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Abstract. In this paper we show that any rooted tree of n vertices can be straight-line 
embedded into any set S of n points in the plane in general position so that the image 
of the root is arbitrarily specified. 

1. Introduction 

Let T be a rooted tree with n vertices and let N be a set {p~, P2 . . . . .  Pn} of n points 
in general position in R 2, i.e., no three points lie on any line. We denote the root  
of T by r~, and the sets of  vertices and edges of T by V(T) and E(T), respectively. 
We consider a bijection tp from V(T) to N and define the image of each edge 
uv ~ E(T) with respect to tp by the line segment q~(u)q~(v). Perles [3] posed the 
following problem. 

Problem. Is there a bijection 9 from V(T) to N satisfying the following two 
condit ions? 

(C1) ~o(rl) = Pl. 
(C2) For  any two nonadjacent  edges ulv 1, u 2 u 2 E E(T), line segments q~(ui)q~(vl) 

and q~(u2)q~(v2) are disjoint. 
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Here  we call such a bijection a rooted tree embedding (or an rt-embedding) of T 
on N. 

It  has been proved  by Pach and T6r/Acsik [2] that  there is an r t -embedding 
when the number  of  the min imum points of  N in a closed half-plane containing 
p~ satisfies some specific conditions. In this paper  we prove the existence of 
r t -embeddings by giving an algori thm that  constructs  one, even when p~ does not 
satisfy these conditions. Fur thermore ,  our  a lgor i thm constructs an r t -embedding 
in polynomial  t ime with respect to n. 

2. Preliminaries 

Let N be an n-set {Pl . . . . .  Pn} in general posi t ion in R 2. We say that  a line l 
containing p~ is an (a, b)-separator of N -- {pl} if l does not contain any other 
point  of N, and splits N - {p~} into a points  and b points. We also say that  l is 
an [a, b)-separator of N - {Pl} if I contains Pl and one other point  p, and splits 
N -  {p~, p} into ( a -  1) points  and b points. Now suppose that  l is a line 
containing p~, such that  one open half-plane determined by l contains as m a n y  
points  of N as possible. Let t be the number  of points of N in the open half-plane 
and let s = (n - 1) - t. We remark  that  s corresponds  exactly to what  is called 
" the  depth of p~" in [2]. Then the two open half-planes determined by any line 
containing p~ contain at least s points  of N - {p~}. We use the nota t ions  s and t 
to express these min imum and m a x i m u m  numbers  through this paper.  The next 
l emmas  follow from the fact that  no three points  of N lie on any line. Proofs are 
omitted. 

Lemma 2.1. The fol lowing statements  hold. 

(1) For any j with s < j < t, there is a (j, n - 1 - j ) - s e p a r a t o r  o f  N - {Pl}. 
(2) For any j with s < j < t, there is a [j ,  n - 1 - j ) - s e p a r a t o r  o f  N - {Pl}. 

N o t e  that s < j in (2) is the strict inequality. 

Lemma2.2 .  s +  l_<t .  

Let T be a tree rooted at r r For  each edge uv E E(T), u is called the parent of 
v and v a child of u if u is closer than v to r r  F o r  any vertex u ~ V(T),  let D(u) be 
the set consisting of  u and u's descendants. We denote the number  of  u's children 
as ch(u). Let {v~, v2 . . . . .  vch(~)} be the set of  u's children, and let T~(u) denote the 
subtree of  T induced by D(vi) for i = 1 . . . . .  ch(u). We say that  v~ is the root  of T~(u), 
and assume that  the order  of u's children is specified to satisfy the following 
condition: 

] TI(u)[ > ]T2(u)] . . . . .  [ Tch(~)(U)[, (2.1) 

where ]Ti(u)] denotes the number  of  vertices of  Ti(u). F o r  convenience, we define 
T~ as the subtree of  T induced by  V(T)  - D(u). 



The Rooted Tree Embedding Problem into Points in the Plane 53 

We call r~ the f i rs t  master,  and recursively define the j th  master  as the first 
child of the (j - 1)th master  when j > 2. The sequence {]T~(rj) l : j  = 1, 2 . . . .  } is a 
strictly monotone  decreasing sequence. Thus let rk be the master such that 
] Tl(rk)] < t and [Tl(rk _ 1)f > t ifk > 2. The following lemma holds for master r k. 

