
The Ruby programming
language

Laura Farinetti
Dipartimento di Automatica e Informatica

Politecnico di Torino

laura.farinetti@polito.it

1

Ruby

 Powerful and flexible programming
language that can be used alone
or as part of the Ruby on Rails web
framework

 Released in 1995 by Yukihiro Matsumoto
with the goal to design a language that
emphasize human needs over those of the
computer
◦ Named after

his birthstone

2

Ruby

 “Designed to maximize programmer
happiness” or in other words for
“programmer productivity and fun”
◦ Emphasis towards the convenience of the

programmer rather than on optimization of
computer performance

 Follows the principle of least surprise (POLS),
meaning that the language behaves in such a
way as to minimize confusion for experienced
users

 In Japan is more popular than Python

3

Ruby

 Freely available and open-source

 Highly portable, works on Linux, UNIX, DOS,
Windows 95/98/NT/2K, Mac, …

 Main characteristics:
◦ High-level: easy to read and write

◦ Interpreted: no need for a compiler

◦ Object-oriented: it allows users to manipulate data
structures called objects in order to build and
execute programs

 Pure object-oriented language (even the
number 1 is an instance of a class)

4

Ruby and its ancestors

5

Ruby

Perl Python Java Eiffel

SmallTalk Modula 3 C Pascal csh

Awk Sh Basic ABC C++

Rails (Ruby on Rails…)
 A framework for building web applications in

Ruby based on the MVC pattern

 A set of strong ideological opinions about
how web applications should be structured

 A particularly good tool for building
prototypes rapidly

 A thriving, productive, fractious community of
free software developers

 A constantly growing and changing software
ecosystem with libraries to do almost anything

6

Object-oriented language

 Ruby is a real object-oriented language
◦ Everything you manipulate is an object

◦ The results of manipulations are objects

 Classes: categories of things that need to
be represented in code
◦ E.g. the class “song”

 A class is a combination of state (e.g. the
name of the song) and methods that use
that state (e.g. a method to play that song)

 Instances of a class: specific “individuals”

7

Example of class in Ruby

8

class that models a plain text document

Class Document

 attr_accessor :title, :author, :content

 def initialize(title, author, content)

 @title = title

 @author = author

 @content = content

 end

 def words

 @content.split

 end

 def word_count

 words.size

 end

end

Object-oriented language

 Instances of classes

 Everything is an object

◦ Methods can be applied to data directly, not
just on variables holding data

9

song1 = Song.new("Yesterday")

empty = Array.new

puts "Yesterday".length # prints 9

puts "Rick".index("c") # prints 2

puts 42.even? # prints true

5.to_s # returns "5"

A simple program

 File extension: .rb
 Rubymine environment, empty project

10

puts "Hello world!"

puts "It is now #{Time.now}"

prints Hello world!

It is now 2014-03-06 09:28:40 +0100

def say_goodnight(name)

 result = "Good night, #{name}"

 return result

end

puts say_goodnight('Pa') # Good night, Pa

def say_goodnight(name)

 result = "Good night,\n#{name.capitalize}"

 return result

end

puts say_goodnight('mary') # Good night,

 # Mary

Syntax basics

 Ruby is case sensitive

 Ruby indentation convention: 2 spaces per
indent, never use tabs

 Anything following a # is a comment

 Expressions are delimited by newlines (or ;
if in the same line)

 Parentheses are optional

 Convention for names

11

Example of parentheses

12

def find_document (title, author)

 # body omitted

end

...

find_document ('Frankenstein','Shelley')
...

def words()

 @content.split()

end

...

if (word.size < 100)

 puts 'The document is not very long.'

end

def find_document title, author

 # body omitted

end

...

find_document 'Frankenstein','Shelley'
...

def words

 @content.split

end

...

if word.size < 100

 puts 'The document is not very long.'

end

Variables

 Ruby is weakly typed: variables receive
their types during assignment

 Four types of variable
◦ Global variables (visible throughout a whole

Ruby program) start with ‘$’
◦ Local variables (defined only within the current

method or block) start with a lowercase letter
or ‘_’
◦ Instance variables start with ‘@’
◦ Class variables start with ‘@@’

 13

Ruby naming conventions

 Initial characters
◦ Local variables, method parameters, and method

names: lowercase letter or ‘_’
◦ Global variable: ‘$’
◦ Instance variable: ‘@’
◦ Class variable: ‘@@’
◦ Class names, module names, constants: uppercase

letter

 Multi-word names
◦ Instance variables: words separated by

underscores
◦ Class names: use MixedCase (or “CamelCase”)

14

Ruby naming conventions

 End characters
◦ ? Indicates method that returns true or false to a

query
◦ ! Indicates method that modifies the object rather

than returning a copy

15

puts 42.even? # prints true

a = [1,2,3]

a.reverse

print a # prints [1,2,3]

a.reverse!

