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Abstract Imaging plays an essential role in research on

neurological diseases in the elderly. The Rotterdam Scan

Study was initiated as part of the ongoing Rotterdam Study

with the aim to elucidate the causes of neurological disease

by performing imaging of the brain in a prospective pop-

ulation-based setting. Initially, in 1995 and 1999, random

subsamples of participants from the Rotterdam Study

underwent neuroimaging, whereas from 2005 onwards

MRI has been implemented into the core protocol of the

Rotterdam Study. In this paper, we discuss the background

and rationale of the Rotterdam Scan Study. Moreover, we

describe the imaging protocol, image post-processing

techniques, and the main findings to date. Finally, we

provide recommendations for future research, which will

also be topics of investigation in the Rotterdam Scan

Study.
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Introduction

Neurologic diseases in the elderly, such as dementia and

stroke, will pose an ever increasing burden on societies

over the next couple of decades [1–4]. Yet, effective

therapeutic or preventive strategies are still lacking. In

order to develop such strategies, knowledge on the etiology

of these diseases is crucial. An important feature of neu-

rodegenerative diseases is that structural and functional

brain changes may be already present years before clinical

onset and can be visualized using magnetic resonance

imaging (MRI) [5–10].

Realizing this potential benefit, already in the 1990s,

neuroimaging was implemented in several population-

based studies to study the preclinical brain changes that

ultimately lead to or may indicate an increased risk of

developing clinically manifest diseases, such as dementia

and stroke [7, 11–19]. However, in most of these studies

neuroimaging was only performed in a subset of the pop-

ulation, resulting in limited sample sizes. More impor-

tantly, during the last two decades MR imaging has

undergone huge improvements in hardware and software

leading to higher field strengths, higher resolution, shorter

scanning times, and more sensitive sequences. In addition,

digital image analysis techniques have led to a new field of

research aimed at automating and increasing through-put of

image processing for better visualization and quantification

of imaging findings. Taken together, these developments

now allow for performing neuroimaging in larger sample

sizes and using state-of-the-art imaging and processing

techniques. In turn, this has paved the way for more in
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depth and thorough investigation of (more subtle) brain

changes that can lead to neurological diseases.

It was in this light, that in 1995 the Rotterdam Scan

Study was initiated to investigate risk factors and risk

indicators of neurological diseases in the elderly using MR

imaging to visualize the underlying brain changes and

brain pathology. In 1995 and 1999, random subsamples of

Rotterdam Study participants underwent neuroimaging in

clinical scanners. From 2005 onwards, the Rotterdam Scan

Study has been embedded within the core protocol of the

Rotterdam Study [20], and a dedicated research scanner

was installed in the Rotterdam Study research center.

In the current paper, we provide a general outline of the

study population, scanning protocol, image post-processing

and a discussion of the main findings of the Rotterdam

Scan Study, with the main focus on the period from 2005 to

2015.

Design and study population

The source population of the Rotterdam Scan Study origi-

nates from the Rotterdam Study [21], a population-based

study in the Netherlands that aims to investigate causes and

determinants of chronic diseases in the elderly. The Rot-

terdam Study (RS I) was initiated in 1990 with 7983 par-

ticipants aged 55 years and over, who were interviewed and

underwent physical exam at baseline and during follow-up

visits every 3–4 years. In 2000, the cohort was extended

with 3011 persons (RS II), who were aged 55 and over at that

time. In 2006 the cohort was further extended with 3932

persons aged 45 years and over (RS III). The whole cohort

undergoes re-examinations every 3–4 years. The total Rot-

terdam Study population encompasses 14,926 persons.

Figure 1 shows an overview of the various Rotterdam

Study cohorts, the time of their (re-)examination visits, and

the implementation of MRI-scanning in the core protocol

of the Rotterdam Study in 2005. Initially, we invited ran-

dom persons from the second visit of RS II to undergo

MRI. Subsequently, we have scanned all eligible and

consenting participants from the first visit of RS III and

fifth visit of RS I. Currently, persons from the fourth visit

of RS II are undergoing scanning. Of all persons taking part

in the Rotterdam Study, those with MRI contra-indications

are considered not eligible for the Rotterdam Scan Study.

Furthermore, persons suffering from claustrophobia are

also not included. Because the throughput of performing

MR imaging has been higher than that of the Rotterdam

Study (56 MRI slots per week versus 36 slots for regular

study center visits), we were able to invite additional

subsets for re-scanning. As such, we re-invited participants

from RS I in 2006, RS II in 2008, and RS III in 2010

outside their regular visits for the Rotterdam Study. As a

result, some of the participants are already undergoing their

fourth MRI-exam.

Therefore, as of July 2015, a total of 12,174 brain MR-

scans have been obtained on the research scanner in over

5800 individuals.

