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The Rose model, revisited
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In 1946 and 1948, three very important papers by Albert Rose [J. Soc. Motion Pict. Eng. 47, 273 (1946); J. Opt.
Soc. Am. 38, 196 (1948); L. Marton, ed. (Academic, New York, 1948)] were published on the role that photon
fluctuations have in setting fundamental performance limits for both human vision and electronic imaging sys-
tems. The papers were important because Rose demonstrated that the performance of imaging devices can be
evaluated with an absolute scale (quantum efficiency). The analysis of human visual signal detection used in
these papers (developed before the formal theory of signal detectability) was based on an approach that has
come to be known as the Rose model. In spite of its simplicity, the Rose model is a very good approximation
of a Bayesian ideal observer for the carefully and narrowly defined conditions that Rose considered. This
simple model can be used effectively for back-of-the-envelope calculations, but it needs to be used with care
because of its limited range of validity. One important conclusion arising from Rose’s investigations is that
pixel signal-to-noise ratio is not a good figure of merit for imaging systems or components, even though it is
still occasionally used as such by some researchers. In the present study, (1) aspects of signal detection theory
are presented, (2) Rose’s model is described and discussed, (3) pixel signal-to-noise ratio is discussed, and (4)
progress on modeling human noise-limited performance is summarized. This study is intended to be a tuto-
rial with presentation of the main ideas and provision of references to the (dispersed) technical literature.
© 1999 Optical Society of America [S0740-3232(99)00703-6]
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1. INTRODUCTION
A. Summary
Rose1–3 in his seminal publications proposed and de-
scribed the use of (1) an absolute scale (quantum effi-
ciency) for evaluating imaging system performance, and
(2) a simple model of signal detectability by human ob-
servers. Rose used a particle-based fluctuations theory
to compare realized devices with an ideal device, with the
performances of both being assumed to be limited only by
photon fluctuations. The images shown in Fig. 1 were
used by Rose4 in 1953 to demonstrate the maximum
amount of information that can be conveyed by various
known numbers of photons. Cunningham and Shaw,5 in
another paper in this feature, review the subsequent evo-
lution of the quantum efficiency approach that culmi-
nated in spatial-frequency-dependent metrics based on
modern theories of linear systems and stochastic pro-
cesses. Rose’s quantum efficiency is now viewed as a
zero-frequency (dc) limit. This paper is concerned with
the Rose signal detection model, which was based on a
signal-to-noise ratio (SNR) also calculated by the particle
fluctuation theory approach. Rose’s work was done sev-
eral years before the development of the modern theory of
signal detectability6,7 based on Bayesian probabilistic
analysis. The Rose model, as it has come to be known, is
useful for simple calculations but has a very narrow range
of validity.

Research since 1948 has revealed that the problem of
evaluation of imaging system performance and image
quality is complex. A system that is optimized for one
task may be suboptimal for another task. Tasks fall into
two broad categories: One is classification (including de-
tection, discrimination, and identification); the other is
0740-3232/99/030633-14$15.00 ©
estimation of signal parameters. It is, in principle, pos-
sible to use a two-step process for image quality
evaluation.8 The first step is to determine the best pos-
sible task performance. This is achieved by the ideal ob-
server, which makes optimum use of (1) the information
available in the underlying physical phenomenon used to
create the image, together with (2) available prior infor-
mation to determine the most probable solution to the
classification or estimation task. The second step is to
determine task performance accuracy for the user, which
could be a human or a numerical algorithm, based on re-
alized images. The disparity between ideal and user-
achieved performance gives an indication of how much
room there is for improvement in the imaging system.
Modeling of the task, the imaging system, and the user
may give clues as to how to best improve the imaging
chain. This is completely in the spirit of Rose’s approach.

This paper is concerned only with the simplest classifi-
cation task: detection of a signal with known parameters
(size, shape, location) in additive, uncorrelated Gaussian
noise on a known background. This is usually referred to
as the signal-known-exactly (SKE), background-known-
exactly (BKE) detection task. Rose’s model is a useful
approximation for SKE and BKE detection of a limited
subset of signals and noise. After 50 years it is still a
convenient and popular method for simple calculations
and presentations of results. One purpose of this paper
is to alert potential users to the limited range of validity
of the model. Another is to demonstrate how it is related
to more-general signal detection models. A third purpose
is to caution against misuse of the Rose model in the form
of a pixel SNR calculation. Readers interested in more-
advanced aspects of image quality assessment are re-
1999 Optical Society of America
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Fig. 1. Picture used by Rose,4 of woman with flowers, to demonstrate the maximum amount of information that can be represented with
varying numbers of photons. A, 3 3 103; B, 1.2 3 104; C, 9.3 3 105; D, 7.6 3 105; E, 3.6 3 105; F, 2.8 3 107. Each photon is repre-
sented as a discrete visible speck. The inherent statistical fluctuations in photon density limit one’s ability to detect or identify features
in the original scene.
ferred to a paper by Cunningham and Shaw in this
feature5 and to a series of papers by Barrett and
co-workers.9–11

This paper begins with a description of the historical
context of Rose’s papers, gives a brief introduction of the-
oretical analysis of signal detection, introduces Rose’s
SNR model, and discusses the limited domain of validity
of the Rose model. Then methods of evaluating human
observer performance are described. Next, the inappro-
priateness of pixel SNR as a detectability measure is
demonstrated. Finally, work on modeling noise-limited
human performance is briefly reviewed.

B. Historical Perspective
Rose’s papers on assessment of the performance of elec-
tronic devices and of the human visual system on an ab-
solute scale came during a time of major technological
change. Rose had been an important participant in the
development of electronic television camera tubes at RCA
since 1935. There had been a very rapid increase in cam-
era sensitivity and a resulting need for evaluation met-
rics. Rose explored the consequences of the quantum na-
ture of light as the fundamental determinant of
performance. This was not a completely new idea; it had
already been applied to the study of the limits of human
visual system performance. In 1932, Barnes and
Czerny12 suggested that statistical fluctuations in photon
arrival might limit human visual perception. In 1942,
Hecht13 estimated the minimum number of photons nec-
essary to produce a sensation of light in the retina.
de Vries14 estimated effects of photon statistics on con-
trast sensitivity and acuity. Rose was the first to make
complete use of a statistical approach.

Rose’s work on noise effects and ultimate limits to sen-
sitivity was concerned with just one of a number of factors
limiting image quality. Early evaluations of the imaging
properties of photography, television, and optical and vi-
sual systems were based on different, noncommensurable
methods. O. Schade, at RCA, was developing spatial-
frequency-dependent measurement techniques, measure-
ment scales, and performance indices that could be used
across the entire spectrum of imaging modalities. The
results of that work are summarized by examples in his
marvelous book Image Quality: a Comparison of Photo-
graphic and Television Systems,15 with a foreword by
Rose. Much of Schade’s work has been translated into
modern signal detection theory notation by Wagner.16,17

Rose’s ideas found immediate application in the medi-
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cal imaging field. In 1948, Coltman described18 the de-
velopment of a prototype electronic x-ray image intensifi-
cation device and pointed out that the images would be
impaired by the quantum nature of light. Sturm and
Morgan19 used Rose’s concepts and observer model to cal-
culate the expected benefits of electronic intensification in
fluoroscopy. They explicitly pointed out the fundamental
role that photon statistics would play in limiting the clar-
ity with which fluoroscopic images would be visualized.

