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ABSTRACT

We study the growth rate of stars via stellar collisions in dense star clusters, calibrating our analytic calcu-
lations with directN-body simulations of up to 65,536 stars, performed on the GRAPE family of special-pur-
pose computers. We find that star clusters with initial half-mass relaxation timesd25 Myr are dominated by
stellar collisions, the first collisions occurring at or near the point of core collapse, which is driven by the seg-
regation of the most massive stars to the cluster center, where they end up in hard binaries. The majority of
collisions occur with the same star, resulting in the runaway growth of a supermassive object. This object can
grow up to�0.1% of the mass of the entire star cluster and could manifest itself as an intermediate-mass black
hole (IMBH). The phase of runaway growth lasts until mass loss by stellar evolution arrests core collapse.
Star clusters older than about 5Myr and with present-day half-mass relaxation timesd100Myr are expected
to contain an IMBH.

Subject headings: binaries: close — galaxies: bulges — galaxies: star clusters —
globular clusters: general — methods:N-body simulations — stellar dynamics

1. INTRODUCTION

Using the Chandra X-Ray Observatory, Kaaret et al.
(2000, 2001) andMatsumoto et al. (2000, 2001) recently dis-
covered nine bright X-ray sources in the irregular galaxy
M82. Their brightest source (No. 7 in Table 1 ofMatsumoto
et al. 2001) has a luminosity of 9� 1040 ergs s�1 in the 0.2–
10 KeV band, corresponding to the Eddington luminosity
of a �600 M� compact object. The high luminosity and
rather soft X-ray spectrum of the object indicates that it
may be an intermediate-mass black hole (IMBH) with a
mass of at least 600 M� (Kaaret et al. 2001; Matsumoto et
al. 2001).

An optical follow-up in the infrared (J, H, and K 0 bands)
with the CISCO instrument on the Subaru Telescope
revealed a star cluster with an estimated mass of a few 106

M� at a position consistent with the X-ray location of the
IMBH (Usuda et al. 2001). This star cluster appears to be
very young (d10 Myr), since it is extremely blue and
expanding shells of molecular gas have been discovered in
its vicinity (Matsushita et al. 2000), typical for a star-form-
ing region of a fewmillion years.

Matsushita et al. (2000) estimate that the environment
has an age of only a fewmillion years.

More unusually bright X-ray point sources have been dis-
covered in the early spiral galaxies NGC 2403 (Kotoku et al.
2000) and NGC 4565 (Mizuno et al. 1999b). Most remark-
able, however, is the discovery of many bright X-ray sources
in the ‘‘ Antennae ’’ system (NGC 4038/4039) by Fabbiano,
Zezas, & Murray (2001), Zezas & Fabbiano (2002), and
Zezas et al. (2002), also using Chandra. These authors con-
clude that many of these sources may be e100 M� accret-
ing black holes (although alternative explanations exist—

see, e.g., Mizuno 1999a; King et al. 2001). The Antennae
contain many young star clusters with characteristics simi-
lar to those found in M82 (Mengel et al. 2001). However, it
is not yet clear how many of the X-ray sources in the Anten-
nae are associated with these clusters (Zezas & Fabbiano
2002). There may also be an example of an IMBH in our
own Galaxy, since recent reverberation mapping of the
globular cluster M15 by Gebhardt et al. (2000) and K. Geb-
hardt et al. (2001, private communication) strongly suggests
that the cluster may harbor a �2500 M� black hole at its
center.

Several possible mechanisms for forming IMBHs in star
clusters have recently been suggested. Miller & Hamilton
(2002) have studied the possibility that an IMBH may form
slowly (on a Hubble timescale) by occasionally encounter-
ing and devouring other cluster stars. Mouri & Taniguchi
(2002) have proposed a much more rapid black hole merger
mechanism, operating in very high density (106 black holes
pc�3) environments on timescales as short as�107 yr. In this
paper we consider the possibility of forming a massive
object in a young star cluster due to repeated collisions dur-
ing an early phase of core collapse.

Sanders (1970), Lee (1987), and Quinlan & Shapiro
(1990) have studied the possibility of collision runaways in
spherical stellar systems of e107 stars with high (>100 km
s�1) velocity dispersions. All studies began with stars of
equal masses and found that, for sufficiently high densities
and velocity dispersions, runaway mergers could indeed
occur. Quinlan & Shapiro observed that the collision time-
scale for massive stars decreases faster with increasing mass
than does the main-sequence lifetime and concluded that
clusters with initial relaxation times of ð1 5Þ � 108 yr could
grow a massive e100 M� object by multiple mergers.
Sanders’s (1970) Monte Carlo calculations neglected the
effects of mass segregation and found collision runaways
only after mergers had driven the cluster into a state of high
central density. However, in the self-consistent Fokker-
Planck models of Lee and Quinlan & Shapiro, the runaway
started well before core collapse occurred. All authors con-
cluded that runaways would not occur in clusters contain-
ing less than �106–107 stars because three-body binary
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heating in small-N systems provided sufficient energy to
reverse core collapse before the runaway process could
begin.

In contrast to the studies just described, the models dis-
cussed in this paper begin with a broad range of stellar
masses. Vishniac (1978) demonstrated that a Salpeter (1955)
initial mass function is Spitzer (1969) unstable. As a result,
young star clusters may experience core collapse on the
timescale on which the most massive stars segregate to the
cluster center. This timescale may be much shorter than the
main sequence lifetimes of the stars involved. Vishniac sug-
gested that such a prompt collapse might lead to the forma-
tion of a massive compact object. We find that early core
collapse in a relatively low-N star cluster may result in a col-
lision runaway, as long as the most massive stars remain on
the main sequence while the collapse occurs.

