
Geophys. J. Int. (2011) 187, 1319–1333 doi: 10.1111/j.1365-246X.2011.05245.x

G
JI

G
ra

vi
ty

,
ge

o
de

sy
an

d
ti
de

s

The rotational stability of a convecting earth: assessing inferences of
rapid TPW in the late cretaceous

N.-H. Chan,1 J.X. Mitrovica,1 I. Matsuyama,2 J.R. Creveling1 and S. Stanley3

1Department of Earth & Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA. E-mail: nhchan@eps.harvard.edu
2Department of Earth & Planetary Science, University of California, 307 McCone Hall, Berkeley, CA 94720, USA
3Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada

Accepted 2011 September 22. Received 2011 July 12; in original form 2011 March 25

S U M M A R Y
We outline a linearized rotational stability theory for predicting the time dependence of
true polar wander (TPW) on a Maxwell viscoelastic body in response to mantle convective
loading. The new theory is based on recent advances in ice age rotation theory. A comparison
between predictions based on the new theory and analytic expressions for equilibrium (infinite-
time) TPW on planetary models with elastic lithospheres demonstrates that the linearized
theory can, in the case of loading at mid-latitudes, predict TPW of over 20◦ to better than
5 per cent accuracy. We present predictions of TPW for loading with periodic and net ramp-
up time histories. Moreover, we compare the time dependence of TPW under assumptions
consistent with the canonical equilibrium stability theory adopted in most previous analyses
of convection-induced TPW, and a stability theory that includes two effects that have not
been considered in previous geophysical analyses: (1) the so-called ‘remnant rotational bulge’
associated with the imperfect reorientation of the rotational bulge due to the presence of an
elastic lithosphere; and (2) a stable (over the timescale of the forcing) excess ellipticity. As a
first application of the new theory, we consider recent inferences of rapid (order 1 Myr) TPW
motion of amplitude 10◦–20◦ during the Late Cretaceous. We conclude that excursions of this
amplitude and timescale are physically implausible.

Key words: Earth rotation variations; Palaeomagnetic secular variation; Rheology: crust
and lithosphere.

1 I N T RO D U C T I O N

The stability of the Earth’s rotation vector in response to thermal
convective motions in the mantle has been, and remains, the subject
of active debate within the geophysical and geological literature.
In general, predictions of the convection-induced reorientation of
the rotation vector relative to the surface geography, or true polar
wander (henceforth TPW) (e.g. Steinberger & O’Connell 1997)
have been based on a canonical equilibrium stability theory outlined
by Gold (1955), and summarized, schematically, in Fig. 1. Consider
an Earth model in steady rotation for a time long enough that all
viscous stresses have relaxed to the imposed centrifugal potential
(Fig. 1A1); in this case, the equilibrium ‘rotational bulge’ or ellip-
ticity of the planet will have a so-called hydrostatic form (Nakiboglu
1982). If the Earth is then subject to a positive load, polar motion
would act to move the load toward the equator (Fig. 1A2); the back-
ground bulge of the planet will initially resist such an excursion.
However, the Earth will deform in response to the perturbed cen-
trifugal potential, and the bulge will eventually reorient perfectly to
the new rotation vector (Fig. 1A3); this will free the pole to wander
further from the load (Fig. 1A4). The process will continue in in-

finitesimal steps until the load has migrated to the equator (Fig. 1A5)
and TPW will cease. In this theory, the rotation vector is ultimately
unstable in the presence of an applied load since the bulge does not
provide any long-term resistance to TPW (Gold 1955; Goldreich &
Toomre 1969). The Earth, in this scenario, is said to have no per-
manent memory of its orientation. (Note that there is an assumption
in this classic description that the applied load will never reach a
state of isostatic compensation, and will thus continuously act as a
driving force on the pole.)

The physical basis for this description of rotational stability has
been highlighted by two equally canonical schematic images. For
example, the continual effort by the bulge to keep up with the rota-
tion pole is illustrated by Gold’s famous donkey and carrot analogy,
whereby a donkey (representing the bulge) moves inexorably toward
a carrot (the pole) that is connected to the donkey by an overhead
wire that dangles frustratingly in his line of sight (Gold 1955). A
key element of the Gold stability theory is that any load, no matter
what size, will drive a TPW that eventually moves the load to the
equator. This key aspect of the theory was discussed by Goldreich &
Toomre (1969), who characterized the load by a small beetle, or a set
of such beetles. It is important to emphasize that the ‘equilibrium’
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Figure 1. Schematic illustration of the physics of TPW as treated by (A) (Gold 1955) and (B) Willemann (1984) and Matsuyama et al. (2006). The green disk
represents a positive internal density load, the blue outer shell (second row) is an elastic lithosphere, the solid arrow (with spin and TPW directions specified
at the head and tip, respectively) is the rotation vector, and the long-dashed arrows are previous rotation vectors within the same series. On each frame, a
dashed line denotes the plane of the rotational bulge, while the dotted line is the rotational equator. When these two lines are aligned (A1, A3, A5, B1), the
bulge is perfectly relaxed. (A) TPW on an Earth model in which the rotational bulge will ultimately adjust completely to load-induced TPW, and the load will
ultimately migrate to the equator (A5). (B) TPW when an initial, hydrostatic form (B1) includes an unstressed elastic lithosphere. In this case, the elastic shell
will permanently resist excursions of the rotation pole and the final state (B5), in which the load has not reached the equator, will represent a balance between
this resistance and the load-induced impact on the pole.

stability theory of Gold yields a prediction of the final orientation
of the pole and says nothing about the timescale required to reach
the equilibrium position.

In mathematical terms, the orientation of the rotation pole in
the Gold stability theory is given by the direction of the principal
axis of the non-hydrostatic inertia tensor. In this regard, under the
assumption that the timescale of convection is much longer than the
timescale of bulge adjustment, the TPW path in convection studies
has generally been computed by diagonalizing the inertia tensor
perturbation at each step in the simulation (Steinberger & O’Connell
1997). This perturbation takes into account the advection of density
heterogeneities and deformation of all boundaries associated with
the mantle flow.

A small number of studies have extended the rotational stability
theory described above to consider the time history of TPW (e.g.
Ricard et al. 1993; Richards et al. 1997, 1999; Tsai & Stevenson
2007; Schaber et al. 2009). Tsai & Stevenson (2007), for example,
used scaling arguments based on energy considerations to derive
analytic expressions for the TPW of a Maxwell body with a single
relaxation time. Their study highlights several important concepts
that will also be apparent in the results we describe within this
paper. For example, a central goal of their analysis was to quantify
the ‘speed limit’ of TPW—how fast can the pole go in response to
convective forcing? In this regard, it is important to point out that
there is, of course, no minimum speed—a load the size of the beetle
may eventually get to the equator using the theory of Gold (1955),
but it may take longer than the age of the Earth to do it. Tsai &
Stevenson (2007) also introduced the concept of a TPW filter. In
particular, they argued that TPW will most efficiently be excited by
the longest timescales of the forcing, and the transition or cut-off
within this low (frequency) pass filter will be governed, in large
part, by the mantle viscosity. Fig. 1 in Tsai & Stevenson (2007) is a
particularly elegant demonstration of this physics.

