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ABSTRACT

The first all-sky survey for cosmic sources of extreme-ultraviolet radiation has been
carried out with the UK Wide Field Camera on ROSAT. A first reduction of the
survey data has yielded a catalogue of 383 relatively bright EUV sources, forming the
WEFC Bright Source Catalogue. This represents a 30-fold increase in the number of
astrophysical objects detected in the ~60-200 eV energy band and covers a flux
range, in each of the two survey bands, of more than 2000. A search of the (typically
~ 1-arcmin) error circles of the WFC sources, using a variety of catalogues and the
siMBAD data base, has identified probable optical counterparts of ~ 73 per cent,
including many active stars, white dwarf stars and a variety of other galactic and extra-
galactic objects. A follow-up programme of optical spectroscopy has since added
further identifications, but some 13 per cent of the EUV sources remain unidentified.
Details of the EUV source positions and count rates are given, together with
optical identifications where known. Considerations of survey completeness allow
source counts (log N-log S) to be derived for each survey band. It is found that the
log N-log S distributions are unusually flat for the white dwarf stars, but almost
Euclidean for the nearby main-sequence late-type stars. This is probably an effect of
local (= 100 pc) interstellar absorption, since the more (EUV ) luminous white dwarfs
are potentially detected at correspondingly greater distances than the late-type stars.
In addition, the sky distribution of identified white dwarfs is highly non-uniform, also
suggesting gross variations in the opacity of the interstellar medium within ~ 100 pc.
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1 INTRODUCTION

The rich potential of extreme-ultraviolet (EUV) astronomy
first became clear during the 1970s, with ultraviolet and
optical spectroscopy of bright stars showing that the opacity
of the local interstellar medium (ISM), at least in certain
directions, was much less than implied by a uniform, cold
ISM model (see Paresce 1984 for a review). Concurrently,
models were being developed in which the ISM consisted of
a quasi-isobaric network of hot and cold components, the
former perhaps tracing the occurrence of supernova
explosions in recent galactic history (e.g. McKee & Ostriker
1977). In particular, the view developed that the Solar system
sits in an extended, warm, tenuous region, or ‘local bubble’
(Innes & Hartquist 1984). Extending for over ~10 pc to
more than 100 pc, in different directions, this tenuous gas
would then explain the surprisingly low opacity of the local
ISM and, possibly, much of the diffuse EUV background
radiation, found to be remarkably intense in observations
made during the Apollo-Soyuz mission (Stern & Bowyer
1979). The Berkeley EUV telescope flown on that mission
also detected several discrete EUV sources, the discovery of
which essentially launched the subject of EUV astronomy
(Lampton et al. 1976; Margon et al. 1976, 1978; Haisch et
al. 1977).

The protracted lead-time of current space science
missions explains why it has taken so long to follow up the
early promise of EUV astronomy. This follow-up has now
begun, with the successful flight of the UK Wide Field
Camera (WFC) on the ROSAT spacecraft. The WFC carried
out a survey, covering 96 per cent of the sky, from 1990 July
30 to 1991 January 25, with the remainder being filled in
during 1991 August. The first comprehensive results from
an initial processing of these survey data are reported here.

2 THE ROSAT EUV SKY SURVEY

ROSAT was launched on a USAF Delta II rocket, on 1990
June 1, into a circular orbit at an altitude of 575 km, giving
an orbital period of order 95 min. The orbital inclination of
53° provides 5-6 spacecraft contacts (each of ~ 10 min) per
day with the ground station (at Weilheim near Munich) of the
German Space Operations Centre (GSOC), where
commanding and data reception are conducted. After an
initial check-out and calibration period, ROSAT started its
planned all-sky survey on July 30. This was scheduled to last
six months, but was cut short by ~2 weeks when spacecraft
attitude control was lost for a time on 1991 January 25. The
small gap which remained was filled in, at somewhat reduced
sensitivity, during 1991 August.

ROSAT carries both a German X-ray telescope (XRT,
Triimper et al. 1991), and a British EUV telescope, called
the Wide Field Camera (Sims et al. 1990). The latter was
designed and built by a consortium of five British research
groups: at Leicester University, Birmingham University,
Mullard Space Science Laboratory (part of University
College London), Imperial College London and the SERC’s
Rutherford Appleton Laboratory (RAL). The WFC has
three concentric, gold-plated, aluminium mirrors in a
Wolter-Schwarzschild type I configuration, giving a total on-
axis geometric area of 456 cm®. The focal-plane detector (of
which there are two) is a curved microchannel plate, with a

Csl photocathode and resistive plate readout. The field of
view is circular and 5° in diameter, with an angular resolution
of 1 arcmin (FWHM) at the centre of the field, falling off to
about 3 arcmin at the edge. Located between the mirrors and
focal-plane detector is a permanent magnet assembly, to
prevent ambient soft electrons from reaching the focal-plane
detector. The definitive WFC description, including in-orbit
performance and calibration data, is being published
separately (Wells et al., in preparation; Willingale et al., in
preparation).

During the all-sky survey, the sky was scanned by rotating
the ROSAT spacecraft on an axis, once per orbit, such that
its two telescopes always looked away from the Earth. The
resulting scan path was a series of great circles, passing over
both ecliptic poles and crossing the ecliptic plane at a fixed
angle to the Sun, nominally 90°+12°. Thus the scan path
advanced ~ 1° per day, thereby covering the entire sky in
approximately 6 months. Sources on the scan path could be
seen by the WFC for up to 80 s per orbit; those near the
ecliptic plane were scanned each orbit for 5 successive days,
this coverage increasing towards the ecliptic poles which
were scanned throughout the 6-month programme.

