The ROSAT Wide Field Camera all-sky survey of extreme-ultraviolet sources - I. The Bright Source Catalogue

K. A. Pounds, ${ }^{1}$ D. J. Allan, ${ }^{2}$ C. Barber, ${ }^{1}$ M. A. Barstow, ${ }^{1}$ D. Bertram, ${ }^{2}$
G. Branduardi-Raymont, ${ }^{3}$ G. E. C. Brebner, ${ }^{2}$ D. Buckley, ${ }^{4}$ G. E. Bromage, ${ }^{5}$
R. E. Cole, ${ }^{1}$ M. Courtier, ${ }^{5}$ A. M. Cruise, ${ }^{5}$ J. L. Culhane, ${ }^{3}$ M. Denby, ${ }^{1}$
D. O. Donoghue, ${ }^{6}$ E. Dunford, ${ }^{5}$ I. Georgantopoulos, ${ }^{1}$ C. V. Goodall, ${ }^{2}$
P. M. Gondhalekar, ${ }^{5}$ J. A. Gourlay, ${ }^{5}$ A. W. Harris, ${ }^{5}$ B. J. M. Hassall, ${ }^{7}$
C. Hellier, ${ }^{3}$ S. Hodgkin, ${ }^{1}$ R. D. Jeffries, ${ }^{2}$ B. J. Kellett, ${ }^{5}$ B. J. Kent, ${ }^{5}$ R. Lieu, ${ }^{8}$ C. Lloyd, ${ }^{5}$ P. McGale, ${ }^{1}$ K. O. Mason, ${ }^{3}$ L. Matthews, ${ }^{8}$ J. P. D. Mittaz, ${ }^{3}$ C. G. Page, ${ }^{1}$ G. S. Pankiewicz, ${ }^{1}$ C. D. Pike, ${ }^{5}$ T. J. Ponman, ${ }^{2}$ E. M. Puchnarewicz, ${ }^{3}$ J. P. Pye, ${ }^{1}$ J. J. Quenby, ${ }^{8}$ M. J. Ricketts, ${ }^{5}$ S. R. Rosen, ${ }^{3}$ A. E. Sansom, ${ }^{1}$ S. Sembay, ${ }^{1}$ S. Sidher, ${ }^{8}$ M. R. Sims, ${ }^{1}$ B. C. Stewart, ${ }^{5}$ T. J. Sumner, ${ }^{8}$ R. J. Vallance, ${ }^{2}$ M. G. Watson, ${ }^{1}$ R. S. Warwick, ${ }^{1}$ A. A. Wells, ${ }^{1}$ R. Willingale, ${ }^{1}$ A. P. Willmore, ${ }^{2}$ G. A. Willoughby ${ }^{8}$ and D. Wonnacott ${ }^{5}$
${ }^{\prime}$ X-ray Astronomy Group, University of Leicester, University Road, Leicester LE1 7RH
${ }^{2}$ School of Physics and Space Research, University of Birmingham, Edgbaston, Birmingham B15 2TT
${ }^{3}$ Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT
${ }^{4}$ South African Astronomical Observatory, PO Box 9, Observatory 7935, Cape, South Africa
${ }^{5}$ Space \& Astrophysics Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX
${ }^{6}$ University of Cape Town, CP 7700 Rondesbosch, South Africa
${ }^{7}$ Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ
${ }^{8}$ Imperial College of Science, Technology \&Medicine, Prince Consort Road, London SW7 2BZ

Accepted 1992 June 17. Received 1992 June 12; in original form 1992 May 18

Abstract

The first all-sky survey for cosmic sources of extreme-ultraviolet radiation has been carried out with the UK Wide Field Camera on ROSAT. A first reduction of the survey data has yielded a catalogue of 383 relatively bright EUV sources, forming the WFC Bright Source Catalogue. This represents a 30 -fold increase in the number of astrophysical objects detected in the $\sim 60-200 \mathrm{eV}$ energy band and covers a flux range, in each of the two survey bands, of more than 2000. A search of the (typically ~ 1-arcmin) error circles of the WFC sources, using a variety of catalogues and the SIMBAD data base, has identified probable optical counterparts of ~ 73 per cent, including many active stars, white dwarf stars and a variety of other galactic and extragalactic objects. A follow-up programme of optical spectroscopy has since added further identifications, but some 13 per cent of the EUV sources remain unidentified.

Details of the EUV source positions and count rates are given, together with optical identifications where known. Considerations of survey completeness allow source counts $(\log N-\log S)$ to be derived for each survey band. It is found that the $\log N-\log S$ distributions are unusually flat for the white dwarf stars, but almost Euclidean for the nearby main-sequence late-type stars. This is probably an effect of local ($\leqslant 100 \mathrm{pc}$) interstellar absorption, since the more (EUV) luminous white dwarfs are potentially detected at correspondingly greater distances than the late-type stars. In addition, the sky distribution of identified white dwarfs is highly non-uniform, also suggesting gross variations in the opacity of the interstellar medium within $\sim 100 \mathrm{pc}$.

Key words: artificial satellites, space probes - catalogues - stars: late-type - white dwarfs - dust, extinction - ultraviolet: general.

1 INTRODUCTION

The rich potential of extreme-ultraviolet (EUV) astronomy first became clear during the 1970s, with ultraviolet and optical spectroscopy of bright stars showing that the opacity of the local interstellar medium (ISM), at least in certain directions, was much less than implied by a uniform, cold ISM model (see Paresce 1984 for a review). Concurrently, models were being developed in which the ISM consisted of a quasi-isobaric network of hot and cold components, the former perhaps tracing the occurrence of supernova explosions in recent galactic history (e.g. McKee \& Ostriker 1977). In particular, the view developed that the Solar system sits in an extended, warm, tenuous region, or 'local bubble' (Innes \& Hartquist 1984). Extending for over ~ 10 pc to more than 100 pc , in different directions, this tenuous gas would then explain the surprisingly low opacity of the local ISM and, possibly, much of the diffuse EUV background radiation, found to be remarkably intense in observations made during the Apollo-Soyuz mission (Stern \& Bowyer 1979). The Berkeley EUV telescope flown on that mission also detected several discrete EUV sources, the discovery of which essentially launched the subject of EUV astronomy (Lampton et al. 1976; Margon et al. 1976, 1978; Haisch et al. 1977).

The protracted lead-time of current space science missions explains why it has taken so long to follow up the early promise of EUV astronomy. This follow-up has now begun, with the successful flight of the UK Wide Field Camera (WFC) on the ROSAT spacecraft. The WFC carried out a survey, covering 96 per cent of the sky, from 1990 July 30 to 1991 January 25 , with the remainder being filled in during 1991 August. The first comprehensive results from an initial processing of these survey data are reported here.

2 THE ROSAT EUV SKY SURVEY

ROSAT was launched on a USAF Delta II rocket, on 1990 June 1, into a circular orbit at an altitude of 575 km , giving an orbital period of order 95 min . The orbital inclination of 53° provides $5-6$ spacecraft contacts (each of $\sim 10 \mathrm{~min}$) per day with the ground station (at Weilheim near Munich) of the German Space Operations Centre (GSOC), where commanding and data reception are conducted. After an initial check-out and calibration period, ROSAT started its planned all-sky survey on July 30 . This was scheduled to last six months, but was cut short by ~ 2 weeks when spacecraft attitude control was lost for a time on 1991 January 25. The small gap which remained was filled in, at somewhat reduced sensitivity, during 1991 August.

ROSAT carries both a German X-ray telescope (XRT, Trümper et al. 1991), and a British EUV telescope, called the Wide Field Camera (Sims et al. 1990). The latter was designed and built by a consortium of five British research groups: at Leicester University, Birmingham University, Mullard Space Science Laboratory (part of University College London), Imperial College London and the SERC's Rutherford Appleton Laboratory (RAL). The WFC has three concentric, gold-plated, aluminium mirrors in a Wolter-Schwarzschild type I configuration, giving a total onaxis geometric area of $456 \mathrm{~cm}^{2}$. The focal-plane detector (of which there are two) is a curved microchannel plate, with a

CsI photocathode and resistive plate readout. The field of view is circular and 5° in diameter, with an angular resolution of $1 \operatorname{arcmin}(F W H M)$ at the centre of the field, falling off to about 3 arcmin at the edge. Located between the mirrors and focal-plane detector is a permanent magnet assembly, to prevent ambient soft electrons from reaching the focal-plane detector. The definitive WFC description, including in-orbit performance and calibration data, is being published separately (Wells et al., in preparation; Willingale et al., in preparation).

During the all-sky survey, the sky was scanned by rotating the ROSAT spacecraft on an axis, once per orbit, such that its two telescopes always looked away from the Earth. The resulting scan path was a series of great circles, passing over both ecliptic poles and crossing the ecliptic plane at a fixed angle to the Sun, nominally $90^{\circ} \pm 12^{\circ}$. Thus the scan path advanced $\sim 1^{\circ}$ per day, thereby covering the entire sky in approximately 6 months. Sources on the scan path could be seen by the WFC for up to 80 s per orbit; those near the ecliptic plane were scanned each orbit for 5 successive days, this coverage increasing towards the ecliptic poles which were scanned throughout the 6 -month programme.

Since microchannel plates have little intrinsic spectral resolution, a filter wheel was provided to define better the wavebands covered in the WFC survey, two filters (known as S1 and S2) being used on alternate days. The approximate bandpass of the complete WFC (mirrors, filter and detector), at 10 per cent of peak efficiency, is shown below for each survey filter band. The boron coating was added to the S1 filter primarily to protect it from ambient atomic oxygen; although, by reducing the WFC sensitivity to relatively hard or strongly absorbed sources (e.g. cataclysmic variables or active galactic nuclei) by suppressing the soft X-ray 'leak' at $<44 \AA$, this coating also has the important advantage of better defining the EUV transmission band of the S1 filter.