C. What is Signal-to-Noise Ratio?
Noise is a ubiquitous problem in science and engineering.
Anyone attempting to define a SNR must somehow char-
acterize the strengths of both signal and noise. The
theory of signal detectability provides a definition of SNR
that is not arbitrary. For pedagogical reasons, the theo-
retical development given here is as follows. The calcu-
lation of the optimum detection filter 20 based on linear
systems theory is described in some detail. The main
points of the theory of signal detectability6 are presented
to show that the optimum linear detection filter is also
the optimum strategy in the probabilistic sense for special
cases. Then the Rose model is described and discussed.
The author has encountered other definitions of SNR over
the years, based on some ratio of signal mean and noise
standard deviation. There are many ways to define sig-
nal mean. Noise standard deviation is not a good mea-
sure if the noise is correlated. So SNR calculations can
be very misleading if not done correctly. The key point is
that attempts to minimize the effect of noise on task per-
formance, by filtering, for example, must take into ac-
count the nature of the task. This leads to very different
optimization strategies for different tasks: maximizing a
SNR by matched filtering20 for detection of a known sig-
nal, and minimizing rms error by filtration21–23 for esti-
mation and prediction tasks.

Consider the problem of optimizing signal detection.
The basic concepts were described very nicely by Harris24:

Every sensor is fundamentally limited by some
form of statistical variability, i.e., noise. In the
presence of noise, an object cannot be defined ex-
actly. Where a frequency function is assumed
for the noise which takes on all values from zero
to infinity, it is theoretically possible for any ob-
ject to result in any image. In practice many of
these combinations are events of such small
probability that they have no significance....
Since a given image can result from any number
of objects, a decision as to which object actually
produced the image can be made in statistical
terms only. If the set of possible objects is
known, then the probability that the image is
due to each of the objects can be calculated. A
decision as to which object actually produced the
image should be based on comparison of these
probabilities.

D. Matched Filter
North developed the theory of the prewhitening matched
filter method for detecting a known signal in additive
Gaussian noise. This was described in a superbly writ-
ten 1943 RCA report20 that was circulated by mimeo-
graphed copy to a generation of engineering graduate stu-
dents. Eventually it was reproduced in 1963 as an
Institute of Electrical and Electronics Engineers paper20

so that it could be easily accessible—and legible. North’s
work was done in the context of radar, where signals and
noise are functions of one variable (time), which is used
here to simplify notation. Extension to two spatial di-
mensions is straightforward. His approach is presented
in some detail because it nicely illustrates a number of
important points. Note that North was a contemporary
of Rose’s at the RCA Laboratories and that Rose repeat-
edly acknowledged in his publications the benefits of dis-
cussions with North.

Consider analyzing the binary decision problem of de-
ciding whether a signal has been received in the presence
of noise. A number of constraints and assumptions must
be introduced to make this a well-defined problem.
North asked the question, What is the best filter to use at
the radar receiver so that its output gives the best con-
trast between signal and noise? In other words, if the
signal is present, then the filter should give a sharply
peaked output, whereas, if the signal is not present, the
filter should give as low an output as possible. It was as-
sumed that the filter designer knew the temporal profile
and arrival time of the signal (a short radar echo pulse of
a particular shape). So the problem is to detect a known
signal, s(t), in a waveform, x(t), with additive random
noise, n(t), by use of a filter with an impulse response,
h(t). The filter input and output functions are given by

input: x~t ! 5 s~t ! 1 n~t !,

output: y~t ! 5 h~t ! * x~t !, s0~t ! 5 h~t ! * s~t !,

n0~t ! 5 h~t ! * n~t !, (1)

where * denotes convolution. North chose to select the
optimum filter by maximizing the ratio of the signal am-
plitude to the noise amplitude of the output at some in-
stant in time, based on the known arrival time of the sig-
nal. Since the noise is a random variable, it was
characterized by the mean-square value, ^n0

2(t)&, of its
amplitude, where ^...& denotes an expectation value. This
gave the following quadratic ratio, r, to characterize the
relative strength of output signal and noise at a particu-
lar measurement time, tm :

r~tm! 5
s0

2~tm!

^n0
2~tm!&

. (2)

Note that use of Eq. (2) does not consider or guarantee
that the output signal will in any way resemble the input
signal. The only concern is to maximize a scalar quan-
tity at tm .

To simplify the mathematics it was assumed that the
noise is a stationary stochastic process.25 Mathematical
analysis of r is more convenient in the frequency domain
by means of the signal amplitude spectrum, S( f ); the de-
tector filter transfer function, H( f ); the noise function
Fourier transform, N( f ); and the noise power spectrum,
P( f ). The input and output spectra are related by
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S0~ f ! 5 H~ f !S~ f !,

P0~ f ! 5 ^uN0~ f !u2& 5 ^uH~ f !u2uN~ f !u2& 5 uH~ f !u2P~ f !,
(3)

where u...u denotes an absolute value.
The filter output ratio can be evaluated in terms of the

inputs. To simplify notation, the time parameter is de-
fined so that the expected arrival time, tm , of the signal is
equal to zero. Since we are interested in a spatial filter
for image applications, we do not have to worry about the
causality issue, which is important for temporal filters.
The filter output ratio, with frequency-domain functions,
then becomes

r~tm! 5
s0

2~tm!

^n0
2~tm!&

5

F E
2`

`

H~ f !S~ f !exp~i2p ftm!d fG2

E
2`

`

uH~ f !u2P~ f !exp~i2pftm!d f

,

r~0 ! 5

F E
2`

`

H~ f !S~ f !d fG2

E
2`

`

uH~ f !u2P~ f !d f
. (4)

The goal is to determine the particular filter that maxi-
mizes this ratio. We multiply and divide the integrand of
the denominator by AP( f ). Since the denominator and
the numerator of the ratio are scalars, we make use of the
following Schwarz inequality22:

F E
2`

`

H~ f !AP~ f !
S~ f !

AP~ f !
d fG 2

< E
2`

`

uH~ f !u2uP~ f !d fE
2`

` uS~ f !u2

P~ f !
d f. (5)

The range of possible output ratios is then given by the
inequality

r~0 !u <

E
2`

`

uH~ f !u2P~ f !d fE
2`

` uS~ f !u2

P~ f !
d f

E
2`

`

uH~ f !u2P~ f !d f
,

r~0 ! < E
2`

` uS~ f !u2

P~ f !
d f. (6)

The maximum value of r (0) is obtained when the
equality holds and requires that

Hmax~ f ! 5
aS* ~ f !

P~ f !
, (7)

where * denotes the complex conjugate and a is an arbi-
trary real scalar constant. This result for H( f ) is the
prewhitening matched filter. The output ratio with this
filter is

rmax~0 ! 5 E
2`

` uS~ f !u2

P~ f !
d f. (8)
Prewhitened matched filtering can be understood by
consideration of the following two-stage procedure. The
first step is inverse filtering of the input by use of a filter
H1( f ) to remove the intrinsic correlations in the noise
(i.e., prewhiten the noise). The transfer function of
H1( f ) is determined with the criterion that
uH1( f )u2P( f ) equal a constant. The second step is to de-
tect the signal in the waveform with white noise. Inverse
filtering of the input waveform by use of H1( f ) will also
change the expected signal profile, so the revised detec-
tion filter matched to the signal must be H2( f )
5 aS* ( f )H1( f ). Assuming linear filters, we can select
a single linear filter that simultaneously prewhitens and
matches the revised signal with the product H( f )
5 H1( f )H2( f ), which yields Eq. (7).

