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1. Introduction. There are three known q-analogs of classical Bessel func-

tions [6, 5] that are due to Jackson [7]. Following the notation of Ismail [6, 5],

these are designated by J(k)ν (z;q), k= 1,2,3.

The parameter q is taken to satisfy 0 < q < 1. The third Jackson q-Bessel

function J(3)ν (z;q) is defined as

J(3)ν (z;q) :=
(
qν+1;q

)
∞

(q;q)∞
zν1Φ1

[
0

qν+1 ;q,qz2

]
. (1.1)

This function is also known as the Hahn-Exton q-Bessel function [8, 9]. The

notation 1Φ1 in (1.1) is the standard in use for q-hypergeometric series [4]. The

function J(3)ν (z;q) satisfies a linear q-difference equation and it is known that

J(3)ν (z;q) has an infinite number of simple real zeros [8]. In this paper, we will

give lower and upper bounds for these zeros. The roots of these functions are

of interest for several reasons. Firstly, it is intrinsically interesting to provide

information about the roots of a function such as (1.1), which is an entire func-

tion of order zero. Also, the roots of J(2)ν (z;q) and J(3)ν (z;q) figure prominently

in expansions in terms of “q-Fourier series” [2, 3]. Lastly, if we denote the roots

of J(3)ν (z;q) by j(3)n,ν , then the mass points of the orthogonality measure for a q-

analog of Lommel polynomials are located at the points 1/j(3)n,ν . Furthermore,

although the function defined in (1.1) is of a simpler character than the re-

maining Jackson q-Bessel functions, it is hoped that the results given here for

J(3)ν (z;q) may be extended in the future to J(k)ν (z;q), k= 1,2.

2. The roots of J(3)ν (z;q). We prove two lemmas stating the existence of an

odd number of roots in a certain interval and then we prove that J(3)ν (z;q) has

only one root in such an interval.
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First we apply the following transformation to (1.1):

(c;q)∞1Φ1

[
0

c
;q,z

]
= (z;q)∞1Φ1

[
0

z
;q,c

]
. (2.1)

This produces

J(3)ν (z;q)=
(
qz2;q

)
∞

(q;q)∞
zν1Φ1

[
0

qz2 ;q,qν+1

]
. (2.2)

This last relation in a series form gives

J(3)ν (z;q)= zν

(q;q)∞

∞∑
k=0

(−1)k
(
qz2;q

)
∞(

qz2;q
)
k(q;q)k

qk(k+2ν+1)/2

= zν

(q;q)∞

∞∑
k=0

(−1)k
(
qk+1z2;q

)
∞

(q;q)k
qk(k+2ν+1)/2.

(2.3)

This representation will be critical in the proof of the next two lemmas.

Lemma 2.1. If qν+1<(1−q)2, then sgn[J(3)ν (q−m/2;q)]=(−1)m,m=1,2, . . . .

Proof. Set z = q−m/2 in (2.3) to obtain

(q;q)∞
q−mν/2

J(3)ν
(
q−m/2;q

)= ∞∑
k=0

(−1)k
(
q−m+k+1;q

)
∞

(q;q)k
qk(k+2ν+1)/2. (2.4)

Now observing that (q−m+k+1;q)∞ = 0 if k <m, the series on the right-hand

side of this last equality can be written as

∞∑
k=m

(−1)k
(
q−m+k+1;q

)
∞

(q;q)k
qk(k+2ν+1)/2. (2.5)

Setting j = k−m in this last series yields

(q;q)m
q−mν/2

J(3)ν
(
q−m/2;q

)= (−1)m
∞∑
j=0

(−1)jAj, (2.6)

where

Aj =
(
qj+1;q

)
∞

(q;q)j+m
q(j+m)(j+m+2ν+1)/2. (2.7)

Now we prove that Aj+1 < Aj . A calculation shows that Aj+1 < Aj is equiv-

alent to qm+j+ν+1 < (1−qm+j+1)(1−qj+1). But the left-hand side of this in-

equality is decreasing in m and j, while the right-hand side is increasing in m
and j. So we only need to verify the case j =m= 0, that is, qν+1 < (1−q)2, but
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this is the hypothesis of the lemma. Clearly, since Aj+1 <Aj , then

sgn(−1)m
∞∑
j=0

(−1)jAj = (−1)m. (2.8)

Lemma 2.1 states that there exist an odd number of roots in the interval

(q−m/2+1/2,q−m/2). The next lemma refines this statement.