Scan protocol

In 2005, a 1.5T MRI unit (General Electric Healthcare,

Milwaukee, USA, software version 11x), dedicated to the

Rotterdam Scan Study, was installed in the Rotterdam

Study research center. Besides the possibility of high

throughput image acquisition, this enabled us to leave

acquisition parameters unchanged by excluding software or

hardware upgrades in order to ensure data stability and

comparability over time. The MRI unit was fitted with a

dedicated 8-channel head coil (best coil configuration

available at time of installation) and the possibility for

parallel imaging using the array spatial sensitivity encoding

technique (ASSET).

Maximum total examination time (from arrival of one

participant in the MRI suite until the next) was initially set

at 45 min, in order to accommodate the MRI acquisition

into the generic workflow of the Rotterdam Study. Later,

this became 50 min due to the addition of a resting-state

functional MRI sequence (rs-fMRI), which is discussed in

detail below.

In the current scan-protocol we carefully balanced the

restrictions of time, costs and inconvenience for the par-

ticipants with the relevance and quality of the acquired

imaging data. To ensure participant compliance and

reproducible image quality (reduce motion artefacts) an

acquisition limit of 6 min per sequence was chosen.

To facilitate easier applicability of the current MRI

protocol by radiology technicians, we chose to use the

standard brain imaging package delivered by the system

manufacturer instead of custom developed sequences.

The MRI sequences were chosen based on the primary

variables of interest, i.e.:

1. quantitative measures of brain tissue volumes and

volumes of various neurostructures (e.g. hippocampus)

2. quantitative assessment of white matter lesions

(WMLs),

3. qualitative assessment of brain infarcts (lacunar and

cortical) and microbleeds,

4. quantitative assessment of white matter microstructural

integrity and connectivity,

5. quantitative assessment of total cerebral blood flow,

6. quantitative assessment of functional brain networks.

In designing the protocol, we tried to meet both the time

constraint and the contrast and resolution requirements.
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When possible, we preferred 3D over 2D sequences

because of higher signal-to-noise ratio (SNR), which

enables the acquisition of smaller voxel sizes. Yet, acqui-

sition time, sensitivity to motion and blurring artefacts did

not allow 3D acquisition in all sequences. For each

sequence, we adjusted the imaging parameters during

optimization procedures to obtain a specific target resolu-

tion with adequate SNR (C25) for tissues in the center of

the brain while scan time was limited to 6 min for each

sequence.

Since mid-2011, the structural MRI protocol has been

extended with a resting-state functional MRI (rs-fMRI)

sequence, further described below. Despite the original aim

to limit scan time to 6 min per sequence, this functional

scan requires 8 min to obtain adequate resting-state data.

The resulting protocol is presented in Table 1 with all

the relevant imaging parameters and the execution order

listed. The protocol starts with a three-plane localizer,

executed with the shimming option enabled. For subse-

quent sequences shimming is turned off to accelerate

receiver adjustments. Morphological imaging is performed

with T1-weighted (T1w), proton density-weighted (PDw)

and fluid-attenuated inversion recovery (FLAIR) sequen-

ces. The combination of different MR contrasts provided

by these sequences can be used for automated segmenta-

tion of brain tissue and WMLs (see section on processing).

For the purpose of segmentation, the T1w scan is acquired

in 3D at high in-plane resolution and with thin slices (voxel

size\ 1 mm3). A 3D T2*-weighted gradient-recalled echo

(GRE) scan is used to image cerebral microbleeds. For this

sequence a TE[ 30 ms was selected to obtain stronger

T2*-weighting. For registration purposes, the same slice

thickness with a lower in-plane resolution as compared to

the 3D T1w scan is used. Parallel imaging is applied for

this sequence to stay within the 6 min scan time limit.

Diffusion tensor imaging (DTI) is used to quantitatively

assess white matter microstructural integrity [22, 23]. For

this 2D DTI scan, we use an echo planar imaging (EPI)

readout with gradients (b = 1000 s/mm2) applied in 25

directions [22, 23]. The b = 0 s/mm2 image is collected

with NEX = 3. The number of gradient directions, i.e. 25,

was chosen to best fit the optimized protocol by Jones et al.

[22, 23] whilst remaining within time limits and maximum

number of slices permitted by the scanner. To minimize

geometrical distortions, the number of frequency encoding

points was set to 64 and parallel imaging was applied with

an acceleration factor of 2, with an imaging matrix of

64x96, providing a voxel size of 3.3 9 2.2 9 3.5 mm3.

Fig. 1 Overview of the sub-cohorts and examination visits of the

Rotterdam Study, and imaging visits of the Rotterdam Scan Study.

Boxes indicate examination visits of the three cohorts of the

Rotterdam Study. Boxes with solid colors indicate visits, during

which MRI imaging was conducted as part of the core protocol.