For the special case of white noise, the matched filter is
H( f ) 5 aS* ( f ). The corresponding optimum impulse
response for detection by convolution is h(t) 5 as(2t), a
time-reversed version of the signal profile. The convolu-
tion output is evaluated at the known signal position.
The equivalent result can be obtained by cross correlation
with the template, as(t), correctly positioned at the ex-
pected signal location. Note that, since the constant a is
arbitrary and disappears in the ratio calculation, it is
usually set to unity. But the implication of arbitrary a is
that, at this point in the task, the decision device (ob-
server) does not need to know the amplitude of the signal
and can use any template proportional to the signal. For
example, the template can be normalized to unit peak sig-
nal amplitude or unit signal energy.

We have obtained the linear filter that maximizes the
ratio of signal and noise strengths as defined by Eq. (2).
However, it remains to be shown that this ratio is actu-
ally the appropriate quantity to use for optimization of
SKE signal detection. In Subsection 1.E it is demon-
strated that, for the special case of noise with a Gaussian
probability distribution, the prewhitening matched linear
filter is the absolute optimum filter; that is, there is no
other filter, linear or otherwise, that can improve detec-
tion efficiency. There are two additional shortcomings to
the matched filter approach. First, the task of detecting
an exactly known signal is too simplistic. The SKE as-
sumption is rarely valid for real-life problems. Second,
the assumption of stationary noise is rarely valid. Baye-
sian SDT provides the means to investigate optimum
strategies for more complex tasks.

E. Likelihood Ratio Approach
The likelihood ratio approach comes from the theory of
signal detectability developed by Peterson et al.6 for
radar applications. The theory is now more commonly
referred to as signal detection theory (SDT). SDT is
based on the Bayesian mathematics of testing statistical
hypotheses (statistical decision theory) developed by
Fisher,26 Neyman and Pearson27 and Wald,28 among oth-
ers. Decision theory deals with the problem of decision
making under conditions of risk and uncertainty. It pro-
vides (1) a method of controlling and measuring the crite-
rion used in making decisions about signal existence, and
(2) an absolute performance measure that is independent
of signal intensity and the selected decision criterion.
The analysis of signal detectability is described in great
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detail in books by Swets,29 Green and Swets,30 Van
Trees,31 and Helstrom.32 Next it is shown that SDT
proves that the linear matched filter is the optimum
strategy for the SKE detection task evaluated by North.

Consider again detection of a known (SKE) signal in
the waveform, x(t), which is defined over some finite in-
terval of time, 0 –T. The observer must make a binary
decision about this waveform: It contains either (1) only
noise, or (2) signal plus noise. The decision will accept
one of two hypotheses about the state of the world under
investigation, denoted by Hi . The observer also needs to
know the prior probabilities of occurrence P(Hi) of the
two states. Once the waveform has arrived, the observer
can use Bayes’s theorem to calculate the conditional a
posteriori probability of the truth of each hypothesis
about the state of the world, P@Hiux(t)#, given the new
evidence, x(t):

P@Hiux~t !# 5
P~Hi!P@x~t !uHi#

P@x~t !#
5

P~Hi!P@x~t !uHi#

(
i

P~Hi!P@x~t !uHi#

.

(9)

The observer can then adopt several strategies. One is to
select the hypothesis that has the maximum a posteriori
probability (the MAP approach), which can, of course, be
extended to deciding between many alternative hypoth-
eses. Sometimes it is preferable to evaluate the evidence
independently of the prior probabilities of occurrence.
The evidence about the state of the world is conveniently
summarized in a positive real-valued scalar quantity, the
likelihood ratio, l@x(t)#. This is the ratio of the condi-
tional probability densities of the observed data when the
signal is present (state, s) and absent (state, n):

l@x~t !# 5
p@x~t !us#

p@x~t !un#
. (10)

The observer computes the likelihood ratio by deter-
mining the conditional probability densities under each
hypothesis. Once the likelihood ratio is calculated, the
observer compares it with a decision criterion, k, and de-
cides that the signal is present if l@x(t)# is greater than k.
The probabilities of correct detection given signal present,
P(l . kus), and false alarms given no signal, P(l
. kun), are determined by evaluation of the following in-
tegrals with the conditional probabilities for l@x(t)# un-
der the two possible states of the world:

P~l . kus ! 5 E
k

`

p$l@x~t !#us%dl@x~t !#,

P~l . kun ! 5 E
k

`

p$l@x~t !#un%dl@x~t !#. (11)

Consider the simplest case of stationary Gaussian
white noise. It is assumed that the functions x(t), s(t),
and n(t) can be represented by a finite number, M, of dis-
crete samples in either the temporal or the frequency do-
main. The temporal domain is used here. The collec-
tions of samples are denoted by $xm%, $sm%, and $nm%.
The noise samples are assumed to be independent and
identically distributed with zero mean and variance s2.
The conditional probability densities of a particular single
sample, xm , of the waveform under the two possible
states are described by

p~xmuHi! 5
1

sA2p
expF2

~xm 2 vmi!
2

2s 2 G , (12)

with means vmi 5 sm , for signal present, and vmi 5 0, for
noise only.

The conditional probability densities of the collection of
samples $xm% for the two states are given by the product
of individual sample conditional probability densities:

p~$xm%uHi! 5 )
m51

M

p~xmuHi!. (13)

The likelihood ratio is evaluated by substitution of the
two results for p($xm%uHi) in Eq. (10).

l@$x~t !%# 5

S 1

sA2p
D M

)
m51

M

expF2
~xm 2 sm!2

2s 2 G
S 1

sA2p
D M

)
m51

M

expF2
~xm!2

2s 2 G
5 )

m51

M

expF2
~xm 2 sm!2 1 xm

2

2s 2 G . (14)

The product of exponentials can be replaced by an ex-
ponential of the sum of arguments. Additional simplifi-
cation can be obtained by evaluation of the natural loga-
rithm of l@$xm%#, since any monotonic transformation of
the likelihood ratio is also an equivalent decision vari-
able. The final result is

L 5 ln~l@$xm%#! 5
1

s 2 S (
m51

M

xmsm 2 (
m51

M

sm
2/2D

5
1

N0
S (

m51

M

xmsm 2 E/2D . (15)

The signal energy, E 5 (m51
M sm

2, is constant, and N0 is
the two-sided noise spectral density defined by use of
cycles per unit sampling distance. It is immediately rec-
ognized that L is linearly related to the cross-correlation
result, (m51

M xmsm , between the received waveform
samples and the expected signal samples. So cross cor-
relation with the signal as a template is the optimum sig-
nal detection method, given SKE and BKE conditions
with white, Gaussian noise. Since matched filtering and
evaluation of the signal arrival time is equivalent to cross
correlation, we conclude that North was completely cor-
rect in his choice of a quantity to maximize.