Since microchannel plates have little intrinsic spectral
resolution, a filter wheel was provided to define better the
wavebands covered in the WFC survey, two filters (known as
S1 and S2) being used on alternate days. The approximate
bandpass of the complete WFC (mirrors, filter and detector),
at 10 per cent of peak efficiency, is shown below for each
survey filter band. The boron coating was added to the S1
filter primarily to protect it from ambient atomic oxygen;
although, by reducing the WFC sensitivity to relatively hard
or strongly absorbed sources (e.g. cataclysmic variables or
active galactic nuclei) by suppressing the soft X-ray ‘leak’ at
<44 A, this coating also has the important advantage of
better defining the EUV transmission band of the S1 filter.

Filter Material Energy (eV)  Wavelength (A)
s1 C/Lexan/B  90-206 60-140
S2 Be/Lexan 62-110 110-200

The outcome of the ROSAT WFC sky survey was difficult
to predict before launch, the appearance of the sky in the
EUV band being essentially unknown at the depth antici-
pated to be reached with the WFC. Only a dozen EUV
sources had been catalogued prior to the ROSAT survey,
and the effects of interstellar absorption (and hence the
distance of the EUV ‘horizon’) were highly uncertain. Pre-
launch estimates suggested only that the WFC might detect
between 100 and several X 10° sources. Uncertainties in the
likely background rate were almost as large, since micro-
channel plates are also sensitive to charged particles and
both the incident particle fluxes and the effectiveness of the
WFC magnetic diverter were difficult to assess prior to
launch.

In the event, it turned out that total background rates, in
most parts of the ROSAT orbit, were of order ~10-20
count s™! across the whole WFC field, well below the
telemetry saturation limit of 200 count s~! and of the order
hoped for pre-launch (Pounds et al. 1991). Only a small
percentage of this count rate is from diffuse EUV radiation,
possibly from the local bubble (Lieu et al. 1992). Allowing
for losses during satellite passes through the horns of each
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auroral zone and the South Atlantic Anomaly, useful data
were collected for about 74 per cent of each day. An addi-
tional average loss of ~ 10 per cent occurred throughout the
survey, from a variety of minor spacecraft or WFC hardware
problems, service time, etc. The final effective survey expo-
sure, in each filter, ranged from ~ 1600 s near the ecliptic
equator to ~ 70000 s at the ecliptic poles (Fig. 1). Combined
with the favourable background rates, these exposures
promised a source detection limit at least a factor of 1000
below the flux of the archetypal EUV source, the hot white
dwarf HZ 43.

2.1 Survey data reduction and analysis

Survey data from the ROSAT WFC (and X-ray telescope)
were recorded in two on-board tape recorders and trans-
mitted to GSOC typically once per day. The position of each
event in the detector was encoded as two 9-bit numbers,
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while its location in the telemetry frame timed each event to
32 ms, sufficient to unfold the survey scanning motion
without significant loss of image resolution. Because of the
special significance of the ecliptic poles in the scanning
scheme, an ecliptic spherical polar coordinate grid was used
to form our EUV map of the sky. This was divided along
lines of ecliptic longitude and latitude, giving cells of dimen-
sions up to 2°x 2°. With fewer cells per longitude strip above
+60° latitude, to avoid oversampling the polar regions, a
total of 13560 cells was used to cover the sky in each spec-
tral band.

To form each sky map, the raw detector coordinates of
each event were first corrected for fixed non-linearities
arising in the detector readout and then transformed to the
ecliptic frame. The cell number of each event was computed,
together with its offsets in ecliptic coordinates from the
centre of its cell; by this means only 2 X 10 bits were needed
for a resolution of 7.5 arcsec. (It was decided, in advance, to
retain the raw detector coordinates of each event in case any

Figure 1. Exposure map of the sky survey in galactic coordinates for (a) the SI filter band and (b) the S2 filter band. Units are in seconds of time.
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detector hotspots arose, though fortunately none did.)
Linearized telescope frame coordinates were also retained to
allow selection of the appropriate point spread and
vignetting functions for each event. These sorted files then
required the following storage, amounting to 11 bytes per
event:

Raw detector X, Y 2 X 9 bits;
Linearized X, Y 2 X 8 bits;
Ecliptic X, Y offsets 2 % 10 bits;
Time-tag (32 ms) 32 bits.

Sorted events were accumulated in records of 1024 bytes.
As records became full they were written to a direct-access
file. The events from a single orbital scan covered 5° X 360°
but fell into fewer than 1000 cells, so the sorting could be
done in less than 2 Mbytes of memory. The sorted event files
were written to Exabyte tapes for further reduction.

Each day the chains of records for each cell on the
incoming data tape were copied to disc and inserted in the
corresponding chain in the reservoir file, and the links
updated. On completion of this merging process, it was
possible to identify cells which had just left the trailing edge
of the scan path and which were therefore fully exposed. For
all these areas of sky an image was formed in each spectral
band. The x and y coordinates of each event could be
computed by scaling the ecliptic offsets already present in
the event file. No further trigonometry was generally
required, the exceptions being a small guard-band around
the edge of each cell in which events were imported from
adjacent cells, and the areas around the polar caps in which
many cells had to be combined to form a square image. After
analysis was complete the records from all completed and
analysed cells could be extracted and archived to tape.

