The Ruby programming
language

Laura Farinetti
Dipartimento di Automatica e Informatica
Politecnico di Torino
laura.farinetti@polito.it

Ruby

e Powerful and flexible programming |
language that can be used alone
or as part of the Ruby on Rails web
framework

e Released in 1995 by Yukihiro Matsumoto
with the goal to design a language that
emphasize human needs over those of the

computer
#8 Ruby

A Programmer’s Best Friend

> Named after
his birthstone

Ruby

e “Designed to maximize programmer
happiness” or in other words for
“programmer productivity and fun”

> Emphasis towards the convenience of the
programmer rather than on optimization of
computer performance
* Follows the principle of least surprise (POLS),
meaning that the language behaves in such a
way as to minimize confusion for experienced
users

* In Japan is more popular than Python

Ruby

* Freely available and open-source

e Highly portable, works on Linux, UNIX, DOS,
Windows 95/98 /NT/2K, Mag, ...

* Main characteristics:
> High-level: easy to read and write
° Interpreted: no need for a compiler

o Object-oriented: it allows users to manipulate data
structures called objects in order to build and
execute programs

* Pure object-oriented language (even the
number 1 is an instance of a class)

{
o ey
\ 7~ S |
/
f\
\ 4
&
SR |

Ruby and its ancestors

Awk

Sh

Basic

ABC

csh

Pascal

C++

Modula 3

SmallTalk

Eiffel

Perl

Python

Java

Ruby

Rails (Ruby on Rails...)

e A framework for building web applications in
Ruby based on the MVC pattern

* A set of strong ideological opinions about
how web applications should be structured

e A particularly good tool for building
prototypes rapidly

* A thriving, productive, fractious community of
free software developers

e A constantly growing and changing software
ecosystem with libraries to do almost anything

Obiject-oriented language

* Ruby is a real object-oriented language
o Everything you manipulate is an object
> The results of manipulations are objects

e Classes: categories of things that need to
be represented in code
° E.g. the class “song”

e A class is a combination of state (e.g. the

name of the song) and methods that use
that state (e.g. a method to play that song)

* Instances of a class: specific “individuals”

Example of class in Ruby

class that models a plain text document

Class Document
attr accessor :title, :author, :content

def initialize(title, author, content)
@title = title

@author = author
@Qcontent = content
end

def words
@content.split
end

def word count
words.size
end
end

Obiject-oriented language

e Instances of classes

songl
empty

Song.new ("Yesterday")
Array.new

e Everything is an object

o Methods can be applied to data directly, not
just on variables holding data

puts "Yesterday".length # prints 9
puts "Rick".index ("c") # prints 2
puts 42.even? # prints true
5.to s # returns "5"

A simple program

* File extension: .rb
e Rubymine environment, empty project

puts "Hello world!"

puts "It is now #{Time.now}"

prints Hello world!

It is now 2014-03-06 09:28:40 +0100

def say goodnight (name)

result = "Good night, #{name}"
return result
end
puts say goodnight ('Pa') # Good night, Pa

def say goodnight (name)

result = "Good night, \n#{name.capitalize}"
return result

end

puts say goodnight ('mary"') # Good night,

Mary

Syntax basics

* Ruby is case sensitive

* Ruby indentation convention: 2 spaces per
indent, never use tabs

e Anything following a # is a comment

e Expressions are delimited by newlines (or ;
if in the same line)

* Parentheses are optional

e Convention for names

i

Example of parentheses

def find document
body omitted
end

find document

def words ()

(title,

('Frankenstein', 'Shelley"')

author)

dcontent.split ()
end

if (word.size < 100)
puts 'The document 1is
end

def find document title, author
body omitted

end
find document 'Frankenstein', 'Shelley'
def words

@dcontent.split

end

1f word.size < 100
puts 'The document is not very long.'
end

Variables

e Ruby is weakly typed: variables receive
their types during assignment

e Four types of variable

o Global variables (visible throughout a whole
Ruby program) start with ‘$’

> Local variables (defined only within the current
method or block) start with a lowercase letter

or

° Instance variables start with ‘@’
o Class variables start with ‘@@’

Ruby naming conventions

e |Initial characters

° Local variables, method parameters, and method
names: lowercase letter or *_’

> Global variable: ‘$’
° Instance variable: ‘@’
o Class variable: ‘@@’

o Class names, module names, constants: uppercase
letter

e Multi-word names

° Instance variables: words separated by
underscores

° Class names: use MixedCase (or “CamelCase”)

Ruby naming conventions

e End characters

o 2 Indicates method that returns true or false to a

query
° I Indicates method that modifies the object rather
than returning a copy

puts 42.even? # prints true

a = [1,2,3]

a.reverse

print a # prints [1,2,3]

a.reverse!
print a # prints [3,2,1]

Syntactic structure

* The basic unit of syntax in Ruby is the
expression

* The Ruby interpreter evaluates expressions,
producing values

* The simplest expressions are primary
expressions, which represent values directly

° e.g. nhumber and string literals, keywods as true,
false, nil, self

* More complex values can be written as
compound expressions

[1,2,3] # an array literal
{1=>"one", 2=>"two"} # a hash literal
1..3 # a range literal

Syntactic structure

e Operators perform computations on values

e Compound expressions are built by combining
simpler sub-expressions with operators

1 # a primary expression
x =1 # an assignment expression
x = x + 1 # an expression with two operators

e Expressions can be combined with Ruby
keywords to create statements

if x < 10 then # 1f this expression 1is true
x =x + 1 # then execute this statement
end # marks the end of a conditional