The observer that uses the optimum Bayesian strategy
is known as the ideal observer. SDT analysis of ideal ob-
server procedures and performance can be extended to
cases in which the signal parameters are known only sta-
tistically through probability distributions. SDT allows
one to include a number of sources of uncertainty, includ-
ing image noise, signal and background parameter vari-
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ability, prior probabilities of various signals and back-
grounds, decision risks and costs, and a variety of decision
criteria. A complete discussion can be found in a three-
volume set by Van Trees.31 The pattern recognition
literature33 provides mathematical techniques that can
be adapted for digital image applications. Barrett and
co-workers9–11 have presented a number of applications of
the SDT approach to image quality assessment.

F. Detectability Index
The above presentations dealt with the ideal observer, its
procedures for SKE signal detection, and determination of
the probabilities of true-positive responses and false
alarms by use of Eqs. (11). One would prefer to obtain a
one-dimensional performance scale. One way to do this
is to determine true-positive and false-positive rates as
the decision criterion is changed with all the other param-
eters fixed. The plot of the covariation of true- and false-
positive probabilities is referred to as the receiver operat-
ing characteristic (ROC) curve. This ROC method allows
the experimenter to obtain two estimates from the data.
One quantity (sometimes called bias) shows where the ob-
server is operating on the ROC curve, given a particular
value selected for k. The other quantity is the area un-
der the ROC curve, Az , which provides a scalar measure
of performance at a given SNR that is independent of the
decision criterion. An alternative performance measure,
the detectability index da , can be obtained by an inverse
error function-based transformation30 of Az . The ROC
method has been the gold standard for evaluation of per-
formance with clinically acquired medical images and
comparisons of competing imaging methods. Guidance
on dealing with the many subtleties of its use can be
found in publications by Metz.34,35

An alternative approach is to determine the means,
^Ls& and ^Ln&, and variances, sLs

2 and sLn
2, of the log-

likelihood ratios under the two equally probable states
(s, n) of the world and calculate a detectability index, d8,
using the equation30

~d8!2 5
@^Ls& 2 ^Ln&#2

~1/2!@sLs
2 1 sLn

2#
. (16)

This detectability index is a normalized Euclidean dis-
tance measure that describes the separation of the two
population means (signal and no signal present) relative
to the average population standard deviation. This
equation must be used with great care. If the underlying
probability distributions for the log-likelihood ratios are
far from Gaussian, the resulting value of d8 estimated
with Eq. (16) can be seriously wrong. In some cases it
may be possible to find an alternative decision variable
with Gaussian probability distributions by use of some
monotonic transformation of log-likelihood ratio. Then
d8 can be calculated with the new decision variable
means and variances in Eq. (16). For other distributions,
the ROC method is a much more reliable approach.36

Advanced aspects of the use of the ROC approach are dis-
cussed by Barrett et al.11

Very often, the experimenter is interested only in esti-
mating an observer’s detectability index directly, with
variation in the observer’s decision criterion being irrel-
evant. In this case a more attractive way to evaluate ob-
server performance is to present two or more alternative
waveforms (or images) with exactly one containing a sig-
nal. The observer is asked to select the most probable al-
ternative. This is known as the M-alternative forced-
choice (MAFC) method. For the two-alternative forced-
choice method the probability of a correct response, P, is
equivalent to the area under the ROC curve.30 The value
of P can then be transformed to an estimate of a detect-
ability index, d8, by use of Elliot’s tables29 or their equiva-
lent. The best choice of method, ROC or MAFC, and the
best value of M to use depends on details of the experi-
mental conditions.37

The relationship between SNR and the detectability in-
dex, d8, is the source of some confusion. SNR is a mea-
sure describing the relative intensities of signal and noise
defined, for example, by the SKE signal detection task de-
scribed above. The detectability index is an objective
measure of observer performance, independent of the ob-
server’s decision criterion. For the ideal observer doing a
SKE and BKE signal detection task, d8 is numerically
equal to SNR. The equality does not hold for suboptimal
observers. For more complex tasks, d8 and SNR can be
different for all the observers. Engineering texts fre-
quently use d to represent the quadratic quantity pre-
sented here as (d8)2. The use of d8 came from early per-
ception work at the University of Michigan. They chose
to use d as in the engineering convention and therefore
chose d8 as a convenient symbol to represent Ad.38

G. Efficiency
An approach to evaluating nonideal observer performance
on an absolute scale by an efficiency measure was sug-
gested by Tanner and Birdsall.39 They defined observer
efficiency, h, using the ratio of input signal energies, Ei
and Et , required by the ideal observer and the observer
under test to do the selected task at the same perfor-
mance level. Occasionally an alternative efficiency defi-
nition is used, based on the squared ratio of detectabili-
ties, dt8 and di8 , for the test and ideal observers at a fixed
input signal energy. This definition of efficiency can be
distinguished from the Tanner–Birdsall definition by the
subscript 2:

h 5 S Ei

Et
D

d8

, h2 5 S dt8

di8
D

E

2

. (17)

If the detectability indices for both test and ideal observ-
ers are directly proportional to signal amplitude, then the
two definitions are equivalent. However, this condition
is not satisfied for many tasks and is rarely found for hu-
man observers doing any task, so the two definitions usu-
ally give different results. Most researchers use the
Tanner–Birdsall definition.

The observer efficiency measure is useful for a number
of reasons. (1) It serves as a way of comparing the per-
formance of human observers across a variety of tasks.
(2) Aspects of the task that will also reduce ideal observer
performance are eliminated from consideration. (3) It
provides some guidance as to the type of mechanisms that
might be the cause of suboptimal performance. As Rose
pointed out,2 ‘‘ The gap, if there is one, between the per-
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formance expected from fluctuation theory and the actual
performance is a measure of the ‘ logical’ space within
which one may introduce special mechanisms, other than
fluctuations, to determine its performance.’’ (4) One can
use SDT analysis of suboptimal observer model perfor-
mance to search for possible causes of discrepancies be-
tween theoretical predictions and human performance.
Mechanisms and observer models that predict efficiencies
lower than those found by experimental tests of that ob-
server’s performance can immediately be rejected. (5)
Efficiency measurements give a direct estimate of how
much improvement in human performance is possible (by
improved display methods or image enhancement, for ex-
ample).