The point-source detection method used for this initial
(Bright Source) catalogue involved passing a circular sliding
box over the image and using a Poisson significance test. The

minimum required significance level was determined by
trials on simulated data, such that the eventual source list
would be unlikely to contain more than ~ 3 (i.e. 1 per cent)
false detections. In many cases, as seen later, sources were
independently detected in both filter bands. The background
count level was estimated initially with a technique involving
median filtering; when a possible point source was found the
local background was re-estimated from an annulus around
the source. An averaged point spread function (PSF) was
then fitted using a maximum likelihood technique to deter-
mine the source position. Source counts were evaluated from
a circular box, and corrected for the PSF fraction lying
outside the box. Positions of point sources could generally be
determined to a few tens of arcsec; these positions were then
cross-correlated with standard catalogues of sources in other
wavebands.

Each 2°X 2° image was also scanned visually, for defects
and extended sources (for which the point-source algorithm
is less sensitive). Apart from the Moon, which confused the
point-source detection algorithm at fortnightly intervals (!),
only two bright, extended EUV sources have been found in
the survey data, so far, coincident with the Vela and Cygnus
Loop supernova remnants.

3 THE BRIGHT SOURCE CATALOGUE (BSC)

Application of the rather conservative source detection
technique outlined in the previous section has yielded an
initial ROSAT WFC catalogue of 383 EUV sources. These
are displayed in Fig. 2, in an equal-area (Aitoff) projection of
the sky, in galactic coordinates. A discussion of the spatial
source distribution, which is clearly non-uniform, requires
allowance for variations in exposure and background, and is
deferred to Section 5.

Table 1 details this first all-sky catalogue of ROSAT EUV
sources, with equatorial coordinates (equinox J2000) in

Figure 2. Aitoff equal-area projections in galactic coordinates showing the locations of the EUV sources in the Bright Source Catalogue. The
size of each dot is proportional to the logarithm of the summed S1 and S2 count rates.
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Figure 3. Effective area of the Wide Field Camera as a function of photon energy in each survey band.

columns 1 and 2 and count rates in each filter band given in
columns 3-6. Count-rate errors are 10 on detections, while
upper limits (3 o) are indicated by (-) for the corresponding
survey filter. The sensitivity achieved in each EUV energy
band depends in detail on the exposure and background, as a
function of sky region, and a discussion of this is deferred to
Section 4. However, perusal of columns 3 and 5 shows a
dynamic range of source count rates of a factor ~2000 in
the S1 filter band, and ~ 3500 in the longer wavelength S2
band, a measure of the depth of the WFC sky survey. For
239 of the 383 sources, positive detections are recorded in
both filter bands, including a remarkably wide range in the
‘EUV colour’ (S1:S2 ratio).

Conversion of WFC count rates to incident flux is a
function of both the intrinsic source spectrum and line-
of-sight column. An idea of the flux levels represented by
the WFC/BSC sources may be given, for example, in terms
of an optically thin thermal plasma (Raymond & Smith
1977). Thus, for a plasma temperature T in the range
2X10°<T<6x10°K and for column density N,=10'
cm~2, 1 count s™! (S1 filter)=(3-5)x 107! erg cm~2 571,
effectively in the 90-200 eV energy band, and 1 count s™!
(S2 filter)=(2-5)x 107! erg cm~2? s~ !, effectively in the
60-110 eV band. The corresponding fluxes for N;=10"
cm~? are ~(5-7)x107 ' and ~(4-15)x10"!! erg cm™2
s~ ! respectively. In general, in making quantitative use of the
WEFC data, conversion from WFC count rate(s) to flux must
be carried out for any input spectrum, using the effective
area curves reproduced in Fig, 3.

Column 12 of Table 1 gives the 90 per cent error circle
radius for each source. This value includes an estimate of the
systematic error arising from telescope misalignment, star
tracker error, etc. Columns 7-11 give details of the possible
optical counterpart(s) of each EUV source, obtained from a
search of astronomical catalogues within the larger (99.9 per
cent) EUV source error circle. Details of the catalogues

searched are given in Appendix B. 279 ( ~ 73 per cent) of the
listed EUV sources were thus found to have a probable
identification. In 92 cases, the catalogue search yielded more
than one possible counterpart, and that considered most
likely is listed first.! The possible optical counterparts, over-
whelmingly galactic in nature, are found to cover a wide
range of stellar type and magnitude, with active late-type
stars and white dwarfs being major subgroups, as predicted
before the launch of ROSAT (e.g. Barstow & Willingale
1988).

A follow-up programme of optical spectroscopy has been
undertaken since the completion of the ROSAT survey, in an
attempt to identify the EUV sources without an obvious
counterpart, and also to check a sample of those for which a
catalogue identification is indicated. In the latter group, for
example, the optical spectrum of an ‘identified’ star is
examined for activity compatible with it being a bright EUV
source. Preliminary results from this further optical work are
also included in Table 1, where column 7 lists a ‘new ID’ and
the subsequent columns give information on the proposed
optical counterpart. A more complete description of the
WEFC optical follow-up programme and results thereby

'The likelihood of a particular EUV counterpart is (necessarily)
based on current knowledge of those objects that are (potentially)
strong EUV emitters. Thus coincidences with hot white dwarfs,
central stars of planetary nebulae, active stars, emission-line stars,
CVs, X-ray binaries and active galaxies, in directions of low inter-
stellar hydrogen column density, were considered most probable
identifications, followed by nearby or blue stars, with nondescript
stars/galaxies being considered least likely. The probability of
chance coincidences with the above categories of ‘likely’ EUV
sources is sufficiently small for us to be confident that they are valid
identifications in most cases. For ambiguous cases, where there is
more than one ‘star’ in the WFC error circle, the optically brightest
is generally listed first, with late-type stars considered more likely
counterparts than early types.
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Figure 4. (a) Distribution of optical counterparts in the Bright Source Catalogue. (b) Distribution of identifications in the main subgroup of

cool stars.

obtained is being prepared for separate publication (Mason
et al., in preparation). Fig. 4 illustrates the distribution, by
optical type, of all the ROSAT EUV sources for which a
probable identification now exists, now totalling 337 (or 87
per cent of the sources in the Bright Source Catalogue). Brief
notes follow on each category of EUV source.