Tsai & Stevenson (2007) used their model to conclude that the
maximum TPW rate is 2.4◦Myr−1, though they emphasize that this
rate is sustainable for only a short period of time. They concluded

that this rate appears to be too high relative to the geological record,
at least in the post-Jurassic period, and they provided a suite of
possible explanations for this discrepancy (see p. 9 of their paper).
One of these explanations is that the lower mantle viscosity may be
higher than they considered; an increase in this viscosity would act
to slow the convective driving force for TPW. An earlier convective
simulation of polar motion over the last 100 Myr (Steinberger &
O’Connell 1997), based on the rotational stability theory of Gold
(1955), also required a high deep mantle viscosity to achieve TPW
rates consistent with palaeomagnetic data. Tsai & Stevenson (2007)
also noted that their TPW speed limit was too low to allow the 90◦

shift in ∼40 Myr inferred for the early Cambrian by Kirschvink
et al. (1997). They concluded that the polar motion postulated by
Kirschvink et al. (1997) was dynamically implausible.

Tsai & Stevenson (2007) did not include the possible stabilizing
effect of an elastic, or even high-viscosity viscoelastic lithosphere.
They suggested that broken plates do not provide any resistance to
changes in the centrifugal potential (since adjustments would, they
argued, be taken up along plate boundaries), and that the timescale
associated with the elastic adjustment of the lithosphere would be
short relative to the characteristic timescale of the convective forc-
ing. In regard to the first argument, the centrifugal force will act
within the entire body of the planet, and will therefore cause flex-
ure, and resistance to TPW, throughout the plate—not only at plate
boundaries. It is certainly true that the effective elastic thickness of
a broken plate in response to a body force with a spherical harmonic
degree two potential (i.e. the centrifugal force) will be smaller than
the elastic thickness of an unbroken shell, but it will not be zero.
This will be particularly true in considering TPW over timescales
of order several Myr or less; for instance, modelling of ice age ad-
justments clearly requires the incorporation of a strong lithosphere
(e.g. Nakada & Lambeck 1989). In regard to the second argument,
while the elastic response of the lithosphere will certainly have a
timescale that is short relative to the convective forcing, the presence
of such a lithosphere—even a broken one—will nonetheless have
a potentially profound impact on rotational stability. This impact
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is illustrated in Fig. 1(B), which extends the stability arguments in
Fig. 1(A) (Gold 1955) to include an elastic lithospheric shell.

The equilibrium rotational stability of dynamic, terrestrial planets
with elastic lithospheres was first treated by Willemann (1984), and
most recently by Matsuyama et al. (2006) and Daradich et al. (2008),
who corrected minor errors in the original description. Consider the
model planet in Fig. 1(B1), which is characterized by a hydrostatic
background oblateness (i.e. the flattening in Fig. 1B1 is identical to
that in Fig. 1A1). Let us assume the planet has an unstressed elastic
lithosphere, as denoted by the light blue shell. An unstressed shell
may have developed, for example, through secular cooling of the
planet, or by very slow viscous relaxation within the lithosphere. If
this planet is subsequently loaded (Fig. 1B2), the pole would (as in
Fig. 1A2) move away from the load and the bulge will resist this
motion. However, the important distinction between this case and
Fig. 1(A) is that the adjustment of the bulge in response to TPW
cannot perfectly reorient the bulge (i.e. the elastic shell cannot
deform to be symmetric about the new pole position; Fig. 1B3).
The deviation from scenario 1A arises because elastic stresses that
develop in the (initially unstressed) lithosphere in response to the
perturbed centrifugal potential will impose a permanent restoring
force on the rotation vector. That is, in this case, the system will
have a memory of its initial state, and the ultimate result is that
the final equilibrium pole position (Fig. 1B5) will reflect a balance
between loading and what Willemann (1984) and Matsuyama et al.
(2006) called the ‘remnant rotational bulge’. Most notably, TPW
will cease before the load makes it to the equator.

The stabilization associated with the lithosphere is significant.
As an example, taken from the results of Matsuyama et al. (2006),
consider a load with a pre-compensated size that is 10 per cent of
the size of the equatorial bulge, where ‘size’ is measured by the
associated geopotential perturbation at spherical harmonic degree
two. If this load is placed at a colatitude of 40◦, then the Gold (1955)
theory predicts a total TPW of 50◦ (since the load will ultimately
reach the equator). In contrast, if a lithosphere of thickness of 50 km
is assumed, then the extended equilibrium stability theory summa-
rized in Fig. 1(B) ultimately yields a TPW of only 4◦. Two caveats.
First, if the 50 km lithosphere is broken, then the effective elastic
thickness will be smaller than this value, but it will not be zero;
it is important, in this regard, to note that the stabilization associ-
ated with the remnant rotational bulge is relatively insensitive to the
adopted lithospheric thickness (Willemann 1984; Matsuyama et al.
2006). For example, if we repeat the calculation for an elastic litho-
spheric thickness of 25 km, the total TPW predicted by Matsuyama
et al. (2006) would still be less than 5◦. Secondly, if the lithosphere
were treated as viscoelastic rather than elastic, then the stabilization
associated with the remnant bulge would not be permanent. Rather,
it would only stabilize the rotation pole in response to forcings with
timescales less than the relaxation time of the high viscosity litho-
sphere. In this regard, it would act, as in the terminology of Tsai
& Stevenson (2007), as a low pass TPW filter. In any event, the
rather dramatic damping of TPW associated with the presence of an
elastic or high viscosity lithosphere suggests that the remnant bulge
physics should be incorporated into the rotational stability theory.

In this paper, we outline a linearized stability theory for the rota-
tion of Earth models with a 1-D (depth varying) linear viscoelastic
rheology. The theory extends the approach described by Tsai &
Stevenson (2007) in a number of ways. First, it admits as many re-
laxation times (or normal modes) as exist in the impulse response of
the Earth model. Secondly, the 1-D depth variation accommodates
an elastic or finite viscosity lithosphere, and thus incorporates the
possibility of stabilization from the remnant rotational bulge. The

theory also allows for the possibility of an excess ellipticity in the
Earth’s form which might arise from a number of processes acting
on timescales much longer than the convective flow considered in
this manuscript (see below). The theory is based on a linearized
version of the time domain Euler equation, and it follows recent
developments in the theoretical treatment of ice age Earth rotation
(Mitrovica et al. 2005). The linearization assumes ‘small’ motions
of the rotation pole; however, we present results that indicate that the
TPW can reach 20◦–30◦ (or 40◦–60◦ motion centred on the original
pole position) before errors exceed order 5–10 per cent. And thus,
within this range of TPW we explore the full complexity of the time
dependence of the TPW.

To investigate the time dependence of TPW, we need to spec-
ify a time history of the convective forcing (i.e. a time history of
perturbations to the inertia tensor). Tsai & Stevenson (2007) consid-
ered sinusoidal variations in the TPW forcing, in contrast to earlier
studies that tended to explore rotational stability in response to a
step-wise change in the inertia tensor (e.g. Munk & MacDonald
1960). The time variation in the inertia tensor driven by mantle
flow almost certainly includes both classes of forcing—indeed,
Goldreich & Toomre (1969) demonstrated that the timescale for
inertia tensor changes can be short if there are multiple contributors
to the forcing—and thus our analysis will consider both a sinusoidal
time history and a history involving a gradual ramp-up or net shift
in the load.

As a first application of our theory, we will investigate the plau-
sibility, from the perspective of rotational dynamics, of evidence
for a rapid TPW event in the Late Cretaceous (Sager & Koppers
2000). Specifically, Sager & Koppers (2000) inferred 16◦–21◦ of
TPW in 2–5 Myr beginning at ∼85 Ma on the basis of palaeo-
magnetic data from Pacific seamounts. More recently, there has
also been a preliminary suggestion, based on magnetostratigraphic
data, of rapid (order 1 Myr), quasi-cyclical 10◦–20◦ TPW during
the Late Cretaceous (Thissen et al. 2010). With the expectation
that such high resolution analyses will become more common, the
overarching goal of our study will be to establish bounds on the
amplitude of TPW and elucidate the physics controlling rapid mo-
tions of the rotation pole—whether these motions are quasi-cyclical
or unidirectional. The linearized theory we develop is particularly
well suited to such problems, since the net polar wander during such
events is well within the range of validity we establish for the lin-
earization. Moreover, the response of the Earth to such rapid forcing
is certainly characterized by some degree of elastic strength in the
crust-lithosphere system, and hence the remnant bulge physics may
play an important role.