2. ROSE MODEL
A. Theory
The basic ideas of the Rose model are presented here in a
slightly different way from that of his publications, to
make a number of important distinctions. Rose was con-
sidering the detectability of a flat-topped, sharp-edged
signal of area, A, in a uniform background. This choice of
signal allowed it to be described by either one scalar (the
average incremental number of photons, ^DNs&, that rep-
resent the signal) or two scalars (the signal contrast, C,
and area, A) rather than a function, s(x, y). Rose
described the photon noise by its statistics in a back-
ground region with the same area as the signal: the
mean number of photons in the area, ^Nb&, and the vari-
ance, sNb

2, which equals the mean, since photons have
Poisson statistics. It is very important to note, as Rose
did, that recorded photons are uncorrelated. For clarity,
it is more convenient to use the corresponding mean pho-
ton densities, ^Dns& extra photons per unit area for the
signal, and ^nb& expected photons per unit area for the
background. Using a signal contrast, C 5 ^DNs&/^Nb&
5 ^Dns&/^nb&, Rose defined SNR with the equation

SNRRose 5
mean signal

sNb

5
^DNs&

A^Nb&
5

A^Dns&

AA^nb&

5 CAA^nb&. (18)

Now consider the Rose SNR definition in the context of
SDT. Two assumptions are necessary to compare the
Rose model based on Poisson noise with the previous SDT
models based on Gaussian noise. (1) The Rose model ne-
glects the fact that noise in the potential signal location
has unequal variances for the signal-present and signal-
absent cases. If the signal is present, the variance will
equal the mean total, ^DNs 1 Nb&. So we need to as-
sume that DNs is very small compared with Nb . Hence
the Rose model is an approximation that is valid only in
the limit of low-contrast signals. (2) The photon noise
has a Poisson distribution, whereas the above SDT ap-
proach was based on a Gaussian distribution. We need
to assume that photon densities are large enough that
Poisson noise can be approximated by Gaussian noise
with the same mean and variance.

Other aspects of the Rose model fit conditions of the
above SDT model for uncorrelated noise. (1) Rose used
completely defined signals at known locations on a uni-
form background for his experiments and analysis, so the
SKE and BKE constraints of the simple SDT analysis
were satisfied. (2) He assumed perfect use of prior infor-
mation about the signal. (3) He used a flat-topped signal
at the detector plane (which is only possible when there is
no imaging system blur). This assumption meant that
integration of photon counts over the known signal area is
equivalent to cross-correlation detection. This can be
seen by consideration of the following argument. Con-
sider the cross correlation of a signal, s(x, y), and a tem-
plate, t(x, y), both located at the expected signal location
(x 5 y 5 0) in an image with additive, uncorrelated
Gaussian noise. The noise functions with and without
the signal are ns(x, y) and nn(x, y) with zero mean and
spectral density equal to ^N0&. Let the signal have a flat
top and sharp edges (the signal is nonzero only in the
range R) with area A and amplitude a above the back-
ground. Let the template be an arbitrarily amplified ver-
sion of the signal, t(x, y) 5 t s(x, y). Using Eqs. (15)
and (16), one obtains the SNR defined by SDT:

^Ls& 2 ^Ln& 5 S 1
N0

D E
2`

` E
2`

`

^$s~x, y ! 1 ns~x, y !

2 nn~x, y !%t~x, y !&d xdy

5 S at

N0
D E E

R
d xdy 5

atA
N0

,

sLs
2 5 sLn

2 5 S 1
N0

D 2E
2`

` E
2`

`

^n~x, y !2t~x, y !2&d xdy
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^n~x, y !2&d xdy 5

t 2N0A

N0
2 ,

SNR2 5 ~d8!2 5
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~1/2!~sLs
2 1 sLn

2!
5

t 2a2A2N0
2

t 2AN0
3

5
a2A
N0

. (19)

The equality of Rose’s SNR approximation and the SDT
definition of SNR can be shown by use of Rose’s definition
of contrast and by the fact that N0 equals ^nb& for Poisson
noise:

C 5
^Dns&

^nb&
5

a
N0

,

SNRRose
2 5 C2A^nb& 5 S a

N0
D 2

AN0 5
a2A
N0

5 SNR2.

(20)

So the Rose model, when limited to this idealized special
case, is a very good approximation to the Bayesian ideal
observer model. However, it must be used with care to
ensure that all the above conditions and assumptions are
satisfied.

Rose used his model to assess the detectability of sig-
nals, in that he asked the question, ‘‘What SNR was re-
quired in order to detect a signal?’’ His approach was to
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use a constant, k, defined as the threshold SNR, and to
suggest that the value of k must be determined experi-
mentally. The signal was expected to be reliably detect-
able if its SNR were above this threshold. Once k is se-
lected, the corresponding contrast threshold CT is given
by

CT 5
k

AA^nb&
. (21)

Using this definition of threshold SNR has the unfortu-
nate effect of mixing the measure of relative signal
strength (SNR) with the observer’s decision criterion.
However, it followed the convention of the day. This
threshold SNR concept is still sometimes used by people
unfamiliar with SDT.

B. Determining the Value of k
Rose’s thoughts on the selection of k are presented in
some detail to show that he considered many issues that
would subsequently be resolved by the probabilistic ap-
proach of SDT. For example, he was searching for ways
to include both signal uncertainty and observer ineffi-
ciency effects into the value of k. The value of k had been
assumed to be unity in earlier publications by Rose1,40

and de Vries.14 Rose performed experiments to estimate
k by means of highly amplified, static, photon-noise-
limited images of disk test object arrays. He concluded
that a higher value of k was needed. He stated (Ref. 2,
pp. 199–200) that ‘‘Some estimates [of k] made recently ...
lay in the range of 3 to 7. Additional and more direct evi-
dence is given in the next section that the value of k is not
unity but is in the neighborhood of 5.’’ In the other 1948
paper, Rose said3 that ‘‘A recent direct determination by
Schade41 sets the value of k in the range of 3–6, depend-
ing on the viewing conditions.’’ The investigation of the
value of k raised several issues. Rose observed3 that
‘‘This constant [k] ... is a function of what one calls a
threshold. That is, if one asks that each observation
have a 90% chance of being correct, the threshold signal
to noise ratio will be higher than if one were satisfied with
a 50% chance.’’ Rose was also searching for other expla-
nations for the observed value of k, based on human limi-
tations. He noted,3 ‘‘This [value of k] is surprisingly high
since mathematical analysis suggests a value close to
unity. One way of reconciling the discrepancy is to as-
sume that the eye in looking at the pictures in Fig. 5 does
not make full use of the information presented. That is,
the eye (and brain) may count only a fraction of the
‘quanta’ present.’’ This observation illustrated his un-
derstanding that human efficiency is limited to both pe-
ripheral (eye) and central (brain) considerations. Rose
pointed out that the range of validity of a particular value
of k is also constrained by other aspects of the human vi-
sual system. The value of k increases when signal size is
outside the angular range of approximately 1–10 millirad
in diameter. For smaller signals, blur due to the point-
spread function of the eye mixes signal with nearby noise
and thus couples additional image noise into the decision
task. For large signals, human spatial integration limits
come into play, and signal detection eventually becomes
limited by contrast sensitivity. Some experimental re-
sults that are pertinent to the value of k are presented in
Subsection 2.C.

C. Experimental Methods
Rose used a fixed two-dimensional (2D) array of disk sig-
nals with a range of sizes and contrasts in his experi-
ments. The observers were asked to indicate which sig-
nals in the array were visible. The signals were always
present, so the observer’s decision about whether a par-
ticular signal was seen was subjective. This method has
the potential for significant systematic error due to differ-
ences and variations in the observer decision criterion.
Objective evaluation of performance in Rose’s experi-
ments is not possible within the framework of SDT.