print a # prints [3,2,1]

Syntactic structure

 The basic unit of syntax in Ruby is the
expression

 The Ruby interpreter evaluates expressions,
producing values

 The simplest expressions are primary
expressions, which represent values directly
◦ e.g. number and string literals, keywods as true,

false, nil, self

 More complex values can be written as
compound expressions

16

[1,2,3] # an array literal

{1=>"one", 2=>"two"} # a hash literal

1..3 # a range literal

Syntactic structure

 Operators perform computations on values
 Compound expressions are built by combining

simpler sub-expressions with operators

 Expressions can be combined with Ruby
keywords to create statements

17

1 # a primary expression

x = 1 # an assignment expression

x = x + 1 # an expression with two operators

if x < 10 then # if this expression is true

 x = x + 1 # then execute this statement

end # marks the end of a conditional

Assignment

 Traditional assignment

 Abbreviated assignment (combined with
binary operators)

 Parallel assignment

18

x = 1 # set the value x to the value 1

x += 1 # set the value x to the value x+1

x,y,z = 1,2,3 # set x to 1, y to 2, z to 3

x,y = y,x # parallel: swap the value of x and y

x = y; y = x # sequential: x and y have the same

 # value

x = 1,2,3 # x = [1,2,3]

x, = 1,2,3 # x = 1, the rest is discarded

x,y,z = 1,2 # set x to 1, y to 2, z to nil

True, false and nil

 Are keywords in Ruby
 ‘true’ and ‘false’ are the two boolean values
◦ ‘true’ is not 1, and ‘false’ is not 0

 ‘nil’ is a special value reserved to indicate the
absence of value

 When Ruby requires a boolean value, ‘nil’ behaves
like ‘false’, and any other values behaves like
‘true’

19

o == nil # is the object o nil?

o.nil? # the same

Method invocation

 A method invocation expression is composed
of four parts (only the second is required)

◦ An arbitrary expression whose value is the object
on which the method is invoked followed by a ‘.’ or
‘::’ (if omitted, the method is invoked on ‘self’)
◦ The name of the method

◦ The argument values being passed to the method
(parentheses are optional)

◦ An optional block of code delimited by curly
braces or a ‘do..end’ pair

20

Method invocation

 Example

21

puts "Hello world" # puts invoked on self, with

 # one string argument

Math.sqrt(2) # sqrt invoked on object Math

 # with one argument

message.lenght # length invoked on object message

 # with no arguments

a.each {|x| puts x} # each invoked on object a

 # with an associated block

Control structures

 Familiar set of control structures (most…)
 Include
◦ Conditionals: if, unless, case

◦ Loops: while, until, for

◦ Iterators: times, each, map, upto

◦ Flow-altering statements like return and break

◦ Exceptions

◦ The special-case BEGIN and END statements

◦ Threads and other “obscure” control structures:
fibers and continuations

22

If and unless statements

 The usual: if, else, elsif

 Something new: unless
◦ With unless the body of a statement is executed

only if the condition is false

◦ Less mental energy to read and understand

23

if (score > 10)

 puts "You have done very good!"

elsif (score > 5)

 puts "You have passed."

else

 puts "You have failed :-("

end

Example

 Concept of read-only document

24

Class Document

 attr_accessor :writable

 attr_reader :title, :author, :content

 ...

 def title= (new_title)

 if @writable

 @title = new_title

 end

end

def title= (new_title)

 unless @read_only

 @title = new_title

 end

end

def title= (new_title)

 if not @read_only

 @title = new_title

 end

end

While and until statements

 The usual: while

◦ Loops while condition is true

 Something new: until

◦ Loops until condition becomes true

25

while ! document.is_printed?

 document.print_next_page

end

until document.is_printed?

 document.print_next_page

end

Modifier form

 If, unless, while and until can be considered operators
in which the value of the right-hand expression
affects the execution of the left-hand one
◦ Advantage: collapse in a single sentence for readability

26

@title = new_title if @writable

document.print_next_page while document.pages_available?

document.print_next_page until document.printed?

unless @read_only

 @title = new_title

end
@title = new_title unless @read_only

For and each statements

 The for loop is very familiar

 However, each is more frequently used

27

fonts = ['courier', 'times roman', 'helvetica']

...

for font in fonts

 puts font

end

fonts = ['courier', 'times roman', 'helvetica']

...

fonts.each do |font|

 puts font

end

Case statement
 Many variants
◦ Note: everything in Ruby returns a value

28

case title

when 'War and peace'

 puts 'Tolstoy'

when 'Romeo and Juliet'

 puts 'Shakespeare'

else

 puts "Don’t know"
end

author = case title

 when 'War and peace'

 'Tolstoy'

 when 'Romeo and Juliet'