Examination visits indicated with an ‘X’ indicate extra visits during

which only MRI was performed. The red vertical line indicates the

implementation of MRI on site in the core protocol of the Rotterdam

Study. In 1995 and 1999 (indicated with *) 567 persons underwent

MRI as part of the Rotterdam Scan Study outside the core protocol of

the Rotterdam Study. ‘Total’ indicates the total number of persons

taking part in that Rotterdam Study examination visit. ‘N’ indicates

the number of persons that were eligible (no MRI contra-indications

and no claustrophobia) and invited to take part in the Rotterdam Scan

Study. ‘n’ indicates the number of persons that underwent brain MRI

in the Rotterdam Scan Study
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An ungated 2D GRE phase contrast flow measurement

is applied for assessment of total cerebral blood flow [24],

which has shown to be fast and accurate [24]. A 2D thick

slab projection phase contrast angiographic localizer

(60 mm thick, velocity encoding (VENC) = 60 cm/sec) is

positioned sagittally to determine the location of the carotid

and basilar arteries. Next a thin slice perpendicular to all

three vessels at the level of the precavernous internal car-

otid artery is positioned (VENC = 120 cm/s, slice thick-

ness 5 mm, NEX = 8). Flow velocity data can be

calculated from the phase difference images as described

before [24]. For rs-fMRI, subjects are instructed to lie still

with their eyes open, and not to fall asleep. T2*-weighted

echo planar images (EPIs) are acquired with 3.3 mm iso-

tropic voxels, and a total of one-hundred sixty volumes.

Figure 2 illustrates an example of the different sequen-

ces acquired in the final protocol. The sequence acquisition

order was chosen in a way to provide adequate recon-

struction speeds and to eliminate delays. The 3D T2*w

GRE scan was the last sequence executed in the protocol

pipeline because of the long reconstruction time necessary

for parallel imaging and the resulting lag time in scan

execution.

For quality check, a daily quality assessment (measuring

transmit gain, center frequency and SNR) is performed by

technicians using a phantom. Additionally, weekly mea-

surements of echo-planar stability, isocenter reliability and

accuracy of absolute scaling along the cardinal axes (x,y,z)

are performed. Regular scanner maintenance is performed

by the manufacturer and results are filed in a log.

Furthermore, interscan reproducibility measurements

have been performed by re-inviting study participants

(n = 20–30) within on average 2 weeks after initial

examination for repeat MRI.

Image processing

Within the context of the Rotterdam Scan Study, a stan-

dardized image analysis workflow is being developed,

validated and applied to all imaging data, to enable the

objective, accurate, and reproducible extraction of relevant

parameters describing brain anatomy, possible brain

pathologies, and structural and functional brain connec-

tivity from multispectral MRI data. In the following para-

graphs, we briefly describe the different quantitative image

analysis methods that have been developed and/or

employed within the Rotterdam Scan Study.

Image pre-processing

Prior to analysis, a number of pre-processing steps are

performed. For multispectral image analysis, the different

scans are spatially registered using rigid registration.

Subsequently, the brain is extracted from the scan. Hereto a

manually segmented brain mask—which excludes among

other things, the cerebellum, the eyes, and the skull—is

non-rigidly registered to the T1-weighted image using

Elastix [25].

Finally, scans are corrected for intensity non-uniformity

using the N3 method [26]; non-uniformity correction is

carried out within the brain mask.

Brain tissue segmentation

Automated brain tissue segmentation on MRI has received

considerable attention [11, 27–32]. An important distinc-

tion that can be made is whether methods are supervised

(i.e. they depend on annotated training data), or unsuper-

vised. In the Rotterdam Scan Study, we use a supervised

approach, based on k-nearest neighbour (kNN) segmenta-

tion. In kNN segmentation, image voxels are assigned

labels (grey matter (GM), white matter (WM), cere-

brospinal fluid (CSF) or background (BG)) based on the

most similar voxels in the training data. Similarity here

depends on the distance in normalized MR image intensi-

ties. We have both investigated segmentation based on

T1w images, and multispectral MRI data (T1w and PDw

images). Manual segmentations by two observers of six

T1w datasets (the PDw dataset is implicitly segmented

after rigid registration to the T1w datasets), that include

labels for GM, WM, CSF, and BG, were used as training

data [27, 33]. This brain tissue segmentation method has

been extensively evaluated within the context of the Rot-

terdam Scan Study, showing good accuracy and repro-

ducibility [33, 34]. An example of the automated tissue

segmentation is shown in Fig. 3.

To facilitate more regionalized analysis of total brain,

WM and GM volumes, individual lobes have been seg-

mented. This is achieved by non-rigidly registering a

template image in which the lobes have been manually

outlined [35–37]. Finally, T1-weighted MR images have

been used to calculate subcortical structures and thickness

of the cerebral cortex using a model-based automated

procedure using Freesurfer image analysis suite (http://sur

fer.nmr.mgh.harvard.edu/) [38, 39].