We begin with a summary of the linearized theory of rotational
stability.

2 A L I N E A R I Z E D T H E O RY O F E A RT H
RO TAT I O N

In this section, we outline a linearized form of the equation govern-
ing conservation of angular momentum that is derived from recent
treatments within the literature of ice age rotation (Mitrovica et al.
2005).

In the case where no external torques act on the system, the Euler
Equation in an Earth-fixed reference frame is

0 = Ji j (t)ẇ j (t) + J̇i j (t)w j (t) + εi jkw j (t)Jkl (t)wl (t), (1)

where J denotes the inertia tensor, wi are components of angular
velocity, εijk is the Levi-Civita tensor and the dot superscript denotes
a time derivative.
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If we assume that the inertia tensor is diagonal in the unper-
turbed state, with elements given by A, A and C, and, in the same
state, the angular velocity vector is given by � = (0, 0, �), then a
perturbation from this initial state can be written as

wi (t) = �[δi3 + mi (t)]

J11(t) = A + I11(t)

J22(t) = A + I22(t)

J33(t) = C + I33(t)

Ji j (t) = Ii j (t) for i �= j, (2)

where we assume that all perturbations I ij are smaller than either of
the principal moments in the unperturbed system (A, C), and that
mi � 1.

There are three contributions to the inertia tensor perturbations.
These are: (1) the mantle or surface mass anomalies; (2) the de-
formation induced by the mass anomalies, and (3) the deformation
in response to the perturbed centrifugal potential. In each case, a
mapping exists between the perturbation in the inertia tensor and
the associated perturbation in the geopotential at spherical har-
monic degree 2 (e.g. Matsuyama et al. 2006). We adopt a Maxwell
viscoelastic rheology in the calculation of these geopotential pertur-
bations and the latter two contributions may therefore be computed
using viscoelastic Love number theory (Peltier 1974; Wu 1978;
Tromp & Mitrovica 1999).

In the time (t) domain, the load and tidal (or tidal-effective) k
Love numbers at spherical harmonic degree two are, respectively,
given by

kL
2 (LT, ν, t) = kL ,E

2 δ(t) +
J∑

j=1

r ′
j e

−s j t

kT
2 (LT, ν, t) = kT,E

2 δ(t) +
J∑

j=1

r ′′
j e−s j t . (3)

The Love numbers are comprised of instantaneous elastic (first
term on the right-hand side) and non-elastic (second term) compo-
nents, where the latter are comprised of a set of J normal modes
of viscoelastic decay. The two Love numbers share the same set
of inverse decay times, sj, but have distinct modal amplitudes. The
viscoelastic Earth model structure is embedded within each of the
parameters that define these Love numbers. In this regard, on the
left-hand side of these equations, we make the dependence on the
elastic thickness of the lithosphere, LT , and on the radial viscos-
ity profile, ν, explicit. It will be useful to write these time domain
expressions in terms of their Laplace-transform, s-domain forms.
These are

kL
2 (LT, ν, s) = kL ,E

2 +
J∑

j=1

r ′
j

s + s j

kT
2 (LT, ν, s) = kT,E

2 +
J∑

j=1

r ′′
j

s + s j
. (4)

Using eq. (2) in (1), and computing the necessary inertia ten-
sor perturbations using the viscoelastic Love numbers, yields, after
some algebra, the linearized Euler Equation (i.e. the Liouville Equa-
tion) (Mitrovica et al. 2005),

m(t) = IL (t) + kL
2 (LT, ν, t) ∗ IL (t)

(C − A)
+ kT

2 (LT, ν, t)

k f
∗ m(t), (5)

where ∗ denotes a time-convolution, IL (t) = I L
13(t)+i I L

23(t), m(t) =
m1(t) + im2(t), and the observed fluid Love number, kf , is

k f = 3G

a5�2
(C − A) , (6)

in which a and � are the radius and rotation rate of the Earth, and
G is the universal gravitational constant.

The value of kf governs the background oblateness of the Earth
model upon which the perturbations associated with the loading are
superimposed. In practise, we can separate this number into hydro-
static and non-hydrostatic (knh) contributions, where the former can
be computed using viscoelastic Love number theory. Specifically,
this separation can be written as

k f = kT
2 (LT = 0, s = 0) + knh , (7)

where the hydrostatic form has been replaced by the degree two k
fluid Love number for a model with no elastic lithosphere at the
limit of infinite time (s = 0); in this case, there are no purely elastic
regions and all viscous regions of the model have fully relaxed—
hence the dependence on ν disappears.

Applying this decomposition to eq. (5) yields

m(t) = IL (t) + kL
2 (LT, ν, t) ∗ IL (t)

(C − A)

+ kT
2 (LT, ν, t)

kT
2 (LT = 0, s = 0) + knh

∗ m(t). (8)

In the s-domain, this equation becomes

m(s) = IL (s)

C − A
· 1 + kL

2 (LT, ν, s)

1 − kT
2 (LT,ν,s)

kT
2 (LT =0,s=0)+knh

. (9)

We can use this last equation to revisit the physics of both scenar-
ios shown in Fig. 1. In the rotational stability theory of Gold (1955),
the background form is purely hydrostatic (i.e. knh = 0), and the
model has no elastic lithosphere (i.e. LT = 0). If we furthermore as-
sume that the load is never isostatically compensated (as Gold did),
then the term in the numerator, 1 + kL

2 (LT = 0, ν, s) is assumed
to be non-zero in the limit of infinite time (or s = 0). However, in
the same time limit, the denominator, 1 − kT

2 (LT, ν, s)/[kT
2 (LT =

0, s = 0) + knh] will go to zero, and the linearized solution for
m(s → 0) becomes unbounded. Of course, in a non-linear theory,
this instability continues until the load reaches the equator.

In the scenario shown in Fig. 1(B) (where we also assume knh =
0), the Earth model does have an elastic lithosphere. In this case,
neither the numerator nor the denominator in eq. (9) will go to
zero at infinite time, and the system remains stable. In this case,
the final position of the load is governed by a balance between
the force driving polar motion, which is proportional to the term
1+kL

2 (LT, ν, s) in the numerator, and the resistance associated with
the bulge, the term 1 − kT

2 (LT, ν, s)/kT
2 (LT = 0, s = 0).