Late-type stars. The largest single group of optical
counterparts is active stars, of spectral type F-M, with 181
identifications to date (~85 per cent being on the main
sequence, i.e. luminosity class V). Detailed appraisal of the
wide variety of EUV sources in this group is beyond the
scope of this paper; however, a few general observations can
be made. We note, first of all, the markedly different spread

in spectral type, compared with pre-launch estimates. Before
launch, Pye & McHardy (1988) and Vedder et al. (1991)
predicted numbers of main-sequence stars that should have
been detected in the S1 filter band (to a flux level of =~ 3 uly
at ~120 ev) of ~25-40 F stars, ~25 G stars, ~20-40 K
stars and ~ 150-400 M stars. In contrast, to an equivalent
count-rate limit of 0.015 S1 count s™!, the actual catalogue
breakdown for main-sequence identifications is 12 F, 30 G,
25 K, 22 M, with, in addition, 30 RS CVn binaries. To
compare these observed numbers with predictions, the
former must first be corrected for the effects of incomplete
sky coverage (see Section 4), yielding the following corrected
‘detections” 20 F, 50 G, 40 K, 35 M, 45 RS CVn. Hence the
predicted and ‘detected’ numbers agree remarkably well for
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the F, G and K stars, but the predicted M-star numbers
remain too high, by a factor ~4-10. A more detailed
analysis (Pye et al., in preparation) confirms these results, but
also indicates two possible sources of the M-star
discrepancy. First, the effect of varying the effective coronal
temperature (poorly known pre-ROSAT) between 1 x 106
and 1 x 107 K is to change the predicted number of stars (at
any given count-rate level) by a factor ~ 5 (due to the change
in conversion factor between flux and count rate). Secondly,
the published predictions have all been based on scaling
from the Einstein X-ray stellar luminosity functions (Rosner,
Golub & Vaiana 1985). For the F-M main-sequence stars
these functions are all rather ‘flat’, i.e. source counts
predicted from them will be most heavily influenced by the
high-luminosity ‘tails’, which are rather poorly determined
due to the small numbers of detected sources. Thus, for
example, truncation of the luminosity functions at an X-ray
luminosity of ~1x10% erg s™! results in a factor ~5
change in the predicted number of M stars (but only a factor
~2 change for the F-K stars). In passing, we note that the
observed deficiency of M stars has implications for the
galactic EUV/X-ray background radiation, for which M stars
have been proposed as a major contributor.

White dwarf stars. Hot white dwarf (WD) stars (loosely
defined as having T,;>2x 10%K) form, as expected, the
second major group of bright EUV sources, with 119
identifications in Table 1. In addition, many of the brightest
sources we see fall into this class. However, the total number
of hot white dwarfs being detected in the EUV is significantly
less than expected pre-launch, when numbers in the range
1000-2000 were predicted (Finley 1988; Barstow & Pounds
1988). The shortfall in white dwarf detections in the ROSAT
XRT is still greater (Barstow et al. 1992a). The explanation
for this surprising result appears to lie in a whole group of
hot DA white dwarfs, with T, in the range ~4-8 x 10*K,
having their EUV and soft X-ray luminosities substantially
reduced by the opacity of trace metals which have been
levitated by radiation pressure in the white dwarf
atmospheres (Barstow et al. 1992a). Notwithstanding the
lower total yield of isolated white dwarfs, the discovery (via
their EUV flux) of many new white dwarfs, including some
previously ‘hidden’ in binary association with luminous early-
and late-type stars (e.g. Fleming et al. 1991; Cooke et al.
1992; Barstow et al. 1992b), is a further important result of
the ROSAT EUYV survey. In addition, four optical counter-
parts previously catalogued as hot subdwarfs (Kilkenny,
Heber & Drilling 1988) have been found in post-survey
optical studies to be hot DA white dwarfs (Sansom et al.
1992). The detection of three (or four) hot central stars
within planetary nebulae provides a further contribution
from the WFC survey to this area of study.

O-B stars. Although coronal EUV emission is not
expected from such early-type stars, and their photospheres
are probably too cool to radiate significantly in the WFC
survey bands ( ~60-200 eV), the possibility of emission via
shock heating of intense stellar winds has been proposed to
explain X-ray emission from such stars. In those relatively
few O-B stars which have sufficiently low galactic columns,
the possibility of detection in the EUV has been considered
(e.g. Kudritzki et al. 1991). Table 1 contains eight possible
identifications with relatively nearby B stars, providing a
sample which clearly warrants further study, including a

careful check on the possibility of a UV leak, at least for the
three hottest and visually brightest stars, Beta CMa, Eps
CMaA and Spica.