Lemma 2.2. Let qν+1 < (1−q)2 and define

α(ν)m (q)= log
(
1−qm+ν/(1−qm))

logq
. (2.9)

Then

sgn
[
J(3)ν

(
q−m/2+α

(ν)
m (q)/2;q

)]
= (−1)m−1, m= 1,2, . . . . (2.10)

Proof. First observe that the function α(ν)m (q) is well defined because if

qν+1 < (1−q)2, then qν+1 < (1−q) and so, for positive integer m, qm+ν <
(1−qm), that is, 1−qm+ν/(1−qm) > 0. Being defined, it is clear that α(ν)m (q)
is positive because 1−qm+ν/(1−qm) < 1 holds for any q ∈ (0,1).

Observe also that

α(ν)m (q) < 1⇐⇒ log
(

1− qm+ν

1−qm
)
> logq⇐⇒ qm+ν < (1−q)(1−qm), (2.11)

which is true if qν+1 < (1−q)2. So, we have 0<α(ν)m (q) < 1.

Now, set z = q−m/2+α(ν)m (q)/2 in (2.3). The substitution gives

(q;q)∞
q−mν/2+να

(ν)
m (q)/2

J(3)ν
(
q−m/2+α

(ν)
m (q)/2;q

)

=
m−2∑
k=0

(−1)k

(
q−m+α

(ν)
m (q)+k+1;q

)
∞

(q;q)k
qk(k+2ν+1)/2

+
∞∑

k=m−1

(−1)k

(
q−m+α

(ν)
m (q)+k+1;q

)
∞

(q;q)k
qk(k+2ν+1)/2.

(2.12)

Denote the first sum above by S1 and the second by S2. If 0 ≤ k ≤m−2,

then 0 < α(ν)m (q) < 1 implies that sgn(q−m+α
(ν)
m (q)+k+1;q)∞ = (−1)m−k−1. Thus

sgnS1 = (−1)m−1, m= 1,2, . . . .
In S2, set j = k−m+1 to obtain

S2 = (−1)m−1
∞∑
j=0

(−1)jAj, (2.13)
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where

Aj =
(
qα

(ν)
m (q)+j ;q

)
∞

(q;q)j+m−1
q(j+m−1)(j+m+2ν)/2. (2.14)

A calculation shows that Aj+1 <Aj is reduced to qj+m+ν <(1−qα(ν)m (q)+j)(1−
qm+j), which holds because qm+ν = (1−qα(ν)m (q))(1−qm) and because the left-

hand side of the last inequality is decreasing in j and the right-hand side is

increasing in j. The infinite series is thus positive and therefore

sgnS2 = (−1)m−1 = sgnS1. (2.15)

From Lemmas 2.1 and 2.2, we know that J(3)ν (z;q) has an odd number of

roots in the interval (q−m/2+α
(ν)
m (q),q−m/2). The next theorem proves that there

is exactly one root in each such interval and that there are no other roots.

Theorem 2.3. If qν+1 < (1− q)2 and if w(ν)
k (q) are the positive roots of

J(3)ν (z;q), ordered increasingly in k, thenw(ν)
k (q)= q−k/2+εk(ν), with 0< εk(ν) <

α(ν)k (q), k= 1,2, . . . .

Proof. From the preceding lemmas, we know that J(3)ν (z;q) has roots of

the form w(ν)
k = q−k/2+εk , with 0< εk < α

(ν)
k (q).

To simplify the notation, we set

F(z)= (q;q)∞(
qν+1;q

)
∞zν

J(3)ν (z;q). (2.16)

We prove that the only positive roots of F(z) inside the disk |z|< q−m/2 are

w(ν)
k (q), k= 1,2, . . . ,m.

Suppose there are other roots ±λk, k= 1,2, . . . ,Pm; λk > 0. By Jensen’s theo-

rem [1], we can write

1
2π

∫ 2π

0
log

∣∣F(q−m/2eiθ)∣∣dθ
= 2

m∑
k=1

log
q−m/2

wk
+2

Pm∑
k=1

log
q−m/2

λk

= 2
m∑
k=1

logq−m/2+k/2−εk+2
Pm∑
k=1

log
q−m/2

λk

= −m
2+m
2

logq−2logq
m∑
k=1

εk+2
Pm∑
k=1

log
q−m/2

λk
.

(2.17)
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On the other hand, by the definition of the q-Bessel function, we have

F
(
q−m/2eiθ

)= ∞∑
k=0

(−1)k
qk(k+1)/2−mk(
qν+1;q

)
k(q;q)k

e2ikθ

= (−1)m
q(−m2+m)/2(

qν+1;q
)
m(q;q)m

e2imθ

×
∞∑

k=−m
(−1)k

qk(k+1)/2(
qm+ν+1;q

)
k
(
qm+1;q

)
k
e2ikθ.