Filter	Material	Energy (eV)	Wavelength (\AA)
S1	C/Lexan/B	$90-206$	$60-140$
S2	Be/Lexan	$62-110$	$110-200$

The outcome of the ROSAT WFC sky survey was difficult to predict before launch, the appearance of the sky in the EUV band being essentially unknown at the depth anticipated to be reached with the WFC. Only a dozen EUV sources had been catalogued prior to the ROSAT survey, and the effects of interstellar absorption (and hence the distance of the EUV 'horizon') were highly uncertain. Prelaunch estimates suggested only that the WFC might detect between 100 and several $\times 10^{3}$ sources. Uncertainties in the likely background rate were almost as large, since microchannel plates are also sensitive to charged particles and both the incident particle fluxes and the effectiveness of the WFC magnetic diverter were difficult to assess prior to launch.

In the event, it turned out that total background rates, in most parts of the ROSAT orbit, were of order $\sim 10-20$ count s^{-1} across the whole WFC field, well below the telemetry saturation limit of 200 count s^{-1} and of the order hoped for pre-launch (Pounds et al. 1991). Only a small percentage of this count rate is from diffuse EUV radiation, possibly from the local bubble (Lieu et al. 1992). Allowing for losses during satellite passes through the horns of each
auroral zone and the South Atlantic Anomaly, useful data were collected for about 74 per cent of each day. An additional average loss of ~ 10 per cent occurred throughout the survey, from a variety of minor spacecraft or WFC hardware problems, service time, etc. The final effective survey exposure, in each filter, ranged from $\sim 1600 \mathrm{~s}$ near the ecliptic equator to $\sim 70000 \mathrm{~s}$ at the ecliptic poles (Fig. 1). Combined with the favourable background rates, these exposures promised a source detection limit at least a factor of 1000 below the flux of the archetypal EUV source, the hot white dwarf HZ 43.

2.1 Survey data reduction and analysis

Survey data from the ROSAT WFC (and X-ray telescope) were recorded in two on-board tape recorders and transmitted to GSOC typically once per day. The position of each event in the detector was encoded as two 9 -bit numbers,
while its location in the telemetry frame timed each event to 32 ms , sufficient to unfold the survey scanning motion without significant loss of image resolution. Because of the special significance of the ecliptic poles in the scanning scheme, an ecliptic spherical polar coordinate grid was used to form our EUV map of the sky. This was divided along lines of ecliptic longitude and latitude, giving cells of dimensions up to $2^{\circ} \times 2^{\circ}$. With fewer cells per longitude strip above $\pm 60^{\circ}$ latitude, to avoid oversampling the polar regions, a total of 13560 cells was used to cover the sky in each spectral band.

To form each sky map, the raw detector coordinates of each event were first corrected for fixed non-linearities arising in the detector readout and then transformed to the ecliptic frame. The cell number of each event was computed, together with its offsets in ecliptic coordinates from the centre of its cell; by this means only 2×10 bits were needed for a resolution of 7.5 arcsec . (It was decided, in advance, to retain the raw detector coordinates of each event in case any

Figure 1. Exposure map of the sky survey in galactic coordinates for (a) the SI filter band and (b) the S 2 filter band. Units are in seconds of time.
detector hotspots arose, though fortunately none did.) Linearized telescope frame coordinates were also retained to allow selection of the appropriate point spread and vignetting functions for each event. These sorted files then required the following storage, amounting to 11 bytes per event:

Raw detector X, Y	2×9 bits;
Linearized X, Y	2×8 bits;
Ecliptic X, Y offsets	2×10 bits;
Time-tag $(32 \mathrm{~ms})$	32 bits.

Sorted events were accumulated in records of 1024 bytes. As records became full they were written to a direct-access file. The events from a single orbital scan covered $5^{\circ} \times 360^{\circ}$ but fell into fewer than 1000 cells, so the sorting could be done in less than 2 Mbytes of memory. The sorted event files were written to Exabyte tapes for further reduction.

Each day the chains of records for each cell on the incoming data tape were copied to disc and inserted in the corresponding chain in the reservoir file, and the links updated. On completion of this merging process, it was possible to identify cells which had just left the trailing edge of the scan path and which were therefore fully exposed. For all these areas of sky an image was formed in each spectral band. The x and y coordinates of each event could be computed by scaling the ecliptic offsets already present in the event file. No further trigonometry was generally required, the exceptions being a small guard-band around the edge of each cell in which events were imported from adjacent cells, and the areas around the polar caps in which many cells had to be combined to form a square image. After analysis was complete the records from all completed and analysed cells could be extracted and archived to tape.

The point-source detection method used for this initial (Bright Source) catalogue involved passing a circular sliding box over the image and using a Poisson significance test. The
minimum required significance level was determined by trials on simulated data, such that the eventual source list would be unlikely to contain more than ~ 3 (i.e. 1 per cent) false detections. In many cases, as seen later, sources were independently detected in both filter bands. The background count level was estimated initially with a technique involving median filtering; when a possible point source was found the local background was re-estimated from an annulus around the source. An averaged point spread function (PSF) was then fitted using a maximum likelihood technique to determine the source position. Source counts were evaluated from a circular box, and corrected for the PSF fraction lying outside the box. Positions of point sources could generally be determined to a few tens of arcsec; these positions were then cross-correlated with standard catalogues of sources in other wavebands.

Each $2^{\circ} \times 2^{\circ}$ image was also scanned visually, for defects and extended sources (for which the point-source algorithm is less sensitive). Apart from the Moon, which confused the point-source detection algorithm at fortnightly intervals (!), only two bright, extended EUV sources have been found in the survey data, so far, coincident with the Vela and Cygnus Loop supernova remnants.

3 THE BRIGHT SOURCE CATALOGUE (BSC)

Application of the rather conservative source detection technique outlined in the previous section has yielded an initial ROSAT WFC catalogue of 383 EUV sources. These are displayed in Fig. 2, in an equal-area (Aitoff) projection of the sky, in galactic coordinates. A discussion of the spatial source distribution, which is clearly non-uniform, requires allowance for variations in exposure and background, and is deferred to Section 5.

Table 1 details this first all-sky catalogue of ROSAT EUV sources, with equatorial coordinates (equinox J2000) in

Figure 2. Aitoff equal-area projections in galactic coordinates showing the locations of the EUV sources in the Bright Source Catalogue. The size of each dot is proportional to the logarithm of the summed S1 and S2 count rates.
Table 1. The ROSAT Wide Field Camera Bright Source Catalogue.