Cataclysmic variables. CVs are another class of object
expected to be bright in the EUV, since optical, UV and X-ray
data show both the temperatures and luminosities of the
white dwarf stars in CVs to be substantially higher than for
field white dwarfs. In current CV models, accretion energy is
expected to yield a large EUV luminosity from the boundary
layer or, in magnetic CVs, as blackbody radiation from the
heated pole regions of the white dwarf (Watson 1986). The
WEC survey data confirm the above predictions in a general
sense, with 17 CVs identified in Table 1, and several AM
Her-type (magnetic) CVs showing large EUV count rates.
More detailed analysis, together with the simultaneous XRT
spectra, should considerably clarify this area of research.

Classical X-ray binaries. It is (at least, historically)
interesting to note the inclusion of both Sco X-1 and Her
X-1 in the WFC source list. Again, detailed modelling,
including the simultaneous XRT spectra, will be needed to
assess these EUV data.

Active galactic nuclei (AGN). The possibility of detecting
extragalactic sources in the WFC survey was considerably
reduced, as noted earlier, by the decision to add a boron
layer to the S1 survey filter, thereby improving the ‘purity’ of
the EUV bandpass (as well as atomic oxygen protection), but
simultaneously restricting potential extragalactic sources to
line-of-sight interstellar column densities <2 X 102 ¢cm™2,
The outcome is a ‘select’ group of four Seyfert-type galaxies
and three BL Lacertae objects, identified with EUV sources
in Table 1. In the case of the Seyferts, their EUV detection is
no doubt aided by the steep spectral components found to
dominate the emission of many Seyferts at energies <1 keV
(e.g. Turner & Pounds 1989; Masnou et al. 1992). The EUV
fluxes should, again taken with the simultaneous X-ray
spectra, improve the constraints on models of this luminous
soft X-ray/EUV component. In the case of the three BL
Lacs, the EUV flux appears to be consistent with that
expected from an extension of the featureless power law
seen, for these objects, over a wide spectral band. In all seven
AGN, the only significant detection is in the shorter wave-
length S1 filter, consistent with the removal of the S2 signal
by interstellar absorption.

Plots of EUV flux against ¥ magnitude, for all types of
identified source (Fig. 5), discriminate quite well between the
different classes of EUV source found in this ROSAT
survey. The brightest EUV sources, in both S1 and S2 filter
bands, are white dwarf stars, and 90 per cent of the detected
white dwarfs are fainter than m, ~ 12.5. Conversely, 97 per
cent of the identified late-type stars are brighter than m, ~
12, but all lie within the lowest two decades in EUV flux.
The ratio of S1:S2 count rates, or ‘EUV colour’, varies
remarkably over the whole sample. Thus several of the hot
white dwarfs (e.g. RE 0457 —280 and 0505 + 524) have an
S$1:S2 ratio of <0.05, presumably indicating strong metal
opacity in the stellar atmospheres. In contrast, for many
sources where interstellar absorption (at these wavelengths
primarily due to He) is critical, the S1:S2 ratio can be > 1.

Consideration of the source density of the various classes
of optical counterpart suggests that the probability of chance
coincidence with an EUV source is, in most cases, negligible.
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Figure 5. EUV count rate versus optical magnitude for the main classes of identified object in the Bright Source Catalogue.

The highest probability of chance coincidence occurs with
the M stars. Typically detected at m, <12, and with a mean
density of 50 deg™? (Allen 1973), this suggests ~ 15 chance
coincidences in Table 1 (assuming a typical error radius of 1
arcmin). Several faint catalogued M stars do, indeed, turn up
in the list, often as non-preferred candidates, where no
particular stellar activity is seen. However, this point needs
to be qualified, since catalogues of ‘inactive’ M stars are
notably incomplete fainter than m, ~ 8. On the other hand,
our follow-up optical spectroscopy has checked all M stars
found within EUV source error boxes which contain no
other probable candidate. The net result is that there are
probably few - if any — chance M-star identifications in Table
1. The second group with a significant probability of
‘random’ coincidences is galaxies, with a spatial density of ~

6 deg™? down to m, <16 (Allen 1973), giving ~two false
identifications in the whole catalogue. However, only
‘galaxies’ for which Seyfert or BL Lac characteristics have
been found (in catalogues or our follow-up optical spec-
troscopy) form the preferred optical counterpart to a listed
EUV source in Table 1.

A comparison of columns 12 and 13 in Table 1 shows
that the majority of optical counterparts lie within the 90 per
cent error circle radius. This provides support for the general
correctness of the proposed identifications and, in addition,
gives a measure of the typical accuracy of the EUV source
positions. Fig. 6 shows the distribution of angular separa-
tions of all EUV sources (identified with catalogued objects)
from the corresponding optical counterpart. It can be seen
that 90 per cent of positional differences lie within ~ 50
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Figure 6. (a) Histogram of positional offsets of optical counterparts
to identified EUV sources. (b) Cumulative distribution of offsets.

arcsec, consistent with the anticipated systematic and
statistical errors in the EUV survey.

4 SURVEY COMPLETENESS AND EUV
SOURCE COUNTS

The logistics of the ROSAT survey led to an accumulated
exposure on the sky that generally increased with ecliptic
latitude (Fig. 1); in addition, the exposure in a particular
direction could be affected by data losses when the satellite
passed through regions of high particle background or
suffered temporary malfunctions. Mean exposures were
2160 s in the S1 filter band and 2020 s in the S2 filter band,
increasing to ~ 70000 s at the ecliptic poles. The accumu-
lated background count also varied over the sky and
consisted of both particle and photon components. The con-
sequence of variable exposures and background levels was
some non-uniformity in the sky survey sensitivity, i.e. the
minimum detectable source strength at a particular location
on the sky. In the event, the higher background levels tended
to coincide with periods spent observing high ecliptic
latitudes, thereby moderating the range of sensitivity across
the sky.

