
The Ruby programming
language

Laura Farinetti
Dipartimento di Automatica e Informatica

Politecnico di Torino

laura.farinetti@polito.it

1

Ruby

 Powerful and flexible programming
language that can be used alone
or as part of the Ruby on Rails web
framework

 Released in 1995 by Yukihiro Matsumoto
with the goal to design a language that
emphasize human needs over those of the
computer
◦ Named after

his birthstone

2

Ruby

 “Designed to maximize programmer
happiness” or in other words for
“programmer productivity and fun”
◦ Emphasis towards the convenience of the

programmer rather than on optimization of
computer performance

 Follows the principle of least surprise (POLS),
meaning that the language behaves in such a
way as to minimize confusion for experienced
users

 In Japan is more popular than Python

3

Ruby

 Freely available and open-source

 Highly portable, works on Linux, UNIX, DOS,
Windows 95/98/NT/2K, Mac, …

 Main characteristics:
◦ High-level: easy to read and write

◦ Interpreted: no need for a compiler

◦ Object-oriented: it allows users to manipulate data
structures called objects in order to build and
execute programs

 Pure object-oriented language (even the
number 1 is an instance of a class)

4

Ruby and its ancestors

5

Ruby

Perl Python Java Eiffel

SmallTalk Modula 3 C Pascal csh

Awk Sh Basic ABC C++

Rails (Ruby on Rails…)
 A framework for building web applications in

Ruby based on the MVC pattern

 A set of strong ideological opinions about
how web applications should be structured

 A particularly good tool for building
prototypes rapidly

 A thriving, productive, fractious community of
free software developers

 A constantly growing and changing software
ecosystem with libraries to do almost anything

6

Object-oriented language

 Ruby is a real object-oriented language
◦ Everything you manipulate is an object

◦ The results of manipulations are objects

 Classes: categories of things that need to
be represented in code
◦ E.g. the class “song”

 A class is a combination of state (e.g. the
name of the song) and methods that use
that state (e.g. a method to play that song)

 Instances of a class: specific “individuals”

7

Example of class in Ruby

8

class that models a plain text document

Class Document

 attr_accessor :title, :author, :content

 def initialize(title, author, content)

 @title = title

 @author = author

 @content = content

 end

 def words

 @content.split

 end

 def word_count

 words.size

 end

end

Object-oriented language

 Instances of classes

 Everything is an object

◦ Methods can be applied to data directly, not
just on variables holding data

9

song1 = Song.new("Yesterday")

empty = Array.new

puts "Yesterday".length # prints 9

puts "Rick".index("c") # prints 2

puts 42.even? # prints true

5.to_s # returns "5"

A simple program

 File extension: .rb
 Rubymine environment, empty project

10

puts "Hello world!"

puts "It is now #{Time.now}"

prints Hello world!

It is now 2014-03-06 09:28:40 +0100

def say_goodnight(name)

 result = "Good night, #{name}"

 return result

end

puts say_goodnight('Pa') # Good night, Pa

def say_goodnight(name)

 result = "Good night,\n#{name.capitalize}"

 return result

end

puts say_goodnight('mary') # Good night,

 # Mary

Syntax basics

 Ruby is case sensitive

 Ruby indentation convention: 2 spaces per
indent, never use tabs

 Anything following a # is a comment

 Expressions are delimited by newlines (or ;
if in the same line)

 Parentheses are optional

 Convention for names

11

Example of parentheses

12

def find_document (title, author)

 # body omitted

end

...

find_document ('Frankenstein','Shelley')
...

def words()

 @content.split()

end

...

if (word.size < 100)

 puts 'The document is not very long.'

end

def find_document title, author

 # body omitted

end

...

find_document 'Frankenstein','Shelley'
...

def words

 @content.split

end

...

if word.size < 100

 puts 'The document is not very long.'

end

Variables

 Ruby is weakly typed: variables receive
their types during assignment

 Four types of variable
◦ Global variables (visible throughout a whole

Ruby program) start with ‘$’
◦ Local variables (defined only within the current

method or block) start with a lowercase letter
or ‘_’
◦ Instance variables start with ‘@’
◦ Class variables start with ‘@@’

 13

Ruby naming conventions

 Initial characters
◦ Local variables, method parameters, and method

names: lowercase letter or ‘_’
◦ Global variable: ‘$’
◦ Instance variable: ‘@’
◦ Class variable: ‘@@’
◦ Class names, module names, constants: uppercase

letter

 Multi-word names
◦ Instance variables: words separated by

underscores
◦ Class names: use MixedCase (or “CamelCase”)

14

Ruby naming conventions

 End characters
◦ ? Indicates method that returns true or false to a

query
◦ ! Indicates method that modifies the object rather

than returning a copy

15

puts 42.even? # prints true

a = [1,2,3]

a.reverse

print a # prints [1,2,3]

a.reverse!