	$\begin{array}{r} \mathrm{RA} \\ (\mathrm{~J} 200 \end{array}$ (1)	$0.0)$	$\begin{gathered} \text { Dec } \\ (\mathrm{J} 2000.0) \end{gathered}$ (2)			$\begin{equation*} \underset{(\mathrm{ct} / \mathrm{ks})}{\mathrm{Sla}} \tag{3} \end{equation*}$	$\begin{aligned} & \text { err } \\ & (4) \end{aligned}$	$\begin{equation*} \underset{(\mathrm{ct} / \mathrm{ks})}{\mathrm{S} 2 \mathrm{a}} \tag{5} \end{equation*}$	$\begin{aligned} & \text { err } \\ & \text { (6) } \end{aligned}$	Counterpart Name (7)	Alternative Name (8)	Type (9)	Mag. (10)	Comments (11)
0	3	56.7	+43	35	55	33	6	21	-	new ID		WD	16.8	
0	7	33.6	+33	17	48	132	11	47	9	GD 2	WD 0004+330	WD DAW/DA1	13.9	E,I
0	24	45.0	-74	13	38	13	-	19	6	CPD-74 35	HD 2133	F7V star	9.7	IDP.nonA
0	29	55.1	-63	24	31	541	31	926	37	new ID		WD	15.0	
0	39	41.5	+10	39	8	16	5	21	-	$\mathrm{BD}+09^{\circ} 73$	Ross 311	K5 star	10.6	pm, IDP: A
0	41	16.2	+34	25	40	24	6	18	-	new ID		Ge	9.5	
0	42	48.7	+35	33	12	25	5	20	-	FF And	DM $+34^{\circ} 106$	BY Dra M0Ve	10.4	N,E,(B), ${ }^{*}$
0	43	35.6	-17	59	12	33	10	77	13	β Cet	HD 4128	K0III/G9.5I	2.0	N,EI,I
0	44	4.2	$+9$	33	18	15	5	24	7	$\mathrm{BD}+08^{\circ} 102$	AG+ $09^{\circ} 55$	G star	10.0	IDP: A
0	47	2.4	-11	51	45	57	9	32	9	NGC 246	PHL 0829	CSPN B0	11.6	E,EI,I
0	47	20.1	+24	16	12	18	5	34	7	ζ And	HD 4502	RS CVn KIIIe	4.1	EI,I,(B), ${ }^{*}$
										$\mathrm{BD}+23^{\circ} 106 \mathrm{~B}$			15.3	(C)
0	53	0.4	-74	38	31	18	4	16	-	CF Tuc	HD 5303	RS CVn G3 + WD	7.5	EI,(B),I
0	53	15.9	-32	59	49	636	25	1864	40	GD 659	WD 0050-332	WD DA1	13.4	I,E
0	53	39.6	+36	1	31	13	4	19	-	new ID		WD	15.1	
1	3	42.8	+40	52	46	8	-	15	5	EQ 0100+406	G132-50A	M star	10.9	EI,(B)
										G132-51B		M star	13.0	(C)
1	6	50.4	-22	52	2	141	21	100	-	SAO 166806	HD 6628	G5V star	7.7	IDP: A
1	8	19.8	-35	34	34	36	10	120	14	GD 683	WD 0106-358	WD DA2	13.5	
1	16	36.0	-2	29	46	35	5	46	7	AY Cet	HD 7672	G0/G5III star	5.5	I,A,(B),EI, ${ }^{*}$
1	22	48.6	+ 0	43	36	16	5	25	6	$\mathrm{BD}-0^{\circ} 210$	HD 8358	RS CVn G0	8.6	I,(B)
1	22	55.6	$+7$	25	31	73	8	82	11	AR Psc	HD 8357	RS CVn G5	7.3	(B),EI, E,I
1	34	24.3	-16	6	54	230	13	612	22	GD 984	WD 0131-164	WD DA	13.8	I, ${ }^{\text {b }}$
1	35	0.9	-29	54	30	42	7	56	8	GJ 60A	HD 9770	K3V star	7.8	(B),N, IDP: A
										GJ 60B		K4V star	8.0	(C), N
										GJ 60C		M2V star	10.4	(C), N
1	38	53.3	+25	23	31	46	6	47	7	PG 0136+251	WD 0136+251	WD DA1p	15.8B	I
1	39	0.0	-17	56	48	21	4	16	-	UV Cet	GJ 65B	M5Ve fl star	12.9	N,pm, E, EI, ${ }^{*}$, (B)
										GJ 65A		M5Ve star	12.4	(C), $\mathrm{N}, \mathrm{V}^{*}, \mathrm{pm}$
1	41	0.4	-67	53	9	231	19	201	16	BL Hyi	H 0139-68	CV AM Her	14.0	EI, E, I, V*, (B)
1	48	7.4	-25	32	25	12	-	23	7	GD 1401	TON-S 0231	star	14.4	I, b
1	51	9.7	+67	39	31	23	4	49	5	GD 421	WD 0147+674	WD DA2/DAW	14.4	
2	5	10.1	+77	16	47	55	13	54	13	HR 581	HD 12230	F0Vn star	5.3	IDP: A
2	28	14.9	-61	18	16	531	27	1503	51	SAO 248569	HD 15638	F3IV star	8.8	IDP: nonA
2	30	52.1	-47	55	33	22	4	126	9	LB 1628	JL 295	WD DA1	14.5	b
2	34	21.9	-43	47	32	42	6	51	8	CC Eri	HD 16157	BY Dra K7Ve fl	8.9	I, $\mathrm{V}^{*}, \mathrm{~N}, \mathrm{E}, \mathrm{EI},(\mathrm{B})$
2	35	7.0	+ 3	44	13	30	-	704	28	Feige 24	WD $0232+035$	WD DAWe	12.3	I,E
2	37	25.5	-12	21	14	49	9	113	12	PHL 1400		star	15.3	
2	39	47.3	+50	4	3	28	5	41	7	new ID		WD	16.0	
2	43	26.4	-37	55	26	21	5	24	6	CD-38 ${ }^{\circ} 899$	HD 17084	G6V star	8.0	A,(B), $\mathrm{I}, \mathrm{V}^{*}$
2	48	42.5	+31	6	51	109	11	114	14	VY Ari	HD 17433	RS CVn G9Ve	6.9	N,(B),I,EI, ${ }^{*}$
2	54	39.4	- 5	19	11	60	16	96	21	BD-05 541	HD 18131	K0 star	7.2	IDP: A
3	8	10.1	+40	57	34	142	10	194	12	Algol	HD 19356	B8V star	2.1	N,E,I,V*,EI,(B)
										$\mathrm{BD}+40^{\circ} 673 \mathrm{~B}$			12.7	(C)
3	12	21.8	-44	24	55	21	5	16	-	CD-44 ${ }^{\circ} 1025$	HD 20121	F7III	5.9	(B), IDP: A?
										CD-44 ${ }^{\circ} 1025 \mathrm{C}$		star	9.0	
3	14	13.3	-22	35	14	181	21	185	21	EF Eri	3A0311-227	CV AM Her	13.0	I,E,V*,EI,(B)

RA (J2000.0) (1)			$\begin{aligned} & \text { Dec } \\ & (\mathbf{J} 2000.0) \end{aligned}$ (2)			$\begin{gathered} \mathrm{S} 1 \mathrm{a} \\ (\mathrm{ct} / \mathrm{ks}) \\ (3) \end{gathered}$	err (4)	$\begin{gathered} \begin{array}{c} \text { S2a } \\ (\mathrm{ct} / \mathrm{ks}) \\ (5) \end{array} \end{gathered}$	$\begin{aligned} & \text { err } \\ & (6) \end{aligned}$	Counterpart Name (7)	Alternative Name (8)	Type (9)	Mag. (10)	Comments (11)	$\begin{gathered} \mathrm{R}_{90} \\ (1 ")_{(12)}^{(2)} \end{gathered}$	$\begin{gathered} \Delta \mathbf{R} \\ \left({ }^{\prime \prime}\right) \\ (13) \end{gathered}$	Cat. (14)
3	17	4.8	-85	32	35	34	-	122	14	LB 09802		star	13.9	b	43	49	MLN
3	19	17.1	+ 3	21	58	39	10	131	47	κ Cet	HD 20630	G5Ve star	4.8	I,E,N, V*	59	65	GL
3	22	13.5	-53	44	47	61	6	196	11	LB 1663		WD DA		E,I	42	31	EX
3	24	5.5	+23	46	46	15	4	21	6	AC+23 368-59	GJ 140A	M0V star	10.6	N,(B), IDP: A	56	23	GL
										GJ 140B		star	12.0	(C), N		23	GL
3	26	35.3	+28	42	55	78	8	101	9	UX Ari	HD 21242	RS CVn G5IV	6.5	N,(B),E,EI, ${ }^{*}, \mathrm{I}$	45	4	ST
3	27	5.4	+ 9	43	50	20	5	28	7	ξ Tau	HD 21364	B9Vn star	3.7	I	66	67	SI
3	32	55.8	-9	27	17	110	18	254	74	ϵ Eri	HD 22049	K 2 V star	3.7	N,E,EI,pm,I,A	57	16	GL
3	33	14.6	+46	15	3	21	5	24	6	BD+45 784	HD 21845	K2 star	8.5	(B), IDP: A	50	35	SI
										BD $+45^{\circ} 784 \mathrm{~B}$		star	10.5	(C), IDP: A (dMe)		26	SI
3	36	47.1	+ 0	35	25	304	15	413	18	V711 Tau	HD 22468	RS CVn G9V	5.7	I,E,(B),EI, ${ }^{*}$	41	9	ST
										HD 22468B		star	8.8	(C)		29	SI
3	37	10.9	+25	59	1	71	8	106	9	$\mathrm{BD}+25^{\circ} 580$	HD 22403	RS CVn G2V	8.1	I,A,(B)	44	41	ST
3	48	49.5	-0	58	26	289	16	498	19	GD 50	WD 0346-011	WD DA2/DAW	14.0	I, EI	41	5	MC
3	50	25.1	+17	15	4	256	15	1048	31	V471 Tau	$\mathrm{BD}+16^{\circ} 516$	WD DA2+K2V	9.7	E,EI, ${ }^{*}$, (B),I,A	41	20	CV
3	57	6.6	+28	38	6	32	6	65	9	new ID		late-type (e)	13.0		49		
3	57	31.6	-1	10	8	18	5	18	-	GJ 157A	HD 24916	K5V star	8.0	EI,N,(B)	70	54	GL
										GJ 157B		M3Ve star	11.6	(C),N		54	GL
4	2	36.7	- 0	15	57	34	6	40	7	HR 1249	HD 25457	F5V star	5.4	N, IDP: nA ?	49	10	GL
4	7	33.8	+38	4	10	31	6	27	-	GJ 160.1A	HD 25893	K2/G5 star	7.3	N,I,(B),A	76	23	GL
										GJ 160.1B		K2 star	9.3	(C), A		57	SI
4	8	3.4	+45	6	55	26	7	23	-	BD $+44^{\circ} 861$	HD 25879	K2 star	9.4	IDP: A	80	36	SI
4	8	58.3	-71	18	6	17	5	18	6	VW Hyi		CV dw. nova	8.5B	E,I, V^{*},(B)	54	55	SI
4	9	39.9	-7	53	36	75	9	113	11	EI Eri	HD 26337	RS CVn G5IV	7.0	I, V^{*}, (B), EI	46	17	ST
4	15	20.0	-7	38	53	24	6	25	6	40 Eri C	BD-070 781 C	fl star/M5Ve	11.1	N,(B),pm,E,EI,H	53	56	GL
										40 Eri A		K1Ve star	4.4	V^{*},(C), N, pm		37	GL
										40 Eri B		WD DA4	9.5	(C),N,pm		56	GL
4	15	39.3	-40	23	11	55	12	56	-					IDPn	56		
4	19	44.0	+15	36	24	21	5	28	-	HR 1346	HD 27371	KOIII star	3.7	I,EI	70	88	SI
4	20	49.0	+13	52	6	15	4	27	-	HR 1358	HD 27483	F6V	6.2	E,EI,A	68	50	SI
4	25	44.8	-57	13	35	18	4	13	-	LB 01727		star	15.1	b	87	136	MLN
4	27	35.9	+74	7	6	181	9	81	7	new ID		WD	15:		40		
4	31	38.2	+83	33	11	18	5	14	-					IDP n	66		
4	36	47.7	+27	7	46	54	7	92	11	V833 Tau	HD 283750	BY Dra K2/K5e	8.4	(B),EI,I,N, ${ }^{*}$	46	16	ST
4	41	17.9	+20	53	47	48	6	69	11	DM $+20^{\circ} 802$	HD 29697	K3Ve star	8.0	N,I	46	26	GL
4	43	7.1	-3	47	22	112	10	39	-	new ID		WD	16.0		46		
4	47	24.6	-27	51	37	15	-	40	11	new ID		dMe	13:		61		
4	49	50.2	$+6$	57	33	48	7	52	12	π^{3} Ori	HD 30652	F6V star	3.2	N,I,(B)	51	9	GL
										$\mathrm{BD}+06^{\circ} 762 \mathrm{~B}$		star	8.8	(C)		76	SI
4	53	24.1	-42	14	7	55	10	24	-					IDP员	54		
4	53	29.0	-55	51	36	41	9	27	-	H0449-55	GJ 2036A	M2Ve star	11.1	I,E,EI,(B),N,	56	28	GL
										GJ 2036B		dMe star	12.2	(C),N		28	GL
4	57	12.7	-28	8	10	118	10	2537	42	new ID		WD	14.0		40		
4	58	16.6	+0	27	17	31	6	69	12	$\mathrm{BD}+00^{\circ} 908$	HD 31738	G5 star	7.2	A,(B),I, ${ }^{*}$	53	7	ST
4	59	13.3	+37	52	52	15	4	19	-	BD $+37^{\circ} 1005$	HD 31647	A1V star	5.0	(B)	50	43	SI
										$\mathrm{BD}+37^{\circ} 1005 \mathrm{~B}$		star	8.1	(C)		47	SI
	59	50.5	-10	16	6	70	7	258	17	HR 1608	HD 32008	G4V star	5.4	I,A	42	25	SI
5	0	3.9	-36	23	58	27	8	53	10					IDP员	49		