It is clear from these examples that the stability of the sys-
tem is ultimately governed by the ratio kT

2 (LT, ν, s)/[kT
2 (LT =

0, s = 0) + knh] that appears in the denominator of eq. (9). In
the absence of a non-hydrostatic contribution to the background
bulge, this means that the system will remain stable as long as
kT

2 (LT, ν, s) �= kT
2 (LT = 0, s = 0); that is, the system will re-

main stable as long as the Love number that governs the response
of the model to the changing centrifugal potential, kT

2 (LT, ν, s),
does not take on a hydrostatic form. When the lithosphere has a
purely elastic component, that is, when LT �= 0, this stability re-
quirement is guaranteed, and the difference between kT

2 (LT, s = 0)
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The rotational stability of a convecting earth 1323

and kT
2 (LT = 0, s = 0) represents the remnant bulge stabilization

described in section 1 (Willemann 1984; Matsuyama et al. 2006).
Note that if the Earth model has a high viscosity viscoelastic litho-
sphere, then the ratio kT

2 (LT, s = 0)/kT
2 (LT = 0, s = 0) will

approach 1.0, and the system (with knh = 0) will become unstable
(as in Fig. 1A) for times longer than the decay time of the viscoelas-
tic lithosphere. In contrast, for times less than this characteristic
relaxation time, the system will behave according to Fig. 1(B). In
other words, once the viscoelastic lithosphere relaxes, the bulge is
free to adjust perfectly to the new position of the rotation vector, and
the system loses memory of its original rotational state. This high-
viscosity lithosphere case thus serves as a bridge between the stable
state described in the theory of Willemann (1984) and Matsuyama
et al. (2006), and the unstable state described by Gold (1955).

Finally, we note that any excess ellipticity will guarantee that
the rotation remains stable, regardless of the relationship between
kT

2 (LT, ν, s) and kT
2 (LT = 0, s = 0) as s → 0. Thus, an excess

ellipticity will contribute a stabilization to the rotation. The Earth’s
current background form has an excess ellipticity equal to about 1
per cent of the hydrostatic value (Nakiboglu 1982), and this extra
flattening is generally taken to be due to upwelling megaplumes
below southern Africa and the Pacific (Lithgow-Bertelloni & Sil-
ver 1998). This raises a subtle point. If we were to use our theory
to consider short timescale TPW (i.e. TPW of timescale 1 Myr or
less) driven by mantle convection, then, since these megaplumes
are unlikely to adjust non-negligibly over this time period, it would
be appropriate to retain the term knh as it appears in the Liou-
ville eq. (8). The convection induced changes in the inertia tensor
over such timescales would thus be considered perturbations on the
long-wavelength form associated with the more stable megaplumes.
However, for long timescales, the excess ellipticity term should be
interpreted as being part of the load-induced perturbation in the
inertia tensor [i.e. part of 1 + kL

2 (LT, ν, s)], and it would not be ap-
propriate to retain it in the Liouville eq. (8). In this case, we would
set knh = 0 in this equation. The latter would also be the case for
a realistic simulation of mantle convection that captured both the
short- and long-term perturbations to the inertia tensor.

2.1 Establishing a range of validity for the Liouville
equation

The question arises: how much TPW can occur before the lineariza-
tion adopted to derive the Liouville eq. (8) breaks down? To quantify
this issue, we will consider the final state of the scenario shown in
Fig. 1(B5), where a surface mass load is applied and retained for
all time on a rotating Earth model with a hydrostatic form and an
initially unstressed elastic lithosphere. In particular, we will com-
pare the t = ∞ response predicted using the Liouville eq. (8) (with
knh set to 0) with the result based on the equilibrium, non-linear
theory described by Matsuyama et al. (2006), following Willemann
(1984). We begin with the latter.

Let us assume that an axisymmetric disk load is placed on the
Greenwich meridian at some colatitude θL at time t = 0. Let us
furthermore assume that the load can be represented in terms of a
spherical harmonic decomposition,

L(θ, ψ, t) = H (t)
∞∑

�=0

�∑
m=−�

L�mY�m(θ, ψ), (10)

where H(t) is the Heaviside function, θ is the colatitude, ψ is the
east longitude and � and m are the spherical harmonic degree and
order, respectively. We assume that the spherical harmonic basis

functions are normalized such that∫
S

Y †
�′m′ (θ, ψ)Y�m(θ, ψ)d S = 4πδ��′δmm′ , (11)

where † denotes a complex conjugation, and S represents an inte-
gration over the unit sphere.

If the same axisymmetric load was rotated to be centred on the
north pole, then the spherical harmonic coefficients of this load
(which we will denote by a superscript prime) would be related to
the original harmonic components by

L2m = L ′
20

Y †
2m(θL , ψL = 0)√

5
. (12)

The spherical harmonic � = 2, m = 0 coefficient of the geopotential
due to the direct gravitational effect of the surface mass (polar) load
is given by (Matsuyama et al. 2006)

GL
20 = 4πa3g

5M
L ′

20, (13)

while the same harmonic coefficient of the geopotential associated
with the background hydrostatic form of the model Earth is

G H
20 = − 1

3
√

5
a2�2kT

2 (LT = 0, s = 0). (14)

Following Willemann (1984) and Matsuyama et al. (2006), we thus
define a normalized load size, Q′, by the ratio

Q ′ = − GL
20

G H
20

=
4πa3g

5M L ′
20

1
3
√

5
a2�2kT

2 (LT = 0, s = 0)
. (15)

With this definition in hand, the TPW angle δ for a load of nor-
malized size Q′ placed at a colatitude of θL is given by (Matsuyama
et al. 2006)

δ = 1

2
arctan

[
Q ′α sin(2θL )

1 − Q ′α cos(2θL )

]
, (16)

where α is given by

α = 1 + kL
2 (LT, s = 0)

1 − kT
2 (LT,s=0)

kT
2 (LT =0,s=0)

. (17)

The parameter α is a function of the fluid (s = 0) state of both the
Earth model and background hydrostatic form. For realistic Earth
models, α is of order 1, and is only weakly sensitive to the choice
of LT .

In Fig. 2 , we plot the TPW angle δ as a function of the initial
load colatitude for five different values of Q′α, ranging from 0.1
to ∞. The physics of this solution space is discussed in detail in
Matsuyama et al. (2006). For loads of very large size, the TPW
angle is 90◦ − θL, and thus the final load position is always the
equator. In this case, the load is so large that, despite the resistance
of the remnant rotational bulge, the reorientation is governed by the
stability theory described by Gold (1955) (Fig. 1A). However, for
loads equal to 10 per cent of the size of the bulge, the TPW angle is
less than a few degrees, no matter where the load is initially placed.

Next, we solve for the TPW using the Liouville eq. (8). In this
case, the I L

13(t) inertia perturbation due to the load can be written
as I L

13 H (t). Moreover, with no loss of generality, we can express
the time dependence in the m1 component of the perturbation in the
rotation vector as a series of N Heaviside load increments

m1(t) =
N∑

n=0

δmn
1 H (t − tn) . (18)
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Figure 2. Predictions of TPW angle (δ) versus the initial colatitude of
the loading for a suite of different Q′α, as labelled on the contours. The
calculations are based on eq. (16) derived using the equilibrium, non-linear
theory of Matsuyama et al. (2006), after Willemann (1984).

Applying these expressions in (8) and performing the time convo-
lution yields, using eq. (3),(

1 − kT,E
2

kT
2 (LT = 0, s = 0)

)
N∑

n=0

δmn
1 H (t − tn)

= I13
L

C − A
H (t)

⎡
⎣1 + kL ,E

2 +
J∑

j=1

r ′
j

s j

(
1 − e−s j t

)⎤⎦

+ 1

kT
2 (LT = 0, s = 0)

N∑
n=0

δmn
1 H (t − tn)

J∑
j=1

r ′′
j

s j

(
1 − e−s j (t−tn )

)
.

(19)

Setting t = ∞ in this equation, and using eq. (4), yields, after some
simplification

m1(t = ∞) = I L
13

C − A

1 + kL
2 (LT, s = 0)

1 − kT
2 (LT,s=0)

kT
2 (LT =0,s=0)

= I L
13

C − A
α . (20)

We could have arrived at the same result by using the s → 0 limit
in eq. (9).