print a # prints [3,2,1]

Syntactic structure

 The basic unit of syntax in Ruby is the
expression

 The Ruby interpreter evaluates expressions,
producing values

 The simplest expressions are primary
expressions, which represent values directly
◦ e.g. number and string literals, keywods as true,

false, nil, self

 More complex values can be written as
compound expressions

16

[1,2,3] # an array literal

{1=>"one", 2=>"two"} # a hash literal

1..3 # a range literal

Syntactic structure

 Operators perform computations on values
 Compound expressions are built by combining

simpler sub-expressions with operators

 Expressions can be combined with Ruby
keywords to create statements

17

1 # a primary expression

x = 1 # an assignment expression

x = x + 1 # an expression with two operators

if x < 10 then # if this expression is true

 x = x + 1 # then execute this statement

end # marks the end of a conditional

Assignment

 Traditional assignment

 Abbreviated assignment (combined with
binary operators)

 Parallel assignment

18

x = 1 # set the value x to the value 1

x += 1 # set the value x to the value x+1

x,y,z = 1,2,3 # set x to 1, y to 2, z to 3

x,y = y,x # parallel: swap the value of x and y

x = y; y = x # sequential: x and y have the same

 # value

x = 1,2,3 # x = [1,2,3]

x, = 1,2,3 # x = 1, the rest is discarded

x,y,z = 1,2 # set x to 1, y to 2, z to nil

True, false and nil

 Are keywords in Ruby
 ‘true’ and ‘false’ are the two boolean values
◦ ‘true’ is not 1, and ‘false’ is not 0

 ‘nil’ is a special value reserved to indicate the
absence of value

 When Ruby requires a boolean value, ‘nil’ behaves
like ‘false’, and any other values behaves like
‘true’

19

o == nil # is the object o nil?

o.nil? # the same

Method invocation

 A method invocation expression is composed
of four parts (only the second is required)

◦ An arbitrary expression whose value is the object
on which the method is invoked followed by a ‘.’ or
‘::’ (if omitted, the method is invoked on ‘self’)
◦ The name of the method

◦ The argument values being passed to the method
(parentheses are optional)

◦ An optional block of code delimited by curly
braces or a ‘do..end’ pair

20

Method invocation

 Example

21

puts "Hello world" # puts invoked on self, with

 # one string argument

Math.sqrt(2) # sqrt invoked on object Math

 # with one argument

message.lenght # length invoked on object message

 # with no arguments

a.each {|x| puts x} # each invoked on object a

 # with an associated block

Control structures

 Familiar set of control structures (most…)
 Include
◦ Conditionals: if, unless, case

◦ Loops: while, until, for

◦ Iterators: times, each, map, upto

◦ Flow-altering statements like return and break

◦ Exceptions

◦ The special-case BEGIN and END statements

◦ Threads and other “obscure” control structures:
fibers and continuations

22

If and unless statements

 The usual: if, else, elsif

 Something new: unless
◦ With unless the body of a statement is executed

only if the condition is false

◦ Less mental energy to read and understand

23

if (score > 10)

 puts "You have done very good!"

elsif (score > 5)

 puts "You have passed."

else

 puts "You have failed :-("

end

Example

 Concept of read-only document

24

Class Document

 attr_accessor :writable

 attr_reader :title, :author, :content

 ...

 def title= (new_title)

 if @writable

 @title = new_title

 end

end

def title= (new_title)

 unless @read_only

 @title = new_title

 end

end

def title= (new_title)

 if not @read_only

 @title = new_title

 end

end

While and until statements

 The usual: while

◦ Loops while condition is true

 Something new: until

◦ Loops until condition becomes true

25

while ! document.is_printed?

 document.print_next_page

end

until document.is_printed?

 document.print_next_page

end

Modifier form

 If, unless, while and until can be considered operators
in which the value of the right-hand expression
affects the execution of the left-hand one
◦ Advantage: collapse in a single sentence for readability

26

@title = new_title if @writable

document.print_next_page while document.pages_available?

document.print_next_page until document.printed?

unless @read_only

 @title = new_title

end
@title = new_title unless @read_only

For and each statements

 The for loop is very familiar

 However, each is more frequently used

27

fonts = ['courier', 'times roman', 'helvetica']

...

for font in fonts

 puts font

end

fonts = ['courier', 'times roman', 'helvetica']

...

fonts.each do |font|

 puts font

end

Case statement
 Many variants
◦ Note: everything in Ruby returns a value

28

case title

when 'War and peace'

 puts 'Tolstoy'

when 'Romeo and Juliet'

 puts 'Shakespeare'

else

 puts "Don’t know"
end

author = case title

 when 'War and peace'

 'Tolstoy'

 when 'Romeo and Juliet'