White matter lesion classification

The brain tissue segmentation methods described above

have been complemented with WML segmentation [40].

Hereto, both the brain tissue segmentation, and the FLAIR

image are used. In the brain tissue segmentation, possible

WMLs are misclassified as GM with a ring of WM voxels.

In the FLAIR image the WMLs are hyperintense. We

therefore process the histogram from the FLAIR image

The Rotterdam Scan Study: design update 2016 and main findings 1303
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intensities of all voxels that are classified as GM, to esti-

mate the mean and standard deviation of true GM voxels.

Subsequently, WML voxels are extracted by intensity

thresholding, where the threshold depends on the estimated

GM distribution. False positives are removed by excluding

voxels which are not sufficiently connected to the white

matter. The different parameters (intensity threshold, and

quantitative definition of not being sufficiently connected)

have been optimized on a large reference dataset. The

method has been quantitatively evaluated [40] and has

Fig. 2 Depiction of the images

acquired using the MRI

protocol. First row: T1-

weighted (a), proton-density-

weighted (b), and fluid

attenuated inversion recovery

(c) images. Second row: T2*-

weighted (d) image, sagittal

scout for the 2D phase contrast

measurement (e), and the

resulting flow image (f). Third

row: example of an image

acquired using diffusion

weighted imaging (g), map of

fractional anisotropy (h), map of

mean diffusivity (i), and resting-

state functional MRI (j)
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successfully been applied to the whole cohort [41]. Visual

inspection of the results indicates that the method is robust,

with approximately only 4 % of the scans containing false

positive or false negative WMLs. Figure 3 demonstrates

the automated WML segmentation result.

Brain structure segmentation and shape analysis

Within the Rotterdam Scan Study, we have developed a

graph cut framework for neurostructure segmentation [42]

combining atlas registration and statistical models of image

appearance [43], which currently has been implemented for

hippocampus segmentation. The developed framework

utilizes twenty manually outlined hippocampi (atlases)

[44], which are used both for atlas registration, and for

training the statistical image appearance models. The

twenty atlases are non-rigidly registered to an image to be

segmented, after which by averaging a spatial probability

map is obtained which indicates the likeliness of a voxel to

belong to the hippocampus. Within a graph cut framework,

this information is complemented by the likeliness that a

voxel is part of the hippocampus based on intensity

information, for obtaining a segmentation. The method has

been shown to improve on existing manual hippocampus

segmentation techniques [43], and has been applied to a

number of studies [45, 46]. Recently, we have extended the

hippocampus method to also include more informative

appearance models [47]. The graph cut framework devel-

oped for hippocampus segmentation has additionally been

used for ventricle segmentation [48], and segmentation of

the cerebellum [49, 50].

Based on the hippocampus segmentation, we also have

developed a method to quantify hippocampal shape, and

demonstrated that the combination of hippocampal volume

and hippocampal shape performed better on the prediction

of dementia than when just using volume [51].

Diffusion tensor imaging (DTI): global and tract-

based analysis

DTI enables measurement of the microstructural integrity

of white matter. Within the Rotterdam Scan Study, a

number of image analysis techniques have been employed

and developed for the analysis of DTI data. These include

conventional global and regional analysis of DTI-derived

measures such as Fractional Anisotropy (FA) and Mean

Diffusivity (MD) [52], and tract-based analysis of FA and

MD [53]. Global and regional analysis of FA and MD has

Fig. 3 Example of brain tissue segmentation. Left column

T1weighted sequence with k-nearest neighbor based tissue segmen-

tation into grey matter (orange), white matter (green), cerebrospinal

fluid (purple), and white matter lesions (red). Middle column: Proton-

density weighted sequence with similar tissue segmentation. Right

column FLAIR-sequence with white matter lesion segmentation

(pink)
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been performed using the FSL toolbox [54], and consisted

of Eddy current correction, head motion correction, skull

stripping and tensor model fitting. As discussed below, DTI

data were registered with the other imaging data to study

relations between atrophy, WMLs, and DTI-derived

measures.

Tract-based analysis of DTI enables a more localized

comparison of FA and MD between groups. In the Rot-

terdam Scan Study, tract-based analysis has been achieved

using tract-based spatial statistics (TBSS) [55] a technique

that creates a common skeleton of the white matter tracts

from a series of images, onto which for each individual the

local maximum FA value is projected. This enables robust

voxel-wise statistical analysis of the microstructural

integrity of white matter across persons [53].