One can show, using the definition in eq. (15) that

I13 = −1

2
(C − A)Q ′ sin(2θL ). (21)

Using this expression in eq. (20) yields

m1(t = ∞) = −1

2
Q ′α sin(2θL ), (22)

and therefore, the predicted amplitude of TPW based on the lin-
earized theory is

δ = tan−1

(
1

2
Q ′α sin(2θL )

)
. (23)
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Figure 3. Predictions of the TPW angle (δ) versus Q′α generated using
the (solid line) equilibrium, non-linear theory of Matsuyama et al. (2006),
following Willemann (1984) (eq. 16) and the (dashed line) linearized theory
(eq. 23).

We now have two expressions for the TPW associated with the
scenario in Fig. 1(B): eq. (23), based on the asymptotic value of our
linearized rotation theory in response to a Heaviside loading; and
a value computed using an equilibrium (i.e. no time-dependence)
non-linear stability theory, eq. (16). In both cases, the required Earth
model structure in the fluid limit is embedded in the parameter α

(eq. 17). A comparison of the results generated using the linearized
and non-linear theories will provide a quantitative measure of the
accuracy of the former in predictions of TPW.

As an illustration of this accuracy, Fig. 3 shows predictions of
TPW versus Q′α predicted using the non-linear (solid line) and the
linearized (dashed line) stability theories for a load placed on the
Earth at an initial colatitude of 40◦. At δ = 20◦ (Q′α ∼ 1), the
prediction based on the linearized theory has an error of less than
5 per cent. This error increases to about 10 per cent for a TPW of
30◦ (Q′α ∼ 1.5). The accuracy of the linearized theory degrades
monotonically for higher Q′α values.

We next generalize this analysis to consider a range of θL values
in Fig. 4. Fig. 4(A) shows contours of TPW (δ) for 0◦ < θL < 90◦

and Q′α < 1, predicted using the linearized theory. Fig. 4(B) plots
the associated error in these predictions. It is clear from the figure
that the accuracy of the linearized theory is greatest when the load
is placed at mid-latitudes. For 40◦ < θL < 50◦, predictions of δ ∼
20◦ that are obtained for Q′α ∼ 1 have an error less than 30 per
cent. In reference to Fig. 2, we note that this preferred range of θL

samples the region where ∂(δ)/∂θL is smallest, at least for Q′α <

0.1.
We conclude from this section that by applying a load to the

Earth model at mid-latitudes, the linearized stability theory will be
accurate to order 10 per cent for TPW predictions up to 20◦. This
will serve as a guideline for the numerical tests described in the
next section.

3 R E S U LT S A N D D I S C U S S I O N

In this section, we turn to an examination of the rotational stability
of the Earth in response to a time-varying perturbation in its inertia
tensor. The term IL (t)+kL

2 (LT, ν, t)∗ IL (t) in the governing eq. (8)
incorporates both the load and its isostatic compensation. In con-
sidering loads associated with mantle convection, we will impose
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Figure 4. (A) Predictions of the TPW angle (δ), as labelled on the contours, in a solution space that varies the initial colatitude of the load, θL, and Q′α.
Calculations are based on eq. (23). (B) Percent error in the predictions generated using the linearized rotational stability theory (frame A) computed via a
comparison with the expression (16).

this total ‘effective’ load, and we can thus rewrite this equation as

m(t) = Ieff (t)

(C − A)
+ kT

2 (LT, ν, t)

kT
2 (LT = 0, s = 0) + knh

∗ m(t). (24)

As discussed above, this form incorporates the stabilizing influence
of the remnant rotational bulge and, for knh �= 0, any excess ellipticity
in the Earth’s form. As discussed below eq. (9), the special case of
time-domain eq. (8) consistent with the physics first described by
Gold (1955) is obtained by setting knh to 0, and using an Earth
model with no purely elastic component of the lithosphere

m(t) = Ieff (t)

(C − A)
+ kT

2 (LT = 0, ν, t)

kT
2 (LT = 0, s = 0)

∗ m(t). (25)

In this case, an uncompensated load will ultimately reach the equa-
tor, as in the scenario in Fig. 1(A), although in our linearized theory
this instability will be manifest in an unbounded TPW. In the follow-
ing discussion we will use the terms ‘new theory’ and ‘traditional
theory’ when referring to solutions based on eqs (24) and (25), re-
spectively. We emphasize, however, that our eq. (25) provides the
time-dependence of the system in Fig. 1(A), in contrast to the usual
equilibrium form of the traditional theory (Gold 1955) adopted in
most previous mantle convection studies, which specifies only the
final state of the pole.

The Maxwell viscoelastic Earth we adopt is spherically sym-
metric and self-gravitating. The elastic and density structure of
the model is given by the seismically inferred model PREM
(Dziewonski & Anderson 1981). The viscosity structure is dis-
cretized into three layers: an elastic (i.e. infinite viscosity) litho-
sphere of thickness LT , an upper mantle viscosity set to 1021 Pa s,
and a lower mantle viscosity that will vary in the simulations.

Finally, we need to prescribe the effective inertia tensor pertur-
bation or, using eq. (21), the normalized load size Q′ and load
colatitude θL. Following the arguments of the last section, we will
adopt θL = 40◦ to optimize the accuracy of the linearized theory,

and this yields

Q ′ = 2Īeff

(C − A) sin 80◦ , (26)

where Īeff is the maximum value in the time variation of Ieff (t).
What is an appropriate value of Q′? That is, what is the ex-

pected normalized load associated with mantle convection over
the timescales of interest to our study (∼1 Myr)? To estimate this
load, we begin by considering the total perturbation in the Earth’s
present-day figure due to mantle flow, which we can approximate
using two lines of reasoning. First, the excess ellipticity of the
Earth is recognized as being the consequence of two large scale
megaplumes within the mantle (Lithgow-Bertelloni & Silver 1998).
Hence, knh/kT

2 (LT = 0, s = 0) (see eq. 7)—that is, the ratio of
the excess and hydrostatic ellipticity—thus provides one measure
of the net normalized load due to mantle flow. For the Earth models
described above, kT

2 (LT = 0, s = 0) = 0.9342, and knh = 0.008
from Nakiboglu (1982), and hence this ratio is ∼0.0086 (or 0.86
per cent). Alternatively, the difference in the Earth’s two principal
equatorial moments of inertia, (B − A), is also presumably due to
mantle convection, and the observed ratio (B − A)/(C − A) ∼ 0.007
(Gross 2007). It is reasonable to assume that this ratio would also
be approximately equal to the fractional contribution of convection
to the observed C − A, and thus it provides a second, consistent
estimate of the total normalized load due to convection.

Now, the timescale for density heterogeneities to complete a cir-
cuit through a whole mantle convection cell is, using surface plate
speeds as an estimate for the characteristic flow velocity, approx-
imately 100 Myr. This suggests that, over a timescale of 1 Myr,
the variation in the normalized load due to mantle flow will be of
order 1 per cent of the total, or ∼8 × 10−5. To be conservative,
our ‘standard test case’ will be 10 times this value, Q′ = 0.0008.
While we will consider the sensitivity of the TPW predictions to
a variation in the load size, it is important to emphasize that the
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1326 N.-H. Chan et al.

Figure 5. Predicted (A) TPW and (B) TPW rate versus time computed using (dotted line) our time dependent treatment of the traditional rotation physics
(eq. 25), and the (solid line) new rotation theory which includes stabilization associated with the remnant rotational bulge (eq. 25) with knh set to zero. All
other aspects of the solution are based on the standard test case: LT = 25 km, νLM = 1022 Pa s, Q′ = 0.0008 and τ c = 1 Myr. The time dependence of the
inertia tensor perturbation is given by eq. (27).

standard test case represents a ∼10 per cent variation in the excess
ellipticity over timescales of just ∼1 Myr.