 'Shakespeare'

 else

 "Don’t know"
end

author = case title

 when 'War and peace' then 'Tolstoy'

 when 'Romeo and Juliet' then 'Shakespeare'

 else "Don’t know"
end

Iterators

 Although while, until and for are a core
part of the Ruby language, it is more
common to write loops using special
methods known as iterators

 Iterators interact with the block of code
that follow them

 Numeric iterators

 Iterators on enumerable objects

29

Block structure

 Ruby programs have a block structure
◦ Blocks of nested code

 Blocks are delimited by keywords or
punctuation and by convention are indented
two spaces relative to the delimiters

 Two kinds of blocks in Ruby
◦ “True blocks”: chunks of code associated with or

passed to iterator methods

◦ “Body”: simply a list of statement that represent
the body of class definition, a method definition, a
while loop or whatever

 30

Block structure

 Example of “true blocks”
◦ Curly braces, if single line, or do .. end

keywords

 Example of “bodies”
◦ No curly braces, but keyword .. end

◦ Methods begin with the keyword, ‘def’, and
are terminated with an ‘end’
 31

3.times { print "Ruby! " }

1.upto(10) do |x|

 print x

end

if x < 10 then

 x = x + 1

end

Numeric iterators

 upto: invokes the associated block once for each
integer between the one on which it is invoked and
the argument

 downto: the same but from a large integer to a
smaller one

 times: when invoked on the integer n, it invokes the
associated block n times, passing values 0 through
n-1

 step: numeric iteration with floating-point numbers

32

4.upto(6) {|x| print x} # prints 456

3.times {|x| print x} # prints 012

start at 0 and iterates in step of 0.1 until it

reaches Math::PI

0.step(Math::PI, 0.1) {|x| print x}

each iterator

 Defined on a number of classes that are collections
of enumerable objects: Array, Hash, Range, …

 each passes each element of the collection to its
associated block

 Defined also for the Input/Output object

33

[1,2,3].each {|x| print x} # prints 123

(1..3).each {|x| print x} # prints 123

['cat', 'dog', 'horse'].each {|name| print name, " "}

cat dog horse

File.open(filename) do |f| # open named file, pass as f

 f.each {|line| print line} # print each line in f

end # end block

Other enumerable iterators

 ‘collect’ or ‘map’: executes its associated block for
each element of the enumerable object, and
collects the return values into an array

 ‘select:’ executes its associated block for each
element and returns an array of the elements for
which the block returns a value other than false or
nil

 ‘reject’: the opposite of select (false or nil)

34

squares = [1,2,3].collect {|x| x*x} # [1,4,9]

evens = (1..10).select {|x| x%2 == 0} # [2,4,6,8,10]

odds = (1..10).reject {|x| x%2 == 0} # [1,3,5,7,9]

Statements that alter the control flow

 ‘return’: causes a method to exit and return a
value to its caller

 ‘break’: causes a loop (or iterator) to exit

 ‘next’: causes a loop (or iterator) to skip the rest of
the current iteration and move to the next one

 ‘redo’: restarts a loop (or iterator) from the
beginning

 ‘retry’: restarts an iterator, reevaluating the entire
expression; used in exception handling

 ‘throw/catch’: exception propagation and handling
mechanism

35

BEGIN and END

 BEGIN and END are reserved words in Ruby
that declare code to be executed at the very
beginning and very end of a program

36

BEGIN {

 # Global initialization code goes here

}

END {

 # Global shutdown code goes here

}

Basic data types

 Numeric classes

 Strings

 Ranges

 Arrays

 Hashes

 Symbols

 Regular expressions

37

Numeric classes hierarchy

 Five built-in classes
 Three more in the standard library
 All numbers in Ruby are instances of Numeric

 If an integer value fits within 31 bits it is an instance
Fixnum, otherwise it is a Bignum

38

Numeric

Integer

Fixnum BigNum

Float
Complex
(standard
library)

Bigdecimal
(standard
library)

Rational
(standard
library)

Examples of literals

39

#Integer literals

0

123

1234567891234567890

1_000_000_000 # One billion

0377 # Octal representation of 255

0b1111_1111 # Binary representation of 255

0xFF # Hexadecimal representation of 255

#Floating-point literals

0.0

-3.14

6.02e23 # This means 6.02 x 10^23

1_000_000.01 # One million and a little bit more

Operators

 Arithmetic

◦ +, -, *, /, %, ** (exponentiation)

 Comparison

◦ ==, <=> (returns -1, 0 or 1), <, <=, >=, >,
=~ (matching), eql? (test of equality of type
and values)

 Logical

◦ and, or, not

40

Numeric methods

 Also number literals are objects!

 Numeric and its subclasses define many useful
methods for determining the class or testing
the value of a number

41

General predicates

0.zero? # => true (is this number zero?)