Since the projection step in TBSS may break topological

consistency of the transformed images, we investigated

whether the correspondence step in TBSS could be

replaced by non-rigid registration. We evaluated perfor-

mance of non-rigid registration to the conventional TBSS

approach by performing tractography in native space and

measuring the ability of the correspondence step in creating

similarity in tractography results in 23 white matter struc-

tures in a common template space. It was shown that both

non-rigid registration using Elastix [56] and FMRIB’s

Nonlinear Image Registration Tool (FNIRT) [57] outper-

formed the conventional TBSS analysis [58]. Furthermore,

the approach enables the automatic analysis of diffusion

MRI characteristics in 23 white matter tracts. An example

of 23 automatically generated white matter tracts on a

subject of the Rotterdam Scan Study is shown in Fig. 4.

Diffusion tensor imaging: connectivity analysis

Using deterministic or probabilistic tractography, DTI can

also be used to study structural connectivity of the brain. In

order to compare structural connectivity across persons in

the Rotterdam Scan Study, we developed a novel frame-

work, SAMSCo, which enables construction of weighted

structural brain connectivity networks which can be

effectively analyzed using statistical methods [59, 60]. The

weighted networks are obtained using a minimum cost path

(mcp) method with an anisotropic local cost function based

on the locally estimated diffusion tensor weighted images.

Start and end regions of the mcp were defined by a Free-

surfer segmentation [61, 62] of subcortical structures and

cortical parcellation. Using a re-scan on 30 persons, good

reproducibility of the connectivity maps was shown [34].

Resting-state functional MRI: resting-state networks

Preprocessing and analysis of rs-fMRI data is performed

using the FMRIB software library (FSL, http://www.fmrib.

ox.ac.uk/fsl/). Resting-state fMRI volumes are registered to

the individual’s structural scan and standard space using

FNIRT [57]. A single-subject independent component

analysis (ICA) [63] approach is used to decompose the

acquired rs-fMRI data into various components of resting-

state activity in each participant. Low-frequency drifts and

motion components are handled with MCFLIRT and tem-

poral filtering [63, 64]. Next, we applied an automatic

component classification using FMRIB’s ICA-based

Xnoiseifier (FIX) for the discrimination between true signal

versus noise components [65, 66]. Next, using dual

regression [67], spatial maps of various resting-state net-

works, including the default mode network, are derived for

each participant. These maps are then used to generate

measures of functional connectivity and clusters of acti-

vation within each network, and later also to make voxel-

based comparisons.

Visual ratings

Scan quality and incidental findings

Each MRI scan that is acquired is visually examined by a

research physician in the Rotterdam Scan Study. During

this visual inspection, the MRI scan is rated for quality and

the presence and severity of motion artefacts or signal

Fig. 4 Example of the automatic analysis of diffusion MRI charac-

teristics in 23 white matter structures
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inhomogeneity (for example due to metallic implants) is

recorded. Furthermore, each scan is evaluated by trained

research physicians for presence of incidental findings, i.e.

abnormalities of potential clinical relevance that were

previously unknown, that are unexpected and that are

unrelated to the purpose of the scan [68, 69]. All potential

findings are recorded in a database and are in a later stage

evaluated by an experienced neuroradiologist. Referral of

participants for further medical examination occurs in

accordance with an expert-defined protocol [68].

Visual check of automated processing performance

Though post-processing for tissue segmentation and

structure segmentation takes places fully automated and

without user interaction, all end results are visually

checked for performance. For example, small motion

artefacts in the FLAIR sequence that do not necessitate

exclusion of an MRI scan may interfere with WML seg-

mentation and cause false positive lesions after automated

segmentation; or brain masking may result in minimal

inclusion of dura or skull. For manual inspection, a dedi-

cated tool has been developed in MevisLab� enabling the

visualization of the original scan with the image processing

results (Fig. 5). Editing tools are available to adjust the

segmentations if necessary. After visual inspection, manual

editing of any errors is needed in less than 10 % of scans,

depending on the type of post-processing. Furthermore,

less than 1 % of scans are excluded based on artefacts that

are only discovered after automated post-processing (for

example motion or susceptibility artefacts in diffusion

tensor images, which are not apparent in the raw unpro-

cessed data).

Cerebral small vessel disease

Infarcts are rated on FLAIR, proton density-weighted, and

T1-weighted sequences. Lacunar infarcts are defined as

focal lesions C3 mm and\15 mm in size with the same

signal characteristics as CSF on all sequences, and (when

located supratentorially) with a hyperintense rim on the

FLAIR sequence [68]. Lesions C15 mm in size, but

otherwise similar, are rated as subcortical infarcts. Infarcts

showing involvement of cortical gray matter are classified

as cortical infarcts. We further distinguish cortical infarcts

into small and large infarcts based on their size [70].

All 3D T2* GRE scans are reviewed for the presence,

number, and location of cerebral microbleeds. Microbleeds

are defined as focal areas of very low signal intensity on

T2*-weighted imaging that are not accompanied by evident

signal abnormality on other structural sequences [71].