In order to quantify these effects, and thereby obtain a
measure of the intrinsic EUV ‘source counts’, the minimum
detectable point-source count rate (using the method outlined
in Section 2) has been estimated for a grid of sky locations,
for each of the two survey energy bands. Hence the cumula-
tive distribution of sky area against sensitivity has been
derived, giving the fraction of sky (f) in which each EUV
source could have been detected (Fig. 7). The contribution of
the ith source (of count rate C;) to a coverage-corrected
number count rate (log N-log S) distribution was then taken
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Figure 7. The sky coverage fraction as a function of count rate for (a) the S1 filter band, (b) the S2 filter band.
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as 1/f,. Ordering the sources by ascending count rate, the
corrected number of sources N (> C;) is then

N> G)= 3 U,

i M

where there are # sources in the sample.

The ‘raw’ and corrected all-sky log N-log S distributions,
for each survey band, are shown in Fig. 8. The corrections, in
terms of the ratios of corrected-to-observed numbers of
sources, are seen to be less than 20 per cent, for count rates
above 0.02 and 0.025 count s™! in the S1 and S2 bands,
respectively. (The slightly lower sensitivity in the S2 band is
due to a higher photon background in that band.) Consider-
ing the corrected curves from these count-rate limits, up to a
count rate at which the integral number of sources falls
below ~ 10, the log N-log § distributions can be described
by the following power-law fits:

N> C,)=10%x(C,)"°° (S1 filter),
N(> C,y)=20x%(C,)~ 7 (S2 filter).

Both the S1 and S2 source-count distributions are clearly
very ‘flat’ compared with the ‘Euclidean’ slope of — 1.5, with

1000

N(>S)

0.01 0.1 1 10

Source Count Rate (S)

N(>S)
100

10

! ! i =
0.1 1 10

Source Count Rate (S)

Figure 8. The raw and corrected source counts for the full cata-

logue in (a) the S1 filter band, (b) the S2 filter band.

The ROSAT Bright Source Catalogue 97

that in the softer S2 energy band being significantly flatter
than that in the S1 band. Both factors suggest that the EUV
source-count distribution is being strongly influenced, as
expected, by the distribution and opacity of the local inter-
stellar medium.

Further insight on this question is obtained by repeating
the above exercise separately for the two main classes of
EUV source, white dwarfs and late-type stars. Figs 9 and 10
show the resulting log N-log § distributions for each of the
survey filters. It can be seen that the integral distributions for
the white dwarfs alone are extremely flat, with power-law
slopes of approximately — 0.6 (S1 filter band) and —0.5 (S2
filter band). In contrast, the log N-log S slopes for the late-
type stars, of —1.4 and —1.3, respectively, are consistent
with a Euclidean source distribution. Thus the flat overall
source-counts distribution is primarily due to the white
dwarf stars. Since these are - typically - at greater distances
than the late-type stars, this is consistent with an interstellar
absorption origin for the observed flat source counts. Corre-
spondingly, it can be expected that the majority of additional
WEC sources, anticipated in the fainter extension of the
present catalogue, will be associated with active, main-
sequence stars.

1000

N(>S)
100

10

0.01 0.1 1 10

Source Count Rate (S)

0

N(>S)
100

10

Il 1 L

0.1 1 10
Source Count Rate (S)

Figure 9. The raw and corrected source counts for white dwarf
starsin (a) the S1 filter band, (b) the S2 filter band.
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Figure 10. The raw and corrected source counts for late-type stars
in (a) the S1 filter band, (b) the S2 filter band.

5 THE SPATIAL DISTRIBUTION OF THE
BRIGHT SOURCE SURVEY

Casual appraisal of the EUV source map (Fig. 2) shows a
clearly ‘non-uniform’ distribution. A deficiency of sources, or
‘hole’, is apparent in a large area towards and to the north of
the Galactic Centre (roughly bounded by b> —30°,
270°<[<60°). There is also an expected clustering of faint
sources around the ecliptic poles. In order better to assess
the spatial non-uniformity of the EUV source distribution,
account must be taken of the -exposure and background
variations (and hence limiting sensitivity) as a function of sky
position. A full analysis of this is beyond the scope of this
paper. However, it can readily be shown that substantial
asymmetries do exist in the EUV sky distribution. Fig. 11
replots the galactic coordinate map for sources brighter than
0.02 count s~! (in S1) and brighter than 0.025 count s~! (in
S2), for which the sky coverage corrections were seen earlier
to be less than 20 per cent. The number of sources in Fig. 11
is reduced to 311, with many faint sources dropping out,
particularly at high ecliptic latitudes, as may be expected.
The large ‘hole’ remains, however, and is clearly a real
feature of the EUV sky at these energies.

A further insight on the asymmetry of EUV sources is
obtained by mapping, separately, the distributions of white
dwarfs and late-type stars from the reduced sample of 311
sources. Fig. 12 shows the galactic distribution of 119 white
dwarfs identified from the WFC Bright Source Catalogue.
The large ‘hole’ north of the Galactic Centre is now striking,
while clear excesses of white dwarfs are seen to the upper left
and lower right sectors of the map. Confirmation that this
represents a real variation in the total number of white
dwarfs visible in the EUV, and is not merely an artefact of the
incomplete optical surveys, is provided by addition of all our
unidentified sources to the white dwarf distribution. Fig. 13

Figure 11. Aitoff equal-area projections in galactic coordinates showing the locations of the EUV sources in the Bright Source Catalogue.