Assignment

e Traditional assignment

e Abbreviated assignment (combined with
binary operators)

e Parallel assignment

x =1
x +=1
X,V,Z
X,y =
X = y;
x =1,
x, =1

i
i
i

=

=

set the value x to the wvalue 1
set the value x to the wvalue x+1
set x to 1, y to 2, z to 3

parallel: swap the value of x and y
sequential: x and y have the same
value

x = [1,2,3]
Xx = 1, the rest is discarded
set x to 1, y to 2, z to nil

True, false and nil

e Are keywords in Ruby
e “true’ and ‘false’ are the two boolean values
o ‘true’ is not 1, and ‘false’ is not O

e ‘nil’ is a special value reserved to indicate the
absence of value

* When Ruby requires a boolean value, ‘nil’ behaves
like ‘false’, and any other values behaves like
‘true’

o == nil # 1is the object o nil?
o.nil? # the same

Method invocation

* A method invocation expression is composed
of four parts (only the second is required)

° An arbitrary expression whose value is the object
on which the method is invoked followed by a ‘. or
‘' (if omitted, the method is invoked on ‘self’)

> The name of the method

> The argument values being passed to the method
(parentheses are optional)

> An optional block of code delimited by curly
braces or a ‘do..end’ pair

Method invocation

e Example

puts "Hello world"
Math.sqgrt (2)
message.lenght

a.each {|x]| puts x}

H H FH FH H = =

puts invoked on self, with

one string argument

sgrt invoked on object Math

with one argument

length invoked on object message
with no arguments

each invoked on object a

with an associated block

Control structures

e Familiar set of control structures (most...)

* Include
o Conditionals: if, unless, case
° Loops: while, until, for
° |terators: times, each, map, upto
> Flow-altering statements like return and break
o Exceptions
> The special-case BEGIN and END statements

o Threads and other “obscure” control structures:
fibers and continuations

If and unless statements

e The usual: if, else, elsif

if (score > 10)

puts
elsif
puts

"You have done very good!"
(score > 5H)
"You have passed."

else
puts
end

"You have failed

:_(n

e Something new: unless

° With unless the body of a statement is executed
only if the condition is false

° Less mental energy to read and understand

Example

e Concept of read-only document

Class Document
attr accessor :writable
attr reader :title, :author, :content
def title= (new title)
if @writable
@title = new title
end
end
def title= (new title) def title= (new title)

if not @read only
@title = new title
end
end

)

unless (@read only
@title = new title

end

end

While and until statements

e The usual: while

> Loops while condition is true

while ! document.is printed?
document.print next page
end

e Something new: until

> Loops until condition becomes true

until document.is printed?
document.print next page
end

Modifier form

* If, unless, while and until can be considered operators
in which the value of the right-hand expression
affects the execution of the left-hand one

o Advantage: collapse in a single sentence for readability

unless @read only
@title = new title
end

@Qtitle

3

= new title unless (@read only

@title = new title 1f @writable

document.print next page while document.pages available?

document.print next page until document.printed?

For and each statements

e The for loop is very familiar

fonts = ['courier', 'times roman', 'helvetica']

for font in fonts
puts font
end

* However, each is more frequently used

fonts = ['courier', 'times roman', 'helvetica']

fonts.each do |font|
puts font
end

Case statement

* Many variants

> Note: everything in Ruby returns a value

case title
when 'War and peace' :
puts 'Tolstoy' author case title
when 'Romeo and Juliet' when 'War and peace’
' 1
puts 'Shakespeare' Tolstoy |
else when 'Romeo and Juliet'
puts "Don’t know" 'Shakespeare'
end else
"Don’t know"
end
author case title

end

when
when
else

'War and peace'
'Romeo and Juliet'
"Don’t know"

then
then

'Tolstoy'
'Shakespeare'

lterators

e Although while, until and for are a core
part of the Ruby language, it is more
common to write loops using special
methods known as iterators

e lterators interact with the block of code
that follow them

e Numeric iterators

* [terators on enumerable objects

Block structure

e Ruby programs have a block structure
> Blocks of nested code

e Blocks are delimited by keywords or
punctuation and by convention are indented
two spaces relative to the delimiters

e Two kinds of blocks in Ruby
o “True blocks”: chunks of code associated with or
passed to iterator methods

o “Body”: simply a list of statement that represent
the body of class definition, a method definition, a
while loop or whatever

Block structure

e Example of “true blocks”

o Curly braces, if single line, or do .. end

keywords 3.times { print "Ruby! " }

1.upto(10) do |x|
print x
end

e Example of “bodies”

> No curly braces, but keyword .. end

if x < 10 then
X =x + 1
end

> Methods begin with the keyword, ‘def’, and
are terminated with an ‘end’

Numeric iterators

e upto: invokes the associated block once for each
integer between the one on which it is invoked and
the argument

e downto: the same but from a large integer to a
smaller one

e times: when invoked on the integer n, it invokes the
associated block n times, passing values O through
n-1

e step: numeric iteration with floating-point numbers

4.upto(6) {|x| print x} # prints 456
3.times {|x]| print x} # prints 012

start at 0 and iterates in step of 0.1 until it
reaches Math::PI
O.step(Math::PI, 0.1) {|x| print x}

each iterator

e Defined on a number of classes that are collections
of enumerable objects: Array, Hash, Range, ...

e each passes each element of the collection to its
associated block

» Defined also for the Input/OQutput object

[1,2,3] .each {|x| print x} # prints 123
(1..3) .each {|x| print x} # prints 123

['cat', 'dog', 'horse'].each {|name| print name, " "}
cat dog horse

File.open (filename) do |f| # open named file, pass as f
f.each {|line| print line} # print each line in f
end # end block