 'Shakespeare'

 else

 "Don’t know"
end

author = case title

 when 'War and peace' then 'Tolstoy'

 when 'Romeo and Juliet' then 'Shakespeare'

 else "Don’t know"
end

Iterators

 Although while, until and for are a core
part of the Ruby language, it is more
common to write loops using special
methods known as iterators

 Iterators interact with the block of code
that follow them

 Numeric iterators

 Iterators on enumerable objects

29

Block structure

 Ruby programs have a block structure
◦ Blocks of nested code

 Blocks are delimited by keywords or
punctuation and by convention are indented
two spaces relative to the delimiters

 Two kinds of blocks in Ruby
◦ “True blocks”: chunks of code associated with or

passed to iterator methods

◦ “Body”: simply a list of statement that represent
the body of class definition, a method definition, a
while loop or whatever

 30

Block structure

 Example of “true blocks”
◦ Curly braces, if single line, or do .. end

keywords

 Example of “bodies”
◦ No curly braces, but keyword .. end

◦ Methods begin with the keyword, ‘def’, and
are terminated with an ‘end’
 31

3.times { print "Ruby! " }

1.upto(10) do |x|

 print x

end

if x < 10 then

 x = x + 1

end

Numeric iterators

 upto: invokes the associated block once for each
integer between the one on which it is invoked and
the argument

 downto: the same but from a large integer to a
smaller one

 times: when invoked on the integer n, it invokes the
associated block n times, passing values 0 through
n-1

 step: numeric iteration with floating-point numbers

32

4.upto(6) {|x| print x} # prints 456

3.times {|x| print x} # prints 012

start at 0 and iterates in step of 0.1 until it

reaches Math::PI

0.step(Math::PI, 0.1) {|x| print x}

each iterator

 Defined on a number of classes that are collections
of enumerable objects: Array, Hash, Range, …

 each passes each element of the collection to its
associated block

 Defined also for the Input/Output object

33

[1,2,3].each {|x| print x} # prints 123

(1..3).each {|x| print x} # prints 123

['cat', 'dog', 'horse'].each {|name| print name, " "}

cat dog horse

File.open(filename) do |f| # open named file, pass as f

 f.each {|line| print line} # print each line in f

end # end block

Other enumerable iterators

 ‘collect’ or ‘map’: executes its associated block for
each element of the enumerable object, and
collects the return values into an array

 ‘select:’ executes its associated block for each
element and returns an array of the elements for
which the block returns a value other than false or
nil

 ‘reject’: the opposite of select (false or nil)

34

squares = [1,2,3].collect {|x| x*x} # [1,4,9]

evens = (1..10).select {|x| x%2 == 0} # [2,4,6,8,10]

odds = (1..10).reject {|x| x%2 == 0} # [1,3,5,7,9]

Statements that alter the control flow

 ‘return’: causes a method to exit and return a
value to its caller

 ‘break’: causes a loop (or iterator) to exit

 ‘next’: causes a loop (or iterator) to skip the rest of
the current iteration and move to the next one

 ‘redo’: restarts a loop (or iterator) from the
beginning

 ‘retry’: restarts an iterator, reevaluating the entire
expression; used in exception handling

 ‘throw/catch’: exception propagation and handling
mechanism

35

BEGIN and END

 BEGIN and END are reserved words in Ruby
that declare code to be executed at the very
beginning and very end of a program

36

BEGIN {

 # Global initialization code goes here

}

END {

 # Global shutdown code goes here

}

Basic data types

 Numeric classes

 Strings

 Ranges

 Arrays

 Hashes

 Symbols

 Regular expressions

37

Numeric classes hierarchy

 Five built-in classes
 Three more in the standard library
 All numbers in Ruby are instances of Numeric

 If an integer value fits within 31 bits it is an instance
Fixnum, otherwise it is a Bignum

38

Numeric

Integer

Fixnum BigNum

Float
Complex
(standard
library)

Bigdecimal
(standard
library)

Rational
(standard
library)

Examples of literals

39

#Integer literals

0

123

1234567891234567890

1_000_000_000 # One billion

0377 # Octal representation of 255

0b1111_1111 # Binary representation of 255

0xFF # Hexadecimal representation of 255

#Floating-point literals

0.0

-3.14

6.02e23 # This means 6.02 x 10^23

1_000_000.01 # One million and a little bit more

Operators

 Arithmetic

◦ +, -, *, /, %, ** (exponentiation)

 Comparison

◦ ==, <=> (returns -1, 0 or 1), <, <=, >=, >,
=~ (matching), eql? (test of equality of type
and values)

 Logical

◦ and, or, not

40

Numeric methods

 Also number literals are objects!

 Numeric and its subclasses define many useful
methods for determining the class or testing
the value of a number

41

General predicates

0.zero? # => true (is this number zero?)