Microbleed location is categorized into one of three loca-

tions: lobar (cortical gray and subcortical or periventricular

white matter), deep (deep gray matter: basal ganglia and

thalamus, and the white matter of the corpus callosum,

internal, external, and extreme capsule), and infratentorial

(brainstem and cerebellum) [71]. Intraobserver and inter-

observer reliabilities for microbleed rating are very good

(j = 0.85–0.87 [72]) and review of the intial ratings by an

experienced neuroradiologist yielded very high accordance

as well [72].

Virchow-Robin spaces

Virchow-Robin spaces (VRS), or enlarged perivascular

spaces, are primarily rated on the PDw-sequence according

to a standardized protocol [73]. In short, VRS are identified

by their linear, ovoid, or round shape depending on the

slice direction and are considered dilated when their

diameter is C1 mm. VRS are assessed in 4 brain regions:

the semioval center, the basal ganglia, the hippocampi, and

the mesencephalon. Raters determine the amount of dilated

VRS for each region, with a maximum of 20 per region.

Because the semioval center and basal ganglia are visible

on multiple slices, the rating is done on a single, predefined

slice to decrease inter- and intrarater variability as descri-

bed previously [73]. In the hippocampus and mesen-

cephalon, all unique dilated VRS are counted. In 2013, we

initiated the UNIVRSE (Uniform Neuro-Imaging of Vir-

chow-Robin Spaces Enlargement)—consortium in order to

investigate causes and consequences of VRS on a large

scale [74].

Main findings

Cerebral small vessel disease

Already during the first round of MRI in the Rotterdam

Study we learned that markers of ischemic small vessel

disease such as WMLs and lacunar infarcts are highly

prevalent in the elderly and that these relate to cardiovas-

cular risk factors, such as hypertension or smoking [37, 75–

84]. In the MRI scans obtained from 2005 onwards, we

confirmed this frequent occurrence of WML and infarcts in

the elderly and extended the prevalence and volume esti-

mates to the middle aged population [68]. Moreover, we

found these cardiovascular risk factors to be associated

with a thinner cortex of the brain [85]. In addition to

studying the role of above-mentioned cardiovascular risk

factors in the development of ischemic small vessel dis-

ease, we also directly investigated associations of

atherosclerosis with these markers. Using arterial calcifi-

cation (measured with computed tomography) as an

established marker of atherosclerosis, we found

atherosclerotic calcification in various vessel beds, but

The Rotterdam Scan Study: design update 2016 and main findings 1307

123



especially in the intracranial vasculature, to be related to

WMLs, lacunar infarcts, and brain atrophy [86, 87].

Besides focusing on its risk factors, we have also started

investigating consequences of ischemic small vessel dis-

ease. In this light, we found that larger WML volumes and

lacunar infarcts are associated with a higher risk of mor-

tality [88], mild cognitive impairment [89], dementia [90],

and a higher risk of stroke [91]. More recently, we found

that larger WML volumes are associated with deterioration

and incident impairment in daily functioning [92].

Besides the ischemic lesions in the context of cerebral

small vessel disease, hemorrhagic lesions in the form of

cerebral microbleeds have gained rapid interest [71]. To

visualize cerebral microbleeds we use a dedicated 3D high-

resolution T2* GRE sequence, which we found to improve

the detection of cerebral microbleeds considerably in

comparison with a conventional MRI sequence [93]. When

we applied this high-resolution sequence in larger groups

of participants, we found that cerebral microbleeds are

present in 1 in 5 persons over age of 60 and in over 1 in 3 in

persons aged 80 years and older [72, 94]. This prevalence

is much higher than reported previously, which in part may

be explained by the use of this dedicated MRI sequence. In

a longitudinal study over an interval of 3–4 years, we

found that 10 % of persons developed new microbleeds

[95], and that this was highly dependent on the presence

and amount of mircobleeds at baseline.

With regard to risk factors for microbleeds we consis-

tently found that these vary according to the location of

microbleeds in the brain. Cardiovascular risk factors and

markers of ischemic small vessel disease are related to

deep or infratentorial microbleeds, whilst APOE genotype

relates to strictly lobar microbleeds [72, 94, 95]. This is

indirect evidence that deep or infratentorial microbleeds

result from arteriolosclerotic angiopathy, whereas strictly

lobar microbleeds are caused by cerebral amyloid

angiopathy [96].

The high prevalence of cerebral microbleeds and their

potential link with bleeding-prone microangiopathy raised

our interest in how these relate to antithrombotic drug use.