1.0.zero? # => false

1.nonzero? # => true

1.integer? # => true

1.0.integer? # => false

1.scalar? # => false: not a complex number

1.0.scalar? # => false: not a complex number

Complex(1,2).scalar? # => true

Numeric methods

42

Integer predicates

0.even? # => true

1.even? # => false

Float predicates

ZERO, INF, NAN = 0.0, 1.0/0.0, 0.0/0.0 # constants

ZERO.finite # => true (is this number finite?)

INF.finite # => false

NAN.finite # => false

ZERO.infinite # => nil (infinite positive or negative?)

INF.infinite # => 1

-INF.infinite # => -1

NAN.infinite # => nil

ZERO.nan # => false (is this number not-a-number?)

INF.nan # => false

NAN.nan # => true

Numeric methods

43

Rounding methods

1.1.ceil # => 2: smallest integer >= argument

-1.1.ceil # => -1: smallest integer >= argument

1.9.floor # => 1: largest integer <= argument

-1.9.floor # => -2: largest integer <= argument

1.1.round # => 1: round to nearest integer

0.5.round # => 1: round toward positive infinity

-0.5.round # => -1: round toward negative infinity

1.1.truncate # => 1: chop off fractional part

-1.1.to_i # => -1: same as truncate

Absolute value and sign

-2.0.abs # => 2.0: absolute value

-2.0<=>0.0 # => -1: sign

Constants

Float::MAX # may be platform dependent

Float::MIN # may be platform dependent

Float::EPSILON # difference between adjacent floats

The Math module

44

Constants

Math::PI # => 3.14159265358979

Math::E # => 2.71828182845905

Roots

Math.sqrt(25.0) # => 5.0: square root

27.0**(1.0/3.0) # => 3.0: cube root with ** operator

Logaritms

Math.log10(100.0) # => 2.0: base-10 logarithm

Math.log(Math::E**3) # => 3.0: natural logarithm

Math.log2(8) # => 3.0: base-2 logarithm

...

#Trigonometry

...

Text

 In Ruby text is represented by objects of
the String class

 Textual patterns are represented as
Regexp objects

◦ Syntax for including regular expressions

45

Strings

 Examples of string literals

46

'This is a simple Ruby string literal'

'Won\'t you read O\'Reilly\'s book?'

"\t\"This quote begins with a tab and ends with a newline\"\n"

Double quoted string literals may include arbitrary Ruby

expressions

"360 degrees=#{2*Math::PI} radians"

 #360 degrees=6.28318530717959 radians

When the expression is simply a global, instance or class

variable, curly braces can be omitted

$salutation = 'hello' # Define a global variable

"#$salutation world" # Use it

%q(Don't worry about escaping ' characters!)

Strings

 Multilines strings

 Here documents
◦ Begin with << or <<- followed by an identifier or

string that specifies the ending delimiter
◦ Useful for very long multiline strings

47

a_multiline_string = "this is a multiline

string"

another_one = %q{Another multiline

string}

document = <<'THIS IS THE END, MY FRIEND, THE END'

 lots and lots of text

 here, with no escaping characters

 ...

THIS IS THE END, MY FRIEND, THE END

String interpolation

 With double-quoted strings

 The sequence #{expression} is replaced by the
value of the expression

 Arbitrary complex expression are allowed in the
#{} construct

 Double-quoted strings can include newlines (\n)

48

planet = "Earth"

"Hello planet #{planet}" # String interpolation

String operators
 Operator + concatenates two strings

 Operator << appends its second operand to its first

 Operand * repeats a text a specified number of
times

49

planet = "Earth"

"Hello" + " " + planet # Produces "Hello Earth"

"Hello planet ##{planet_number}" # String interpolation

greeting = "Hello"

greeting << " " << "world"

puts greeting

ellipsis = '.' * 3 # Evaluates to '...'

a = 0

"#{a=a+1} " * 3 # Returns "1 1 1 " and not "1 2 3 "

String operators

 Operators == and != compare strings for
equality and inequality

 Operators <, <=, >, >= compare the
relative order of strings

◦ Based on caracters’ code

◦ String comparison is case sensitive

50

Characters and substrings

 Accessing characters and substrings

51

s = 'hello'

s[0] # the first character

s[s.length-1] # the last character

s[-1] # the last character

s[-2] # the second-to-last character

s[-s.length] # the first character

s[s.length] # nil: there is no character at that index

s = 'hello'

s[0,2] # "he"

s[-1,1] # "o"

s[0,0] # ""

s[0,10] # "hello"

s[s.length,1] # ""

s[s.length+1,1] # nil

s[0,-1] # nil (negative length)

Characters and substrings

 Modifying characters and substrings

52

s = 'hello'

s[-1] = "" # deletes the last character

s[-1] = "p!" # the string is now "help!"

s = 'hello'

s[0,1] = "H" # replaces first letter with H

s[s.length,0] = " world" # appends a new string

s[5,0] = "," # inserts a comma without deleting

s[5,6] = "" # deletes with no insertion

 # the string is now "Hellod"

Characters and substrings
 Indexing a string with a Range object
 Splitting a string into substrings based on a

delimiter

53

s = 'hello'

s[2..3] # "ll": characters 2 and 3

s[-3..-1] # "llo": negative indexes work too

s[0..0] # "h": one characters

s[0...0] # "": this Range is empty

s[2..1] # "": this Range is empty

s[7..10] # nil: this Range is outside the string

s = 'hello'

s[-2..-1] = "p!" # replacement: s becomes "help!"

s[0...0] = "Please " # insertion: s becomes "Please help!"

s[6..10] = "" # deletion: s becomes "Please!"