Other enumerable iterators

e ‘collect’ or ‘map’: executes its associated block for
each element of the enumerable object, and
collects the return values into an array

e ‘select:’ executes its associated block for each
element and returns an array of the elements for
which the block returns a value other than false or

nil
* ‘reject’: the opposite of select (false or nil)

squares = [1 2,3].collect {|x]| x*x} # [1,4,9]
evens = (1 0) .select {|x]| x%2 == 0} # [2,4,6,8,10]
odds = (1. lO) reject {|x]| x%2 == 0} # [1,3,5,7,9]

Statements that alter the control flow

e ‘return’: causes a method to exit and return a
value to its caller

e ‘break’: causes a loop (or iterator) to exit

* ‘next’: causes a loop (or iterator) to skip the rest of
the current iteration and move to the next one

* ‘redo’: restarts a loop (or iterator) from the
beginning

e ‘retry’: restarts an iterator, reevaluating the entire
expression; used in exception handling

* ‘throw /catch’: exception propagation and handling
mechanism

BEGIN and END

e BEGIN and END are reserved words in Ruby
that declare code to be executed at the very
beginning and very end of a program

BEGIN {
Global initialization code goes here

}

END {
Global shutdown code goes here

}

Basic data types

e Numeric classes
e Strings

® Ranges

e Arrays

e Hashes

e Symbols

e Regular expressions

Numeric classes hierarchy

o] e Five built-in classes
e Three more in the standard library
e All numbers in Ruby are instances of Numeric

l Numeric
1
1 T 1
Complex Bigdecimal Rational
Integer Float (standard (standard (standard
library) library) library)
l Fixnum \ l BigNum \

e If an integer value fits within 31 bits it is an instance
Fixnum, otherwise it is a Bignum

i

Examples of literals

#Integer literals
0

123
1234567891234567890
1 000 000 000

0377

0bl111 1111

OxFF

One billion

Octal representation of 255
Binary representation of 255
Hexadecimal representation of 255

HH= H= = HF

#Floating-point literals

0.0
-3.14
6.02e23

1 000 _000.01

This means 6.02 x 10723
One million and a little bit more

Operators

e Arithmetic
o+, -, * /, %, ** (exponentiation)
e Comparison
o ==, <=> (returns -1, 0 or 1), <, <=, >=, >,
=~ (matching), eql? (test of equality of type
and values)

* Logical

° and, or, not

Numeric methods

e Also number literals are objects!

* Numeric and its subclasses define many useful
methods for determining the class or testing
the value of a number

General predicates

0.zero? # => true (is this number zero?)
1.0.zero? # => false

1l.nonzero? # => true

1.integer? # => true

1.0.integer? # => false

l.scalar? # => false: not a complex number
1.0.scalar? # => false: not a complex number
Complex (1,2) .scalar? # => true

Numeric methods

Integer predicates
.even?
l.even?

(&)

Float predicates
ZERO, INF, NAN =

ZERO.finite
INF.finite
NAN.finite

ZERO.infinite
INF.infinite
-INF.infinite
NAN.infinite

ZERO.nan
INF.nan
NAN.nan

0.0,

=> true
=> false

1.0/0.0,

=> true
=> false
=> false
=> nil

=> 1

=> -1

=> nil

=> false
=> false

true

0.0/0.0

constants

(is this number finite?)

(infinite positive or negative?)

(i1s this number not-a-number?)

Numeric methods

Rounding methods
1.1.ceil

-1.1.ceil
1.9.floor
-1.9.floor
1.1.round
0.5.round
-0.5.round
1.1.truncate
-1.1.to 1

$= = = S 3 S o S e

=> 2: smallest integer >= argument

=> —-1: smallest integer >= argument
1: largest integer <= argument

-2: largest integer <= argument

1: round to nearest integer

1: round toward positive infinity
-1: round toward negative infinity
1: chop off fractional part

=> -1: same as truncate

Absolute value and sign

-2.0.abs
-2.0<=>0.0

Constants
Float: :MAX
Float::MIN
Float: :EPSILON

#
id

=

=> 2.0: absolute wvalue
=> -1: sign

may be platform dependent
may be platform dependent
difference between adjacent floats

The Math module

Constants

Math: :PT
Math: :E
Roots

Math.sgrt (25.0)
27.0**%(1.0/3.0)

Logaritms
Math.1logl0(100.0)
Math.log (Math: :E**3)
Math.log2 (8)

#Trigonometry

w

.14159265358979
.71828182845905

.0: square root
.0: cube root with ** operator

.0: base-10 logarithm

(@)

natural logarithm

.0: base-2 logarithm

Text

* In Ruby text is represented by objects of
the String class

e Textual patterns are represented as
Regexp obijects

o Syntax for including regular expressions

Strings

e Examples of string literals

'This is a simple Ruby string literal'
'"Won\'t you read O\'Reilly\'s book?'
"\t\"This quote begins with a tab and ends with a newline\"\n"

Double quoted string literals may include arbitrary Ruby
expressions
"360 degrees=#{2*Math::PI} radians"
#360 degrees=6.28318530717959 radians

When the expression is simply a global, instance or class
variable, curly braces can be omitted

Ssalutation = 'hello' # Define a global variable
"#Ssalutation world" # Use it

g (Don't worry about escaping ' characters!)