We found that persons who had used or were using

antithrombotic medication more often have cerebral

microbleeds [97, 98]. Moreover, we found that the use of

oral anticoagulants is associated with a higher incidence of

microbleeds [99]. With regard to consequences of

microbleeds, we found that the presence and amount of

microbleeds increases the risk of stroke and mortality [100,

101]. Especially microbleeds in locations suggestive of

amyloid angiopathy increase the risk of cerebral hemor-

rhages [101]. In addition, we found that microbleeds are

Fig. 5 Screenshot of the tool which enables the visualization of the

original scan with the image processing results. On the left screen, the

mask for total intracranial volume is shown. On the right screen the

rater can evaluate the tissue segmentation. In the lower panel, the

rater can indicate the quality of the mask, the brain tissue segmen-

tation and the white matter lesion segmentation
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associated with the progression of ischemic small vessel

disease and loss of white matter structural integrity [102,

103]. Finally, we also showed that the presence of

numerous microbleeds, especially in a strictly lobar loca-

tion, is associated with worse cognitive performance.

Adjustment for vascular risk factors and other imaging

markers of small vessel disease did not alter this associa-

tion [104], suggesting an independent role for microbleed-

associated vasculopathy in cognitive impairment.

Cerebral blood flow

Total cerebral blood flow (tCBF) and total brain perfusion

(tCBF per 100 ml brain tissue) were measured with 2D

phase contrast imaging as described above. We showed a

close relationship between tCBF and markers of the

microvasculature, e.g. retinal vessel diameters [75]. In 892

persons aged 60 years and older, we further showed that

determinants of tCBF and total brain perfusion differ lar-

gely, due to the large influence of brain volume on tCBF

values [105]. In a longitudinal study, we further investi-

gated the relation between brain volume and tCBF, and our

results indicate that brain atrophy likely causes the tCBF to

decrease over time, rather than vice versa [106].

When investigating determinants of tCBF, we found that

pulse pressure, body mass index, current smoking, and

kidney function importantly contribute to variations in tCBF

[105, 107]. Furthermore, persons with low total brain per-

fusion had significantly moreWMLs compared to those with

high total brain perfusion. The role of tCBF with cognitive

performance appeared more complex with brain atrophy

either confounding or mediating the association [108].

Finally, we found that the parenchymal CBF is higher is

persons with migraine during the attack-free period when

compared with persons without migraine, supporting the

idea of sustained vascular differences in migraineurs [109].

White matter microstructural integrity

We demonstrated that age-related changes in the normal-

appearing white matter are primarily but not exclusively

explained by white matter atrophy and formation of WMLs

[110]. Using tract-specific analyses, we found specific

white matter tracts including the commissural and limbic

tracts, to be most prominently affected by aging. Further-

more, we found that white matter atrophy and WML for-

mation related to loss of integrity in distinct brain regions,

indicating that the two processes are not sequential events

but are rather independent and thus pathophysiologically

potentially different [53]. Finally, we found that white

matter changes can already be quantified using DTI and

FLAIR before actual WML develop. This suggests that

WML develop gradually and that the WMLs that are

visible only represent a small portion of the underlying

white matter pathology [111].

We demonstrated that besides traditional cardiovascular

risk factors [110], intracranial carotid artery atherosclerosis

[87], cerebral microbleeds [102], and a reduced kidney

function [112], are all associated with loss of white matter

microstructural integrity.

We have found DTI parameters within WMLs and

normal-appearing white matter to be associated with cog-

nitive function, even when taking into account volume of

WMLs and white matter atrophy [52]. This indicates that

the deleterious effect of white matter changes on cognition

not only depends on lesion burden or amount of atrophy,

but also on characteristics that are not easily evaluated by

conventional MRI.

Imaging genetics

Since the advent of genome-wide association studies

(GWAS) we have been involved in numerous studies in

which the underlying genetics of various brain traits are

investigated [113]. We have for example contributed to the

identification of several single nucleotide polymorphisms

(SNPs) associated with intracranial volume [114], and

subcortical brain structures [115]. In collaboration with

research partners in the CHARGE consortium [116], we

performed a genome-wide association study of WML

burden and were able to identify 6 risk-associated SNPs on

chromosome 17q25 [117], which we subsequently repli-

cated in a separate Rotterdam Scan Study cohort [41].

More recently, we identified another set of novel genetic

loci implicating inflammation and glial proliferation in the

development of WML [118]. Similar analyses have been

undertaken for brain infarcts [119]. Moreover, we found

that several risk variants of Alzheimer’s disease and fron-

totemporal dementia are also associated with smaller total

brain volume and hippocampal volume [120], and the

volume of temporal brain regions [121].

For additional EJE references on determinants of com-

mon neurological disorders see [122–136].

