , M_1 , M_h and the points p_2 , p_3 satisfy all the conditions in Lemma 3.5 other than (3.10). When these do not satisfy (3.10), they will be improved to do so.

Let q_2 be the extreme point of $conv(M_1)$ which is next to p_2 with respect to the counterclockwise ordering on the extreme points of $conv(M_1)$. We consider three subcases of Case 3.

Case 3.1: $p_3 \in l^+(p_2q_2; p_1)$ (Fig. 8).

Case 3.2: $p_3 \in l^-(p_2q_2; p_1)$ and $q_2 \in l^-(p_1p_4; p_2)$ (Fig. 9).

Case 3.3: $p_3 \in l^-(p_2q_2; p_1)$ and $q_2 \in l^+(p_1p_4; p_2)$ (Fig. 10).

We show the existence of an rt-embedding of T on N in each case.

Lemma 3.6. In Case 3.1 there is an rt-embedding of T on N.

Proof. From the definition of q_2 , $M_1 \in \overline{l}(p_2 q_2; p_1)$. The assumption of Case 3.1 implies (3.10). From the above discussion, the assertion follows from Lemma 3.5.

Lemma 3.7. In Case 3.2 there is an rt-embedding of T on N.

Proof. Figures 11 and 12 may help the reader to understand this proof. In this case M_1 , p_2 , and p_3 do not satisfy (3.10). Suppose that p is the point of $(M_1 \cup M_h) - \{q_2\}$ which is the $|M_1|$ th point among $(M_1 \cup M_h) - \{q_2\}$ with respect to the total order determined by angles $\angle p_2 q_2 q$ for $q \in (M_1 \cup M_h) - \{q_2\}$. Let M'_1 be the set of the first $|M_1|$ points of $(M_1 \cup M_h) - \{q_2\}$ and let $M'_h = (M_1 \cup M_h) - M'_1$.

Roughly speaking, the plane is partitioned into four convex regions: the triangle $\Delta p_1 p_2 q_2$, above the polygonal line $p_4 p_1 p_2$, below the polygonal line $p_4 p_1 q_2 p$, and the rest. The last three unbounded regions include M_0 , M'_h , and M'_1 , respectively. More precisely, the following relations hold:

$$\begin{split} \overline{p_2 q_2} &\subset (\bar{l}^-(p_1 p_2; p_4)) &\cap \bar{l}^+(p_1 q_2; p_2)), \\ M_0 &\subset (\bar{l}^+(p_1 p_2; p_4) \cap \bar{l}^+(p_1 p_4; p_2)) &) &- \{p_4\}, \\ M_1' &\subset (\bar{l}^-(p_1 p_2; p_4)) &\cap \bar{l}^+(q_2 p; p_2) &\cap \bar{l}^-(p_2 q_2; p_1)) &) - \{p_1, q_2\}, \\ M_k' &\subset (\bar{l}^-(p_1 p_4; p_2) \cap \bar{l}^-(q_2 p; p_2)) &\cap \bar{l}^-(p_1 q_2; p_2)) - \{p_1, p\}. \end{split}$$

Fig. 11. Case 3.2.

Fig. 12. New partition: M'_1 and M'_h .

Hence M_0 , M'_1 , M'_h , p_2 , and q_2 satisfy conditions (3.5)-(3.12). By Lemma 3.5, there is an rt-embedding of T on N.

In the rest of the proof we prove the above relations. Since $M_1 \cup \{p_3\} \subset \overline{l}^-(p_1p_2; p_4) \cap \overline{l}^-(p_2q_2; p_1)$, $M'_1 \subset \overline{l}^-(p_1p_2; p_4) \cap \overline{l}^-(p_2q_2; p_1) \cap \overline{l}^+(q_2p; p_2)$ and $p \in l^-(p_2q_2; p_1)$. The assumption that $q_2 \in l^-(p_1p_4; p_2)$ and the fact that $q_2 \in l^+(p_1p_3; p_2)$ imply that $M_h \subset l^-(p_1q_2; p_2) \cap \overline{l}^-(p_1p_4; p_2)$. Then $p \in l^-(p_1q_2; p_2)$ because $|(M_1 \cup M_h) \cap l^+(p_1q_2; p_2)| < |M_1|$. Since $p \in l^-(p_1q_2; p_2) \cap l^-(p_2q_2; p_1)$, $p_1 \in l^-(q_2p; p_2)$ holds. From the definition of M'_h ,

$$M'_h \subset \bar{l}^-(p_1q_2; p_2) \cap \bar{l}^-(p_1p_4; p_2) \cap \bar{l}^-(q_2p; p_2)$$

because $M_h \subset l^-(p_1q_2; p_2) \cap \overline{l}^-(p_1p_4; p_2)$ and $p_1 \in l^-(q_2p; p_2)$. To summarize the discussion, the above relations can be shown.