1.0.zero? # => false

1.nonzero? # => true

1.integer? # => true

1.0.integer? # => false

1.scalar? # => false: not a complex number

1.0.scalar? # => false: not a complex number

Complex(1,2).scalar? # => true

Numeric methods

42

Integer predicates

0.even? # => true

1.even? # => false

Float predicates

ZERO, INF, NAN = 0.0, 1.0/0.0, 0.0/0.0 # constants

ZERO.finite # => true (is this number finite?)

INF.finite # => false

NAN.finite # => false

ZERO.infinite # => nil (infinite positive or negative?)

INF.infinite # => 1

-INF.infinite # => -1

NAN.infinite # => nil

ZERO.nan # => false (is this number not-a-number?)

INF.nan # => false

NAN.nan # => true

Numeric methods

43

Rounding methods

1.1.ceil # => 2: smallest integer >= argument

-1.1.ceil # => -1: smallest integer >= argument

1.9.floor # => 1: largest integer <= argument

-1.9.floor # => -2: largest integer <= argument

1.1.round # => 1: round to nearest integer

0.5.round # => 1: round toward positive infinity

-0.5.round # => -1: round toward negative infinity

1.1.truncate # => 1: chop off fractional part

-1.1.to_i # => -1: same as truncate

Absolute value and sign

-2.0.abs # => 2.0: absolute value

-2.0<=>0.0 # => -1: sign

Constants

Float::MAX # may be platform dependent

Float::MIN # may be platform dependent

Float::EPSILON # difference between adjacent floats

The Math module

44

Constants

Math::PI # => 3.14159265358979

Math::E # => 2.71828182845905

Roots

Math.sqrt(25.0) # => 5.0: square root

27.0**(1.0/3.0) # => 3.0: cube root with ** operator

Logaritms

Math.log10(100.0) # => 2.0: base-10 logarithm

Math.log(Math::E**3) # => 3.0: natural logarithm

Math.log2(8) # => 3.0: base-2 logarithm

...

#Trigonometry

...

Text

 In Ruby text is represented by objects of
the String class

 Textual patterns are represented as
Regexp objects

◦ Syntax for including regular expressions

45

Strings

 Examples of string literals

46

'This is a simple Ruby string literal'

'Won\'t you read O\'Reilly\'s book?'

"\t\"This quote begins with a tab and ends with a newline\"\n"

Double quoted string literals may include arbitrary Ruby

expressions

"360 degrees=#{2*Math::PI} radians"

 #360 degrees=6.28318530717959 radians

When the expression is simply a global, instance or class

variable, curly braces can be omitted

$salutation = 'hello' # Define a global variable

"#$salutation world" # Use it

%q(Don't worry about escaping ' characters!)

Strings

 Multilines strings

 Here documents
◦ Begin with << or <<- followed by an identifier or

string that specifies the ending delimiter
◦ Useful for very long multiline strings

47

a_multiline_string = "this is a multiline

string"

another_one = %q{Another multiline

string}

document = <<'THIS IS THE END, MY FRIEND, THE END'

 lots and lots of text

 here, with no escaping characters

 ...

THIS IS THE END, MY FRIEND, THE END

String interpolation

 With double-quoted strings

 The sequence #{expression} is replaced by the
value of the expression

 Arbitrary complex expression are allowed in the
#{} construct

 Double-quoted strings can include newlines (\n)

48

planet = "Earth"

"Hello planet #{planet}" # String interpolation

String operators
 Operator + concatenates two strings

 Operator << appends its second operand to its first

 Operand * repeats a text a specified number of
times

49

planet = "Earth"

"Hello" + " " + planet # Produces "Hello Earth"

"Hello planet ##{planet_number}" # String interpolation

greeting = "Hello"

greeting << " " << "world"

puts greeting

ellipsis = '.' * 3 # Evaluates to '...'

a = 0

"#{a=a+1} " * 3 # Returns "1 1 1 " and not "1 2 3 "

String operators

 Operators == and != compare strings for
equality and inequality

 Operators <, <=, >, >= compare the
relative order of strings

◦ Based on caracters’ code

◦ String comparison is case sensitive

50

Characters and substrings

 Accessing characters and substrings

51

s = 'hello'

s[0] # the first character

s[s.length-1] # the last character

s[-1] # the last character

s[-2] # the second-to-last character

s[-s.length] # the first character

s[s.length] # nil: there is no character at that index

s = 'hello'

s[0,2] # "he"

s[-1,1] # "o"

s[0,0] # ""

s[0,10] # "hello"

s[s.length,1] # ""

s[s.length+1,1] # nil

s[0,-1] # nil (negative length)

Characters and substrings

 Modifying characters and substrings

52

s = 'hello'

s[-1] = "" # deletes the last character

s[-1] = "p!" # the string is now "help!"

s = 'hello'

s[0,1] = "H" # replaces first letter with H

s[s.length,0] = " world" # appends a new string

s[5,0] = "," # inserts a comma without deleting

s[5,6] = "" # deletes with no insertion

 # the string is now "Hellod"

Characters and substrings
 Indexing a string with a Range object
 Splitting a string into substrings based on a

delimiter

53

s = 'hello'

s[2..3] # "ll": characters 2 and 3

s[-3..-1] # "llo": negative indexes work too

s[0..0] # "h": one characters

s[0...0] # "": this Range is empty

s[2..1] # "": this Range is empty

s[7..10] # nil: this Range is outside the string

s = 'hello'

s[-2..-1] = "p!" # replacement: s becomes "help!"

s[0...0] = "Please " # insertion: s becomes "Please help!"

s[6..10] = "" # deletion: s becomes "Please!"