The standard test case will also be defined by an Earth model
with LT =25 km, a lower mantle viscosity (henceforth νLM) of 1022

Pa s, and knh = 0. In regard to the convection signal, we will assume
two forms of time dependence. The first is a sinusoidal forcing,

Ieff (t)

Īeff
= sin(2π t/τ ), (27)

where τ = 1 Myr in the standard case. The second has the form

Ieff (t)

Īeff
= {

tanh[A(t − B)] + 1
}
/2, (28)

where A = 6 Myr−1 and B = 0.5 Myr in the standard run. In this
case, the right hand side of eq. (28) increases from a value of 0 to
1 in 1 Myr. We will perform a sequence of sensitivity analyses in
which νLM, LT , τ and knh are varied.

3.1 Periodic forcing

To begin, Fig. 5 shows a prediction of TPW and TPW rate as a
function of time for the standard test case. The results are generated
using (solid line) the new rotation theory that accounts for the
stabilization due to the remnant bulge (eq. 24 with knh = 0) and
(dashed line) the theory in which this stabilization is absent (eq. 25).
It is clear from the figure that the remnant bulge stabilization does
not contribute significantly to either the TPW or its rate of change
for a sinusoidal loading with period of τ = 1 Myr.

In Fig. 6, we explore the sensitivity of the TPW prediction in
the standard test case solution to variations in the normalized load
size Q′, the excess ellipticity knh, the period τ of the forcing, and
the adopted lower mantle viscosity νLM. We also performed an
analysis (not shown) in which the elastic lithospheric thickness, LT ,
was varied from the standard value (25 km). This latter analysis,
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The rotational stability of a convecting earth 1327

Figure 6. Predicted TPW amplitude (half the peak-to-peak variation) as a function of the (A) normalized load size Q′, (B) the adopted background excess
ellipticity knh, (C) the period τ c of the sinusoidal perturbation to the inertia tensor (Ieff ) and (D) the adopted lower mantle viscosity, νLM. Calculations adopt
the new rotation theory (eq. 25) and, with the exception of the parameter being varied, the solutions are based on the standard test case values: LT = 25 km,
νLM = 1022 Pa s, Q′ = 0.0008 and τ c = 1 Myr. The arrow in frame D indicates the amplitude predicted in a calculation in which we adopt the viscosity profile
inferred from a joint inversion of ice age and convection data sets (see text).

as well as the results associated with varying knh (Fig. 6B), show
relatively little sensitivity to a variation in the associated parameter,
and this generalizes the conclusion we reached on the basis of Fig. 5;
namely, the amplitude and TPW rate for a forcing of period ∼1 Myr
are insensitive to the stabilization associated with either a remnant
rotational bulge or a stable (on the timescale of the forcing) excess
ellipticity.

The remaining results in Fig. 6 confirm the general sensitivities
identified by Tsai & Stevenson (2007). In particular, the amplitude
of the TPW, and the peak rate of change (which can be inferred, in
units of deg Myr−1, from Fig. 6 by multiplying the y-axis values
by a factor of ∼4.5), are linearly sensitive to the loading amplitude
and the period of the sinusoidal forcing, and they are inversely
proportional to the lower mantle viscosity. The linear relationship
between the predictions and Q′ is, in fact, explicit in our governing
eq. (24).

So, what is the amplitude and speed limit of TPW in response to a
rapid, periodic forcing? Let us consider a loading timescale of τ ∼ 1
Myr. In this case, the standard run yields a maximum peak-to-peak
amplitude of ∼1◦, and a maximum speed (which is only attained
for a short period of time) of 3.5 deg Myr−1. As we have discussed,
the standard Q′ value we have adopted represents a variation in the
mantle convective loading of 10 per cent of the total convective
load over a specified timescale τ . Simulations of mantle convection
extending over the past 20 Myr indicate that over a 1 Myr timescale
the peak variation in the convection-induced load is a fraction of
1 per cent of the total signal (see Forte & Mitrovica 1997, Fig.
3a), suggesting that our standard value for Q′ is a very conservative
upper bound. The standard run also adopted a lower mantle viscosity
νLM = 1022 Pa s. Recent, joint inversions of data related to ice age

sea level adjustments and mantle convection (Mitrovica & Forte
2004) infer a mean deep mantle viscosity in excess of this value.
On Fig. 6(D), we superimpose the predicted amplitude of TPW
generated using this specific inference of viscosity—this calculation
yields an amplitude about 15 per cent lower than the standard case.
We note that some ice age studies have suggested a lower mantle
weaker than 1022 Pa s (Peltier 2004). However, the data sets used in
such analyses (e.g. relative sea level histories) are primarily sensitive
to shallow lower mantle structure. Spherical harmonic degree 2
anomalies (e.g. TPW) will be sensitive to viscosity variations in the
deep mantle, a region where ice age data sets provide limited radial
resolution (Mitrovica 1996). Therefore, the lower mantle viscosity
adopted in the standard run is also a conservative choice.

3.2 A gradual step change in the convective loading

Next, we consider TPW driven by a net change in the convective
forcing defined by the time history in eq. (28). For the standard run
(A = 6.0 Myr−1 and B = 0.5 Myr), this time history involves a
ramp-up in the load from a value of 0 to Q′ in 1 Myr, with the most
rapid change in the middle 0.5 Myr of the loading phase. Beyond this
phase, the load stays in place. The solid lines in Figs 7(A) and (B) are
the predicted TPW and TPW rate computed using our (linearized)
time-dependent form of the traditional rotational stability theory
(eq. 25) with all parameters set to the standard test run case. As
discussed above, the equilibrium theory of Gold (1955) (i.e. the
final frame of Fig. 1A) will ultimately place the load on the equator,
and since the load is positioned at a colatitude of 40◦, this means a
final TPW of 50◦. In our linearized theory, the instability described
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1328 N.-H. Chan et al.

Figure 7. (A) TPW and (B) TPW rate versus time computed using the (solid line) time domain treatment of the traditional rotation theory (eq. 25), and the
new rotation theory (eq. 24) with knh set to either (long-dashed line) 0.0 (the standard test case), (short-dashed line) 0.002, (dotted line) 0.004, (dashed-dotted
line) 0.006 or (long-dashed-short-dashed line) 0.008. All other aspects of the solution are based on the standard test case: LT = 25 km, νLM = 1022 Pa s,
Q′ = 0.0008, and time dependence of the inertia tensor perturbation is given by eq. (28) with A = 6 and B = 0.5.

in the context of Fig. 1(A) leads to an unbounded TPW, although
we will focus our attention on the time history well within the linear
regime mapped out by Figs 2–4.

Two million years after the load is fully emplaced, the net TPW
has reached 6◦ and the TPW rate is 2 deg Myr−1. At 10 Myr
from the onset of loading (not shown), these values are 18.2◦ and
∼ 1.65 deg Myr−1, respectively. This suggests that the time required
for the load to reach close to the equator, for the suite of parameters
that define the standard test case, is at least 50 Myr.

The long-dashed line in each frame of Fig. 7 represents a pre-
diction based on the new rotation theory that incorporates the sta-
bilization of the rotation pole associated with the remnant bulge
(eq. 24 with knh = 0.0). In contrast to the case of sinusoidal load-
ing, this stabilization has a pronounced impact on the reorientation
of the rotation pole. Two million years after the full load is estab-
lished, the pole has reached ∼4.5◦, and the TPW rate has dropped
to 1 deg Myr−1, or half the rate predicted in the absence of the sta-

bilization due to the remnant bulge. At 10 Myr after the onset of
loading (not shown), the TPW rate has fallen to 0.3 deg Myr−1, and
the net TPW has reached 8.4◦.