Lemma 3.8. In Case 3.3 there is an rt-embedding of T on N.

Proof. We first modify the sets M_0 and M_1 (see Figs. 13 and 14). Now we consider the counterclockwise sequence σ of extreme points of $\operatorname{conv}(M_1)$ beginning from p_2 . Since $|M_h| < s$, there is at least one extreme point of $\operatorname{conv}(M_1)$ in $l^-(p_1p_4; p_2)$. Let q'_3 be the first point in σ with $q'_3 \in l^-(p_1p_4; p_2)$, and let q'_2 be the previous point of q'_3 in σ . Suppose that τ is the clockwise ordering on $(M_0 \cup M_1) - \{q'_2\}$ around q'_2 beginning from p_1 . Let M'_0 be the set which consists of q'_2 and the first $(|M_0| - 1)$ points of $(M_0 \cup M_1) - \{q'_2\}$ with respect to τ , and let M'_1 be the set consisting of q'_2 and the last $(|M_1| - 1)$ points with respect to τ . Then $M'_0 \cup M'_1 = M_0 \cup M_1$ and the first point p' among M'_1 is the $|M_0|$ th point among $(M_0 \cup M_1) - \{q'_2\}$. As in Fig. 14, M'_0 and M'_1 are included in two convex regions: the left-hand side of the polygonal line $p'q'_2p_1p_4$ and the right-hand side of the polygonal line $p'q'_2q'_3$, respectively. We first prove this.

Fig. 13. Case 3.3.

Fig. 14. New partition: M'_0 and M'_1 .

The point q'_2 is distinct from p_2 because of the assumption of Case 3.3, that is, $q'_2 \in l^-(p_1p_2; p_4)$. Furthermore, q'_2 belongs to $l^+(p_1p_4; p_2)$ and to $l^+(p_1p_3; p_2)$. This implies $\overline{q'_2p_3} \in \overline{l}^-(p_1q'_2; p_4) \cap \overline{l}^+(p_1p_3; p_2)$. The fact that

$$q'_2 \in l^+(p_1p_4; p_2) \cap l^-(p_1p_2; p_4)$$

implies $M_0 \subset \bar{l}^+(p_1p_4; p_2) \cap \bar{l}^+(p_1q'_2; p_4)$. Since $\bar{l}^+(p_1p_4; p_2) \cap \bar{l}^+(p_1q'_2; p_4)$ contains at least $|M_0|$ points of $(M_0 \cup M_1) - \{q'_2\}$, $p' \in l^+(p_1q'_2; p_4)$ and $M'_0 \subset \bar{l}^+(p_1p_4; p_2) \cap \bar{l}^+(p_1q'_2; p_4) \cap \bar{l}^+(q'_2p'; p_1)$. For the previous point q'_1 of q'_2 in σ , the open half-plane $l^+(q'_2q'_1; p_1)$ does not contain any point of M_1 , particularly, does not contain p_2 . Then $\bar{l}^+(p_1q'_2; p_4) \cap l^+(q'_2q'_1; p_1)$ contains at most $(|M_0| - 1)$ points of $(M_0 \cup M_1) - \{q'_2\}$. Hence p' belongs to $\bar{l}^-(q'_2q'_1; p_1)$. The angle $\angle p'q'_2q'_3$ is less than π . Thus $M'_1 \subset \bar{l}^-(q'_2p'; p_1) \cap \bar{l}^-(q'_2q'_3; p_1)$.

We consider two cases: the former (Case 3.3(a)) assumes $M_h \subset l^+(q'_2q'_3; p_1)$ and the latter (Case 3.3(b)) assumes $M_h \not\subset l^+(q'_2q'_3; p_1)$.