"this is it".split # ["This", "is", "it"]

"hello".split('l') # ["he", "", "o"]

Ranges

 A Range object represents the values between a
start value and an end value

 Range literals are written placing two or three
dots between the start value and the end value
◦ Two dots: range is inclusive (end value is part of the

range)

◦ Three dots: range is exclusive (end value is not part of
the range)

54

1..10 # the integers 1 through 10, including 10

1.0...10.0 # the numbers 1.0 through 10.0,

 # excluding 10.0

Ranges

 The include? method check if a value is included in a
range

 Ordering is implicit in the definition of a range
 Comparison operator ‘<=>’ which compares two

operands and evaluates to -1, 0 or 1
◦ A value can be used in a range only if it responds to this

operator

 Purposes of range: comparison and iteration

55

cold_war = 1945..1989

cold_war.include? birthdate.year

r = 'a'..'c'

r.each {|l| print "[#{l}]"} # prints "[a][b][c]"

r.step(2) {|l| print "[#{l}]"} # prints "[a][c]"

r.to_a # ['a','b','c']

Arrays

 Set of values that can be accessed by position, or
index

 Indexed with integers starting at 0
 Methods ‘size’ and ‘length’ return the number of

elements
 Negative index counts from the end of the array
◦ E.g. size – 2 is the second-to-last element

 If you try to read an element beyond the end or
before the beginning Ruby returns ‘nil’ and do not
throw an exception

 Ruby’s arrays are untyped and mutable: the
elements need not be of the same class, and they
can be changed at any time

56

Arrays
 Arrays are dinamically resizeable
 Arrays are objects: must be instantiated with ‘new’
 Examples:

57

[1, 2, 3] # array of three Fixnum objects

[0..10, 10.. 0] # array of two ranges

[[1,2],[3,4],[5]] # array of nested arrays

[x+y, x-y, x*y] # elements can be arbitrary expressions

[] # empty array has size 0

words = %w{this is a test} # same as words =

 # ['this', 'is', 'a', 'test']

empty = Array.new # []: empty array

nils = Array.new(3) # [nil, nil, nil]

nils = Array.new(4,0) # [0, 0, 0, 0]

copy = Array.new(nils) # copy of an existing array

count = Array.new(3) {|i| i+1} # [1,2,3]: three elements

 # computed from index

Arrays

 Examples:

58

a = [0, 1, 4, 9, 16]

a[0] # first element is 0

a[-1] # last element is 16

a[-2] # second-to-last element is 9

a[a.size] # last element

a[-a.size] # first element

a[8] # beyond the end: nil

a[-8] # before the beginning: nil

a[0] = "zero" # a is ["zero", 1, 4, 9, 16]

a[-1] = 1..16 # a is ["zero", 1, 4, 9, 1..16]

a[8] = 64 # a is ["zero", 1, 4, 9, 1..16, nil, nil, nil, 64]

a[-10] = 100 # error: can’t assign before beginning

Arrays
 Like strings, array can be indexed also
◦ by two integers: first element and number of elements
◦ by Range objects

 Works also for insertion and deletion

59

a = ('a'..'e').to_a # range converted to ['a','b','c','d','e']

a[0,0] # sub-array: []

a[1,1] # sub-array: ['b']

a[-2,2] # sub-array: ['d','e']

a[0..2] # sub-array: ['a','b','c']

a[-2..-1] # sub-array: ['d','e']

a[0...-1] # sub-array: ['a','b','c','d']

 # all but the last element

a[0,0] = [1,2,3] # insert elements at the beginning of a

a[0,2] = [] # delete those elements

a[-1,1] = ['z'] # replace last elements

a[-2,2] = nil # replace last two elements with nil

Array operators
 The operator ‘+’ concatenates two arrays
 The operator ‘<<’ appends an element to an existing array
 The operator ‘-’ subtracts one array to another
 The operator ‘*’ is used for repetition

60

a = [1,2,3] + [4,5] # [1,2,3,4,5]

a = a + [[6,7,8]] # [1,2,3,4,5, [6,7,8]]

a = a + 9 # error: righthand side must be an array

a = [] # start with an empty array

a << 1 # a is [1]

a << 2 << 3 # a is [1,2,3]

a << [4,5,6] # a is [1,2,3, [4,5,6]]

a.concat [7,8] # a is [1,2,3, [4,5,6], 7,8]

