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The rotating wave approximation (RWA) of quantum optics: 
serious defect 

G . W .  F o r d  a, R.F.  O ' C o n n e l l  b'* 

aDepartment of Physics, University of Michigan, Ann Arbor, MI 48109-1120, USA 
bDepartment of Physics and Astronomy, Louisiana State University, Baton Rouge, 1_,,4 70803-4001, USA 

Received 16 December 1996 

Abstract 

The rotating wave approximation (RWA) is an integral part of the foundations of quantum 
optics and it is also used extensively in atomic and condensed-matter physics. Here we prove 
that the model has a serious defect, viz. the spectrum has no lower bound, for all models of 
physical interest. As a result, the reservoir is not passive (since energy can be extracted from it 
without limit) and hence the second law of thermodynamics is not satisfied. An alternative to 
the RWA is discussed. 
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The rotat ing wave approximat ion  (RWA) is an integral par t  of  the foundat ions of 

quan tum optics and is discussed in bo th  the old and the more  modern  textbooks and 

review articles [ 1-6] .  It concerns the interaction of  a reservoir, consisting of  an infinite 

number  of oscillators, with either a two-level a tom or a cavity mode  or a charged 

harmonic  oscillator. Here, we will concentrate  on the latter case as this will provide us 

with a clear-cut method  for making it clear that  the model  has a serious defect. 

The R W A  Hamil tonian,  for an oscillator of  frequency ~Oo interacting with a reser- 
voir, has the form 

HRWA h~ooa*a + ~hto~b~b~ + ~(2 ja*bj  + 2j a b j ) ,  (1) 
J J 

where a and b 3 are operators  satisfying the commuta t ion  relations 

[a, a t ] = 1, [bj, b~ ] = 1 for all j .  (2) 
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Our purpose here is to show that the energy of this system has no lower bound and 
hence we are dealing with an unphysical system. In order to obtain an upper bound 
for the ground-state energy, we choose a variational wave-function ~ = [~ > I]j[flj > 
which is a direct product of coherent states [2,7] associated with the non-interacting 
oscillators. Explicitly, 

= exp(aa + - ½1a[2)l - Iexp( f l jb  + - ½ Ifljl2)~ko, (3) 
J 

where @o is the vacuum state, defined by 

a~Po = O, bj~ko = 0, for a l l j  and (~o, @o) = 1. (4) 

Note that @ is a simultaneous eigenfunction of a and the bj, with corresponding 
eigenvalues a and fl~, 

a@ = ~ ,  bj~ = ~j¢ for all j .  (5) 

It follows that the expectation value of the RWA Hamiltonian is 

<~k, HRrVA~b> = hcoolo~l 2 + Z(hcojl/~jl 2 + 2 j~*~ + 27~/~*). (6) 
J 

For a given value of a, we minimize this quantity if we choose 

~J = - h~,~. ~ "  (7) 

Then 

~ j 2  0~ 2. 

Therefore, if the coupling satisfies the condition 

Z I~jl2 
J ~ > h~Oo, I9) 

then, by choosing [~t large enough, the expectation of the RWA Hamiltonian can be 
made as large and negative as we please. Since the expectation of any self-adjoint 
operator is within the spectrum of the operator, this implies that the spectrum of the 
RWA Hamiltonian would have no lower bound. However, the common lore in the 
quantum optics community is that this is only of concern for physical systems with 
low- f requency  oscillators (O~o) and strong coupling (2j), in contrast to the situation in 
quantum optics where the frequencies are high ( ,-~ l 0  Is Hz). We will now prove that 
this is a fallacy. 

To investigate the condition (9) in detail, we must consider the physical system 
from which the RWA Hamiltonian was obtained by discarding certain terms. 
For this purpose, we consider the independent-oscillator (IO) model [8], which is 
sufficiently general to describe any system with linear passive dissipation. 
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In particular, it describes non-relativistic quantum electrodynamics (NRQED). For 
the IO model 

__ (mjo) V2 
2i = 2 \ mo)o ,] ' (10) 

where m is the oscillator mass while m~ and o)j and are the mass and frequency of the 
j th  reservoir oscillator. Then, it can be shown that the condition given by (9) can be 
written as 

i do)Re{/7(o) + iO+)} > mo) 2 (11) 
1 

--(3O 

where/~(o)) is the Fourier transform of the memory term appearing in the generalized 
quantum Langevin equation associated with the IO model [8]. For the Ohmic case 
[8], where the reservoir spectrum is chosen to give rise to a Markovian equation of 
motion for the oscillator [1-6],  