A number of methods were developed in subsequent
years to eliminate effects of observer bias and to allow ac-
curate estimates of the underlying intrinsic detectability
of signals.30 One modern experimental approach is to
have one known signal location with the signal either
present or absent. Observers give a binary response
(yes/no) and use a different decision criterion in different
blocks of trials to generate a ROC curve. An alternative
(and more efficient) ROC-generating approach uses a con-
fidence rating scale for responses. The area under the
ROC (Az) can be used as a performance measure, or it can
be transformed into a detectability index (da). Another
experimental method (forced choice) is done with the sig-
nal always present, placed in one of M statistically inde-
pendent locations. The observer is asked to select the
most likely location. The percentage of correct responses
or the corresponding detectability index is then used as
the performance measure. Design and analysis of these
types of experiments are discussed by Green and Swets30

and by Macmillan and Creelman.42 Experimental design
issues related to images are discussed by Metz34,35 and
Burgess.37

The utility of the efficiency measure is illustrated by
multiple-alternative forced-choice (MAFC) search
experiments43 that use disk signals with a variety of am-
plitudes in white noise. In these experiments there was
exactly one signal present at one of M statistically inde-
pendent locations in each image. The observer used a
trackball and a cursor to select the most likely location.
The SNR necessary to obtain 90% correct responses as a
function of M is shown in Fig. 2, for two human observers,
the ideal observer, and an observer operating at 50% effi-
ciency. This experiment demonstrates that, for this
simple task, human efficiency remained constant at 50%
as M increased; the additional complexity of the search
task did not cause additional inefficiency. Similar con-
stant efficiency results were obtained for a combination of
two-alternative forced-choice detection and MAFC identi-
fication experiments with signals chosen from the 2D
Hadamard basis function set.44

Next, a method of estimating a subjective threshold
SNR, k, by use of a signal location identification task is
illustrated. A random number (1–16) of disk signals (ra-
dius, 4 pixels) were randomly positioned in each image
with 392 possible nonoverlapping signal locations. There
were 2000 signals present in the set of 256 images. The
signal amplitudes were randomly varied to give SNR’s in
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the range from 2.7 to 6.3. The image noise level was high
enough to cause a large variation in signal appearance for
a given signal amplitude (see Fig. 4 below for examples of
this effect). Observers used a trackball and a cursor to
identify signal locations with two different criterion in
separate blocks of trials. Under the strict criterion they
were asked to avoid false positives (i.e., avoid identifying
locations where there was actually no signal). Under the

Fig. 2. Results for MAFC disk signal location identification
experiments.43 The figure shows the SNR required for 90% cor-
rect detection performance by the ideal observer and by two hu-
man observers as a function of the base 2 logarithm of the num-
ber of statistically independent signal locations, M. Human
efficiency is constant at 50% (SNR 5 A2 higher than ideal).
This illustrates one of the benefits of using efficiency as a sum-
mary measure of task performance.

Fig. 3. Results for a free-response experiment for two human
observers as a function of measured XCR’s between signals and
image data. A variable number of disk signals with variable
SNR were presented at random positions in white-noise images.
The observers located as many signals as possible under two de-
cision strategies: lax (low miss rate) and strict (low false-alarm
rate), which produced false-alarm rates of 3 3 1023 and 2
3 1024, respectively. The conditional probability of detection
was determined at each quantized XCR value. If one uses a
50% correct detection criterion to define a threshold SNR, then
the thresholds are roughly 4 and 5 for the lax and the strict strat-
egies, respectively. With a definition of 90% correct, the thresh-
olds increase to 5 and 6, respectively. These results demon-
strate good agreement with Rose’s 1948 estimates from
subjective signal detection experiments.
lax criterion they were asked to avoid missing signal lo-
cations (with no concern about false positives). The nor-
malized cross-correlation result (XCR) between the signal
and the image data was calculated for each location
where a signal was present. Note that the ensemble av-
erage, ^XCR&, for a fixed signal amplitude is the SNR.
The XCR values at all the signal locations were sorted
into bins, and the conditional probability of signal detec-
tion for each quantized XCR value was calculated. The
resulting cumulative distributions (averaged for two ob-
servers) for the two criteria are shown in Fig. 3. The es-
timated XCR values for 50% correct were 4.0 and 4.9 for
the lax and strict criteria, respectively. The correspond-
ing false-positive rates (based on all possible nonoverlap-
ping signal locations) were 3 3 1023 and 2 3 1024, re-
spectively. The step at XCR equal to 4.9 shows the
expected cumulative probability of correct response for a
Bayesian observer using a decision criterion value of 4.9.
The human results show sigmoidal variation near thresh-
old because of several sources of variability. First, we do
not actually measure cross correlations when doing this
type of task; we make some sort of noisy and imperfect es-
timate of signal visibility at each candidate location.
Second, we are not able to maintain an absolutely con-
stant decision criterion. The estimated standard devia-
tions of the cumulative normal functions fitted to the hu-
man results shown in Fig. 3 are approximately 1.0, which
is consistent with previous estimates of total observer in-
ternal noise obtained by Burgess and Colborne.45

3. IMAGE QUALITY EVALUATION
A. Medical Imaging Perspective
Rose’s SNR approach is sometimes used in attempts to
evaluate or describe image quality or the performance of
imaging system components. There are a number of po-
tential pitfalls along this road. The best strategy is to as-
sume that any measure of image quality must be based on
the task or purpose for which the image is used. For ex-
ample, some images are designed for entertainment (tele-
vision, cinema, and print), and appearance46 is usually
the most important factor. One seems to achieve maxi-
mum success by hiding the inevitable sources of degrada-
tion from the user, taking advantage of human visual sys-
tem limitations. This strategy is employed in a number
of lossy image compression methods.47 Other types of
image (reconnaissance and medical, for example) are pro-
duced for use by experts, and decision task performance is
the important consideration.

Medical images are invariably noisy. Those produced
by use of x rays or radioisotopes are noisy because ioniz-
ing radiation is harmful to patients, and there is a ten-
dency to minimize the amount of radiation as much as
possible. This minimization is limited, of course, by the
fact that a misdiagnosis can be the most harmful out-
come. Magnetic resonance images are noisy because the
signals are very weak, and data acquisition times are lim-
ited by a number of considerations. Hence there has
been a concerted effort in medical imaging to develop
techniques of measuring and describing image noise and
its effects. Kundel48 gives an entertaining historical per-
spective to definitions of medical image quality. In the
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early days, individual reports of clinical experience with
modified technology were seen as adequate. Then came
controlled clinical ROC studies of diagnostic accuracy by
means of normal and abnormal images produced by com-
peting technologies. Unfortunately, this method (which
is still the gold standard) is very time consuming and ex-
pensive because of the difficulty of obtaining images with
both subtle abnormalities and known ground truth. It
was hoped that a third approach, based on measurements
of the physical properties of systems (for example, modu-
lation transfer function and noise power spectrum), would
be cheaper and faster and would provide a means of pre-
dicting performance before systems were actually built.
SDT-based SNR analysis of a variety of medical imaging
systems is described by Wagner and Brown.49 However,
it became clear that many other issues, such as math-
ematical modeling of tasks, patient structure, and the
perceptual capabilities of human observers, had to be ad-
dressed to provide a link between physical parameters
and diagnostic accuracy. A recent report8 by the Inter-
national Commission on Radiological Units and Measure-
ments deals in depth with medical image quality assess-
ment. That report breaks down the problem into two
parts: (1) the quality of the acquired data that can be as-
sessed and described by physical quantities that charac-
terize the imaging system; (2) the quality of the displayed
data, which inevitably involves the perceptual system of
the observer. Similarly, assessment is broken down into
stages: (1) measuring task performance for an ideal,
Bayesian observer when using the acquired data, and (2)
measuring human observer performance when using the
displayed data.