Lemma 2.3. I T~ < s + 1. 

P r o o f  If k =  1, then ] T ~  l _ < s +  1. Assume that k > 2 .  Since V(T)  
is partit ioned into V(T~ and V(Tl ( rk_ l ) )  and I T l ( r k _ l ) l > t ,  IT~ 
n -- IT l ( rk_ l ) l  <_ (S + t + 1) -- t = S + 1. []  

3. Proof of the Existence of rt-Embeddings 

In this section we prove the existence of rt-embeddings. We first deal with the case 
where Pl is an extreme point of the convex hull cony(N) of N. Lemmas 3.1 and 
3.2 have been discovered independently by Pach and T6rScsik [-2]. Here we 
describe their algorithms and omit proofs. 

Lemma 3.1 [2]. B y  using the fo l lowing algorithm we can f ind an r t-embedding o f  
T on N when Px is an ex t reme  point o f c o n v ( N ) .  

Algorithm 1 (see Fig. 1) 

Step 1. Let P2 be an extreme point of conv(N) adjacent to p~, and create the 
total order z with respect to the angle / P 2 P l P  for p c  N - {Pl}- 

Step 2. According to the total order z partition N - {p~} into ch(rx) subsets 
N 1 . . . . .  Nch~r,) with IN~I = [Ti(rOI, and let p~ be the first point in N i. 

Step 3. Construct  recursively an rt-embedding of each subtree T~(rO onto N~, 
such that the image of the ith child of r~ is p'~. 

Fig. 1. Algorithm 1. 
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Fig. 2. Algorithm 2. 

Lemma 3.2 [2]. Suppose that  PI is an ex t reme  point  o f  c o n v ( N )  and n > 2. L e t  P2 
be an ex t reme  point  adjacent  to Pl. Then  the fo l lowin9 algori thm constructs  an 
rt-embeddin9 tp o f  T on N wi th  tp(v) = P2 fo r  a specified ver tex  v ~ V (T )  - {rl}. 

Algorithm 2 (see Fig. 2) 

Step 1. If v is a child of r 1, then use Algori thm 1 to find an rt-embedding of T 
on N, otherwise create the total order z with respect to the angle 
/--PlP2P for p e N  - {P2}. 

Step 2. Let No be the first [ T0(v)l points of  N with respect to z; N 1 = N -- No; 
and let P3 be an extreme point  of conv(No) adjacent to Pl and visible 
from P2. 

Step 3. Construct  recursively an r t-embedding of  T~ on No such that  v's 
parent u is mapped  to P3; use Algorithm 1 to construct an rt-embedding 
of T(v) on N~ such that v is mapped to P2 

In the rest of  the paper we ignore trivial cases when n < 2. Recall that  r k is the 
master such that 

[ITl(rk)t < t] and [[ T~(rk_ l)[ > t i fk  > 2]. (3.1) 

N o w  we consider the following three cases for the master rk. 

Case 1: k = 1 (in other cases we assume k > 2). 

Case 2:  h e {1 . . . . .  ch(rk) } ex i s t s  with s < [Tl(rk)l + ' " +  t Th(rk)[ < t. 

Case 3:  otherwise.  

Note  that  Case 1 contains the case when Pl is an extreme point  of conv(N). N o w  
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suppose that k > 2. F rom the definitions of s, t, and T~(rk), ~ ) 1 T i ( r k ) [  + 1 = 
n = s + t + 1 and IT~ < s + 1 (Lemma 2.3). I f s  < ITl(rk)[, then we have Case 
2. On the other hand if lT~ = s + 1, then s < I Tl(rk)[ + ' "  + I TChC'k)(rk)l = t -- 1 
(the inequality follows from Lemma 2.2), and again we have Case 2. Thus, from 
Lemma 2.3 and assumptions (2.1) and (3.1), the following conditions hold in Case 3: 

IT~ and IT i ( rk ) [<s  for i = 1 , 2  . . . . .  ch(rk). (3.2) 

We first prove that there is an rt-embedding in Cases 1 and 2. We add here that 
Pach and TiSr6csik, by using a different partitioning of T, have given a similar 
proof for what  is essentially Case 2 and part of Case 1 in [2]. 