['a','b','c','d','a'] – ['b','c','d'] # ['a','a']

a[0] * 8 # [0,0,0,0,0,0,0,0]

Array operators
 Boolean operators ‘|’ and ‘&’ are used for union

and intersection
◦ These operators are not transitive

 Many useful methods, e.g. ‘each’

61

a = [1,1,2,2,3,3,4]

b = [5,5,4,4,3,3,2]

a | b # [1,2,3,4,5]: duplicates are removed

b | a # [5,4,3,2,1]: order is different

a & b # [2,3,4]

b & a # [4,3,2]

a = ('A'..'Z').to_a # begin with an array of letters

a.each {|x| print x} # print the alphabet, one letter

 # at the time

Hashes

 Data structures that maintain a set of objects
known as ‘keys’ and associate a ‘value’ to
each key

 Called also maps or associative arrays
◦ The array index is the key insted of an integer

 Keys are almost always symbols

62

numbers = Hash.new # create a new empty hash object

numbers["one"] = 1 # map the String "one" to the Fixnum 1

numbers["two"] = 2 # map the String "one" to the Fixnum 1

numbers["three"] = 3 # map the String "one" to the Fixnum 1

sum = numbers["one"] + numbers["two"] # retrieve values

Hash literals
 Written as a comma-separated list of key/value

pairs, enclosed in curly braces

 Symbol objects work more efficiently than strings

63

numbers = {"one" => 1, "two" => 2, "three" => 3}

numbers = {:one => 1, :two => 2, :three => 3}

succinct hash literal syntax when symbols are used

numbers = {one: 1, two: 2, three: 3}

access to hashes

grades = { "Bob" => 82, "Jim" => 94, "Billy" => 58 }

puts grades["Jim"] # 94

grades.each do |name,grade| # Bob: 82

 puts "#{name}: #{grade}" # Jim: 94

end # Billy: 58

Symbols
 The Ruby interpreter maintains a symbol table in

which it stores the names of all the classes,
methods and variables it knows about
◦ This allows to avoid most string comparison: names are

referred by their position the symbol table

 This symbols can be used also by Ruby programs

 Symbols are simply constant names that need not
to be declared and that are guaranteed to be
unique

 A symbol literal starts with ‘:’

64

:symbol # a symbol literal

:'another long symbol' # symbol with spaces

s = "string"

sym = :"#{s}" # the symbol :string

Symbols

 Symbols are often used to refer to method names

65

with constants

NORTH = 1

EAST = 2

SOUTH = 3

WEST = 4

walk(NORTH)

with symbols

walk(:north)

does the object o have an each method?

o.respond_to? :each

Symbols and hashes

 Symbols are frequently used as keys in
hashes

66

inst_section = {

 :cello => 'string',

 :clarinet => 'woodwind',

 :drum => 'percussion',

 :oboe => 'woodwind',

 :trumpet => 'brass',

 :violin => 'string'

}

inst_section[:oboe] # woodwind

inst_section[:cello] # string

inst_section['cello'] # nil

Symbols and hashes

 Symbols are so frequently used as hash keys
that Ruby 1.9 introduced a new syntax

67

inst_section = {

 :cello 'string',

 :clarinet 'woodwind',

 :drum 'percussion',

 :oboe 'woodwind',

 :trumpet 'brass',

 :violin 'string'

}

puts "An oboe is a #{inst_section[:oboe]}"

An oboe is a woodwind

Data type conversion

 Explicit conversion methods
◦ to_s: convert to String class

◦ to_i: convert to Integer class

◦ to_f: convert to Float class

◦ to_a: convert to Array class

68

Regular expressions

 Known also as ‘regexp’ or ‘regex’
 Describe a textual pattern

 Ruby’s Regexp class implements regular
expressions and define pattern matching
methods and operators

 Regexp literal are delimited by ‘/’

69

/Ruby?/ # matches the text "Rub" followed by

 # an optional "y"

Regular expressions

 ^[a-zA-Z0-9._-]+

◦ The email address must begin with alpha-numeric characters (both
lowercase and uppercase characters are allowed): it may have periods,
underscores and hyphens

 @

◦ There must be a ‘@’ symbol after initial characters
 [a-zA-Z0-9.-]+

◦ After the ‘@’ sign there must be some alpha-numeric characters; it can
also contain period and and hyphens

 \.

◦ After the second group of characters there must be a period (‘.’); this is
to separate domain and subdomain names.

 [a-zA-Z]{2,4}$

◦ Finally, the email address must end with two to four alphabets; {2,4}
indicates the minimum and maximum number of characters

70

^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$

Examples of e-mail patterns

71

[a-zA-Z0-9!#$%&'*+/=?^_`{|}~-]+

(?:\.[a-zA-Z0-9!#$%&'*+/=?^_`{|}~-]+)*

@(?:[a-zA-Z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+

[a-z0-9](?:[a-z0-9-]*[a-z0-9])?