The remaining predictions in Fig. 7 illustrate the progressively
stronger stabilization of the rotation pole as the remnant bulge
physics is augmented by successively higher amplitudes of stable
(over the 3 Myr timescale covered by the plot) excess ellipticity.
Indeed, in the 3 Myr since the onset of the loading, the predicted
TPW for the most stable case, with an adopted excess ellipticity
equal to the present-day value (knh = 0.008, as discussed above),
has essentially ceased and the final reorientation is ∼2◦. We note
that the present-day, non-hydrostatic figure of the Earth is triaxial,
and the excess ellipticity values in the direction of the two principal
equatorial axes are actually 0.0115 and 0.0052 (Matsuyama et al.
2010) (the average of these to numbers gives the 0.008 value quoted
above); thus the precise level of stabilization would, in the case of a
triaxial figure, be a function of the direction of the TPW.
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The rotational stability of a convecting earth 1329

We conclude from Fig. 7 that during periods of relative hiatus in
the variability of the convective loading, ongoing TPW predicted on
the basis of the traditional rotational stability theory (eq. 25) may
be a significant overestimate. Stabilization associated with both
a remnant rotational bulge and an excess ellipticity which remains
stable over the period of the hiatus will both strongly inhibit TPW. It
is important to note that the stabilization associated with the excess
ellipticity is independent of the remnant bulge stabilization. That is,

although the four lower lines in each frame of Fig. 7 consider the
two effects in tandem, we could have alternatively considered the
excess ellipticity stabilization in the absence of the remnant bulge
stabilization associated with the elastic lithosphere.

In Fig. 8, we return to the standard test case (long dashed lines in
the frames of Fig. 7) and consider the sensitivity of the predictions
to (from first to last row) the normalized size of the load (Q′), the
timescale of loading, the lower mantle viscosity and the thickness

Figure 8. Predicted (left column) TPW and (right column) TPW rate versus time for a suite of predictions in which individual parameters are varied from the
value which defines the standard test case. All calculations are based on the time-domain eq. (24), with knh set to zero, and the time-history of loading given
by eq. (28). (A,E) Q′ varied from (solid line) 0.003, (dotted line) 0.001, (long-dashed line) 0.0008 and (short-dashed line) 0.0003. (B,F) Ramp-up timescales
of (solid line) 100 kyr, (dotted line) 300 kyr, (long-dashed line) 1 Myr and (short-dashed line) 3 Myr. (C,G) νLM varied from (solid line) 3 × 1021 Pa s,
(long-dashed line) 1022 Pa s, and (dotted line) 3 × 1022 Pa s. (D,H) LT varied from (solid line) 10 km, (long-dashed line) 25 km, (short-dashed line) 46 km,
(dotted line) 67 km and (dashed-dotted line) 88 km. With the exception of the parameter being varied, the solutions are based on standard test case values:
LT = 25 km, νLM = 1022 Pa s, Q′ = 0.0008 and τ c = 1 Myr.
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1330 N.-H. Chan et al.

of the elastic lithosphere. In all cases, we use the time-domain eq.
(24) with knh = 0.

In the top row we explore the impact of varying Q′ from 0.0003
to 0.003. As discussed above in the context of the periodic forcing,
the predictions of TPW and TPW rate for the ramp-up forcing
should be linearly related to Q′ (eq. 24), and this is clearly evident
in Fig. 8. As an example, at 700 kyr, the net TPW rate predictions
for Q′ = 0.0003 and 0.003 are 1 deg Myr−1 and ∼ 10 deg Myr−1,
respectively.

The sensitivity of TPW and TPW rate predictions to variations in
the timescale over which the load is applied (second row, Fig. 8) is
relatively small once ∼3 Myr have elapsed. Peak TPW speeds are
obtained in the latter part of the loading ramp-up, and the ampli-
tude of this peak decreases as the ramp-up period increases, from
4.2 deg Myr−1 for the 0.1 Myr ramp-up case to 2 deg Myr−1 for the
case of a 3 Myr ramp up. Significantly, 5 Myr after the onset of
loading, the TPW rate for all four cases treated in Fig. 8(F) have
converged to just under 1 deg Myr−1.

The third row of Fig. 8 considers the impact on the TPW pre-
dictions of increasing the lower mantle viscosity by an order of
magnitude. During the loading ramp up, both the TPW and TPW
speed decrease monotonically with increasing νLM. However, as the
ramp-up slows, and in the period after the ramp up, the predicted
TPW speeds decay at different rates and by 3 Myr they have con-
verged to nearly the same value as in Fig. 8(F): 1 deg Myr−1. What
is causing this transition from the early sensitivity to viscosity to
the latter insensitivity? During the initial onset of the load, TPW is
limited by the ability of the bulge to readjust and this, in turn, is
governed by the lower mantle viscosity—the higher the viscosity,
the more sluggish the adjustment. However, after a relatively mod-
est level of TPW has occurred, the stabilizing impact of the remnant
bulge associated with the elastic lithosphere, which will increase
with increasing TPW, becomes dominant, and this stabilization is
insensitive to lower mantle rheology. Hence, the predicted TPW
rates will converge in this interval.

This transition from a TPW response dominated by viscous bulge
adjustment to remnant bulge stabilization is evident schematically
in Fig. 1, where in the first few columns of the figure the TPW path
is similar for both scenarios. As time progresses and the remnant
bulge stabilization takes over, the TPW in the second scenario is
significantly more muted than in the first case. The transition also
explains why, after the ramp-up in loading, TPW rates converge to
a roughly similar value (1 deg Myr−1); the stabilizing impact of the
remnant bulge is not only insensitive to the lower mantle viscosity, it
is also insensitive to the period over which a load of normalized size
Q′ is built up. Of course, since the ultimate location of the pole is
governed by a balance between the load size and the remnant bulge
stabilization, the curves in Fig. 8(E) will exhibit more sensitivity
than those in Figs 8(F) and (G) in the period after the load is fully
in place; however, each of these curves will eventually converge to
zero as the polar motion ceases (i.e. at the point where the strength
of the load and the stabilization strength become equal).

In the final row of Fig. 8, we consider the sensitivity of the
predictions to changes in the thickness of the elastic lithosphere. As
one increases the lithospheric thickness, one increases the strength
of the remnant bulge, and hence the predicted TPW remains a
strong function of the adopted value of LT well after the load ramp-
up; this is also reflected in the predicted TPW rates, which show
significant differences 3 Myr after the onset of loading. Once again,
this sensitivity contrasts with results based on the sinusoidal forcing.

The predictions in Fig. 8 adopt knh = 0, and thus they do not
include any stabilization associated with a background excess el-

lipticity. As discussed above, the present-day excess ellipticity of
the Earth along the intermediate and minimum axes of inertia are
0.0052 and 0.0115, respectively. We do not know how this convec-
tion signal has varied in the past; however, it will always be true, as
discussed in the context of Fig. 1, that the rotation vector will tend
to reorient such that any excess ellipticity moves toward the equator.
In any event, for the sake of illustration, and to be conservative, in
Fig. 9 we repeat the simulations in Fig. 8 with knh set to 0.004.
To facilitate comparison, Fig. 9 is drawn using the same scales as
Fig. 8.