"this is it".split # ["This", "is", "it"]

"hello".split('l') # ["he", "", "o"]

Ranges

 A Range object represents the values between a
start value and an end value

 Range literals are written placing two or three
dots between the start value and the end value
◦ Two dots: range is inclusive (end value is part of the

range)

◦ Three dots: range is exclusive (end value is not part of
the range)

54

1..10 # the integers 1 through 10, including 10

1.0...10.0 # the numbers 1.0 through 10.0,

 # excluding 10.0

Ranges

 The include? method check if a value is included in a
range

 Ordering is implicit in the definition of a range
 Comparison operator ‘<=>’ which compares two

operands and evaluates to -1, 0 or 1
◦ A value can be used in a range only if it responds to this

operator

 Purposes of range: comparison and iteration

55

cold_war = 1945..1989

cold_war.include? birthdate.year

r = 'a'..'c'

r.each {|l| print "[#{l}]"} # prints "[a][b][c]"

r.step(2) {|l| print "[#{l}]"} # prints "[a][c]"

r.to_a # ['a','b','c']

Arrays

 Set of values that can be accessed by position, or
index

 Indexed with integers starting at 0
 Methods ‘size’ and ‘length’ return the number of

elements
 Negative index counts from the end of the array
◦ E.g. size – 2 is the second-to-last element

 If you try to read an element beyond the end or
before the beginning Ruby returns ‘nil’ and do not
throw an exception

 Ruby’s arrays are untyped and mutable: the
elements need not be of the same class, and they
can be changed at any time

56

Arrays
 Arrays are dinamically resizeable
 Arrays are objects: must be instantiated with ‘new’
 Examples:

57

[1, 2, 3] # array of three Fixnum objects

[0..10, 10.. 0] # array of two ranges

[[1,2],[3,4],[5]] # array of nested arrays

[x+y, x-y, x*y] # elements can be arbitrary expressions

[] # empty array has size 0

words = %w{this is a test} # same as words =

 # ['this', 'is', 'a', 'test']

empty = Array.new # []: empty array

nils = Array.new(3) # [nil, nil, nil]

nils = Array.new(4,0) # [0, 0, 0, 0]

copy = Array.new(nils) # copy of an existing array

count = Array.new(3) {|i| i+1} # [1,2,3]: three elements

 # computed from index

Arrays

 Examples:

58

a = [0, 1, 4, 9, 16]

a[0] # first element is 0

a[-1] # last element is 16

a[-2] # second-to-last element is 9

a[a.size] # last element

a[-a.size] # first element

a[8] # beyond the end: nil

a[-8] # before the beginning: nil

a[0] = "zero" # a is ["zero", 1, 4, 9, 16]

a[-1] = 1..16 # a is ["zero", 1, 4, 9, 1..16]

a[8] = 64 # a is ["zero", 1, 4, 9, 1..16, nil, nil, nil, 64]

a[-10] = 100 # error: can’t assign before beginning

Arrays
 Like strings, array can be indexed also
◦ by two integers: first element and number of elements
◦ by Range objects

 Works also for insertion and deletion

59

a = ('a'..'e').to_a # range converted to ['a','b','c','d','e']

a[0,0] # sub-array: []

a[1,1] # sub-array: ['b']

a[-2,2] # sub-array: ['d','e']

a[0..2] # sub-array: ['a','b','c']

a[-2..-1] # sub-array: ['d','e']

a[0...-1] # sub-array: ['a','b','c','d']

 # all but the last element

a[0,0] = [1,2,3] # insert elements at the beginning of a

a[0,2] = [] # delete those elements

a[-1,1] = ['z'] # replace last elements

a[-2,2] = nil # replace last two elements with nil

Array operators
 The operator ‘+’ concatenates two arrays
 The operator ‘<<’ appends an element to an existing array
 The operator ‘-’ subtracts one array to another
 The operator ‘*’ is used for repetition

60

a = [1,2,3] + [4,5] # [1,2,3,4,5]

a = a + [[6,7,8]] # [1,2,3,4,5, [6,7,8]]

a = a + 9 # error: righthand side must be an array

a = [] # start with an empty array

a << 1 # a is [1]

a << 2 << 3 # a is [1,2,3]

a << [4,5,6] # a is [1,2,3, [4,5,6]]

a.concat [7,8] # a is [1,2,3, [4,5,6], 7,8]