[a-zA-Z0-9!#$%&'*+/=?^_`{|}~-]+

(?:\.[a-zA-Z0-9!#$%&'*+/=?^_`{|}~-]+)*

@(?:[a-zA-Z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+

(?:[a-zA-Z]{2}|com|org|net|edu|gov|mil|biz|

info|mobi|name|aero|asia|jobs|museum)\b

Regular expression basic syntax
 Characters

72

Regular expression basic syntax
 Character classes or character sets [abc]

73

Regular expression basic syntax

 Character classes or character sets [abc]

 Dot

74

Regular expression basic syntax
 Anchors

75

Regular expression basic syntax

 Word boundaries

 Alternation

 76

Regular expression basic syntax
 Quantifiers

77

Regular expression basic syntax
 Quantifiers

78

Examples of Regex in Ruby (1/3)

79

Literal characters

/ruby/ # match "ruby"

Character classes

/[Rr]uby/ # match "Ruby" or "ruby"

/rub[ye]/ # match "ruby" or "rube"

/[aeiou]/ # match any lowercase vowel

/[0-9]/ # match any digit

/[a-z]/ # match any lowercase ASCII character

/[A-Z]/ # match any uppercase ASCII character

/[a-zA-Z0-9]/ # match any of the above

/[^aeiou]/ # match anything other than a lowercase vowel

/[^0-9]/ # match anything other than a digit

Special character classes

/./ # match any character except newline

/d/ # match a digit

/D/ # match a non-digit

/s/ # match a whitespace character [\t\r\n\f]

/S/ # match a non-whitespace character

/w/ # match a single word character: [a-zA-Z0-9_]

/W/ # match a non-word character: [^a-zA-Z0-9_]

Examples of Regex in Ruby (2/3)

80

Repetition

/ruby?/ # match "rub" or "ruby": "y" is optional

/ruby*/ # match "rub" plus 0 or more "y"

/ruby+/ # match "rub" plus 1 or more "y"

/\d{3}/ # match exactly 3 digits

/\d{3,}/ # match 3 or more digits

/\d{3,5}/ # match 3, 4 or 5 digits

Nongreedy repetition: match the smallest number of

repetitions

/<.*>/ # greedy repetition: match "<ruby>perl>"

/<.*?>/ # nongreedy repetition: match "<ruby>"

Grouping with parentheses

/\D\d+/ # no group: repeat \d

/(\D\d)+/ # group: repeat \d\D pair

/([Rr]uby(,)?)+/ # match "Ruby", "Ruby, ruby, ruby", ecc.

Backreferences: matching a previously matched group again

 # \1 matches whatever the first group matched

 # \2 matches whatever the second group matched

/([Rr]uby&\1ails/ # match "ruby&rails" or "Ruby&Rails"

/(['"])[^\1]*\1/ # single or double quoted string

Examples of Regex in Ruby (3/3)

81

Alternatives

/ruby|rube/ # match "ruby" or "rube"

/rub(y|le)/ # match "ruby" or "ruble"

/ruby(!+|\?)/ # match "ruby" followed by one or more ! or one ?

Anchors: specifying match position

/^Ruby/ # match "Ruby" at the start of a string

/Ruby$/ # match "Ruby" at the end of a string

/\ARuby/ # match "Ruby" at the start of a string

/Ruby\Z/ # match "Ruby" at the end of a string

/\bRuby\b/ # match "Ruby" at a word boundary

/\bruby\B/ # \B is a non-word boundary

 # match "rub" in "ruby" or "rube" but not alone

/Ruby(?=!)/ # match "Ruby" if followed by an !

/Ruby(?!!)/ # match "Ruby" if not followed by an !

Special syntax with parentheses

/R(?#comment)/ # match "R", all the rest is a comment

/R(?i)uby/ # case insensitive while matching "uby"

/R(?i:uby)/ # same thing

Pattern matching with regular
expressions

 Ruby’s basic pattern matching operator is ‘=~’
◦ One operand is a regular expression and the other is a

string

 ‘=~’ checks its string operand to see if it, or any
substring, matches the pattern specified by the
regular expression
◦ If a match is found, it returns the string index at which

the first match begin
◦ If not, it returns ‘nil’

82

pattern = /Ruby?/i/ # match "Rub" or "Ruby", case insensitive

pattern =~ "backrub" # returns 4

"rub ruby" =~ pattern # returns 0

pattern =~ "r" # returns nil

Pattern matching with regular
expressions

 After any succesfull (non-nil) match, the global
variable ‘$~’ holds a MatchData object which
contains complete information about the match