Strings

e Multilines strings

a multiline string = "this 1s a multiline
string"

another one = %g{Another multiline
string}

e Here documents

> Begin with << or <<- followed by an identifier or
string that specifies the ending delimiter

o Useful for very long multiline strings

document = <<'THIS IS THE END, MY FRIEND, THE END'
lots and lots of text
here, with no escaping characters

THIS IS THE END, MY FRIEND, THE END

String interpolation

* With double-quoted strings

* The sequence #{expression} is replaced by the
value of the expression

e Arbitrary complex expression are allowed in the
#{} construct

* Double-quoted strings can include newlines (\n)

planet = "Earth"
"Hello planet #{planet}" # String interpolation

String operators

~® Operator + concatenates two strings
e Operator << appends its second operand to its first

 Operand * repeats a text a specified number of
times

planet = "Earth"

"Hello" + " " + planet # Produces "Hello Earth"
"Hello planet ##{planet number}" # String interpolation
greeting = "Hello"

greeting << " " << "world"

puts greeting
ellipsis = '.' * 3 # Evaluates to '...'

a =0
"#{a=a+1l} " * 3 # Returns "1 1 1 " and not "1 2 3 "

String operators

e Operators == and != compare strings for
equality and inequality

e Operators <, <=, >, >= compare the
relative order of strings
> Based on caracters’ code

o String comparison is case sensitive

Characters and substrings

e Accessing characters and substrings

s = 'hello'

s[0] # the first character
s[s.length-1] # the last character

s[-1] # the last character

s[-2] # the second-to-last character
s[-s.length] # the first character
s[s.length] # nil: there is no character at that index
s = 'hello'

s[0,2] # "he"

s[-1,1] # "o"

s[O,] # """

s[0,10] # "hello"

s[s.length, 1] # "

s[s.length+1, 1] # nil

s[0,-1] # nil (negative length)

Characters and substrings

* Modifying characters and substrings

s = 'hello'
s[-1] = ""
s[-1] = "p!"
s = 'hello'
s[0,1] = "H"
s[s.length, 0]
s[5,0] = ","
s[5,6] = ""

deletes the last character
the string is now "help!"

world"

H H FH FH HF

replaces first letter with H
appends a new string

inserts a comma without deleting
deletes with no insertion

the string is now "Hellod"

Characters and substrings

e Indexing a string with a Range object

e Splitting a string into substrings based on a

delimiter
s = 'hello'
s[2..3] # "11": characters 2 and 3
s[-3..-1] # "1lo": negative indexes work too
s[0..0] # "h": one characters
s[0...0] # "": this Range is empty
s[2..1] # "": this Range is empty
s[7..10] # nil: this Range is outside the string
s = 'hello'
s[-2..-1] = "p!" # replacement: s becomes "help!"
s[0...0] = "Please " # insertion: s becomes "Please help!"
s[6..10] = "" # deletion: s becomes "Please!"
"this is it".split # ["This", "is", "it"]
"hello".split ('1l") # ["he", """, "O"]

Ranges

e A Range object represents the values between a
start value and an end value

e Range literals are written placing two or three
dots between the start value and the end value

> Two dots: range is inclusive (end value is part of the

range)
o Three dots: range is exclusive (end value is not part of
the range)
1..10 # the integers 1 through 10, including 10
1.0...10.0 # the numbers 1.0 through 10.0,
excluding 10.0

Ranges

e The include? method check if a value is included in a
range

e Ordering is implicit in the definition of a range

e Comparison operator ‘<=>’ which compares two
operands and evaluates to -1, 0 or 1

> A value can be used in a range only if it responds to this
operator

e Purposes of range: comparison and iteration

cold war = 1945..1989
cold war.include? birthdate.year

r = 'a'..'c'

r.each {]1]| print "[#{1}]1"} # prints "[a] [b] [c]"
r.step(2) {|1| print "[#{1}]1"} # prints "[a][c]"
r.to a # ['a','b','c']

Arrays

e Set of values that can be accessed by position, or
index

* Indexed with integers starting at O

* Methods ‘size’ and ‘length’ return the number of
elements

* Negative index counts from the end of the array
> E.g. size — 2 is the second-to-last element

e If you try to read an element beyond the end or

before the beginning Ruby returns ‘nil’ and do not
throw an exception

e Ruby’s arrays are untyped and mutable: the
elements need not be of the same class, and they
can be changed at any time

Arrays

* Arrays are dinamically resizeable
* Arrays are objects: must be instantiated with ‘new’
* Examples:

[1, 2, 3] # array of three Fixnum objects
[O. 10.. 0] # array of two ranges
[[1,] [3,4],[5]1] # array of nested arrays
[x+y, xX-y, X*V] # elements can be arbitrary expressions
[] # empty array has size O
words = %$w{this is a test} # same as words =
['this', 'is', 'a', 'test']
empty = Array.new # []: empty array
nils = Array.new (3) # [nil, nil, nil]
nils = Array.new (4,0) # [0, O, 0, O]
copy = Array.new(nils) # copy of an existing array
count = Array.new(3) {|i] i+1} # [1,2,3]: three elements

computed from index

Arrays

* Examples:

a = [0, 1, 4, 9, 106]

al0] # first element is O

al-1] # last element 1is 16

al-2] # second-to-last element is 9
ala.size] # last element

al-a.size] # first element

al[8] # beyond the end: nil

al[-8] # before the beginning: nil

a[0] = "zero" # a is ["zero", 1, 4, 9, 16]

al[-1] = 1..16 # a is ["zero", 1, 4, 9, 1..16]

al8] = 064 # a is ["zero", 1, 4, 9, 1..16, nil, nil, nil, 64]
al[-10] = 100 # error: can’t assign before beginning

Arrays

* Like strings, array can be indexed also
° by two integers: first element and number of elements
° by Range objects