['a','b','c','d','a'] – ['b','c','d'] # ['a','a']

a[0] * 8 # [0,0,0,0,0,0,0,0]

Array operators
 Boolean operators ‘|’ and ‘&’ are used for union

and intersection
◦ These operators are not transitive

 Many useful methods, e.g. ‘each’

61

a = [1,1,2,2,3,3,4]

b = [5,5,4,4,3,3,2]

a | b # [1,2,3,4,5]: duplicates are removed

b | a # [5,4,3,2,1]: order is different

a & b # [2,3,4]

b & a # [4,3,2]

a = ('A'..'Z').to_a # begin with an array of letters

a.each {|x| print x} # print the alphabet, one letter

 # at the time

Hashes

 Data structures that maintain a set of objects
known as ‘keys’ and associate a ‘value’ to
each key

 Called also maps or associative arrays
◦ The array index is the key insted of an integer

 Keys are almost always symbols

62

numbers = Hash.new # create a new empty hash object

numbers["one"] = 1 # map the String "one" to the Fixnum 1

numbers["two"] = 2 # map the String "one" to the Fixnum 1

numbers["three"] = 3 # map the String "one" to the Fixnum 1

sum = numbers["one"] + numbers["two"] # retrieve values

Hash literals
 Written as a comma-separated list of key/value

pairs, enclosed in curly braces

 Symbol objects work more efficiently than strings

63

numbers = {"one" => 1, "two" => 2, "three" => 3}

numbers = {:one => 1, :two => 2, :three => 3}

succinct hash literal syntax when symbols are used

numbers = {one: 1, two: 2, three: 3}

access to hashes

grades = { "Bob" => 82, "Jim" => 94, "Billy" => 58 }

puts grades["Jim"] # 94

grades.each do |name,grade| # Bob: 82

 puts "#{name}: #{grade}" # Jim: 94

end # Billy: 58

Symbols
 The Ruby interpreter maintains a symbol table in

which it stores the names of all the classes,
methods and variables it knows about
◦ This allows to avoid most string comparison: names are

referred by their position the symbol table

 This symbols can be used also by Ruby programs

 Symbols are simply constant names that need not
to be declared and that are guaranteed to be
unique

 A symbol literal starts with ‘:’

64

:symbol # a symbol literal

:'another long symbol' # symbol with spaces

s = "string"

sym = :"#{s}" # the symbol :string

Symbols

 Symbols are often used to refer to method names

65

with constants

NORTH = 1

EAST = 2

SOUTH = 3

WEST = 4

walk(NORTH)

with symbols

walk(:north)

does the object o have an each method?

o.respond_to? :each

Symbols and hashes

 Symbols are frequently used as keys in
hashes

66

inst_section = {

 :cello => 'string',

 :clarinet => 'woodwind',

 :drum => 'percussion',

 :oboe => 'woodwind',

 :trumpet => 'brass',

 :violin => 'string'

}

inst_section[:oboe] # woodwind

inst_section[:cello] # string

inst_section['cello'] # nil

Symbols and hashes

 Symbols are so frequently used as hash keys
that Ruby 1.9 introduced a new syntax

67

inst_section = {

 :cello 'string',

 :clarinet 'woodwind',

 :drum 'percussion',

 :oboe 'woodwind',

 :trumpet 'brass',

 :violin 'string'

}

puts "An oboe is a #{inst_section[:oboe]}"

An oboe is a woodwind

Data type conversion

 Explicit conversion methods
◦ to_s: convert to String class

◦ to_i: convert to Integer class

◦ to_f: convert to Float class

◦ to_a: convert to Array class

68

Regular expressions

 Known also as ‘regexp’ or ‘regex’
 Describe a textual pattern

 Ruby’s Regexp class implements regular
expressions and define pattern matching
methods and operators

 Regexp literal are delimited by ‘/’

69

/Ruby?/ # matches the text "Rub" followed by

 # an optional "y"

Regular expressions

 ^[a-zA-Z0-9._-]+

◦ The email address must begin with alpha-numeric characters (both
lowercase and uppercase characters are allowed): it may have periods,
underscores and hyphens

 @

◦ There must be a ‘@’ symbol after initial characters
 [a-zA-Z0-9.-]+

◦ After the ‘@’ sign there must be some alpha-numeric characters; it can
also contain period and and hyphens

 \.

◦ After the second group of characters there must be a period (‘.’); this is
to separate domain and subdomain names.

 [a-zA-Z]{2,4}$

◦ Finally, the email address must end with two to four alphabets; {2,4}
indicates the minimum and maximum number of characters

70

^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$

Examples of e-mail patterns

71

[a-zA-Z0-9!#$%&'*+/=?^_`{|}~-]+

(?:\.[a-zA-Z0-9!#$%&'*+/=?^_`{|}~-]+)*

@(?:[a-zA-Z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+

[a-z0-9](?:[a-z0-9-]*[a-z0-9])?