83

"hello" =~ /e\w{2}/ # match an e followed by 2 word characters

$~.string # "hello" : the complete string

$~.to_s # "ell" : the portion that matched

$~.pre_match # "h" : the portion before the match

$~.post_match # "o" : the portion after the match

Classes
 Creation

 Instantiation

 Defining a method: initialization
◦ The initialize method is special: the new methosd

creates an instance object and then automatically
invokes the initialize method on that instance

◦ The arguments passed
to new are also
passed to initialize

◦ @x and @y are
instance variables

84

class Point

end

p = Point.new

p.class # Point

p.is_a? Point # true

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

end

p = Point.new(0,0)

Classes

 Accessor methods
◦ To make variable values accessible

85

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

 def x # the accessor method for @x

 @x

 end

 def y # the accessor method for @y

 @y

 end

end

p = Point.new(1,2)

q = Point.new(p.x*2, p.y*3)

Classes example

 Defining operators

86

class Point

 attr_reader :x :y # define accessor methods

 def initialize(x,y)

 @x, @y = x, y

 end

 def +(other) # define + to do vector addition

 Pont.new(@x + other.x, @y.other.y)

 end

 def -@ # define unary - to negate coordinates

 Pont.new(-@x, -@y)

 end

 def *(scalar) # define * to do scalar multiplication

 Pont.new(@x*scalar, @y*scalar)

 end

Subclasses and inheritance

87

 Ruby has a class hierarchy in form of a tree

◦ The BasicObject class in the root of the tree

 Multiple inheritance is not possible

◦ However, modules allow to import methods

◦ Modules are named group of methods, constants
and class variables, but cannot be instantiated
and do not have a hierarchy (standalone)

 Extending a class

class Point3D is a subclass of class Point

class Point3D < Point

end

Ruby vs. Java (I)

 Like Java, in Ruby:

◦ Memory is managed via garbage collector

◦ Objects are strongly typed

◦ There are public, private, and protected
methods

◦ There are embedded doc tools (RDoc)

88

Ruby vs. Java (II)

 Unlike Java, in Ruby:

◦ You use the end keyword after defining things
like classes, instead of braces around blocks of
code

◦ require instead of import

◦ All member variables are private

◦ nil instead of null

◦ There is no casting

◦ Everything is an object

89

Esercizio 1: stringhe
 Le stringhe si possono unire almeno in due modi: concatenandole

(+ o <<) o interpolandole (#{})

 Definite due variabili ‘nome’ ‘cognome’, assegnando il vostro
valore

 Provate a stampare le stringhe nome o cognome con puts e print:
differenze?

 Stampate Io mi chiamo nome e cognome. usando i diversi metodi
(con +, << e l’interpolazione)

 Le doppie virgolette e le virgolette singole sono hanno lo stesso
effetto? Provare

 Provare ad esprimere l’espressione stampa il contenuto della
variabile nome se questa non è vuota, sia nella forma
‘tradizionale’ che nella ‘modifier form’

 Date le stringhe ‘Ciao mondo’ e ‘Ciao_mondo’ provate ad
applicare il metodo ‘split’ ad entrambe in modo da stampare
[“Ciao”, “mondo”]

90

Esercizio 2: array e range

 Definite l’array vett = [15,30,90,22,70] e
provate a stamparlo: puts o print?

 Provate ad applicare i metodi first, last, lenght

 Provate ad applicare i metodi sort, reverse,
shuffle e a stampare il vettore: cosa è successo?

 Inserite un altro element in vett, usando push e
<< : cambia qualcosa?

 Si può aggiungere una stringa a vett? Perché?

 Provate a stampare i primi tre elementi del
vettore, usando sia i range inclusivi che esclusivi

91

Esercizio 3: blocchi

 Prima immaginate cosa fanno le istruzioni

animals = %w{cat dog horse rabbit owl}
animals.each {|anim| puts anim}

(1..5).each {|i| puts 2*i}

puts ('a'..'z').to_a.shuffle[0..7].join

my_str = "blah, blah"
puts my_str.split(",")[0].split("")[2] * 3

 E poi provatele…

92

Licenza d’uso

 Queste diapositive sono distribuite con licenza Creative
Commons “Attribuzione - Non commerciale - Condividi allo
stesso modo 2.5 Italia (CC BY-NC-SA 2.5)”

 Sei libero:
◦ di riprodurre, distribuire, comunicare al pubblico, esporre in

pubblico, rappresentare, eseguire e recitare quest’opera

◦ di modificare quest'opera

 Alle seguenti condizioni:
◦ Attribuzione — Devi attribuire la paternità dell’opera agli autori

originali e in modo tale da non suggerire che essi avallino te o il
modo in cui tu usi l'opera.

◦ Non commerciale — Non puoi usare quest’opera per fini
commerciali.

◦ Condividi allo stesso modo — Se alteri o trasformi quest’opera,
o se la usi per crearne un’altra, puoi distribuire l’opera risultante
solo con una licenza identica o equivalente a questa.

 http://creativecommons.org/licenses/by-nc-sa/2.5/it/
93

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/