* Works also for insertion and deletion

a= ('a'..'e').to a # range converted to ['a','b','c','d','e']
al0,0] # sub-array: []
all, 1] # sub-array: ['b']
al-2,2] # sub-array: ['d','e']
al0..2] # sub-array: ['a','b','c']
al-2..-1] # sub-array: ['d','e']
al0. -1] # sub-array: ['a','b','c','d']
all but the last element
al0,0] = [1,2,3] # insert elements at the beginning of a
al0,2] = [] # delete those elements
al-1,1] = ['z"'] # replace last elements
al-2,2] = nil # replace last two elements with nil

Array operators

* The operator ‘+’ concatenates two arrays

* The operator ‘<<’ appends an element to an existing array

* The operator ‘-’ subtracts one array to another

* The operator ‘*' is used for repetition

a=1[1,2,3] + [4,5] #
a=a + [[o6,7,8]] #
a=a+ 9 #
a = [] #
a << 1 #
a << 2 << 3 #
a << [4,5,0] #
a.concat [7,8] #
['a','b','C','d','a'] _
al0] * 8 #

[1,2,3,4,5]
[1,2,3,4,5, [6,7,8]]
error: righthand side must be an array

start with an empty array

a

a
a
a

is
is
is
is

[1]
[
[
[

['b','C','d'] # ['a','a']

(6,6,0,0,0,0,0,0]

Array operators

* Boolean operators ‘|’ and ‘&’ are used for union
and intersection

> These operators are not transitive
* Many useful methods, e.g. ‘each’

a=11,1,2,2,3,3,4]

b= 1[5,5,4,4,3,3,2]

a | b # [1,2,3,4,5]: duplicates are removed
b | a # [5,4,3,2,1]: order is different

a & b # [21314]

b & a # [41312]

a= ('A'"..'2"'").to_ a # begin with an array of letters

Q

.each {|x| print x} # print the alphabet, one letter
at the time

Hashes

e Data structures that maintain a set of objects
known as ‘keys’ and associate a ‘value’ to
each key

e Called also maps or associative arrays

° The array index is the key insted of an integer

e Keys are almost always symbols

numbers = Hash.new # create a new empty hash object

numbers ["one"] = 1 # map the String "one" to the Fixnum 1
numbers ["two"] = 2 # map the String "one" to the Fixnum 1
numbers ["three"] = 3 # map the String "one" to the Fixnum 1

sum = numbers|["one"] + numbers["two"] # retrieve values

Hash literals

e Written as a comma-separated list of key/value
pairs, enclosed in curly braces

e Symbol objects work more efficiently than strings

numbers = {"one" => 1, "two" => 2, "three" => 3}
numbers = {:one => 1, :two => 2, :three => 3}

succinct hash literal syntax when symbols are used
numbers = {one: 1, two: 2, three: 3}

access to hashes
grades = { "Bob" => 82, "Jim" => 94, "Billy" => 58 }

puts grades["Jim"] # 94
grades.each do |name,grade| # Bob: 82
puts "#{name}: #{grade}" # Jim: 94

end # Billy: 58

Symbols

e The Ruby interpreter maintains a symbol table in
which it stores the names of all the classes,
methods and variables it knows about

° This allows to avoid most string comparison: names are
referred by their position the symbol table

e This symbols can be used also by Ruby programs

e Symbols are simply constant names that need not
to be declared and that are guaranteed to be
unique

e A symbol literal starts with ’

:symbol # a symbol literal
:'another long symbol' # symbol with spaces
s = "string"

sym = :"#{s}" # the symbol :string

Symbols

with constants

NORTH = 1
EAST = 2
SOUTH = 3
WEST = 4

walk (NORTH)

with symbols
walk (:north)

e Symbols are often used to refer to method names

does the object o have an each method?
o.respond to? :each

Symbols and hashes

e Symbols are frequently used as keys in
hashes

inst section = {
:cello => 'string',
:clarinet => 'woodwind',
:drum => 'percussion',
:0boe => 'woodwind',
:trumpet => 'brass',
:violin => 'string'
}
inst section/[:oboe] # woodwind
inst section[:cello] # string
inst section['cello'] # nil

Symbols and hashes

e Symbols are so frequently used as hash keys
that Ruby 1.9 introduced a new syntax

inst section = {
:cello 'string',
:clarinet 'woodwind',
:drum 'percussion',
:0boe 'woodwind',
: trumpet 'brass',
:violin 'string'
}
puts "An oboe is a #{inst section[:oboe]}"
An oboe is a woodwind

Data type conversion

e Explicit conversion methods
° to_s: convert to String class
° to_i: convert to Integer class
o to_f: convert to Float class
° to_a: convert to Array class

Regular expressions

e Known also as ‘regexp’ or ‘regex’
e Describe a textual pattern

e Ruby’s Regexp class implements regular
expressions and define pattern matching
methods and operators

e Regexp literal are delimited by */’

/Ruby?/ # matches the text "Rub" followed by
an optional "y"

Regular expressions

~[a-zA-Z0-9. -]+@[a-zA-Z0-9.-]+\.[a-zA-2Z]{2,4}%

e *“"[a-zA-Z0-9. -]+

° The email address must begin with alpha-numeric characters (both

lowercase and uppercase characters are allowed): it may have periods,
underscores and hyphens

e @

o There must be a ‘@’ symbol after initial characters
e [a-zA-Z0-9.-1+

o After the ‘@’ sign there must be some alpha-numeric characters; it can
also contain period and and hyphens
o \.

o After the second group of characters there must be a period (*.’); this is
to separate domain and subdomain names.

e [a-2zA-Z]{2,4}$

° Finally, the email address must end with two to four alphabets; {2,4}
indicates the minimum and maximum number of characters