[a-zA-Z0-9!#$%&'*+/=?^_`{|}~-]+

(?:\.[a-zA-Z0-9!#$%&'*+/=?^_`{|}~-]+)*

@(?:[a-zA-Z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+

(?:[a-zA-Z]{2}|com|org|net|edu|gov|mil|biz|

info|mobi|name|aero|asia|jobs|museum)\b

Regular expression basic syntax
 Characters

72

Regular expression basic syntax
 Character classes or character sets [abc]

73

Regular expression basic syntax

 Character classes or character sets [abc]

 Dot

74

Regular expression basic syntax
 Anchors

75

Regular expression basic syntax

 Word boundaries

 Alternation

 76

Regular expression basic syntax
 Quantifiers

77

Regular expression basic syntax
 Quantifiers

78

Examples of Regex in Ruby (1/3)

79

Literal characters

/ruby/ # match "ruby"

Character classes

/[Rr]uby/ # match "Ruby" or "ruby"

/rub[ye]/ # match "ruby" or "rube"

/[aeiou]/ # match any lowercase vowel

/[0-9]/ # match any digit

/[a-z]/ # match any lowercase ASCII character

/[A-Z]/ # match any uppercase ASCII character

/[a-zA-Z0-9]/ # match any of the above

/[^aeiou]/ # match anything other than a lowercase vowel

/[^0-9]/ # match anything other than a digit

Special character classes

/./ # match any character except newline

/d/ # match a digit

/D/ # match a non-digit

/s/ # match a whitespace character [\t\r\n\f]

/S/ # match a non-whitespace character

/w/ # match a single word character: [a-zA-Z0-9_]

/W/ # match a non-word character: [^a-zA-Z0-9_]

Examples of Regex in Ruby (2/3)

80

Repetition

/ruby?/ # match "rub" or "ruby": "y" is optional

/ruby*/ # match "rub" plus 0 or more "y"

/ruby+/ # match "rub" plus 1 or more "y"

/\d{3}/ # match exactly 3 digits

/\d{3,}/ # match 3 or more digits

/\d{3,5}/ # match 3, 4 or 5 digits

Nongreedy repetition: match the smallest number of

repetitions

/<.*>/ # greedy repetition: match "<ruby>perl>"

/<.*?>/ # nongreedy repetition: match "<ruby>"

Grouping with parentheses

/\D\d+/ # no group: repeat \d

/(\D\d)+/ # group: repeat \d\D pair

/([Rr]uby(,)?)+/ # match "Ruby", "Ruby, ruby, ruby", ecc.

Backreferences: matching a previously matched group again

 # \1 matches whatever the first group matched

 # \2 matches whatever the second group matched

/([Rr]uby&\1ails/ # match "ruby&rails" or "Ruby&Rails"

/(['"])[^\1]*\1/ # single or double quoted string

Examples of Regex in Ruby (3/3)

81

Alternatives

/ruby|rube/ # match "ruby" or "rube"

/rub(y|le)/ # match "ruby" or "ruble"

/ruby(!+|\?)/ # match "ruby" followed by one or more ! or one ?

Anchors: specifying match position

/^Ruby/ # match "Ruby" at the start of a string

/Ruby$/ # match "Ruby" at the end of a string

/\ARuby/ # match "Ruby" at the start of a string

/Ruby\Z/ # match "Ruby" at the end of a string

/\bRuby\b/ # match "Ruby" at a word boundary

/\bruby\B/ # \B is a non-word boundary

 # match "rub" in "ruby" or "rube" but not alone

/Ruby(?=!)/ # match "Ruby" if followed by an !

/Ruby(?!!)/ # match "Ruby" if not followed by an !

Special syntax with parentheses

/R(?#comment)/ # match "R", all the rest is a comment

/R(?i)uby/ # case insensitive while matching "uby"

/R(?i:uby)/ # same thing

Pattern matching with regular
expressions

 Ruby’s basic pattern matching operator is ‘=~’
◦ One operand is a regular expression and the other is a

string

 ‘=~’ checks its string operand to see if it, or any
substring, matches the pattern specified by the
regular expression
◦ If a match is found, it returns the string index at which

the first match begin
◦ If not, it returns ‘nil’

82

pattern = /Ruby?/i/ # match "Rub" or "Ruby", case insensitive

pattern =~ "backrub" # returns 4

"rub ruby" =~ pattern # returns 0

pattern =~ "r" # returns nil

Pattern matching with regular
expressions

 After any succesfull (non-nil) match, the global
variable ‘$~’ holds a MatchData object which
contains complete information about the match