岂 2	$=111$	$\xrightarrow{20} 1$	1	1 ¢1 1 ²	\varnothing	（1） 1	๗ n－	$\because 11$ N	이욱 1	\cdots	∞	\cdots
กึ	N్లి ¢్ల ¢ గొ	$\underset{7}{\overrightarrow{7}}$	10		¢	$\vec{\sim} \mathfrak{N}$	Oic	® N N		\cdots	\％	へิ
岂	1 のmサ	＊	∞		¢	\cdots	1∞	の吅がの	ササへ	N	1∞	악
的	$\underset{\sim}{\infty}$～	－ค	\％		$\stackrel{\infty}{\infty}$	－	∞ ¢ ${ }_{\sim}^{\infty}$		$\underset{N}{N} \sharp$	กิ	の	$\stackrel{\text { m }}{\sim}$
\bigcirc	붕 ¢ M	Nis	¢	ヱブホのヘ	\％	$\stackrel{\sim}{\sim}$	ポヲ			N	ค	∞
	N¢ึำ	F	$\stackrel{\infty}{+}$		ホ	กั	$150 \sim$		꾸ㄱㅛㅜ국	N	\cdots	ก
－		$\stackrel{\sim}{i} \stackrel{\infty}{+}$	$\begin{gathered} \text { N } \\ \text { i } \end{gathered}$		$\stackrel{0}{1}$	$\stackrel{N}{\sim}$	$\underset{\substack{ \pm \sim} \underset{\sim}{\infty}}{\infty}$	N	$\underset{\sim}{\sim}$	$\stackrel{+}{+}$	$\stackrel{\sim}{N}+$	$\stackrel{\sim}{\sim}+$
	$\stackrel{N}{\circ}$	－	H		$\stackrel{9}{0}$	$\begin{aligned} & 9 \\ & 10 \\ & 9 \\ & \hline \end{aligned}$	\cdots		$\stackrel{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{\mathrm{O}} \stackrel{1}{\mathrm{n}} \stackrel{1}{\infty}$	¢ֻ¢	HiN	$\stackrel{\text { N }}{\sim}$
	－${ }_{-1}$	กั	ค		$\stackrel{18}{4}$	¢	バガッ		ก ค ค N	\＃	¢ ${ }_{\sim}^{\circ}$	\％
	0000	\bigcirc	\bullet	$\bigcirc 0000$	\bigcirc	00	000	－NNN	N－NNN	\sim	N	N

両

Mag．	Comments
(10)	(11)
10.4	EI，E，V＊，（B），N，pm，I
12.4	$(\mathrm{C}), \mathrm{pm}, \mathrm{N}$
13.1	
3.8	$\mathrm{~V}^{*}, \mathrm{I},(\mathrm{B}), \mathrm{E}, \mathrm{EI}, \mathrm{N}$,
13.3	(C)
11.5	(C)
8.0	$(\mathrm{~B}), I D P: \mathrm{A}$
10.0	$(\mathrm{C}), I D P: \mathrm{A}$
6.4	$\mathrm{EI}, \mathrm{I},(\mathrm{B}), \mathrm{N}, I D P: \mathrm{A}$
11.7	$(\mathrm{C}), \mathrm{N}$
8.8	$I D P: \mathrm{nA}$
15.4	
7.4	$\mathrm{EI}, \mathrm{E}, \mathrm{V}^{*}, \mathrm{~A},(\mathrm{~B}), \mathrm{I}, \mathrm{pm}, \mathrm{N}$

Table 1 gives the coordinates（equinox J2000．0）of 383 bright EUV sources detected in the WFC survey．These should be referred to，according to the IAU convention，by the suitably truncated RA and Dec．Thus the first source in the table is RE $0003+433$ ，a ROSAT EUV source at $00^{\mathrm{h}} 03^{\mathrm{m}}$ ，and $+43^{\circ} 35^{\prime}$ ．Count rates and 1σ are given for each of the survey filters，in counts per kilosecond．Upper limits are indicated by＇- ＇in the error column and are 3σ above the local background． Information on possible counterparts within the 99.9 per cent WFC position error circle is given．The first counterpart listed is thought to be the most likely identification from the
 types for the counterparts are given；spectral type classifications for the same object，but from different catalogues，are all listed，separated by slashes． For more detailed and accurate spectral type classifications for active binaries，see Strassmeier et al．（1988）．The magnitudes of the counterparts are given（usually in the V band unless B magnitudes are indicated by a＇B＇）．They are meant only as a rough guide，since they are drawn from a variety of catalogues，and many of these objects are optically variable．It is important to note that visual or spectroscopic binary companions can rarely be ruled out as the source of EUV emission．

The column headed＇comments＇contains information regarding the counterparts，as detailed below．
E：EXOSAT detection within WFC error circle．
I：IUE target within WFC error circle（not necessarily a detection）．
pm：high proper motion star，from the Luyten catalogue of stars with proper motions $>0.5 \mathrm{arsec}_{\mathrm{yr}}{ }^{-1}$（Luyten 1976）．
N ：nearby stars，from the Gliese（1969）and Gliese \＆Jahreiss（1979，and in preparation）catalogues．
A：active star or star system［mostly from the Strassmeier et al．（1988）catalogue of chromospherically active binary stars］．The＇A＇flag is not given for RS CVn and BY Dra systems，or where the spectral type indicates emission（e．g．dMe）．
（B）：the most probable counterpart is a known binary，or has one or more sources nearby，within the error circle，with the same name，but a different qualifying letter at the end，usually implying a visual binary or multiple star system．The source（s）of EUV emission are not always clear in these cases．
V＊* variable star，from the general catalogue of variable stars（GCVS），either directly or via the sImbAD data base． EI：Einstein IPC detection within WFC error circle．
$\mathrm{N}(\mathrm{H})=$ Interstellar hydrogen absorption column，in units of $10^{20} \mathrm{~cm}^{-2}$ ，estimated from the maps of Stark et al．（1992；available for $\delta>-40^{\circ}$ ）for extragalactic counterparts within the error circles．Generally we do not expect to detect extragalactic sources through a column greater than $\mathrm{N}(\mathrm{H}) \sim 2$
（C）：designates another counterpart in the error circle，which has the same name but different extension letter to the first counterpart．
b：blue star，generally from the master list of non－stellar sources（Dixon 1970）or from references given in the simbad data base．
HEAO：HEAO－A1 detection（Wood et al．1984）． found from spectroscopic search of EUV error circle． listed in Appendix B（following notes on individual sources）．

Figure 3. Effective area of the Wide Field Camera as a function of photon energy in each survey band.
columns 1 and 2 and count rates in each filter band given in columns 3-6. Count-rate errors are 1σ on detections, while upper limits (3σ) are indicated by (-) for the corresponding survey filter. The sensitivity achieved in each EUV energy band depends in detail on the exposure and background, as a function of sky region, and a discussion of this is deferred to Section 4. However, perusal of columns 3 and 5 shows a dynamic range of source count rates of a factor ~ 2000 in the S1 filter band, and ~ 3500 in the longer wavelength S2 band, a measure of the depth of the WFC sky survey. For 239 of the 383 sources, positive detections are recorded in both filter bands, including a remarkably wide range in the 'EUV colour'(S1:S2 ratio).