Lemma 3.3. In Case 1 there is an r t -embeddmg o f  T on N. 

Proof  We first consider the case when s < [TX(r0l . From (1) of Lemma 2.1, we 
can use a clockwise ordering around Pl to partition N -- N1 so that it satisfies 

c o n v ( N i W { P l } ) C ~ c o n v ( N j u { p , } ) = { p , }  if i C j  (3.3) 

(see Fig. 3). Since Pl is an extreme point of the convex hull of Ni w Pl for each i, 
we can use Algorithm 1 to construct an rt-embedding of T on N. 

If I T~(rl)l < s, then I Ti(rl)l < s for all i from assumption (2.1). Let Pz be 
any point of N -  {pl}. In the same manner  as above, we partition N into 
{N 1 . . . . .  Nch(r,) } with [Nil ---[Ti(r l )[  for i =  1 . . . . .  ch(rO according to a clockwise 
ordering on N - {Pl} around Pl beginning from P2 (see Fig. 4). Since I Ti(rl)l < s 
for each i, the partition satisfies (3.3). Thus, we can construct an rt-embedding of 
T o n  N. [ ]  

Lemma 3.4. In  Case 2 there is an rt-embedding o f  T on N.  

Proof  Let T 1 and T O denote the subtrees of T induced by 

V(Tl(rk)) u . .. u V(Th(rk)) W {rk} 

Fig. 3. Case 1. Fig. 4. Case 1. 
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N1 

Fig. 5. Case 2. 

and V(T~ u V ( T  h+ l(r,)) u "" u V(TCh('*~(rk)) U {rk}, respectively. Then E(T)  
is par t i t ioned into E (T  t) and E(T~ F r o m  (2) of L e m m a  2.1, there is a 
[I T~I, n - 1 - IT  a I)-separator l o f N  - {Pl} because s < { Tl l  < t. Suppose that  P2 
is the point  distinct f rom pt on I. Let N1 be the subset of  N consisting of p2 and the 
(J Tl l  - i) points  in an open half-plane determined by l, and let N~ be the points 
of  N in the opposi te  closed half-plane (see Fig. 5). Then  INol = IT~ INxl = IT  t l, 
and conv(No) n conv(N1) = {P2}. Since P2 is an extreme point  of conv(No) adja- 
cent to p~, we may  construct  an r t -embedding qJo of T O on No with q~o(r,) = P2 
by using Algor i thm 2. O n  the other  hand, by using Algor i thm 1 we m a y  construct  
an r t -embedding ~Pl of T 1 on N~ with wt(r,) = P2 because P2 is an extreme point  
of  conv(N1). Then the bijection q~ from V(T)  to N defined by ~Po and q~t is an 
r t -embedding of T on N. []  

Before discussing the p roof  for Case 3, we give some definitions and a 
lemma. In Case 3 the inequality t < I T~(rk)l + ""  + I TCh('*~(rk)l holds; from 
(3.1) the r ight-hand side is greater  than or equal to s and if it is less than  t, 
then we would have Case 2. Therefore,  there is an hE {2 . . . . .  ch(rk)} such 
that  

I Tl(r,)l  + - ' -  + ITh-l (r , ) l  < s < t ~ I Tl(rk)l + "'" + I Th(rk)l. (3.4) 

Let  T O and T I be the subtrees of  T induced by V(T  ~ and V ( T  1) defined 
a s  

V ( T  ~ = {rk} u V(Th+ l(rk)) u ""  u V(T~h('*)(rk)) u V(T~ 

V ( T ' )  = {rk} u V(T'(rk)  ) u " "  u V (T  h- '(rk)). 

F r o m  the above  definitions, E(T) is par t i t ioned into E(T~ E(T1), E(Th(rk)), and 
the edge rkr, where r is the root  of Th(rk) (see Fig. 6). We obtain  the next 
lemma.  
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r k  

I 
' ~  . . . . . . . . . . . . . . . . .  . - J  

Fig. 6. Decomposition of tree. Fig. 7. Decomposition of points. 