Incidental findings

The large-scale acquisition of brain MRI comes with the

detection of incidental findings [68]; abnormalities of

potential clinical relevance unrelated to the purpose of the

examination [137]. After scanning 2000 participants we

found that the most frequent findings in the Rotterdam

Scan Study are aneurysms (1.8 %) and benign primary

tumors (meningiomas) (1.6 %) [68]. Currently, we are

updating these numbers after scanning over 8500 partici-

pants, and evaluate the clinical management and natural
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course of these findings. This information may then serve

as basis on which future recommendations for handling

incidental findings in both the clinical setting and in

research studies may be based.

For further EJE references on the handling of incidental

findings in large-scale imaging studies see [138–141].

Future perspectives

The Rotterdam Scan Study provides a unique environment

to study the etiology of neurological diseases in the elderly.

Over 5800 persons have already undergone brain MRI-

scanning and in coming years repeated waves of follow-up

examination will ensure a wealth of imaging data, espe-

cially from a longitudinal perspective. Until recently, the

focus of our research has been mainly on the identification

of risk factors and determinants of brain pathology. More

recently, we have been examining the contribution of the

various risk factors as discussed above and of novel risk

factors with regard to the potential for prevention of stroke

and dementia [142, 143]. In addition, we have also

extended our scope of common neurological disorders to

Parkinson’s disease (for further EJE references on

Parkinson’s disease see [124, 144–149]), and for gait dis-

orders see [92, 150–152]. In particular, our focus will

include changes on brain imaging that relate to these

conditions. Moreover, in the coming years, we plan to

broaden our research in several ways, including the use of

novel image sequences, novel post-processing techniques,

and the identification of novel risk factors, and the mech-

anisms through which various lifestyle or genetic factors

influence clinical outcomes through brain changes.

Currently, we are investigating the feasibility of adding

perfusion imaging in the form of arterial spin labeling

(ASL) to the scan protocol of the Rotterdam Scan Study.

This will allow us to explore the interplay of structural and

functional measures with (regional) brain perfusion. This is

in particular of interest as perfusion may precede actual

changes in structure or even function and could thus

potentially be a very early marker of pathology.

Regarding new imaging markers, we are currently

studying the prevalence and clinical correlates of small

cortical brain infarcts in our population. In our initial report

on these infarcts, we found that these are prevalent in

1.1 % of the population and are associated with cardio-

vascular risk factors [70]. Our interest in these small cor-

tical infarcts arose from the current attention for cortical

microinfarcts—microscopic small infarcts seen on patho-

logic exams—as potential new markers of cerebrovascular

disease and indicators of cognitive impairment. Though

larger in size, the small cortical infarcts that can be iden-

tified on MRI may be reflecting pathology similar to these

microscopic lesions and are therefore of interest for further

research.

Another important focus of our research will be on

functional connectivity as new imaging marker in neu-

rodegenerative disease. Currently, we are finalizing the rs-

fMRI data analysis pipeline, and expect that end-2015 we

will initiate the investigation of determinants and correlates

of functional connectivity.

With regard to the MRI-scanner, we acknowledge that

the ongoing hardware developments will necessitate

upgrading of the scanner. Although there are no current

plans to change the scanner, we foresee upgrading to a 3 T

scanner in coming years.

Standardized and evaluated automated image processing

techniques are crucial in exploiting the rich information

that is available in population imaging data. They have

enabled a transition from qualitative image interpretation

into quantitative imaging. Quantitative imaging is non-

trivial; it requires standardization and optimization in all

the steps from data acquisition, to data analysis in struc-

tured reporting. In the next years, the number of validated

quantitative image analysis techniques will further

increase, also including more complex measures. Also, the

results of these analyses will increasingly be stored in a

standardized manner. This will enable a richer characteri-

zation of brain anatomy, pathology, connectivity and

function. Relating these quantitative image measures to

disease status, progression and events, will be a powerful

tool for development of novel diagnostic and prognostic

quantitative imaging biomarkers.

The standardization of image acquisition and processing

protocols also implies that high quality reference data are

being acquired. We are working on a novel IT-infrastruc-

ture in which we use the various standardized analysis

pipelines to create a well-defined library of imaging

biomarkers. We foresee two main advantages of this

strategy. First, this standardized and well-defined library of

biomarker analyses may be used by other researchers.

Second, the high quality data provide unique reference

databases on numerous biomarkers, which may eventually

serve as basis for use in a clinical setting to contrast find-

ings in an individual with a reference population.

As already mentioned before, the concomitant continu-

ous monitoring of all participants in the Rotterdam Study

ensures that we have a wealth of clinical data available,

including cognitive performance [125] and the occurrence

of dementia and stroke. In the coming years we intend to

expand our research on how MRI markers of brain

pathology relate to these clinical outcomes. Finally, we

intend to expand our (inter)national collaborations in the

field of population-imaging and imaging genetics to further

unravel the causes and consequences of neurological dis-

eases in the elderly.
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