Conversion of WFC count rates to incident flux is a function of both the intrinsic source spectrum and line-of-sight column. An idea of the flux levels represented by the WFC/BSC sources may be given, for example, in terms of an optically thin thermal plasma (Raymond \& Smith 1977). Thus, for a plasma temperature T in the range $2 \times 10^{5}<T<6 \times 10^{6} \mathrm{~K}$ and for column density $N_{\mathrm{H}}=10^{18}$ $\mathrm{cm}^{-2}, 1$ count $\mathrm{s}^{-1}(\mathrm{~S} 1$ filter $)=(3-5) \times 10^{-11} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$, effectively in the $90-200 \mathrm{eV}$ energy band, and 1 count s${ }^{-1}$ (S2 filter) $=(2-5) \times 10^{-11} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$, effectively in the $60-110 \mathrm{eV}$ band. The corresponding fluxes for $N_{\mathrm{H}}=10^{19}$ cm^{-2} are $\sim(5-7) \times 10^{-11}$ and $\sim(4-15) \times 10^{-11} \mathrm{erg} \mathrm{cm}^{-2}$ s^{-1} respectively. In general, in making quantitative use of the WFC data, conversion from WFC count rate(s) to flux must be carried out for any input spectrum, using the effective area curves reproduced in Fig. 3.

Column 12 of Table 1 gives the 90 per cent error circle radius for each source. This value includes an estimate of the systematic error arising from telescope misalignment, star tracker error, etc. Columns 7-11 give details of the possible optical counterpart(s) of each EUV source, obtained from a search of astronomical catalogues within the larger (99.9 per cent) EUV source error circle. Details of the catalogues
searched are given in Appendix B. 279 (~ 73 per cent) of the listed EUV sources were thus found to have a probable identification. In 92 cases, the catalogue search yielded more than one possible counterpart, and that considered most likely is listed first. ${ }^{1}$ The possible optical counterparts, overwhelmingly galactic in nature, are found to cover a wide range of stellar type and magnitude, with active late-type stars and white dwarfs being major subgroups, as predicted before the launch of ROSAT (e.g. Barstow \& Willingale 1988).

A follow-up programme of optical spectroscopy has been undertaken since the completion of the ROSAT survey, in an attempt to identify the EUV sources without an obvious counterpart, and also to check a sample of those for which a catalogue identification is indicated. In the latter group, for example, the optical spectrum of an 'identified' star is examined for activity compatible with it being a bright EUV source. Preliminary results from this further optical work are also included in Table 1, where column 7 lists a 'new ID' and the subsequent columns give information on the proposed optical counterpart. A more complete description of the WFC optical follow-up programme and results thereby

[^0]

Figure 4. (a) Distribution of optical counterparts in the Bright Source Catalogue. (b) Distribution of identifications in the main subgroup of cool stars.
obtained is being prepared for separate publication (Mason et al., in preparation). Fig. 4 illustrates the distribution, by optical type, of all the ROSAT EUV sources for which a probable identification now exists, now totalling 337 (or 87 per cent of the sources in the Bright Source Catalogue). Brief notes follow on each category of EUV source.

Late-type stars. The largest single group of optical counterparts is active stars, of spectral type F-M, with 181 identifications to date (~ 85 per cent being on the main sequence, i.e. luminosity class V). Detailed appraisal of the wide variety of EUV sources in this group is beyond the scope of this paper; however, a few general observations can be made. We note, first of all, the markedly different spread
in spectral type, compared with pre-launch estimates. Before
 predicted numbers of main-sequence stars that should have been detected in the S1 filter band (to a flux level of $\approx 3 \mu \mathrm{Jy}$ at $\sim 120 \mathrm{ev}$) of $\sim 25-40 \mathrm{~F}$ stars, $\sim 25 \mathrm{G}$ stars, $\sim 20-40 \mathrm{~K}$ stars and $\sim 150-400 \mathrm{M}$ stars. In contrast, to an equivalent count-rate limit of 0.015 S 1 count s^{-1}, the actual catalogue breakdown for main-sequence identifications is $12 \mathrm{~F}, 30 \mathrm{G}$, $25 \mathrm{~K}, 22 \mathrm{M}$, with, in addition, 30 RS CVn binaries. To compare these observed numbers with predictions, the former must first be corrected for the effects of incomplete sky coverage (see Section 4), yielding the following corrected 'detections': 20 F, 50 G, $40 \mathrm{~K}, 35 \mathrm{M}, 45 \mathrm{RS}$ CVn. Hence the predicted and 'detected' numbers agree remarkably well for
the F, G and K stars, but the predicted M-star numbers remain too high, by a factor $\sim 4-10$. A more detailed analysis (Pye et al., in preparation) confirms these results, but also indicates two possible sources of the M-star discrepancy. First, the effect of varying the effective coronal temperature (poorly known pre-ROSAT) between 1×10^{6} and $1 \times 10^{7} \mathrm{~K}$ is to change the predicted number of stars (at any given count-rate level) by a factor ~ 5 (due to the change in conversion factor between flux and count rate). Secondly, the published predictions have all been based on scaling from the Einstein X-ray stellar luminosity functions (Rosner, Golub \& Vaiana 1985). For the F-M main-sequence stars these functions are all rather 'flat', i.e. source counts predicted from them will be most heavily influenced by the high-luminosity 'tails', which are rather poorly determined due to the small numbers of detected sources. Thus, for example, truncation of the luminosity functions at an X-ray luminosity of $\sim 1 \times 10^{29} \mathrm{erg} \mathrm{s}^{-1}$ results in a factor ~ 5 change in the predicted number of M stars (but only a factor ~ 2 change for the $\mathrm{F}-\mathrm{K}$ stars). In passing, we note that the observed deficiency of M stars has implications for the galactic EUV/X-ray background radiation, for which M stars have been proposed as a major contributor.

White dwarf stars. Hot white dwarf (WD) stars (loosely defined as having $T_{\text {eff }}>2 \times 10^{4} \mathrm{~K}$) form, as expected, the second major group of bright EUV sources, with 119 identifications in Table 1. In addition, many of the brightest sources we see fall into this class. However, the total number of hot white dwarfs being detected in the EUV is significantly less than expected pre-launch, when numbers in the range 1000-2000 were predicted (Finley 1988; Barstow \& Pounds 1988). The shortfall in white dwarf detections in the ROSAT XRT is still greater (Barstow et al. 1992a). The explanation for this surprising result appears to lie in a whole group of hot DA white dwarfs, with $T_{\text {eff }}$ in the range $\sim 4-8 \times 10^{4} \mathrm{~K}$, having their EUV and soft X-ray luminosities substantially reduced by the opacity of trace metals which have been levitated by radiation pressure in the white dwarf atmospheres (Barstow et al. 1992a). Notwithstanding the lower total yield of isolated white dwarfs, the discovery (via their EUV flux) of many new white dwarfs, including some previously 'hidden' in binary association with luminous earlyand late-type stars (e.g. Fleming et al. 1991; Cooke et al. 1992; Barstow et al. 1992b), is a further important result of the ROSAT EUV survey. In addition, four optical counterparts previously catalogued as hot subdwarfs (Kilkenny, Heber \& Drilling 1988) have been found in post-survey optical studies to be hot DA white dwarfs (Sansom et al. 1992). The detection of three (or four) hot central stars within planetary nebulae provides a further contribution from the WFC survey to this area of study.

O-B stars. Although coronal EUV emission is not expected from such early-type stars, and their photospheres are probably too cool to radiate significantly in the WFC survey bands ($\sim 60-200 \mathrm{eV}$), the possibility of emission via shock heating of intense stellar winds has been proposed to explain X-ray emission from such stars. In those relatively few $\mathrm{O}-\mathrm{B}$ stars which have sufficiently low galactic columns, the possibility of detection in the EUV has been considered (e.g. Kudritzki et al. 1991). Table 1 contains eight possible identifications with relatively nearby B stars, providing a sample which clearly warrants further study, including a
careful check on the possibility of a UV leak, at least for the three hottest and visually brightest stars, Beta CMa, Eps CMaA and Spica.

Cataclysmic variables. CVs are another class of object expected to be bright in the EUV, since optical, UV and X-ray data show both the temperatures and luminosities of the white dwarf stars in CVs to be substantially higher than for field white dwarfs. In current CV models, accretion energy is expected to yield a large EUV luminosity from the boundary layer or, in magnetic CVs, as blackbody radiation from the heated pole regions of the white dwarf (Watson 1986). The WFC survey data confirm the above predictions in a general sense, with 17 CVs identified in Table 1, and several AM Her-type (magnetic) CVs showing large EUV count rates. More detailed analysis, together with the simultaneous XRT spectra, should considerably clarify this area of research.

Classical X-ray binaries. It is (at least, historically) interesting to note the inclusion of both Sco X-1 and Her $\mathrm{X}-1$ in the WFC source list. Again, detailed modelling, including the simultaneous XRT spectra, will be needed to assess these EUV data.

Active galactic nuclei (AGN). The possibility of detecting extragalactic sources in the WFC survey was considerably reduced, as noted earlier, by the decision to add a boron layer to the S1 survey filter, thereby improving the 'purity' of the EUV bandpass (as well as atomic oxygen protection), but simultaneously restricting potential extragalactic sources to line-of-sight interstellar column densities $<2 \times 10^{20} \mathrm{~cm}^{-2}$. The outcome is a 'select' group of four Seyfert-type galaxies and three BL Lacertae objects, identified with EUV sources in Table 1. In the case of the Seyferts, their EUV detection is no doubt aided by the steep spectral components found to dominate the emission of many Seyferts at energies $<1 \mathrm{keV}$ (e.g. Turner \& Pounds 1989; Masnou et al. 1992). The EUV fluxes should, again taken with the simultaneous X-ray spectra, improve the constraints on models of this luminous soft X-ray/EUV component. In the case of the three BL Lacs, the EUV flux appears to be consistent with that expected from an extension of the featureless power law seen, for these objects, over a wide spectral band. In all seven AGN, the only significant detection is in the shorter wavelength S1 filter, consistent with the removal of the S2 signal by interstellar absorption.