Examples of e-mail patterns

[a—zA-Z0-9!#S%&"*+/=2" " {|}~-1+
(?:\.[a-zA-Z0-9!#S$%&"*+/=2" " {|}~-1+)*
@(?:[a-zA-20-9] (?:[a-z0-9-]1*[a-z0-9])?\.)+
[a—=z0-9] (?:[a-z0-9-]1*[a-z0-9]) >

[a-zA-Z0-9!#S%&"*+/=2" " {|}~-]+
(?:\.[a-zA-Z0-9!#S8%3&"*+/=2" " {[|}~-1+)*
@(?:[a-zA-720-9] (?:[a-z0-9-1*[a-z0-9])?2\.)+
(?:[a-zA-Z] {2} |com|org|net|edu|lgov|mil|biz|
info|mobi|name|aero|asialjobs|museum) \b

Regular expression basic syntax

e Characters

Character

Description

Example

Any character except
[\AS. |75+ 0

All characters except the listed special characters match
a single instance of themselves. { and } are literal
characters, unless they're part of a valid regular
expression token {e.g. the {n} quantifier)

a matches a

Y (backslash) followed
by any of
[\as. 75+ 0 {3

A backslash escapes special characters to suppress
their special meaning

'+ matches +

“Q...M\E

Matches the characters between “Q and \E literally
suppressing the meaning of special characters

%

“ %FF where FF are 2
hexadecimal digits

Matches the character with the specified ASCIANSI
value, which depends on the code page used. Can be
used in character classes

Y xA9 matches @when using

the Latin-1 code page

b}

v, hroand Lt

Match an LF character. CR character and a tab
character respectively. Can be used in character
classes

“r'n matches a

DOs\Windows CELF line

break

“a, he, WFand b

Match a bell character (4 x07). escape character (\x1E)
form feed (\x0C) and vertical tab (', x0B) respectively
Can be used in character classes

A through “cZ

Match an ASCI character Control+4 through Control+Z
equivalent fo " x01 through “x1a Can be used in
character classes

YoMy el matches a

DOsWindows CRELF line

break

\Q+-%,/\E matches +-%/

Regular expression basic syntax

e Character classes or character sets [abc]

Character Description Example
[(opening square Starts a character class. A character class maiches a
bracket) single character out of all the possibilities offered by the

character class. Inside a character class, different rules
apply. The rules in this section are only valid inside
characier classes. The rules outside this section are not
valid in character classes, except for a few character
escapes that are indicated with "can be used inside
characier classes"

Any character except All characters except the listed special characiers [abc] matches a. b or ¢
~-1% add that character
to the possible matches
for the character class

Y (backslash) followed A backslash escapes special characters to suppress (A%]1] matches : an

by any of A-]1% their special meaning

- (hyphen) except Specifies a range of characters. (Specifies a hyphen if [a-zA-Z0-9] matches any
immediately after the placed immediately after the opening [) letter or digit

opening [

A (caret) immediately MNepgates the character class, causing it to match a single | [~a-d] maiches E {any
after the opening [character not listed in the character class. (Bpecifies a character excepta. b. c or

caret if placed anywhere except after the opening [) d}

Regular expression basic syntax

e Character classes or character sets [abc]

Character Description Example
‘o, \wand \s Shorthand character classes matching digits, word [“d%s] matches a
characters (letters, digits, and underscores), and character that is a digit or
whitespace (spaces, tabs. and line breaks). Can be used |whitespace
inside and outside character classes
\D. \Wand \S Megated versions of the above. Should be used only j matches a character that
outside character classes. (Can be used inside, but that |is not a digit
is confusing.)
[tb] Inside a character class, \b is a backspace character [“b%t] matches a
backspace or tab character
e Dot
Character Description Example
. (dot) Matches any single character except line break : matches E or (almost) any

characters \r and '\n. Most regex flavors have an option
to make the dot match line break characters too

other character

Regular expression basic syntax

e Anchors
Character Description Example
A (caret) Matches at the start of the string the regex pattern is : matches E in abchndef

applied to. Matches a position rather than a character
Most regex flavors have an option to make the caret
match after line breaks (i.e at the start of a line in a file)
as well

Also maiches d in
"multi-line" mode

§ (dollar)

Matches at the end of the string the regex patiern is
applied to. Matches a position rather than a character
Most regex flavors have an opfion to make the dollar
match before line breaks (i.e. atthe end of a line in a
file) as well. Also matches before the very last line break
if the string ends with a line break

. $ matches fin abc\ndef
Also matches c in
"multi-line” mode

Matches at the start of the string the regex pattern is
applied to. Matches a position rather than a character
Mever matches after line breaks

\A. matches a in abc

Matches at the end of the string the regex pattern is
applied to. Matches a position rather than a character
Mever matches before line breaks, except for the very
last line break if the string ends with a line break

.\Z matches f in abc'\ndef

Matches at the end of the string the regex pattern is
applied to. Matches a position rather than a character
Mever matches before line breaks

.\z matches f in abc'\ndef

Regular expression basic syntax

e Word boundaries

Character Description Example
b Matches at the position between a word character .\b matches c in abc
(anything matched by ‘w) and a non-word character
(anything matched by [W] or m as well as at the start
and/or end of the string if the first and/or last characters
in the string are word characters
\B Matches at the pusitiun bem'een two word characters (i.e | \B.\B matches b in abc
the position between “w'w) as well as at the position
between two non-word characters (i.e. \wW\W)
e Alternation
Character Description Example
{pipe) Causes the regex engine to match either the part on the | abc|def | xyz matches E
left side. or the part on the right side. Can be strung def or xyz
together into a series of options
(pipe) The pipe has the lowest precedence of all operators abc(def|xyz) matches