(2.18)

Then we have

log
∣∣F(q−m/2eiθ)∣∣= −m2+m

2
logq− log

(
qν+1;q

)
m− log(q;q)m

+ log

∣∣∣∣∣∣
∞∑

k=−m
(−1)k

qk(k+1)/2(
qm+ν+1;q

)
k
(
qm+1;q

)
k
e2ikθ

∣∣∣∣∣∣
(2.19)

so that

lim
m→∞

1
2π

∫ 2π

0
log

∣∣F(q−m/2eiθ)∣∣dθ
= lim
m→∞

−m2+m
2

logq− log
(
qν+1;q

)
∞− log(q;q)∞

+ lim
m→∞

1
2π

∫ 2π

0
log

∣∣∣∣∣∣
∞∑

k=−m
(−1)k

qk(k+1)/2(
qm+ν+1;q

)
k
(
qm+1;q

)
k
e2ikθ

∣∣∣∣∣∣dθ.
(2.20)

Now observe that

lim
m→∞

∞∑
k=−m

(−1)k
qk(k+1)/2(

qm+ν+1;q
)
k
(
qm+1;q

)
k
e2ikθ =

∞∑
k=−∞

(−1)kqk(k+1)/2e2ikθ.

(2.21)

The above limit is uniform in θ. By the Jacobi triple product identity [4],

∞∑
k=−∞

(−q1/2e2iθ)k(q1/2)k2 = (q;qe2iθ ;e−2iθ ;q
)
∞. (2.22)
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Using the uniform convergence to interchange the limit and the integral,

lim
m→∞

1
2π

∫ 2π

0
log

∣∣∣∣∣∣
∞∑

k=−m
(−1)k

qk(k+1)/2(
qm+ν+1;q

)
k
(
qm+1;q

)
k
e2ikθ

∣∣∣∣∣∣dθ

= 1
2π

∫ 2π

0
log

∣∣(q;qe2iθ ;e−2iθ ;q
)
∞
∣∣dθ

= log(q;q)∞+ 1
2π

∫ 2π

0
log

∣∣(qe2iθ ;q
)
∞
∣∣dθ

+ 1
2π

∫ 2π

0
log

∣∣(e−2iθ ;q
)
∞
∣∣dθ

= log(q;q)∞+
∞∑
j=0

1
2π

∫ 2π

0
log

∣∣(1−qj+1e2iθ)
∞
∣∣dθ

+
∞∑
j=0

1
2π

∫ 2π

0
log

∣∣(1−qje−2iθ)
∞
∣∣dθ

= log(q;q)∞.

(2.23)

The integrals in the third equality above vanish because of the mean value

theorem for harmonic functions.

We have thus concluded that

lim
m→∞

1
2π

∫ 2π

0
log

∣∣F(q−m/2eiθ)∣∣dθ
= lim
m→∞

−m2+m
2

logq− log
(
qν+1;q

)
∞.

(2.24)

From (2.17), we can write

lim
m→∞


2

Pm∑
k=1

log
q−m/2

λk


− lim

m→∞


2logq

m∑
k=1

εk


=− log

(
qν+1;q

)
∞. (2.25)

But, as can be seen by the Taylor expansion of α(ν)k (q), εk =O(qk), and this

implies
∑∞
k=1 εk <∞.

Also

Pm∑
k=1

log
q−m/2

λk
> log

q−m/2

λ1
�→∞ as m �→∞. (2.26)

So the identity (2.25) can only hold if the first sum is empty, and the only

roots are thus ± w(ν)
k (q), k= 1,2, . . . .
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Remark 2.4. It follows from (2.25) that
∑∞
k=0 εk = log(qν+1;q)∞/2logq.

Remark 2.5. Observe that for fixed j, we can always choose m sufficiently

large so that

qm+j+ν+1 <
(
1−qm+j+1)(1−qj+1),

qj+m+ν <
(
1−qανm(q)+j)(1−qm+j). (2.27)

Thus, we have the asymptotic behaviour

wk � q−m/2 when m �→∞ (2.28)

without the restriction qν+1 < (1−q)2. In [5], Ismail conjectured that

(1) limm→∞qm/2w
(ν)
m (q)= 1,

(2) limm→∞w
(ν)
m+1(q2)/w(ν)

m (q2)= 1/q.

The asymptotic relation (2.28) establishes these conjectures.

Remark 2.6. Lemmas 2.1 and 2.2 and Theorem 2.3 state that the roots

w(ν)
k (q) satisfy the inequalities

q−m/2+α
(ν)
m (q) <w(ν)

k (q) < q−m/2. (2.29)

These bounds are quite accurate. This is evident if we estimate the length of

the interval containing the roots. A somewhat tedious calculation with Taylor

series shows that

q−m/2−q−m/2+α(ν)m (q) = qm/2+νO(1). (2.30)

Clearly, for fixed q satisfying the conditions of the theorem, the bounds be-

come increasingly accurate as either k or ν increases.
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