Plots of EUV flux against V magnitude, for all types of identified source (Fig. 5), discriminate quite well between the different classes of EUV source found in this ROSAT survey. The brightest EUV sources, in both S1 and S2 filter bands, are white dwarf stars, and 90 per cent of the detected white dwarfs are fainter than $m_{\nu} \sim 12.5$. Conversely, 97 per cent of the identified late-type stars are brighter than $m_{V} \sim$ 12, but all lie within the lowest two decades in EUV flux. The ratio of S1:S2 count rates, or 'EUV colour', varies remarkably over the whole sample. Thus several of the hot white dwarfs (e.g. RE $0457-280$ and $0505+524$) have an S1:S2 ratio of <0.05, presumably indicating strong metal opacity in the stellar atmospheres. In contrast, for many sources where interstellar absorption (at these wavelengths primarily due to He) is critical, the $\mathrm{S} 1: \mathrm{S} 2$ ratio can be $\gg 1$.

Consideration of the source density of the various classes of optical counterpart suggests that the probability of chance coincidence with an EUV source is, in most cases, negligible.

Figure 5. EUV count rate versus optical magnitude for the main classes of identified object in the Bright Source Catalogue.

The highest probability of chance coincidence occurs with the \mathbf{M} stars. Typically detected at $m_{V}<12$, and with a mean density of $50 \mathrm{deg}^{-2}$ (Allen 1973), this suggests ~ 15 chance coincidences in Table 1 (assuming a typical error radius of 1 arcmin). Several faint catalogued M stars do, indeed, turn up in the list, often as non-preferred candidates, where no particular stellar activity is seen. However, this point needs to be qualified, since catalogues of 'inactive' M stars are notably incomplete fainter than $m_{V} \sim 8$. On the other hand, our follow-up optical spectroscopy has checked all M stars found within EUV source error boxes which contain no other probable candidate. The net result is that there are probably few - if any - chance M -star identifications in Table 1. The second group with a significant probability of 'random' coincidences is galaxies, with a spatial density of ~
$6 \mathrm{deg}^{-2}$ down to $m_{V}<16$ (Allen 1973), giving \sim two false identifications in the whole catalogue. However, only 'galaxies' for which Seyfert or BL Lac characteristics have been found (in catalogues or our follow-up optical spectroscopy) form the preferred optical counterpart to a listed EUV source in Table 1.

A comparison of columns 12 and 13 in Table 1 shows that the majority of optical counterparts lie within the 90 per cent error circle radius. This provides support for the general correctness of the proposed identifications and, in addition, gives a measure of the typical accuracy of the EUV source positions. Fig. 6 shows the distribution of angular separations of all EUV sources (identified with catalogued objects) from the corresponding optical counterpart. It can be seen that 90 per cent of positional differences lie within ~ 50

Figure 6. (a) Histogram of positional offsets of optical counterparts to identified EUV sources. (b) Cumulative distribution of offsets.
arcsec, consistent with the anticipated systematic and statistical errors in the EUV survey.

4 SURVEY COMPLETENESS AND EUV SOURCE COUNTS

The logistics of the ROSAT survey led to an accumulated exposure on the sky that generally increased with ecliptic latitude (Fig. 1); in addition, the exposure in a particular direction could be affected by data losses when the satellite passed through regions of high particle background or suffered temporary malfunctions. Mean exposures were 2160 s in the S1 filter band and 2020 s in the S2 filter band, increasing to $\sim 70000 \mathrm{~s}$ at the ecliptic poles. The accumulated background count also varied over the sky and consisted of both particle and photon components. The consequence of variable exposures and background levels was some non-uniformity in the sky survey sensitivity, i.e. the minimum detectable source strength at a particular location on the sky. In the event, the higher background levels tended to coincide with periods spent observing high ecliptic latitudes, thereby moderating the range of sensitivity across the sky.

In order to quantify these effects, and thereby obtain a measure of the intrinsic EUV 'source counts', the minimum detectable point-source count rate (using the method outlined in Section 2) has been estimated for a grid of sky locations, for each of the two survey energy bands. Hence the cumulative distribution of sky area against sensitivity has been derived, giving the fraction of sky (f) in which each EUV source could have been detected (Fig. 7). The contribution of the i th source (of count rate C_{i}) to a coverage-corrected number count rate $(\log N-\log S)$ distribution was then taken

Figure 7. The sky coverage fraction as a function of count rate for (a) the S 1 filter band, (b) the S2 filter band.
as $1 / f_{i}$. Ordering the sources by ascending count rate, the corrected number of sources $N\left(>C_{j}\right)$ is then
$N\left(>C_{j}\right)=\sum_{i=j}^{i=n} 1 / f_{i}$,
where there are n sources in the sample.
The 'raw' and corrected all-sky $\log N$ - $\log S$ distributions, for each survey band, are shown in Fig. 8. The corrections, in terms of the ratios of corrected-to-observed numbers of sources, are seen to be less than 20 per cent, for count rates above 0.02 and 0.025 count s^{-1} in the S1 and S2 bands, respectively. (The slightly lower sensitivity in the S 2 band is due to a higher photon background in that band.) Considering the corrected curves from these count-rate limits, up to a count rate at which the integral number of sources falls below ~ 10, the $\log N-\log S$ distributions can be described by the following power-law fits:
$\begin{array}{ll}N\left(>C_{1}\right)=10 \times\left(C_{1}\right)^{-0.9} & \text { (S1 filter), } \\ N\left(>C_{2}\right)=20 \times\left(C_{2}\right)^{-0.7} & \text { (S2 filter). }\end{array}$
Both the S1 and S2 source-count distributions are clearly very 'flat' compared with the 'Euclidean' slope of -1.5 , with

Figure 8. The raw and corrected source counts for the full catalogue in (a) the S1 filter band, (b) the S2 filter band.
that in the softer S2 energy band being significantly flatter than that in the S1 band. Both factors suggest that the EUV source-count distribution is being strongly influenced, as expected, by the distribution and opacity of the local interstellar medium.

Further insight on this question is obtained by repeating the above exercise separately for the two main classes of EUV source, white dwarfs and late-type stars. Figs 9 and 10 show the resulting $\log N$-log S distributions for each of the survey filters. It can be seen that the integral distributions for the white dwarfs alone are extremely flat, with power-law slopes of approximately -0.6 (S1 filter band) and -0.5 (S2 filter band). In contrast, the $\log N-\log S$ slopes for the latetype stars, of -1.4 and -1.3 , respectively, are consistent with a Euclidean source distribution. Thus the flat overall source-counts distribution is primarily due to the white dwarf stars. Since these are - typically - at greater distances than the late-type stars, this is consistent with an interstellar absorption origin for the observed flat source counts. Correspondingly, it can be expected that the majority of additional WFC sources, anticipated in the fainter extension of the present catalogue, will be associated with active, mainsequence stars.

Figure 9. The raw and corrected source counts for white dwarf stars in (a) the S1 filter band, (b) the S2 filter band.

Figure 10. The raw and corrected source counts for late-type stars in (a) the S1 filter band, (b) the S2 filter band.

5 THE SPATIAL DISTRIBUTION OF THE BRIGHT SOURCE SURVEY

Casual appraisal of the EUV source map (Fig. 2) shows a clearly 'non-uniform' distribution. A deficiency of sources, or 'hole', is apparent in a large area towards and to the north of the Galactic Centre (roughly bounded by $b>-30^{\circ}$, $\left.270^{\circ}<l<60^{\circ}\right)$. There is also an expected clustering of faint sources around the ecliptic poles. In order better to assess the spatial non-uniformity of the EUV source distribution, account must be taken of the exposure and background variations (and hence limiting sensitivity) as a function of sky position. A full analysis of this is beyond the scope of this paper. However, it can readily be shown that substantial asymmetries do exist in the EUV sky distribution. Fig. 11 replots the galactic coordinate map for sources brighter than 0.02 count s ${ }^{-1}$ (in S1) and brighter than 0.025 count s ${ }^{-1}$ (in S2), for which the sky coverage corrections were seen earlier to be less than 20 per cent. The number of sources in Fig. 11 is reduced to 311 , with many faint sources dropping out, particularly at high ecliptic latitudes, as may be expected. The large 'hole' remains, however, and is clearly a real feature of the EUV sky at these energies.

A further insight on the asymmetry of EUV sources is obtained by mapping, separately, the distributions of white dwarfs and late-type stars from the reduced sample of 311 sources. Fig. 12 shows the galactic distribution of 119 white dwarfs identified from the WFC Bright Source Catalogue. The large 'hole' north of the Galactic Centre is now striking, while clear excesses of white dwarfs are seen to the upper left and lower right sectors of the map. Confirmation that this represents a real variation in the total number of white dwarfs visible in the EUV, and is not merely an artefact of the incomplete optical surveys, is provided by addition of all our unidentified sources to the white dwarf distribution. Fig. 13

Figure 11. Aitoff equal-area projections in galactic coordinates showing the locations of the EUV sources in the Bright Source Catalogue. Faint sources have been removed as indicated in the text.

Figure 12. As Fig. 11, but for white dwarf stars only.

Figure 13. As Fig. 11, but for white dwarf stars and unidentified sources only.
shows this new distribution, where again the same anisotropy is seen.