Lemma 3.5. 
that 

I f  there are subsets Mo, M1, Mh of N and points p, q e N  such 

IMol = IT~ IMll  = ITl l ,  IMhl = I Th(rk)l, 

conv(Mo) c~ conv(M1) = {p}, 

conv(Mo) n conv(Mh) = ~Z~, 

conv(M 0 n conV(Mh) = ~Z~, 

m 

conv(Mo) n pq = {p}, 

cony(M,)  r~ p-q = {p}, 

conv(Mh) c~ pq = {q), 

p and Pl are extreme points ofconv(Mo) adjacent to each other, 

then there is an rt-embedding of T on N (see Fig. 7). 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Proof. We m a y  argue in the following way from the fact that  N is in general 
position. F r o m  assumpt ion  (3.6), p is an extreme point of conv(Mo), also of  
cony(M1). Then there are r t -embeddings tp o of T O on Mo and ~01 of T 1 on M1 
with tPo(rk) = t ,01 ( rk )  ---- p, by Lemmas  3.1 and 3.2 and by assumptions (3.5) and 
(3.12). Since q is an extreme point  of conV(Mh) f rom (3.11), an r t -embedding ~0 h of  
Th(rk) o n  Mh exists with gob(r) = q where r is the roo t  of Th(rk), by L e m m a  3.1 and 
assumption (3.5). Then the bijection f rom V(T) to N defined by tp o, ~o~, and ~0h is 
an r t -embedding of T on N by assumpt ions  (3.6)--(3.11). [ ]  
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In order  to prove  the existence of r t-embeddings,  it is enough to show that  N can 
be distr ibuted so that  all the condit ions in the above l emma hold. 

We select any point  P2 from N - {p~) so that  the line l(plp2) passing through 
p~ and P2 is an Is + 1, t - 1)-separator. Wi thout  loss of generality, assume that  
P2 is directly above p~ and that  the r ight-hand side of the line belongs to s points 
of N. Let z be a clockwise ordering on N - (Pl} a round  Pl beginning from PE- 
According to this total  order  z, we can part i t ion N -- {px, P2} into three subsets 
{Sl ,  Sh, So} such that  IN1[ = I T 1 [ -  1, IShl = [Th(rk)[, and ISol = [ T ~  2 
because I T ' I  + I Th(rk)l + I T~ = n + 1. Let M o = N O w {Pl, P2}, M~ = N 1 u {P2}, 
and M h = N h. Then (3.5) holds for Mo, M~, and M h. We write the first and last 
points  of N h with respect to z as P3 and P4, respectively. F rom (3.2) and (3.4), 
angles /P2PlP3, /P2P~P4, and /--P3PlP4 are less than n. More  precisely, the 
following relations hold: 

P2 e ( l+(plPa;P2) n l+(plpg;p2)), 

P3 e (l-(plP2; P4) c3 l-(plp4; P2)), 

P4 e (l+(plp2; P4) (3 l-(plp3; P2) ), 

M o c (I+(PlP2; P4) c~ I+(plP,~; P2)) 

M I ~ (I- (PlPE; P4) c3 I+ (PlP3; P2) ) 

M h c ( [-(PlPa;P2) n I-(PIP,*;P2)) 

- ( p , } ,  

- ( p , ,  p 3 } ,  

- ( p , } .  

(3.13) 

Here, for distinct points p, q, r e  N, we write the closed (or open) half-plane 
determined by the line l(pq) including r as l+(pq; r) (or l+(pq; r)) and the opposite 
closed (or open) half-plane as 1-(pq; r) (or l-(pq; r)). F r o m  (3.13), it follows that  
conditions (3.6)-(3.9) and condit ion (3.12) hold by setting p = P2 and q = Pa. The 
definition of Pa implies (3.11). Thus  the sets M o, M 1, M h and the points P2, P3 
satisfy all the conditions in L e m m a  3.5 other than (3.10). When these do not satisfy 
(3.10), they will be improved  to do so. 

Let q2 be the extreme point  of cony(M1) which is next to P2 with respect 
to the counterclockwise ordering on the extreme points  of conv(M~). We consider 
three subcases of Case 3. 

Case 3.1: Pa e l+(pEq2;  Pt) (Fig. 8). 

Case 3.2:P3 e l - ( p E q 2 ;  Pl) and q2 e l-(plp4; P2) (Fig. 9). 