Re{ (o) + iO÷)} = (12) 

where ~ is the frequency-independent friction constant. For the more physical case, of 
a radiation reservoir [8] 

o) 2 
= (13) Re{/~(o) + i0+)} raze 1 + O)2Z2e ' 

where ze = 2e2/3mc 3. In either case the integral on the left-hand side of (11) is 
divergent, so (9) is satisfied with a vengeance. In other words, even when dealing with 
high COo values, corresponding to the situation in quantum optics, problems arise in 
both models. These are perhaps the models of most interest but it can be shown that 
similar conclusions hold for other models often found in the literature. Thus, for all 
models of physical interest, the left-hand side of (8) is actually divergent so that the 
spectrum has no lower bond. This implies that, no matter what state the system is in, 
energy can always be extracted from it by having it go into a lower-energy state. 
Hence, (the Kelvin-Planck formulation [9]) of the second law of thermodynamics is 
violated. We conclude that the RWA model has a serious defect. 

We wish to emphasize that this defect is not confined to the RWA Hamiltonian. In 
particular, the defect occurs for a pair of coupled oscillators (where each sum in (1) has 
only a single term), for which a normal mode with negative frequency arises if the 
coupling constant is sufficiently large. As is well known, to avoid this problem one 
must choose a positive-definite Hamiltonian. This automatically ensures that the 
energy spectrum is bounded from below. 

What is the nature of the difficulties arising from the use of HRwA? The RWA is 
constructed to reproduce the first-order perturbation expression for the transition 
amplitude. However, nothing else is given correctly (see below), including electromag- 
netic energy shifts (Lamb shifts), mass renormalization and the power spectrum of the 
reservoir. 



380 G.W. Ford, R.F. O'Connell/Physica A 243 (1997) 377-381 

Is it possible to repair the RWA to obtain a positive-definite Hamiltonian so that 
the energy spectrum has a lower bound? Yes, but the problem is that there is an 
infinity of possibilities, i.e. the repair is not unique. For example, two possibilities that 
might come immediately to mind are 

"~.1 a Hl=h¢ooa+a+~hogj(bj+-h-~jaj2* '*(bj + h't~j ) 

= nRwa + ~[~jl2ata, (14) 
j no)j 

and 

2. + ~ 2jb)  H2=h~°° a+ ~ hogo "'J bj~j (fa + ~-~o J~ + ~h°gjb;bij 

(z )+(z 3 1 2jbj )~jbj . (15) 
= HRwA + r~tuO ,, / \ j / 

Since each term in both H1 and H2 is positive definite, it follows that the lower bound 
on the expectation of both Hamiltonians is zero. However, in order to resolve the 
problem of non-uniqueness, we are forced to the conclusion that we need to return to 
the original physical Hamiltonian of which HRwa is a truncated form. This is in fact 
the IO model discussed above. 

In particular, the H of NRQED (which, as already mentioned, is a particular case of 
the IO model) contains a + b 7 and abj terms, plus self-interaction terms, in addition to 
the RWA terms [8]. Thus, it might be thought that it would be even harder to solve 
than the RWA model, which in fact is generally solved only under restrictive assump- 
tions. However, when expressed in terms of coordinate and momentum operators 
(instead of creation and annihilation operators), it turns out that the unitarily 
transformed H of NRQED has a remarkably simple form (see eq. (4.1) of Ref. [8] and 
the discussion about unitary transformation in Section V of this reference) which 
enabled an exact solution to be obtained [8]. Based on this solution, we have recently 
carried out a detailed analysis of the consequences vis-a-vis the corresponding results 
obtained from the RWA model. In particular, we obtained the master equation for 
a charged oscillator interacting with the electromagnetic field and found that its form 
differs from that generally obtained using the RWA, in that there is no electromagnetic 
(Lamb) shift for the oscillator and that an explicit expression is given for the decay rate 
[-10]. Furthermore, it can be verified that the spectrum of the reservoir is the Planck 
spectrum [11], in contrast to that given by the RWA model [1-6]. The IO model has 
also been used to prove that, in contrast to existing expositions in the literature (which 
are mainly based on use of the RWA model), there is in fact no quantum regression 
theorem [12]. 

We conclude that use of the RWA should be confined only to the calculation of 
transition amplitudes for first-order absorption and emission, where the non-RWA 
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terms do not contribute. For the calculation of other physical quantities, such as 
energy shifts and power spectrum, the use of the RWA leads to results at variance with 
these obtained (more easily in fact) from an exact more physical model [3]. 

The work of RFOC was supported by the US Army Research Office, under Grant 
No. DAAH04-94-G-0333. 
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