Use grouping to alternate only part of the regular
EXpression

abcdef or abexyz

Regular expression basic syntax

e Quantifiers

Character

Description

Example

7 (question mark)

Makes the preceding item optional. Greedy, so the
optional item is included in the match if possible

abc? matches ab or abc

7Y Makes the preceding item optional. Lazy, so the opticnal | abc?? matches @ nr@
item is excluded in the match if possible. This construct is
often excluded from documentation because of its limited
use

= (star) Repeats the previous item zero or more times. Greedy E matches
50 as many items as possible will be matched before "def™ "ghi"in
trying permutations with less matches of the preceding abc "def" "ghi" jki
item, up to the point where the preceding item is not
matched at all

=7 (lazy star) Repeats the previous item zero or more times. Lazy, so | ".#?" maiches "def" in
the engine first attempts to skip the previous item, before |abe "def" "ghi" jkI
trying permutations with ever increasing matches of the
preceding item

+ {plus) Repeats the previous item once or more. Greedy, soas | ".+" matches
many items as possible will be matched before trying "def™ "ghi"in

permutations with less matches of the preceding item. up
to the point where the preceding item is matched only
once

abc "def" "ghi" jkT

Regular expression basic syntax

e Quantifiers

Character

Description

Example

+7 (lazy plus)

Repeats the previous item once or more. Lazy. so the
engine first matches the previous item only once, before
trying permutations with ever increasing matches of the
preceding item

" +7" matches "def" in
abc "def" "ghi" jki

fn} where nis an
integer == 1

Repeats the previous item exactly n times

af3} matches aaa

fn,m} where n >=0 and
m==n

Repeats the previous item between n and m times
Greedy, so repeating m times is tried before reducing
the repetition to n times

af2,4} maiches aaaa. aaa
or 22

fn,m¥? where n==10
and m==n

Repeats the previous item between n and m times. Lazy
s0 repeating n times is tried before increasing the
repetition to m times

a{2,437 matches aa. aaa
or aaaa

in,}wheren==0

Repeats the previous item at least n times. Greedy, so
as many items as possible will be matched before trying
permutations with less matches of the preceding item, up
to the point where the preceding item is matched only n
fimes

af?,} matches aaaaain

ddddad

n,}? wheren ==0

Repeats the previous item n or more times. Lazy, so the
engine first matches the previous item n times, before
trying permutations with ever increasing matches of the
preceding item

af{2,1? matches aain

dadaad

Examples of Regex in Ruby (1/3)

Literal characters
/ruby/ # match "ruby"

Character classes
/ [Rr]uby/ # match "Ruby" or "ruby"

/rublyel]/ # match "ruby" or "rube"

/[aeiou]/ # match any lowercase vowel

/10-91/ # match any digit

/la-z]/ # match any lowercase ASCII character

/[A-2]/ # match any uppercase ASCII character

/[a zA-720-9]1/ # match any of the above

/[~aeioul/ # match anything other than a lowercase vowel
/[~0-91/ # match anything other than a digit

Special character classes
/ ./ # match any character except newline

/d/ # match a digit

/D/ # match a non-digit

/s/ # match a whitespace character [\t\r\n\f]

/S/ # match a non-whitespace character

/w/ # match a single word character: [a-zA-Z0-9]
/W/ # match a non-word character: ["a-zA-Z0-9]

Examples of Regex in Ruby (2/3)

Repetition

/ruby?/ # match "rub" or "ruby": "y" is optional
/ruby*/ # match "rub" plus 0 or more "y"

/ruby+/ # match "rub" plus 1 or more "y"

/\d{3}/ # match exactly 3 digits

/\d{3,}/ # match 3 or more digits

/\d{3,5}/ # match 3, 4 or 5 digits

Nongreedy repetition: match the smallest number of

repetitions

/<. x>/ # greedy repetition: match "<ruby>perl>"
/<. x>/ # nongreedy repetition: match "<ruby>"

Grouping with parentheses

/\D\d+/ # no group: repeat \d
/ (\D\d) +/ # group: repeat \d\D pair
/ ([Rr]uby(,)?)+/ # match "Ruby", "Ruby, ruby, ruby", ecc.

Backreferences: matching a previously matched group again
\1 matches whatever the first group matched
\2 matches whatever the second group matched
/ ([Rr]luby&\lails/ # match "ruby&rails" or "Ruby&Rails"
JCL""]) [M\1]1*\1/ # single or double quoted string

Examples of Regex in Ruby (3/3)

Alternatives

/ruby | rube/ #
/rub(ylle)/ #
/ruby (!+[\?)/ #

match
match
match

Anchors: specifying

/~"Ruby/ #
/Rubys$/
/\ARuby/
/Ruby\Z/
/\bRuby\b/
/\bruby\B/

/Ruby (?2=!)/
/Ruby (?2!!)/

H= S o S S

match
match
match
match
match
\B is
match
match
match

"ruby" or "rube"
"ruby" or "ruble"
"ruby" followed by one or more ! or one ?

match position

"Ruby" at the start of a string

"Ruby" at the end of a string

"Ruby" at the start of a string

"Ruby" at the end of a string

"Ruby" at a word boundary

a non-word boundary

"rub" in "ruby" or "rube" but not alone
"Ruby" 1f followed by an !

"Ruby" 1f not followed by an !