Case 3.3: Pa e l-(p2q2; Pl) and q2 e l+(plp4; P2) (Fig. 10). 

We show the existence of an r t -embedding of  T on N in each case. 

Lemma 3.6. In Case 3.1 there is an rt-embedding of T on N. 

Proof. F r o m  the definition of q2, M~ e 1-(P2q2; Pl). The assumpt ion  of Case 3.1 
implies (3.10). F r o m  the above discussion, the assertion follows from L e m m a  3.5. 

[ ]  
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Fig. 8. Case 3.1. Fig. 9. Case 3.2. Fig. 10. Case 3.3. 

Lemma 3.7. In Case 3.2 there is an rt-embedding of T on N. 

Proof Figures 11 and 12 may help the reader to understand this proof�9 In this 
case M1, P2, and P3 do not satisfy (3.10). Suppose that p is the point of 
(MI u M h ) -  {q2} which is the ]M~lth point among (M1 w M h ) -  {q2} with 
respect to the total order determined by angles /P2q2q for q ~ (M 1 w Mh) -- {q2}. 
Let M'I be the set of the first IM~I points of (M~ w Mh) -- {q2} and let M~, = 
(M 1 w Mh) -- M'I. 

Roughly speaking, the plane is partitioned into four convex regions: the triangle 
Aplp2q2, above the polygonal line P4P~P2, below the polygonal line P4Plq2P, and 
the rest. The last three unbounded regions include M o, M~, and M'~, respectively. 
More precisely, the following relations hold: 

P2q2 c (1-(piP2; P4) n l+(P2q2; Pl) n [+(Plq2; P2)), 

Mo ~ (l+(PlP2; P4) n l+(plP4; P2) ) - {P4}, 

M' 1 c (7 - (p lp2 ;p4)  n i+(q2p;p2)  ~ l - ( p 2 q 2 ; p l )  ) - -  {Pl, q2}, 

M'h ~ ( 1-(plP4; P2) n l-(q2P; P2) C~ [-(P~q2; P2)) -- {Pl, P}" 

Fig. 11. Case 3.2. 

==~ 

Fig. 12. New partition: M' 1 and M' h. 
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Hence Mo, M'I, M;,, P2, and q2 satisfy conditions (3.5)-(3.12). By Lemma 3.5, there 
is an rt-embedding of T on N. 

In the rest of the proof we prove the above relations. Since MI u (P3} C 
1-(PlP2, P4) C~ l-(P2q2; Pl), M'I c 1-(PIP2, P4) c~ l-(P2q2, Pl) n l+(q2P, P2) and 
p�9 The assumption that q2�9 and the fact that 
q2 �9 I+(p~P3; P2) imply that Mh ~ l-(plq2, P2) ~ 1-(PxP4; P2). Then p �9 l-(plq2; P2) 
because [(M 1 u Mh) n l+(ptq2; P2)] < I Mtl. Since p �9 l-(pxq2; P2) n l-(p2q2; Pl), 
Pl �9 l-(q2P; P2) holds. From the definition of M~,, 

M~, c 1-(Plq2; P2) t~ 1-(piP4; P2) t~ 1-(q2P; P2) 

because Mh c l-(plq2; P2) n 1-(piP,,; P2) and Pl �9 l-(q2P; P2). To summarize the 
discussion, the above relations can be shown. [] 

[ , e m m a  3.8. In Case 3.3 there is an rt-embeddin9 of T on N. 

Proof We first modify the sets M o and M 1 (see Figs. 13 and 14). Now we consider 
the counterclockwise sequence tr of extreme points of conv(Mt) beginning from 
P2. Since IMnl < s, there is at least one extreme point of conv(M0 in l-(plp4; P2). 
Let q~ be the first point in a with q'3 �9 I-(plP4; P2), and let q~ be the previous point 
of q~ in tr. Suppose that T is the clockwise ordering on (M o w M 0  - {q~} around 
q~ beginning from Pl- Let M~ be the set which consists ofq~ and the first (IMol - 1) 
points of (M o u M1) - {q~} with respect to ~, and let M'I be the set consisting of 
q~ and the last ( [ M l l -  1) points with respect to z. Then Mb w M'I = Mo w  M 1 
and the first point p' among M'I is the IMotth point among (M o u M 0 - {q~}. 
As in Fig. 14, M~ and M'I are included in two convex regions: the left-hand side 
of the polygonal line P'q'2 PiP4 and the right-hand side of the polygonal line P'q'2 q'3, 
respectively. We first prove this. 