Faint sources have been removed as indicated in the text.
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Figure 13. AsFig. 11, but for white dwarf stars and unidentified sources only.

shows this new distribution, where again the same anisotropy
is seen.

Since the WFC is sufficiently sensitive to detect hot white
dwarfs out to ~100 pc, it seems likely that the observed
anisotropy is caused by gross variations in the opacity of the
interstellar medium within such a distance from the Sun. The
remarkably flat log N-log S distribution for white dwarf stars
(Fig. 9) supports the conclusion that many distant (and
intrinsically faint) white dwarfs are hidden by intervening
interstellar absorption.

Finally, Fig. 14 shows the same plot for late-type stars
identified in the Bright Source Catalogue. The EUV sky is .
now much more isotropic; however, a deficiency still remains
in the general direction of the Galactic Centre, implying
substantial interstellar opacity within ~ 10 pc of the Sun.
This and other related questions will be reviewed in more
detail in a forthcoming paper on the distribution of EUV
sources from the ROSAT survey (Barber et al., in prepara-
tion).
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Figure 14. As Fig. 11, but for late-type stars only.
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APPENDIX A: NOTES ON INDIVIDUAL
SOURCES

(See Table 1.)

RE 0044 +093. New fast-rotating
source (Bromage et al., in preparation).

RE 0116 —022. AY Cet is an active close binary with a
WD companion (Strassmeier et al. 1988) and a 57-d orbit.
The WD is not expected to contribute to the EUV flux.

RE 0415-073. 40 Eri emission was resolved with the
Einstein HRI, most emission coming from 40 Eri C, the dMe
flare star (Cash, Charles & Johnson 1980). All three com-
ponents could be contributing to the EUV flux.

RE 0447 —275. Identification is with a newly discovered
dMe star, the fainter companion of a close visual pair; this
has subsequently been discovered to be a flare star (Bromage
1992).

RE 0515 + 324. Identified with a white dwarf, coincident
with the 8th-magnitude A2/F4V star HD 33959C. An IUE
SWP spectrum of this star shows a rise towards short wave-
lengths, indicative of a hot white dwarf companion (Hodgkin
et al. 1993). Other catalogued stars in the WFC error circle
include the Sth-magnitude A9IV star KW Aur, and the 11th-
magnitude star BD + 32°922B, which are both unlikely to
contribute to the detected EUV flux.

single-star radio
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RE 0532 —030. Star identified may be HBC97 (dKe),
but this association is uncertain because of positional dis-
crepancies.

RE 0604 —343. The S2 filter count rate was enhanced
by a flare; this is a new dMe flare star. See Bromage (1992).

RE 0604 —482. HD 41824 is a very close visual binary.
Star A (G?V) has no reported variations in radial velocity or
photometry, whereas star B (G6V) has variable radial
velocity and photometric variability. Following the IDP
discovery of chromospheric activity, it seems very likely that
star B is the EUV emitter and it is probably an SB1 RSCVvn
binary.

RE 0631 +500. The dMe star discovered in the optical
identification programme now appears (but not named) in
the latest version of the Gliese & Jahreiss catalogue (in
preparation) as an MO star with ¥'=11.09 mag.

RE 0734 +315. YY Gem is an eclipsing binary double-
flare star. The S2 filter count rate was enhanced by a flare
event on 1990 October 3 (Bromage 1992).

RE 0751 + 144. Identified as new intermediate polar
system (Mason et al. 1992).

RE 0827 +284. Identified with the hot, evolved star PG
0824 + 289, classified as a subdwarf in the Palomar Green
(PG) survey (Green, Schmidt & Liebert 1986), and more
recently shown to be a hot DA white dwarf (Sansom et al.
1992).

RE 0838 —430. This WFC detection is part of the Vela
supernova remnant. There is also a 9th-magnitude K giant in
the WFC error circle, which is likely to be a chance coinci-
dence.

RE 0845 + 485. The most likely counterpart is the faint
white dwarf star (HD 74389B) which is 20 arcsec east of the
bright A0 star HD 74389. The discovery of HD 74389B is
described in Sanduleak & Pesch (1990).

RE 1016 = 052. This is a newly discovered Feige-24 type
DA+ dMe binary (Jomaron et al. 1993).

RE 1043 + 445. Identified with the hot, evolved star PG
1040+ 451, classified as a hot subdwarf (sdB) in the PG
survey and more recently shown to be a possible hot DA
white dwarf (Sansom et al. 1992). Because of the low signal-
to-noise ratio data, the optical classification of this star is still
uncertain, as indicated by the colon after the spectral type in
Table 1.

RE 1104 +381. Identified with the BL Lac object Mrk
421. The DC white dwarf also in the EUV source error
circle is probably too cool to be detected.

RE 1111 —-224. Positionally coincident with the 4th-
magnitude, A2IV star g Crt, the likely source of EUV
emission has been shown to be a DA white dwarf companion
B Crt B (Fleming et al. 1991), which is a spectroscopic binary
companion to 3 Crt.

RE 1149 +284. Identified as a probable new AM Her
system (Mittaz et al. 1992).

RE 1236 +475. Identified with the hot, evolved star PG
12344482, classified as a hot subdwarf (sdOB) in the PG
survey, and more recently shown to be a hot DA white dwarf
(Jordan, Heber & Weidemann 1991; Sansom et al. 1992).