83

"hello" =~ /e\w{2}/ # match an e followed by 2 word characters

$~.string # "hello" : the complete string

$~.to_s # "ell" : the portion that matched

$~.pre_match # "h" : the portion before the match

$~.post_match # "o" : the portion after the match

Classes
 Creation

 Instantiation

 Defining a method: initialization
◦ The initialize method is special: the new methosd

creates an instance object and then automatically
invokes the initialize method on that instance

◦ The arguments passed
to new are also
passed to initialize

◦ @x and @y are
instance variables

84

class Point

end

p = Point.new

p.class # Point

p.is_a? Point # true

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

end

p = Point.new(0,0)

Classes

 Accessor methods
◦ To make variable values accessible

85

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

 def x # the accessor method for @x

 @x

 end

 def y # the accessor method for @y

 @y

 end

end

p = Point.new(1,2)

q = Point.new(p.x*2, p.y*3)

Classes example

 Defining operators

86

class Point

 attr_reader :x :y # define accessor methods

 def initialize(x,y)

 @x, @y = x, y

 end

 def +(other) # define + to do vector addition

 Pont.new(@x + other.x, @y.other.y)

 end

 def -@ # define unary - to negate coordinates

 Pont.new(-@x, -@y)

 end

 def *(scalar) # define * to do scalar multiplication

 Pont.new(@x*scalar, @y*scalar)

 end

Subclasses and inheritance

87

 Ruby has a class hierarchy in form of a tree

◦ The BasicObject class in the root of the tree

 Multiple inheritance is not possible

◦ However, modules allow to import methods

◦ Modules are named group of methods, constants
and class variables, but cannot be instantiated
and do not have a hierarchy (standalone)

 Extending a class

class Point3D is a subclass of class Point

class Point3D < Point

end

Ruby vs. Java (I)

 Like Java, in Ruby:

◦ Memory is managed via garbage collector

◦ Objects are strongly typed

◦ There are public, private, and protected
methods

◦ There are embedded doc tools (RDoc)

88

Ruby vs. Java (II)

 Unlike Java, in Ruby:

◦ You use the end keyword after defining things
like classes, instead of braces around blocks of
code

◦ require instead of import

◦ All member variables are private

◦ nil instead of null

◦ There is no casting

◦ Everything is an object

89

Esercizio 1: stringhe
 Le stringhe si possono unire almeno in due modi: concatenandole

(+ o <<) o interpolandole (#{})

 Definite due variabili ‘nome’ ‘cognome’, assegnando il vostro
valore

 Provate a stampare le stringhe nome o cognome con puts e print:
differenze?

 Stampate Io mi chiamo nome e cognome. usando i diversi metodi
(con +, << e l’interpolazione)

 Le doppie virgolette e le virgolette singole sono hanno lo stesso
effetto? Provare

 Provare ad esprimere l’espressione stampa il contenuto della
variabile nome se questa non è vuota, sia nella forma
‘tradizionale’ che nella ‘modifier form’

 Date le stringhe ‘Ciao mondo’ e ‘Ciao_mondo’ provate ad
applicare il metodo ‘split’ ad entrambe in modo da stampare
[“Ciao”, “mondo”]

90

Esercizio 2: array e range

 Definite l’array vett = [15,30,90,22,70] e
provate a stamparlo: puts o print?

 Provate ad applicare i metodi first, last, lenght

 Provate ad applicare i metodi sort, reverse,
shuffle e a stampare il vettore: cosa è successo?

 Inserite un altro element in vett, usando push e
<< : cambia qualcosa?

 Si può aggiungere una stringa a vett? Perché?

 Provate a stampare i primi tre elementi del
vettore, usando sia i range inclusivi che esclusivi

91

Esercizio 3: blocchi

 Prima immaginate cosa fanno le istruzioni

animals = %w{cat dog horse rabbit owl}
animals.each {|anim| puts anim}

(1..5).each {|i| puts 2*i}

puts ('a'..'z').to_a.shuffle[0..7].join

my_str = "blah, blah"
puts my_str.split(",")[0].split("")[2] * 3

 E poi provatele…

92

Licenza d’uso

 Queste diapositive sono distribuite con licenza Creative
Commons “Attribuzione - Non commerciale - Condividi allo
stesso modo 2.5 Italia (CC BY-NC-SA 2.5)”

 Sei libero:
◦ di riprodurre, distribuire, comunicare al pubblico, esporre in

pubblico, rappresentare, eseguire e recitare quest’opera

◦ di modificare quest'opera

 Alle seguenti condizioni:
◦ Attribuzione — Devi attribuire la paternità dell’opera agli autori

originali e in modo tale da non suggerire che essi avallino te o il
modo in cui tu usi l'opera.

◦ Non commerciale — Non puoi usare quest’opera per fini
commerciali.

◦ Condividi allo stesso modo — Se alteri o trasformi quest’opera,
o se la usi per crearne un’altra, puoi distribuire l’opera risultante
solo con una licenza identica o equivalente a questa.

 http://creativecommons.org/licenses/by-nc-sa/2.5/it/
93

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/