Fig. 13. Case 3.3. Fig. 14. New partition: M~ and M' r 
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The point q~ is distinct from P2 because of the assumption of Case 3.3, that is, 
q'z e l-(ptp2; P4). Furthermore,  q~ belongs to l+(plp4; P2) and to l+(p~pa; P2). This 
implies q'2P3 ~ 1-(p~q'2; P4) ~ [+(PlP3; P2). The fact that 

q'2 ~ I+(P~P4; P2) c3 I-(PxP2; P4) 

- +  i ~ implies Mo c I+(PlP4; P2) ~ l (Plq2, P4). Since i+(plp4; P2) -+ ' ' l (Plq2,P4) con- 
tains at least IMo] points of (MoU M ~ ) - { q ~ } ,  p'el+(plq'2;p4) and Mb c 
i+(PlP,~; P2) ~ l+(plq~; P4) c~ i+(q~p'; Pl). For  the previous point q] of q~ in a, the 

l (qzql,  P~) does not contain any point of M~, particularly, does open half-plane + ' " 
not contain P2. Then i+(plq~; P4) n l+(q'2q'~; pl) contains at most (1Mol - 1) points 
o f (M 0 u M1) - {q~}_. Hence p' belongs to i-(q'2q'~; PO. The angle /P'q'2q'3 is less 

- -  t t .  - - -  i ! . than n. Thus M'I c l (q2P, Pl) c~ l (q2q3, PO. 
We consider two cases: the former (Case 3.3(a)) assumes Mh c l+(q'2q'a; p~) and 

the latter (Case 3.3(b)) assumes M h ~ l+(q'~q'a; p~). 

Case 3.3(a). The above discussion says that 

q'2Pa c ( i+(q~q;; p~) n l-(p~q~; P4) c~ 7+(p~p3; P2)), 

M 0 c (i+(p~p4; P2) n T+(q~p'; pa) n i+(p~q~; P4) ) - {P4, P'}, 

M'~ ~ ( l-(q'2P' ; P~) n i-(q'2q'3; Pt) ), 

Mh = (/-(PAP,,; P2) ~ l+(q'2q'3; p~) n i-(P~p3; P2)) -- {P~}. 

These relations guarantee that M~, M'~, Mh, q~, and Pa satisfy all conditions in 
Lemma 3.5. 

Case 3.3(b). In this case there is an instance such that M~, M'I, Mh, q'2, and P3 
satisfy all the conditions in Lemma 3.5. However, we modify M'I and Mh in order 
that all the conditions in Lemma 3.5 hold (see Figs. 15 and 16). Let p" be the I M'I [th 

Fig. 15. Case 3.3(b). 

==~ 

Fig. 16. New partition: M~ and M~. 



62 Y, Ikebe, M. A. Perles, A. Tamura, and S. Tokunaga 

point among (M'I u M h ) -  {q~} with respect to the clockwise ordering z' on 
(M'I u Mh) -- {q~} around q~ beginning from q[. Let M'~ be the first IM'~I points 
among (M'I w Mh) -- {q~} with respect to z' and let ME = (M'I u Mh) -- M~. The 
set M~ contains q~. Then the plane is partitioned into four convex regions: the 
triangle Aplq'2q'3, the left-hand side of the polygonal line P'q'2P~P,,, the right-hand 
side of the polygonal line P'q'2q'3P", and below the polygonal line P,,P~q'3P". The 
last three unbounded regions include M~, M'~, and M~, respectively (see Fig. 16). 
We prove this fact below. 

Since q'a ~ I-(PlP,,; P2) ~ l+(p~P3; P2), Mh c l-(p~q'3; q'2). Then p" e l-(p~q'3; q'2) 
because I(M'I u Mh)c~ l+(plq'3; q~)l < [M'lt. Since 

M h  c 1-(PxP4; P2) c~ i-(plq'3; q'2) 

and p" e l-(plq'3; q~), the definition of ME implies 

t! - +  i t l .  
Mh c 1-(piP4; P2) ~ l (Pxq3, q'2) n l (q3P , Pl). 