Case 3.3(a). The above discussion says that

$$\begin{split} \overline{q'_2 p_3} &\subset (& \overline{l}^+(q'_2 q'_3; p_1) \cap \overline{l}^-(p_1 q'_2; p_4) \cap \overline{l}^+(p_1 p_3; p_2)), \\ M'_0 &\subset (\overline{l}^+(p_1 p_4; p_2) \cap \overline{l}^+(q'_2 p'; p_1) & \cap \overline{l}^-(p'_1 q'_2; p_4) &) - \{p_4, p'\}, \\ M'_1 &\subset (& \overline{l}^-(q'_2 p'; p_1) \cap \overline{l}^-(q'_2 q'_3; p_1) &), \\ M_h &\subset (\overline{l}^-(p_1 p_4; p_2) & \cap l^+(q'_2 q'_3; p_1) & \cap \overline{l}^-(p_1 p_3; p_2)) - \{p_1\}. \end{split}$$

These relations guarantee that M'_0 , M'_1 , M_h , q'_2 , and p_3 satisfy all conditions in Lemma 3.5.

Case 3.3(b). In this case there is an instance such that M'_0 , M'_1 , M_h , q'_2 , and p_3 satisfy all the conditions in Lemma 3.5. However, we modify M'_1 and M_h in order that all the conditions in Lemma 3.5 hold (see Figs. 15 and 16). Let p'' be the $|M'_1|$ th

61

point among $(M'_1 \cup M_h) - \{q'_3\}$ with respect to the clockwise ordering τ' on $(M'_1 \cup M_h) - \{q'_3\}$ around q'_3 beginning from q'_2 . Let M''_1 be the first $|M'_1|$ points among $(M'_1 \cup M_h) - \{q'_3\}$ with respect to τ' and let $M''_h = (M'_1 \cup M_h) - M''_1$. The set M''_h contains q'_3 . Then the plane is partitioned into four convex regions: the triangle $\Delta p_1 q'_2 q'_3$, the left-hand side of the polygonal line $p'q'_2 p_1 p_4$, the right-hand side of the polygonal line $p'q'_2 q'_3 p''$. The last three unbounded regions include M'_0 , M''_1 , and M''_h , respectively (see Fig. 16). We prove this fact below.

Since $q'_3 \in l^-(p_1p_4; p_2) \cap l^+(p_1p_3; p_2)$, $M_h \subset l^-(p_1q'_3; q'_2)$. Then $p'' \in l^-(p_1q'_3; q'_2)$ because $|(M'_1 \cup M_h) \cap l^+(p_1q'_3; q'_2)| < |M'_1|$. Since

$$M_h \subset \bar{l}^-(p_1p_4; p_2) \cap \bar{l}^-(p_1q'_3; q'_2)$$

and $p'' \in l^{-}(p_1q'_3; q'_2)$, the definition of M''_h implies

$$M_h'' \subset \bar{l}^-(p_1p_4; p_2) \cap \bar{l}^-(p_1q_3; q_2) \cap \bar{l}^+(q_3'p''; p_1).$$

From the assumption of Case 3.3(b), $\overline{l}(q'_2q'_3; p_1)$ contains at least $(|M'_1| + 1)$ points of $M'_1 \cup M_h$. Then $p'' \in \overline{l}(q'_2q'_3; p_1)$ and

$$M_1'' \subset \overline{l}^-(q_2'p'; p_1) \cap \overline{l}^-(q_2'q_3'; p_1) \cap \overline{l}^-(q_3'p''; p_1).$$

The above discussion says that

$$\begin{split} \overline{q'_2 q'_3} &\subset (& \overline{l}^-(p_1 q'_2; p_4) \cap \overline{l}^+(q'_2 q'_3; p_1) \cap \overline{l}^+(p_1 q'_3; q'_2)), \\ M'_0 &\subset (\overline{l}^+(p_1 p_4; p_2) \cap \overline{l}^+(q'_2 p'; p_1) & \cap \overline{l}^+(p_1 q'_2; p_4) &) - \{p_4, p'\}, \\ M''_1 &\subset (& \overline{l}^-(q'_2 p'; p_1) \cap \overline{l}^-(q'_3 p''; p_1) & \cap \overline{l}^-(q'_2 q'_3; p_1) &) - \{q'_3\}, \\ M''_h &\subset (\overline{l}^-(p_1 p_4; p_2) & \cap \overline{l}^+(q'_3 p''; p_1) & \cap \overline{l}^-(p_1 q'_3; q'_2) - \{p_1, p''\}. \end{split}$$

Then M'_0 , M''_1 , M''_h , q'_2 , and q'_3 satisfy conditions (3.5)-(3.12).