Special syntax with parentheses

/R (?#comment) /
/R(?1)uby/
/R(?1:uby)/

match "R", all the rest is a comment
case insensitive while matching "uby"
same thing

Pattern matching with regular
expressions

e Ruby’s basic pattern matching operator is ‘=~

> One operand is a regular expression and the other is a
string
1

e ‘=~7 checks its string operand to see if it, or any
substring, matches the pattern specified by the
regular expression

o |f a match is found, it returns the string index at which
the first match begin

° |f not, it returns ‘nil’

pattern = /Ruby?/i/ # match "Rub" or "Ruby", case insensitive
pattern =~ "backrub" # returns 4
"rub ruby" =~ pattern # returns O

pattern =~ "xr" # returns nil

Pattern matching with regular
expressions

e After any succesfull (non-nil) match, the global
variable ‘$~’ holds a MatchData object which
contains complete information about the match

"hello" =~ /e\w{2}/
$~.string
$~.to_s

$~.pre match
$~.post match

match an e followed by 2 word characters
"hello" : the complete string

"ell" : the portion that matched

"h" : the portion before the match

"o" : the portion after the match

Classes

® Creqﬁon class Point
end
e Instantiation p = Point.new
p.class # Point
p.is a? Point # true

e Defining a method: initialization

° The initialize method is special: the new methosd
creates an instance object and then automatically
invokes the initialize method on that instance

> The arguments passed

to new are also class Point
d e e e I. def initialize(x,V)
passed fo Inifialize ex, @y = x, v

° @x and @y are _ o

instance variables p = Point.new(0,0)

Classes

e Accessor methods

> To make variable values accessible

class Point
def initialize(x,V)
@x, @y = x, vy
end
def x # the accessor method for @x
@x
end
def vy # the accessor method for Qy
Cy
end
end

p = Point.new(1l,2)
Point.new(p.x*2, p.y*3)

Q
|

Classes example

e Defining operators

class Point
attr reader :x :y # define accessor methods

def initialize(x,V)
@X/ @y = XI y

end

def + (other) # define + to do vector addition
Pont.new (@x + other.x, @y.other.y)

end

def -@ # define unary - to negate coordinates
Pont.new (-@x, -Qy)

end

def * (scalar) # define * to do scalar multiplication

Pont.new (@x*scalar, @y*scalar)
end

Subclasses and inheritance

e Ruby has a class hierarchy in form of a tree
> The BasicObiject class in the root of the tree
* Multiple inheritance is not possible

> However, modules allow to import methods

° Modules are named group of methods, constants
and class variables, but cannot be instantiated
and do not have a hierarchy (standalone)

e Extending a class

class Point3D is a subclass of class Point
class Point3D < Point
end

Ruby vs. Java (l)

e Like Javaq, in Ruby:
> Memory is managed via garbage collector
o Objects are strongly typed

o There are public, private, and protected
methods

> There are embedded doc tools (RDoc)

Ruby vs. Java (ll)

e Unlike Java, in Ruby:

> You use the end keyword after defining things
like classes, instead of braces around blocks of
code

o require instead of import

o All member variables are private
> nil instead of null

> There is no casting

o Everything is an object

Esercizio 1: stringhe

Le stringhe si possono unire almeno in due modi: concatenandole
(+ 0 <<) o interpolandole (#{})

Definite due variabili ‘nome’ ‘cognome’, assegnando il vostro
valore

Provate a stampare le stringhe nome o cognome con puts e print:
differenze?

Stampate lo mi chiamo nome e cognome. usando i diversi metodi
(con +, << e l'interpolazione)

Le doppie virgolette e le virgolette singole sono hanno lo stesso
effetto? Provare

Provare ad esprimere I'espressione stampa il contenuto della
variabile nome se questa non é vuota, sia nella forma
‘tradizionale’ che nella ‘modifier form’

Date le stringhe ‘Ciao mondo’ e ‘Ciao_mondo’ provate ad
applicare il metodo ‘split’ ad entrambe in modo da stampare
[“Ciao”, “mondo’]

Esercizio 2: array e range

e Definite I'array vett = [15,30,90,22,70] e
provate a stamparlo: puts o print?

* Provate ad applicare i metodi first, last, lenght

e Provate ad applicare i metodi sort, reverse,
shuffle e a stampare il vettore: cosa & successo?

* Inserite un altro element in vett, usando push e
<< : cambia qualcosa?

e Si pud aggiungere una stringa a vett? Perché?

e Provate a stampare i primi tre elementi del
vettore, usando sia i range inclusivi che esclusivi

Esercizio 3: blocchi

e Prima immaginate cosa fanno le istruzioni

animals = Sw{cat dog horse rabbit owl}
animals.each {|]anim| puts anim}

(1..5).each {]1] puts 2*1}

puts ('a'..'z').to a.shufflef[0..7].Join
my str = "blah, blah"
puts my str.split(",")[0].split("")[2] * 3

e E poi provatele...

Licenza d’uso 080

Queste diapositive sono distribuite con licenza Creative
Commons “Attribuzione - Non commerciale - Condividi allo

stesso modo 2.5 Italia (CC BY-NC-SA 2.5)”
Sei libero:

o di riprodurre, distribuire, comunicare al pubblico, esporre in
pubblico, rappresentare, eseguire e recitare quest’opera
> di modificare quest'opera

Alle seguenti condizioni:

o Attribuzione — Devi attribuire la paternita dell’opera agli autori
originali e in modo tale da non suggerire che essi avallino te o il
modo in cui tu usi l'opera.

> Non commerciale — Non puoi usare quest’opera per fini
commerciali.

o Condividi allo stesso modo — Se alteri o trasformi quest’operaq,
o se la usi per crearne un’altra, puoi distribuire 'opera risultante
solo con una licenza identica o equivalente a questa.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/