Introducing this relatively modest level of excess ellipticity yields
a net TPW at 5 Myr that is only about half the total TPW predicted
in the absence of this stabilization. During the ramp up in the load-
ing, the TPW and TPW rate are less sensitive to the choice of knh;
however, the discrepancies grow during the period in which the
loading is complete. This is yet another manifestation of the tran-
sition from a load-dominated TPW phase to a phase in which the
stabilizing effects of the remnant bulge and the excess ellipticity
begin to dominate.

Using the results in this section, we can reassess the inference by
Sager & Koppers (2000) of 16◦–21◦ of TPW in 2–5 Myr during the
Late Cretaceous. Let us assume that this reorientation was due to
a net shift in the convective loading. The results in Figs 8(B) and
9(B) demonstrate that TPW over this time period would be rela-
tively insensitive to the timescale of the ramp-up in the convective
load. In the absence of any stabilization due to excess ellipticity,
the predictions in Fig. 8(A) indicate that TPW of this amplitude
would require a convective load of Q′ ∼ 0.003. Adopting an excess
ellipticity of knh = 0.004 (Fig. 9A) increases the size of the required
load by about 60 per cent, that is, Q′ = 0.005. (The Earth’s excess
ellipticity 85 Ma is unknown; however, the size of the megaplume
structures below Africa and the Pacific suggest that this convec-
tively supported contribution to the oblateness of the Earth may not
have been significantly different from today’s value. Therefore, in
this case, adopting knh = 0.004 is likely an underestimate.) The
required load size would be only marginally smaller if we adopted
a lower mantle viscosity as low as 3 × 1021 Pa s (Figs 8C and
9C) or an elastic lithospheric thickness as thin as 10 km (Figs 8D
and 9D). The palaeomagnetic inference of Sager & Koppers (2000)
thus requires that a convective forcing on the order of the size of
the current excess ellipticity of the Earth must have been applied in
a timescale of a few million years. We conclude, on this basis, that
the palaeomagnetic inference is physically implausible.

4 F I NA L R E M A R K S

Using recent results in ice age theory (Mitrovica et al. 2005), we
have derived a linearized rotational stability theory that permits pre-
dictions of time-dependent TPW on a convectively loaded Maxwell
Earth. A special case of the theory allows one to assess the time
dependence of the rotation vector under assumptions consistent
with the canonical equilibrium stability theory first described by
Gold (1955) (Fig. 1A) and adopted in most previous analyses of
convection-induced TPW. However, in its most general form, our
theory augments this canonical treatment to include the possible
stabilization of the Earth’s rotation vector due to the remnant bulge
associated with an elastic lithosphere and any excess ellipticity in
the Earth’s shape that is stable over the timescale of interest. The
linearization is valid for small angles of TPW; however, we have
demonstrated the conditions under which the error in the treatment
is less than 5 per cent for TPW reaching 20◦.
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Figure 9. As in Fig. 8, except all calculations adopt knh = 0.004, and thus incorporate stabilization due to excess ellipticity.

As a first application of the theory, we have considered TPW in
response to relatively rapid, ∼1 Myr, perturbations in the inertia
tensor. In this regard, we have adopted two specific time histories:
a periodic (sinusoidal) forcing, and a gradual ramp-up (hyperbolic
tangent) forcing. The calculations using the periodic forcing have
largely confirmed results by Tsai & Stevenson (2007), who con-

cluded that the TPW angle and rate would be linearly proportional to
the magnitude and period of the loading and inversely proportional
to the adopted lower mantle viscosity. We have also demonstrated
that these predictions are, within the parameter regime we have con-
sidered, insensitive to the stabilization associated with the remnant
bulge or excess ellipticity. Using our predictions, we conclude that
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TPW of amplitude ∼10◦ with ∼1 Myr periodicity would require
large—and in our view unrealistic—perturbations in the inertia
tensor over this timescale. Indeed, these inferences suggest changes
in the inertia tensor over timescales of 1 Myr that are much larger
than 10 per cent of the perturbation implied by the Earth’s present-
day excess ellipticity.

Our predictions based on a step ramp up in the convection load
show far greater sensitivity to the stabilization associated with the
remnant bulge and excess ellipticity. More specifically, in the case
of the load ramp-up, we note a transition from load-dominated TPW
during the period of active loading to a phase, after loading is com-
plete, in which the remnant bulge and excess ellipticity significantly
limit polar motion. Indeed, these stabilizing factors are sufficient to
stop the rotation pole far from the equatorial position expected
on the basis of the canonical stability theory of Gold (1955). We
should emphasize that this limit on TPW has been understood and
applied within the literature of planetary rotation (e.g. Willemann
1984; Matsuyama et al. 2006; Daradich et al. 2008)—in this re-
gard, the theory described herein extends these efforts to consider
the time history of the evolution of pole position in the presence of
these stabilization mechanisms. On the basis of these predictions,
we have concluded that the inference of a 16◦–21◦ reorientation of
the rotation pole over 2–5 Myr during the Late Cretaceous is also
implausible.

The predictions described here assume that the elastic lithosphere
of the Earth is unbroken. As we discussed in Section 1, an important
question that needs to be addressed is to what extent the ‘effective
elastic thickness’ of the real Earth in response to a perturbed cen-
trifugal potential differs from response of a model Earth with an
unbroken elastic lithosphere of some thickness LT . As a prelimi-
nary assessment of this issue, we used a finite-element numerical
procedure developed for ice age geodynamic problems (Latychev
et al. 2005) to compare the 1 Myr response of: (1) an Earth model
with an elastic lithosphere of thickness 100 km at all locations ex-
cept at plate boundaries where (by virtue of a finite viscosity) the
elastic thickness is zero, and (2) a sequence of Earth models with
a uniform elastic thickness that is varied from 10 to 100 km. We
found that the (spherical harmonic degree two, order one) response
of the broken lithosphere model to a perturbation in the centrifugal
potential arising from a 5◦ shift in the pole along the Greenwich
meridian was the same as the response at the same degree and order
of a uniform elastic lithosphere of thickness LT ∼ 60 km. This sug-
gests that the effective elastic thickness LT of the Earth in response
to forcings on timescales of ∼1 Myr is a sizeable fraction of the
mean lithospheric thickness, and that the standard value of LT =
25 km we adopted in this study is a reasonable and conservative
choice. Nevertheless, it is important to recall that the effective elas-
tic thickness of the broken lithosphere, and hence the importance of
the remnant bulge stabilization, will be a function of the timescale
of the forcing. For example, analyses of TPW over timescales of
10s–100s of Myr would have to account for the fact that the creation
of oceanic lithosphere near mid-ocean ridges sets the local form of
the plate to the contemporaneous hydrostatic figure. A conservative
test of the effective elastic thickness of the lithosphere in this case
might set the elastic strength of the oceanic component of the litho-
sphere to zero. Plate motions during TPW events may also play a
role in establishing the strength of the remnant bulge stabilization
over such timescales.

The normal mode treatment we have described provides a flexi-
ble methodology for investigating the impact on convection-induced
TPW of a suite of other factors related to Earth structure. For exam-
ple, our results have assumed that the lithosphere is characterized

by infinite viscosity (i.e. that it is purely elastic). Adopting a fi-
nite viscosity lithosphere would introduce a normal mode with a
relaxation time given by the Maxwell time of the lithosphere, and
as we have noted this would lead to a transient remnant bulge stabi-
lization. In addition, alternate linear rheologies can be treated with-
out any additional complexity in the modelling. Finally, within the
range of linearization, our theoretical methodology can be used to
assess other aspects of the Earth’s rotational stability in response to
convective forcing. These include, for example, the relatively muted
TPW inferred for the past few 100 Myr from palaeomagnetic data
(Besse & Courtillot 2002; Steinberger & Torsvik 2008).
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