B. Pixel Signal-to-Noise Ratio
One occasionally encounters a quantity described as pixel
SNR, which is denoted here as SNRp to distinguish it
from the SDT-based SNR definition. The usual defini-
tion is pixel SNRp 5 a/sp , where a is signal amplitude
and sp is the noise standard deviation per pixel. There
have even been situations in which authors have argued
that signals would be undetectable if SNRp was lower
than some threshold value, such as 1, 3, or 5. One pos-
sible source of this misunderstanding is that Rose, in his
1973 book,50 used signals consisting of a single pixel for
pedagogical purposes in the introductory theoretical de-
velopment. Single-pixel signals of interest are rare in
images, so unfortunately the pixel SNR concept is overly
simplistic and is not very useful. This is illustrated by
Fig. 4. Portion A (upper left) shows an array of flat-
topped disk signals with diameters of 4, 5, 6, and 16 pixels
and amplitudes of 24 gray levels on a constant back-
ground of 127 gray levels. Portion B (upper right) was
produced by addition of zero-mean white noise with sp of
24 gray levels, so SNRp 5 1.0 for all the signals. Given
N pixels in a signal, SDT-based SNR 5 AN SNRp with
values of 3.5, 4.6, 5.7, and 14.4 for the four disk sizes, re-
spectively. Note that the appearance of the smaller disks
is quite variable and that there are some spurious noise
correlations that could represent small disk signals, ex-
cept that they are not at the known signal locations.
These effects are characteristic of noisy images. The
largest disks are easily detected. Now consider portion C
(lower left), obtained by smoothing of portion B. The
smoothed image has a reduced sp of 8.2 gray levels and
increased SNRp (2.9). The smoothing would have no ef-
fect on detectability for the ideal observer and little effect
for human observers. Finally, consider portion D (lower
right), produced with an edge-enhancement technique.
This image has an increased sp of 39.6 gray levels, giving
a decreased SNRp (0.6). Clipping of the edge-enhanced
image because of the 8-bit display limitation affects ap-
proximately 1 pixel in 1000. Again, the ideal observer
detectability is unchanged, and the effect on human de-
tectability would be modest. So even though SNRp
changes significantly because of filtering, signal detect-
ability does not. When an image is filtered, the spectral
densities of both signal and noise are changed, but the ra-
tio remains constant. Detectability would be unaffected
for an observer that can do prewhitening and matched fil-
tering. Human observers can partially compensate for
correlations in the noise (which can be described as a par-
tial prewhitening). Hence gentle image filtering has
little effect on signal detectability for us. It is possible to
perform major filtering that dramatically affects human
performance, but this would be unacceptable to expert us-
ers of the images. One concludes that SNRp is not a use-
ful measure for description of detection task difficulty and
is probably a misleading metric for image quality evalua-
tion.

A related statement that one occasionally encounters
is, ‘‘Smoothing makes images less noisy, and edge-
enhancement filtering increases noise.’’ This describes
appearance. Our subjective estimate of image noisiness
uses the entire bandwidth of the visual system. Appar-
ent noise variance is due to noise spectral density inte-

Fig. 4. Demonstration that pixel SNR (SNRp) is not a good pri-
mary measure of image quality. SNRp is defined as the ratio of
peak signal amplitude and noise standard deviation, sp , per
pixel. This figure also shows that signal appearance is highly
variable at low SNR, as is expected, given the statistical nature
of the images. A, Signal array of disks (diameters of 4, 5, 6, 16
pixels) with amplitude of 24 gray levels. B, Same signal array
with added zero-mean white noise (sp of 24 gray levels), so
SNRp 5 1.0 for all the signals. The Rose model and the ideal
observer SNR’s are 3.5, 4.6, 5.7, and 14.4. C, After smoothing of
portion B. The low-pass-filtered noise has sp of 8.2 gray levels,
so SNRp 5 2.9 for all the signals. D, After edge enhancement of
portion B, resulting in a sp value of 39.6 gray levels and a SNRp

value of 0.6. The filtering would have no effect on ideal observer
SNR. The Rose model is not a valid method for calculating SNR
with filtered images.
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grated over this bandwidth. So the apparent noisiness of
most images depends on our viewing distance, among
other things. The statement is often of no consequence
for signal detection tasks. In most cases the apparent
change in noisiness is due to changes in noise power out-
side the signal bandwidth and has little affect on human
performance.

4. HUMAN OBSERVER MODELS
The Rose model was a first attempt at characterizing the
ability of human observers to detect signals in noisy im-
ages. However, a variety of issues were implicitly in-
cluded in the empirically determined threshold SNR pa-
rameter, k. These included the specification of task
accuracy, observer decision criterion, and sources of hu-
man inefficiency. The development of SDT and objective
experimental techniques for evaluating human visual
task performance allowed us to explicitly deal with each
of these issues,30 and the development of digital display
technology allowed us to easily compare human perfor-
mance with the ideal. Human visual efficiency for tasks
that use static, noise-limited images turned out to be sur-
prisingly high. In retrospect, high efficiency ought not to
have been surprising, given Rose’s 1948 estimate of k in
the neighborhood of 5 for static, high-contrast, noise-
limited images. The subjective detection experimental
approach used by Rose cannot be analyzed by SDT, but
for comparison consider a binary (yes/no) SKE detection
experiment with 50% probability that the signal is
present. If the ideal observer maintains a false-alarm
rate of 1%, it needs SNR’s of 2.3 and 3.6 for 50% and 90%
true-positive rates, respectively. Comparison of the Rose
result and the binary (yes/no) results suggests that hu-
man decision efficiency is between 20% and 50%. This is
in reasonable agreement with the value of 50% found for
detection of simple aperiodic signals. Of course, one can-
not make too much of this, given the ill-defined nature of
the subjective task used by Rose. However, if human vi-
sual signal detection were as poor as auditory signal de-
tection (1% or less efficiency), then Rose would have had
to use a much larger value of k and surely would have
taken the discrepancy very seriously.