Since the WFC is sufficiently sensitive to detect hot white dwarfs out to $\sim 100 \mathrm{pc}$, it seems likely that the observed anisotropy is caused by gross variations in the opacity of the interstellar medium within such a distance from the Sun. The remarkably flat $\log N-\log S$ distribution for white dwarf stars (Fig. 9) supports the conclusion that many distant (and intrinsically faint) white dwarfs are hidden by intervening interstellar absorption.

Finally, Fig. 14 shows the same plot for late-type stars identified in the Bright Source Catalogue. The EUV sky is now much more isotropic; however, a deficiency still remains in the general direction of the Galactic Centre, implying substantial interstellar opacity within $\sim 10 \mathrm{pc}$ of the Sun. This and other related questions will be reviewed in more detail in a forthcoming paper on the distribution of EUV sources from the ROSAT survey (Barber et al., in preparation).

Figure 14. As Fig. 11, but for late-type stars only.

ACKNOWLEDGMENTS

The UK ROSAT project is funded by the Science and Engineering Research Council. The authors are very grateful to the German ROSAT Project for the opportunity to fly the WFC and to the skill and dedication of many colleagues in the UK, Germany and the USA, who made this successful first EUV sky survey possible. The optical identification programme made extensive use of the simbad data base located at CDS in Strasbourg.

REFERENCES

Abell G. O., Corwin H. G., Jr, Olowin R. P., 1989, ApJS, 70, 1
Allen C. W., 1973, Astrophysical Quantities. Athlone Press, London
Barstow M. A., Pounds K. A., 1988, in Pallavicini R., ed., Proc. NATO ASI, Hot thin plasmas in astrophysics. Kluwer, Dordrecht, p. 359
Barstow M. A., Willingale R., 1988, J. Br. Interplanet. Soc., 41, 345
Barstow M. A., Bromage G. E., Pankiewicz G. S., González-Riestra R., Denby M., Pye J. P., 1991, Nat, 353, 635

Barstow M. A., Fleming T. A., Diamond C. J., Finley D. S., 1992a, in Haber U., Jeffery C. S., eds, The Atmospheres of Early-type Stars. Springer-Verlag, p. 329
Barstow M. A., Schmitt J. H. M. M., Clemens J. C., Pye J. P., Denby M., Harris A. W., Pankiewicz G. S., 1992b, MNRAS, 255, 369

Bromage G. E., 1992, in Giampapa M. S., Bookbinder J. A., eds, ASP Conf. Ser. 26, Cool stars, stellar systems, and the Sun. Astron. Soc. Pacif., San Francisco, p. 61
Bromage G. E., Kellett B. J., Jeffries R. D., Innis J. L., Matthews L., Anders G. J., Coates D. W., 1992, in Giampapa M. S., Bookbinder J. A., eds, ASP Conf. Ser. 26, Cool stars, stellar systems, and the Sun. Astron. Soc. Pacif., San Francisco, p. 80
Cash W., Charles P., Johnson H. M., 1980, ApJ, 239, L23
Cooke B. A. et al., 1992, Nat, 355, 61
Dixon R. S., 1970, ApJS, 20, 1
Dixon R. S., Sonneborn G., 1980, A Master List of Non-stellar

Optical Astronomical Objects. Ohio State University Press, Columbus, Ohio
Fernandez A., Lortet M.-C., Spite F., 1983, A\&AS, 52, No. 4
Finley D. S., 1988, PhD thesis, University of California, Berkeley
Fleming T. A., Schmitt J. H. M. M., Barstow M. A., Mittaz J. P. D., 1991, A\&A, 246, L47
Gliese W., 1969, Veröff. Astron. Rechen Inst. Heidelberg, No. 22
Gliese W., Jahreiss H., 1979, A\&AS, 38, 423
Green D. A., 1984, MNRAS, 209, 449
Green R. F., Schmidt M., Liebert J., 1986, ApJS, 61, 305
Haisch B. M., Linsky J. L., Lampton M., Paresce F., Margon B., Stern R., 1977, ApJ, 213, L1 19
Hewitt A., Burbidge G., 1987, ApJS, 63, 1
Hodgkin S. T., Barstow M. A., Fleming T. A., Monier R., Pye J. P., 1993, MNRAS, submitted
Innes D. E., Hartquist T. W., 1984, MNRAS, 209, 7
Jeffries R. D., Bromage G. E., 1993, MNRAS, submitted
Jomaron C. et al., 1993, MNRAS, submitted
Jordan C., 1991, in Malina R., Bowyer S., eds, Extreme Ultraviolet Astronomy. Pergamon Press, Oxford, p. 80
Jordan S., Heber U., Weidemann V., 1991, in Vauclair G., Sion E., eds, White Dwarfs. Kluwer, Dordrecht, p. 21
Kilkenny D., Heber U., Drilling J. S., 1988, S. Afr. Astron. Obs. Circ., No. 12, 1
Kudritzki R.-P., Puls J., Gabler R., Schmitt J. H. M. M., 1991, in Malina R., Bowyer S., eds, Extreme Ultraviolet Astronomy. Pergamon Press, Oxford, p. 130
Lampton M., Margon B., Paresce F., Stern R., Bowyer S., 1976, ApJ, 203, L71
Lieu R. et al., 1992, ApJ, 397, 158
Luyten W. J., 1976. A catalogue of stars with proper motions exceeding 0.5 arcsec annually. Minneapolis, Minnesota, USA
Lyne A. G., Biggs J. D., Brinklow A., Ashworth M., McKenna J., 1988, Nat, 332, 45
McCook G. P., Sion E. M., 1987, ApJS, 65, 603
McKee C. F., Ostriker J., 1977, ApJ, 218, 148
Malasan H. L., Yamasaki A., Kondo M., 1991, AJ, 101, 2131
Margon B., Lampton M., Bowyer S., Stern R., Paresce F., 1976, ApJ, 210, L79
Margon B., Szkody P., Bowyer S., Lampton M., Paresce F., 1978,

ApJ, 244, 167
Masnou J. P. et al., 1992, A\&A, in press
Mason K. O. et al., 1992, MNRAS, 258, 749
Mittaz J. P. D., Rosen S. R., Mason K. O., Howell S. B., 1992, MNRAS, 258, 277
Oschenbein F., Bischoff M., Egret D., 1981, A\&AS, 43, 259
Paresce F., 1984, AJ, 89, 1022
Pounds K. A. et al., 1991, MNRAS, 253, 364
Pye J. P., McHardy I. M., 1988, in Havnes O., Petterson B. R., Schmitt J. H. M. M., Solheim J. E., eds, Activity in Cool Star Envelopes. Kluwer, Dordrecht, p. 231
Raymond J. C., Smith B. W., 1977, ApJS, 35, 419
Remillard R. A., Tuohy I. R., Brissenden R. J. V., Buckley D. A. H., Schwartz D. A., Feigelson E. D., Topia S., 1989, ApJ, 345, 140
Rosner R., Golub L., Vaiana G. S., 1985, ARA\&A, 23, 413
Sanduleak N., Pesch P., 1990, PASP, 102, 440
Sansom A. E., Barstow M. A., Holbert J. B., Kidder K., 1992, MNRAS, 256, 1
Sims M. R. et al., 1990, Opt. Eng., 26, 649
Soifer B. T. et al., 1984, ApJ, 278, L271
Stark A. A., Gammie C. F., Wilson R. W., Bally J., Linke R. A., Heiles C., Hurdwitz M., 1992, ApJS, 79, 77
Stern R., Bowyer S., 1979, ApJ, 230, 755
Strassmeier K. G. et al., 1988, A\&AS, 72, 291
Trümper J. et al., 1991, Nat, 349, 579
Turner T. J., Pounds K. A., 1989, MNRAS, 240, 833
Vedder P. W., Vallerga J. V., Jelinsky P., Marshall H. L., Bowyer S., 1991, in Malina R., Bowyer S., eds, Extreme Ultraviolet Astronomy. Pergamon Press, Oxford, p. 120
Véron-Cetty M.-P., Véron P., 1989, A Catalogue of Quasars and Active Nuclei. 4th edn, ESO Sci. Rep No. 7
Watson M. G., 1986, in Mason K. O., Watson M. G., White N. E., eds, Physics of Accretion onto Compact Objects. SpringerVerlag, p. 97
Wegner G., McMahon R. K., Boley F. I., 1987, AJ, 94, 1271
Wonnacott D. et al., 1992, MNRAS, 259, 251
Wood K. S. et al., 1984, ApJS, 56, 507
Woolley R., Epps E. A., Penston M. J., Pocock S. B., 1970, R. Greenwich Obs. Ann. 5

APPENDIX A: NOTES ON INDIVIDUAL SOURCES

(See Table 1.)
RE $0044+093$. New fast-rotating single-star radio source (Bromage et al., in preparation).

RE 0116-022. AY Cet is an active close binary with a WD companion (Strassmeier et al. 1988) and a 57 -d orbit. The WD is not expected to contribute to the EUV flux.

RE 0415-073. 40 Eri emission was resolved with the Einstein HRI, most emission coming from 40 Eri C, the dMe flare star (Cash, Charles \& Johnson 1980). All three components could be contributing to the EUV flux.

RE 0447-275. Identification is with a newly discovered dMe star, the fainter companion of a close visual pair; this has subsequently been discovered to be a flare star (Bromage 1992).