RE 1255 +255. The variable star IN Com, within the
WEFC error circle, is very close to the centre of the planetary
nebula in LT5. IN Com is a triple system consisting of an
8.7th-magnitude G5III star with active chromosphere and a
low-mass, binary companion, plus an outer, hot subdwarf
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(Malasan, Yamasaki & Kondo 1991). The G star is the most
likely source of EUV emission, but emission from the other
components cannot be ruled out.

RE 1307 +535. Identified as a probable new AM Her
system, with the shortest known period in the class (Osborne
et al., in preparation). :

RE 1428 +424. Identified with a BL Lac; first seen by
HEAO-1 and later optically identified by Remillard et al.
(1989).

RE 1603 —574. « Nor consists of a group of several 5th-
magnitude mid-A stars within approximately 2 arcsec (SAO
243279; IDS 15554 —1570AB). The star SAO 243278
(IDS 15554 —1570C) approximately 10 arcsec away has
now been shown to be a 6-d period double-lined spectro-
scopic binary active G star and candidate RSCVn binary
(Bromage 1992).

RE 1625—-490. The optical identification has been
made independently by Cutispoto et al. (private communica-
tion) from an optical follow-up programme of serendipitous
EXOSAT sources; the object does not show any evidence of
binarity.

RE 1629 + 780. This is a newly discovered Feige-24 type
DA+ dMe binary (Cooke et al. 1992).

RE 1800 + 683. Identified with the hot, evolved star
KUV 18004 + 6836, classified as a hot subdwarf (sdB) by
Wegner, McMahon & Boley (1987), and more recently

shown to be a hot DA white dwarf (Sansom et al. 1992).

RE 1833 +514. The famous prototype of the BY Dra
class of spotty active stars; the S2 flux was enhanced by a
flare (Barstow et al. 1991).

RE 1938 —461. Identified as new AM Her system
(Buckley et al., in preparation).

RE 2045 -312. AU Mic, a well-known flare star. The S1
flux was enhanced by a flare (Bromage 1992).

RE 2047 -363. A newly discovered very fast rotating
single dwarf star, nicknamed ‘Speedy Mic’ (Bromage et al.
1992). The S2 flux was enhanced by a long-lived flare, and
variability of activity occurred in both filters.

RE 2147-160. 6 Cap: the visual companions of this
3rd-magnitude peculiar A-star binary have been ruled out as
possible EUV counterparts by CCD photometry and high-
resolution spectroscopy, leaving the likely counterpart as the
hidden binary companion of d Cap itself (probably a mildly
active late-type star) (Wonnacott et al. 1992).

RE 2157 —505. Gliese B41A: newly identified as an
SB2 binary dMe flare star; the common proper motion WD
companion is too cool to contribute to the EUV flux, but the
derived age of the system makes G1841A one of the oldest
known active star systems (Jeffries & Bromage 1993).

RE 2246 +442. The well-known flare star EV Lac. Both
S1 and S2 filter fluxes were enhanced by flares during the
survey coverage (Bromage 1992).

APPENDIX B: CATALOGUES USED IN CROSS-CORRELATION WITH WFC SOURCE POSITIONS

(In priority order used for counterpart positions. See Table 1.)

Description of references

McCook & Sion (1987) catalogue of spectroscopically identified white dwarf stars.

Kilkenny et al. (1988) catalogue of hot subdwarfs.

Strassmeier et al. (1988) catalogue of chromospherically active binary stars.

List of cataclysmic variables compiled by the UK ROSAT CV special interest group in 1990.
Gliese & Jahreiss catalogues of nearby stars within 25 pc of the Sun (Gliese & Jahreiss, in

Woolley et al. (1970) catalogue of stars within ~ 25 pc of the Sun.
Luyten (1976) catalogue of stars with proper motions > 0.5 arcsec yr ™.

Catalogue of quasars and active nuclei (Véron-Cetty & Véron 1989).

Catalogue of stellar identifications (Oschenbein, Bischoff & Egret 1981, and references

Catalogue of galaxies compiled at JPL/SDAS (Soifer et al. 1984). Consists of a merger of
Master list of non-stellar objects (Dixon & Sonneborn 1980).

Abell, Corwin & Olowin (1989) catalogue of rich clusters of galaxies (northern).
Abell et al. (1989) catalogue of rich clusters of galaxies (southern).

Abell et al. (1989) catalogue of rich clusters of galaxies (southern supplement).
Abell et al. (1989) catalogue of rich clusters of galaxies (northern supplement).

Catalogue Number Catalogue
abbreviation of objects epoch
MC 1277 —
SU 1721 1970
ST 205 —
CcvV 425 1989
GL 3803 1990
preparation).
WO 2150 1990
LH 4471 1990
HRI 598 — Einstein HRI source list.
EI 5958 1983.5 Einstein IPC point source catalogue.
SNR 153 - Supernova remnants catalogue (Green 1984).
PULS 450 1950 Lyne pulsar catalogue (e.g. Lyne et al. 1988).
HEAO 842 — HEAO-AI catalogue (Wood et al. 1984).
VE 3543 1983.5
BU 12911 — Hewitt & Burbidge (1987) quasar catalogue.
SI 639774 1950 Compact version of siMBaD data base.
(&) 434927 1950
therein).
GCVS 22647 General catalogue of variable stars.
CATX 51111
various galaxy catalogues.
MLN 181530 1950
MLR 84920 1950 Master list of radio sources (Dixon 1970).
ABELB 2712 1989
ABELC 1364 1989
ABELD 1174 1989
ABELE 274 1989
EX 7353 — EXOSAT CMA source catalogue.
IUELS 6337 — IUE observation log.
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