Lemmas 3.3, 3.4, 3.6, 3.7, and 3.8 indicate the existence of rt-embeddings of any rooted tree with n vertices on any set of n points in general position in the plane. An rt-embedding can be constructed of a given rooted tree on any given set of n points. Moreover, from the discussion of this paper, we can do this in polynomial time with respect to n.

Theorem 3.9. Let T be any rooted tree with n vertices V(T) and let N be a set of n points in \mathbb{R}^2 . If no three points of N lie on any line, there is an rt-embedding of V(T) on N. Furthermore, some rt-embedding can be constructed in polynomial time with respect to n.

4. Complexity

In this section we discuss the time complexity of our algorithm for finding an rt-embedding. Our arguments are limited to overall results and we refer the reader to [4] and [1] for details. We assume that Algorithms 1 and 2 require f(n) and f'(n) times, respectively. These have been analyzed to require $O(n^2)$ time in [2].

First we must reconstruct T to satisfy condition (2.1) and enumerate the numbers s and t. By using the postorder traversal for trees, we can modify T in O(n)time. To find the numbers s and t, we first sort $N - \{p_1\}$ around p_1 in $O(n \log n)$ time. Then s and t can be found in O(n) time. O(n) time is also sufficient to find the master r_k satisfying (3.1), and to determine whether a given instance belongs to Case 1, 2, or 3. The procedure for Case 1 requires $O(n + \sum_{i=1}^{ch(r_1)} f(|T^i(r_1)| + 1))$ time because $N - \{p_1\}$ are already sorted around p_1 . In the same way, an rt-embedding is found in O(n + f(n) + f'(n)) time in Case 2. In Case 3 M_0 , M_1 , M_h , p_2 , p_3 , p_4 , and q_2 are enumerated in O(n) time. In constant time we can determine which among Cases 3.1, 3.2, and 3.3 holds. In Case 3.1 the time complexity is O(2f(n) + f'(n)). In Case 3.2 we can enumerate M'_1 and M'_h by selecting the $|M_1|$ th point p in linear time, and, hence, an rt-embedding is found in O(n + 2f(n) + f'(n)) time. In Case 3.3 the sequence σ of extreme points of $conv(M_1)$ is found in linear time by using the incremental method and the clockwise ordering on M_1 around p_1 . In the same way as Case 3.2, M'_0 , M'_1 , and p' are found in linear time, and then M_1'' , M_h'' , and p'' are also found in linear time in Case 3.3(b). Hence an rt-embedding is found in O(n + 2f(n) + f'(n)) time in Case 3.3. To summarize the above discussion, the time complexity of our algorithm is $O(\max\{n \log n, \sum_{i=1}^{ch(r_1)} f(|T^i(r_1)| + 1), f(n), f'(n)\})$. Hence the time complexity of our algorithm is $O(n^2)$, and obviously the space complexity is O(n). We remark that any speedup in the computation when p_1 is an extreme point would immediately shorten the overall computation time.

Acknowledgments

We would like to thank Professor Imre Bárány for his kind advice, and the anonymous referee whose helpful comments improved the presentation of this paper.

References

- 1. Edelsbrunner, H. (1987), Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin.
- Pach, J., and Töröcsik, J. (1993), Layout of rooted trees, in *Planar Graphs* (W. T. Trotter, ed.), DIMACS Series, Vol. 9, American Mathematical Society, Providence, RI, pp. 131-137.
- Perles, M. (1990), Open problem proposed at the DIMACS Workshop on Arrangements, Rutgers University.
- Preparata, F. P., and Shamos, L. I. (1985), Computational Geometry—An Introduction, Springer-Verlag, New York.

Received February 28, 1992, and in revised form May 28, 1993.