The Rose model was developed for both static and dy-
namic noise-limited images. Next, subsequent research
on human performance is briefly reviewed, first for static
images and then for dynamic image sequences. The in-
vestigations described below follow the spirit of Rose’s ap-
proach in that they compare human and ideal observer
task performance and introduce as few mechanisms as
possible to account for suboptimal human performance.
This presentation, because of space limitations, neglects
one important aspect of Rose’s work—the topic of photon
collection efficiency in the eye. This question has been
extensively investigated, and maximum collection effi-
ciency is approximately 10%. This topic has been re-
viewed by Pelli,51 and important publications prior to
1980 are in a collection edited by Cohn.52

A. Static Images
The first measurements of central (decision-level) visual
efficiency were performed by Barlow53 with computer-
generated random dot images. He was attempting to
measure spatial tuning curves for dot pattern detection
that would be analogous to the contrast sensitivity curves
for luminance (gray-scale) patterns. The basic idea was
that the small dots were reliably transduced by the retina
and that any spatial tuning that was found might be due
to receptive fields in the visual cortex. Barlow used Pois-
son statistics to generate patterns and chose observer ef-
ficiency as the measure of pattern detectability. He con-
sistently found efficiencies of approximately 50%,
independent of pattern size or shape. Subsequently,
Burgess and Barlow54 used random dot patterns with
Gaussian statistics to allow independent adjustment of
the mean and the variance. This, in turn, separated ef-
fects due to sampling efficiency (which is an estimate of
the accuracy with which the appropriate signal detection
template is used) from effects due to intrinsic observer
variability (internal noise). These measurements sug-
gested that virtually all of the reduction in human dot de-
tection efficiency was due to centrally located internal
noise. Sampling efficiency appeared to be approximately
100% for a wide range of random dot patterns. The word
sampling was selected55 to be consistent with the original
formulation of decision accuracy by Fisher.26

The next investigations of decision efficiency were done
with computer-generated gray-scale images and uncorre-
lated Gaussian noise. Burgess et al.55 demonstrated that
humans could perform amplitude discrimination tasks
with efficiencies well over 50% with sampling efficiencies
as high as 80%. Efficiencies of around 50% were found
for detection of aperiodic signals such as disks and com-
pact 2D Gaussian profiles. Efficiency for detecting sinu-
soidal signals was in the 10–25% range. The decrease in
efficiency is probably due to an inability to make precise
use of absolute sinusoid phase information56: A phase
uncertainty of as little as a quarter of a cycle dramatically
reduces sine-wave detection accuracy. At the peak of the
contrast sensitivity curve (roughly 4 cycles/degree), a
quarter of a cycle corresponds to approximately the width
of the optical point-spread function of the eye. Pelli ar-
gued that a number of other parametric features of sinu-
soid detection can be explained by uncertainty.57 A vari-
ety of experiments were done to investigate human ability
to use prior information about the signal in performing
detection tasks, such as use of sine-wave phase
knowledge,56 identification of signal location among a
number of possible locations,43 and signal identification
based on spatial profile.44 These experiments were
needed to establish that a cross-correlation-based model
is valid for humans. Observer consistency was measured
by several techniques,45 and the results demonstrated
that previous estimates of sampling efficiency were sys-
tematically low because of an additional, induced form of
observer internal noise that is proportional to spectral
density of image noise. The efficiency approach has been
used to investigate many aspects of noise-limited human
vision, including spatial sine-wave detection,58–60 detec-
tion of visual noise,61 American Sign Language use,62 rec-
ognition of 3D objects in noise,63 and estimation of fractal
dimension.64 All these experimental results are consis-
tent with the view that humans can be modeled as sub-
optimal Bayesian observers that use prior information



644 J. Opt. Soc. Am. A/Vol. 16, No. 3 /March 1999 Arthur E. Burgess
about possible signal shapes and locations in addition to
the data displayed in individual image trials.

Recently, the emphasis has been on trying to under-
stand how the shape of the noise power spectrum affects
human signal detection performance. The main question
is, How effective are humans at compensating for noise
correlations? That is, can we prewhiten the noise? My-
ers et al.65 demonstrated that humans do poorly com-
pared with the ideal observer when the noise has a band-
pass spectrum (which produces short-range negative
correlations), and they suggested66 that the reduction in
performance might be due to spatial-frequency channels
in the visual system. The channels would irreversibly
combine contributions from a range of spatial frequencies
and would preclude any subsequent attempts to pre-
whiten the noise. Investigation with low-pass noise did
not show such dramatic decreases in human efficiency.
It now appears that the effects of low-pass and high-pass
noise are very different. For low-pass noise power spec-
tra, prewhitening models are better predictors of human
performance than are nonprewhitening models.67–69 The
reason for reduced performance with high-pass noise is
yet to be determined.

The ideal-observer-based approach becomes more diffi-
cult to use as the complexity of the task is increased.
Eventually, ideal observer procedures become nonlinear,
and analysis of ideal observer performance becomes
mathematically intractable. Hanson70 suggested that
detectability for some tasks can be estimated approxi-
mately by inclusion of a power-law frequency weighting to
represent task difficulty. Barrett et al.71 developed a
convenient quasi-ideal observer approach that is useful
for complex tasks. They refer to it as the Hotelling ob-
server, for historical reasons, and it achieves the best pos-
sible performance, given the limitation of being forced to
use linear procedures. It is identical to the Bayesian
ideal observer for tasks in which the ideal observer uses
linear procedures. The Hotelling observer approach is
related to Fisher linear discriminant analysis used in pat-
tern recognition.33 The Hotelling approach uses popula-
tion statistics, while the Fisher approach uses sample
statistics.72 Barrett et al.11 recently proposed a very
promising likelihood-generating-function approach for
analysis of complex task performance.

B. Image Sequences
Rose3 explicitly considered temporal effects in his model.
This subject was neglected previously in this paper to
simplify presentation and is now addressed. In Rose’s
model, available photon count densities would be propor-
tional to the integration (Rose used the term storage)
time of the eye or the image acquisition device. He ob-
served that the human visual impression of the dynamic
images in his display was matched by still photographic
pictures of the display taken with a 0.25-s-exposure time.
Based on this observation and on previous research
by Cobb and Moss,73 Rose adopted an integration time of
0.2 s.

Several studies have investigated signal detection per-
formance in spatiotemporal white noise. For signals
with no temporal modulation, detectability for the ideal
observer increases indefinitely as the square root of the
number of independent frames. Performance improve-
ment will saturate for an observer with a fixed integra-
tion time. Some improvement with time is expected for
human observers, because of filterlike effects in early
stages of the visual system. For noiseless dynamic im-
ages the estimated integration time for early stages does
not exceed 100–150 ms.74 The situation for noise-limited
images is quite different. Several recent experi-
ments75–78 have shown that the detection of signals in
temporal white noise improves up to approximately 700–
1000 ms. Interestingly, these integration times also hold
when the signal is moving while the observer’s gaze is di-
rected at a fixed point. However, abrupt signal motion
and high-velocity motion do disrupt human performance.

These experimental results have been used to extend
human observer signal detection models to include the
temporal domain. Some include only the early filter
stage,79 while others76,77,80 include suboptimal integra-
tion to 700–1000 ms. There has been limited investiga-
tion of whether humans can vary weighting for temporal
cross correlation with signals modulated in time. Ex-
perimental results by Eckstein et al.81 suggest that hu-
mans can adjust to temporally varying signals, although
suboptimally.

5. CONCLUDING REMARKS
Rose’s 1946 and 1948 papers have been influential in a
number of ways. The detective quantum-efficiency met-
ric that he introduced in 1946 has had a long history of
application in both human vision and evaluation of imag-
ing system components. The Rose model introduced in
1948 has been used to give several generations of medical
imaging scientists an introduction to signal detection in
noise. Reading his papers with the benefit of 50 years of
slowly developed understanding leaves one with a sense
of awe at Rose’s insights and innovations. Those of us
who work in imaging owe a great deal to these publica-
tions, which were the product of a brilliant mind and an
unerring intuition. It is hoped that this tutorial paper
will give an understanding of how the Rose model can ef-
fectively be used if attention is paid to its domain of va-
lidity.
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