�9 - - -  r t From the assumption of Case 3.3(b), l (q2q3;  P l )  contains at least (I M'II + 1) points 
of M'I u Mh. Then p" ~ l-(q'2q'a; Pl) and 

tv ~ - -  i i 1 - - -  ! v . - - -  ! pp .  
M1 c ~qEP ; Pl) n l (qEq3, Pl) n l (qaP , Pl). 

The above discussion says that 

q'2q'3 c ( [-(P,q'2; P4) c~ l+(q'2q'a; P,) r~ [+(Plq'a; q'2)), 

M'o ~ ([+ (PlP,~; P2) c~ i+(q'2P'; Pt) c~ [+(Plq'2; P4) ) - {P4, P'}, 

M'~ ~ ( l-(q'2P'; Pi) c~ i-(q'ap"; pl) c~/-(q'2 q'3; Pl) ) -- {q'3}' 

M'~ c ([-(PlP,*; P2) r~/+(q'aP"; Pl) c~ [-(P~q'3; q'2) -- {Pl, P'}. 

Then M~, M~, ME, q~, and q~ satisfy conditions (3.5)-(3.12). [] 

Lemmas 3.3, 3.4, 3.6, 3.7, and 3.8 indicate the existence of rt-embeddings of any 
rooted tree with n vertices on any set of n points in general position in the plane. 
An rt-embedding can be constructed of a given rooted tree on any given set of n 
points. Moreover, from the discussion of this paper, we can do this in polynomial 
time with respect to n. 

Theorem 3.9. Let T be any rooted tree with n vertices V(T) and let N be a set of 
n points in R 2. I f  no three points of  N lie on any line, there is an rt-embedding of 
V(T) on N. Furthermore, some rt-embedding can be constructed in polynomial time 
with respect to n. 
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4. Complexity 

In this section we discuss the time complexity of our algorithm for finding an 
rt-embedding. Our arguments are limited to overall results and we refer the reader 
to [4] and [1] for details. We assume that Algorithms 1 and 2 require f(n) and 
f'(n) times, respectively. These have been analyzed to require O(n 2) time in [2]. 

First we must reconstruct T to satisfy condition (2.1) and enumerate the 
numbers s and t. By using the postorder traversal for trees, we can modify T in O(n) 
time. To find the numbers s and t, we first sort N - {Pl} around Pl in O(n log n) 
time. Then s and t can be found in O(n) time. O(n) time is also sufficient to find 
the master r k satisfying (3.1), and to determine whether a given instance belongs 
to Case 1, 2, or 3. The procedure for  Case 1 requires O(n + ~ f(t  Ti(rl)l + 1)) 
time because N - ( p l }  are already sorted around pl. In the same way, an 
rt-embedding is found in O(n + f(n) + f'(n)) time in Case 2. In Case 3 M o, M l, 
Mh, P2, P3, P4, and q2 are enumerated in O(n) time. In constant time we can 
determine which among Cases 3.1, 3.2, and 3.3 holds. In Case 3.1 the time 
complexity is O(2f(n)+ f'(n)). In Case 3.2 we can enumerate M'I and M~, by 
selecting the [Mx Ith point p in linear time, and, hence, an rt-embedding is found 
in O(n + 2f(n)+ f'(n)) time. In Case 3.3 the sequence a of extreme points of 
conv(M~) is found in linear time by using the incremental method and the 
clockwise ordering on M 1 around Pl- In the same way as Case 3.2, M~, M'I, and 
p' are found in linear time, and then M'~, M~, and p" are also found in linear time 
in Case 3.3(b). Hence an rt-embedding is found in O(n + 2f(n) + f'(n)) time in Case 
3.3. To summarize the above discussion, the time complexity of our algorithm is 
O(max{n log n, ~ )  f([ Ti(rl)[ + 1), f(n), f'(n)}). Hence the time complexity of our 
algorithm is O(n2), and obviously the space complexity is O(n). We remark that 
any speedup in the computation when p~ is an extreme point would immediately 
shorten the overall computation time. 
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