RE $0515+324$. Identified with a white dwarf, coincident with the 8th-magnitude A2/F4V star HD 33959C. An IUE SWP spectrum of this star shows a rise towards short wavelengths, indicative of a hot white dwarf companion (Hodgkin et al. 1993). Other catalogued stars in the WFC error circle include the 5th-magnitude A9IV star KWAur, and the 11thmagnitude star $\mathrm{BD}+32^{\circ} 922 \mathrm{~B}$, which are both unlikely to contribute to the detected EUV flux.

RE 0532-030. Star identified may be HBC97 (dKe), but this association is uncertain because of positional discrepancies.

RE 0604-343. The S2 filter count rate was enhanced by a flare; this is a new dMe flare star. See Bromage (1992).

RE 0604-482. HD 41824 is a very close visual binary. Star A (G?V) has no reported variations in radial velocity or photometry, whereas star B (G6V) has variable radial velocity and photometric variability. Following the IDP discovery of chromospheric activity, it seems very likely that star B is the EUV emitter and it is probably an SB1 RSCVn binary.

RE $0631+500$. The dMe star discovered in the optical identification programme now appears (but not named) in the latest version of the Gliese \& Jahreiss catalogue (in preparation) as an M0 star with $V=11.09$ mag.

RE $0734+315$. YY Gem is an eclipsing binary doubleflare star. The S2 filter count rate was enhanced by a flare event on 1990 October 3 (Bromage 1992).

RE 0751+144. Identified as new intermediate polar system (Mason et al. 1992).
$\mathbf{R E} 0827+284$. Identified with the hot, evolved star PG $0824+289$, classified as a subdwarf in the Palomar Green (PG) survey (Green, Schmidt \& Liebert 1986), and more recently shown to be a hot DA white dwarf (Sansom et al. 1992).

RE 0838-430. This WFC detection is part of the Vela supernova remnant. There is also a 9 th-magnitude K giant in the WFC error circle, which is likely to be a chance coincidence.

RE $0845+485$. The most likely counterpart is the faint white dwarf star (HD 74389B) which is 20 arcsec east of the bright A0 star HD 74389. The discovery of HD 74389B is described in Sanduleak \& Pesch (1990).

RE 1016-052. This is a newly discovered Feige-24 type DA + dMe binary (Jomaron et al. 1993).

RE $1043+445$. Identified with the hot, evolved star PG $1040+451$, classified as a hot subdwarf (sdB) in the PG survey and more recently shown to be a possible hot DA white dwarf (Sansom et al. 1992). Because of the low signal-to-noise ratio data, the optical classification of this star is still uncertain, as indicated by the colon after the spectral type in Table 1.

RE 1104+381. Identified with the BL Lac object Mrk 421. The DC white dwarf also in the EUV source error circle is probably too cool to be detected.

RE1111-224. Positionally coincident with the 4thmagnitude, A2IV star β Crt, the likely source of EUV emission has been shown to be a DA white dwarf companion $\beta \mathrm{Crt} \mathrm{B}$ (Fleming et al. 1991), which is a spectroscopic binary companion to β Crt.

RE 1149+284. Identified as a probable new AM Her system (Mittaz et al. 1992).

RE $1236+475$. Identified with the hot, evolved star PG $1234+482$, classified as a hot subdwarf (sdOB) in the PG survey, and more recently shown to be a hot DA white dwarf (Jordan, Heber \& Weidemann 1991; Sansom et al. 1992).

RE $1255+255$. The variable star IN Com, within the WFC error circle, is very close to the centre of the planetary nebula in LT5. IN Com is a triple system consisting of an 8.7th-magnitude G5III star with active chromosphere and a low-mass, binary companion, plus an outer, hot subdwarf
(Malasan, Yamasaki \& Kondo 1991). The G star is the most likely source of EUV emission, but emission from the other components cannot be ruled out.

RE $1307+535$. Identified as a probable new AM Her system, with the shortest known period in the class (Osborne et al., in preparation).

RE $1428+424$. Identified with a BL Lac; first seen by HEAO-1 and later optically identified by Remillard et al. (1989).

RE 1603-574. ^ Nor consists of a group of several 5thmagnitude mid-A stars within approximately $2 \operatorname{arcsec}$ (SAO 243279; IDS 15554-1570AB). The star SAO 243278 (IDS $15554-1570 \mathrm{C}$) approximately 10 arcsec away has now been shown to be a 6 -d period double-lined spectroscopic binary active G star and candidate RSCVn binary (Bromage 1992).

RE 1625-490. The optical identification has been made independently by Cutispoto et al. (private communication) from an optical follow-up programme of serendipitous EXOSAT sources; the object does not show any evidence of binarity.

RE $1629+780$. This is a newly discovered Feige-24 type DA +dMe binary (Cooke et al. 1992).

RE $1800+683$. Identified with the hot, evolved star KUV $18004+6836$, classified as a hot subdwarf (sdB) by Wegner, McMahon \& Boley (1987), and more recently
shown to be a hot DA white dwarf (Sansom et al. 1992).
RE $1833+514$. The famous prototype of the BY Dra class of spotty active stars; the S2 flux was enhanced by a flare (Barstow et al. 1991).

RE 1938-461. Identified as new AM Her system (Buckley et al., in preparation).

RE 2045-312. AU Mic, a well-known flare star. The S1 flux was enhanced by a flare (Bromage 1992).

RE 2047-363. A newly discovered very fast rotating single dwarf star, nicknamed 'Speedy Mic' (Bromage et al. 1992). The S2 flux was enhanced by a long-lived flare, and variability of activity occurred in both filters.

RE 2147-160. δ Cap: the visual companions of this 3rd-magnitude peculiar A-star binary have been ruled out as possible EUV counterparts by CCD photometry and highresolution spectroscopy, leaving the likely counterpart as the hidden binary companion of δ Cap itself (probably a mildly active late-type star) (Wonnacott et al. 1992).

RE 2157-505. Gliese B41A: newly identified as an SB2 binary dMe flare star; the common proper motion WD companion is too cool to contribute to the EUV flux, but the derived age of the system makes G1841A one of the oldest known active star systems (Jeffries \& Bromage 1993).

RE 2246+442. The well-known flare star EV Lac. Both S1 and S2 filter fluxes were enhanced by flares during the survey coverage (Bromage 1992).

APPENDIX B: CATALOGUES USED IN CROSS-CORRELATION WITH WFC SOURCE POSITIONS

(In priority order used for counterpart positions. See Table 1.)

Catalogue abbreviation	Number of objects	Catalogue epoch	Description of references
MC	1277	-	McCook \& Sion (1987) catalogue of spectroscopically identified white dwarf stars.
SU	1721	1970	Kilkenny et al.(1988) catalogue of hot subdwarfs.
ST	205	-	Strassmeier et al. (1988) catalogue of chromospherically active binary stars.
CV	425	1989	List of cataclysmic variables compiled by the UK ROSATCV special interest group in 1990.
GL	3803	1990	Gliese \& Jahreiss catalogues of nearby stars within 25 pc of the Sun (Gliese \& Jahreiss, in preparation).
WO	2150	1990	Woolley et al. (1970) catalogue of stars within $\sim 25 \mathrm{pc}$ of the Sun.
LH	4471	1990	Luyten (1976) catalogue of stars with proper motions $>0.5 \mathrm{arcsec} \mathrm{yr}^{-1}$.
HRI	598	-	Einstein HRI source list.
EI	5958	1983.5	Einstein IPC point source catalogue.
SNR	153	-	Supernova remnants catalogue (Green 1984).
PULS	450	1950	Lyne pulsar catalogue (e.g. Lyne et al. 1988).
HEAO	842	-	HEAO-Al catalogue (Wood et al. 1984).
VE	3543	1983.5	Catalogue of quasars and active nuclei (Véron-Cetty \& Véron 1989).
BU	12911	-	Hewitt \& Burbidge (1987) quasar catalogue.
SI	639774	1950	Compact version of simbad data base.
CS	434927	1950	Catalogue of stellar identifications (Oschenbein, Bischoff \& Egret 1981, and references therein).
GCVS	22647		General catalogue of variable stars.
CATX	51111		Catalogue of galaxies compiled at JPL/SDAS (Soifer et al. 1984). Consists of a merger of various galaxy catalogues.
MLN	181530	1950	Master list of non-stellar objects (Dixon \& Sonneborn 1980).
MLR	84920	1950	Master list of radio sources (Dixon 1970).
ABELB	2712	1989	Abell, Corwin \& Olowin (1989) catalogue of rich clusters of galaxies (northern).
ABELC	1364	1989	Abell et al. (1989) catalogue of rich clusters of galaxies (southern).
ABELD	1174	1989	Abell et al. (1989) catalogue of rich clusters of galaxies (southern supplement).
ABELE	274	1989	Abell et al. (1989) catalogue of rich clusters of galaxies (northern supplement).
EX	7353	-	EXOSAT CMA source catalogue.
IUELS	6337	-	IUE observation log.

[^0]: 'The likelihood of a particular EUV counterpart is (necessarily) based on current knowledge of those objects that are (potentially) strong EUV emitters. Thus coincidences with hot white dwarfs, central stars of planetary nebulae, active stars, emission-line stars, CVs, X-ray binaries and active galaxies, in directions of low interstellar hydrogen column density, were considered most probable identifications, followed by nearby or blue stars, with nondescript stars/galaxies being considered least likely. The probability of chance coincidences with the above categories of 'likely' EUV sources is sufficiently small for us to be confident that they are valid identifications in most cases. For ambiguous cases, where there is more than one 'star' in the WFC error circle, the optically brightest is generally listed first, with late-type stars considered more likely counterparts than early types.