The possibility of multiple collisions involving the same
star in a dense star cluster was demonstrated convincingly
by Portegies Zwart et al. (1999), using the special-purpose
GRAPE-4 (Makino et al. 1997) to speed up their direct
N-body calculations with up to 12,288 stars. They con-
cluded that, even in small clusters, runaway collisions may
lead to the growth of a single massive star. The earlier argu-
ments that three-body binary heating would drive the
expansion of the cluster core appear to be unimportant in
these simulations, since mergers between stars tend to
destroy binaries before they can heat the cluster effectively.
Indeed, in contrast to the underlying assumptions of pre-
vious collision studies, dynamically formed binaries in dense
clusters act as a catalyst for stellar mergers, boosting the col-
lision rate far beyond the simple two-body expressions used
in earlier work. The N-body simulations covered a rather
limited part of the available parameter space, but the initial
conditions were selected to mimic known dense star clusters
in the Galaxy and the LargeMagellanic Cloud.

If the bright X-ray source in M82 does indeed correspond
to a compact object of e600 M�, this IMBH could have
been formed by a collision runaway resulting from collapse
of the cluster core early in the cluster. In fact, as we will see,
it is quite natural to expect a �103 M� black hole in a mil-
lion solar mass star cluster. We begin by deriving (x 2) some
simple analytic expressions describing the dynamical behav-
ior observed in cluster simulations. In x 3 we calibrate these
relations using direct N-body simulations. We then (x 4)
extend these results to derive simple relations between black
hole formation and cluster parameters.

2. RUNAWAY GROWTH OF A MASSIVE OBJECT IN
A DENSE STAR CLUSTER

2.1. Core Collapse and the First Collision

A star cluster is a self-gravitating group of stars. As long
as stellar evolution remains relatively unimportant, the clus-
ter’s dynamical evolution is dominated by two-body relaxa-
tion, with characteristic timescale (Spitzer 1987, p. 191)

trlx ¼
R3

c

GMc

� �1=2
Nc

8 ln�c
; ð1Þ

the half-mass relaxation time. Here G is the gravitational
constant,Mc is the total mass of the cluster,Nc � Mc=hmi is
the number of stars, and Rc is the characteristic (half-mass)
radius of the cluster. The Coulomb logarithm

ln�c ’ lnð0:1NcÞ � 10 typically. In convenient units the
two-body relaxation time becomes

trlx ’ 1:9 Myr
Rc

1 pc

� �3=2
Mc

1 M�

� �1=2
1 M�

hmi ln�cð Þ�1 : ð2Þ

The dynamical evolution of the star cluster drives it toward
core collapse (Antonov 1962; Spitzer & Hart 1971) in which
the central density runs away to a formally infinite value in a
finite time. In an isolated cluster in which all stars have the
same mass, core collapse occurs in a time tcc ’ 15trlx (Cohn
1980).

Realistic clusters have a broad range in initial stellar
masses, generally from mmin ’ 0:1 M� to mmax ’ 100 M�,
with mean mass hmi ranging from �0.39 M� (Salpeter
1955) to about 0.65M� (Scalo 1986), depending on the spe-
cific mass function adopted. During the early evolution of
the cluster, massive stars sink toward the cluster center via
dynamical friction. Approximating the cluster structure as
an isothermal sphere, we find (Binney & Tremaine 1987,
eq. [7-25]) that a star of massm at distance r from the cluster
center drifts inward at a rate given by

r
dr

dt
¼ �0:43

Gm

Vc
ln�c : ð3Þ

Here Vc is the cluster velocity dispersion. Using equation
(2), we can integrate equation (3) with respect to time to
obtain the dynamical friction in-spiral timescale

tf ¼ 3:3
hmi
m

trlx : ð4Þ

This is the time taken for a star of massm to sink to the clus-
ter center from a circular orbit at initial distance r4rcore.

In a multimass system, core collapse is driven by the accu-
mulation of the most massive stars in the cluster center. This
process takes place on a dynamical friction timescale (eq.
[4]). Empirically, we find, for initial mass functions of inter-
est here, that core collapse (actually, the appearance of the
first persistent dynamically formed binary systems) occurs
at about

tcc ’ 0:20trlx : ð5Þ

This core-collapse time is taken in the limit where stellar
evolution is unimportant, i.e., where stellar mass loss is neg-
ligible and the most massive stars survive until they reach
the cluster center.

The collapse of the cluster core may initiate physical colli-
sions between stars. The product of the first collision is
likely to be among the most massive stars in the system and
to be in the core. This star is therefore likely to experience
subsequent collisions, resulting in a collision runaway (see
Portegies Zwart et al. 1999). The maximum mass that can
be grown in a dense star cluster if all collisions involve the
same star ismr, where

dmr

dt
¼ Ncollh�micoll : ð6Þ

HereNcoll and h�micoll are the average collision rate and the
average mass increase per collision (assumed independent).
We now discuss these quantities in more detail. In x 3 we
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present some N-body results that both motivated and cali-
brate the following discussion.

2.2. The Collision RateNcoll

A key result from our simulations is the fact that colli-
sions between stars generally occur in dynamically formed
(‘‘ three body ’’) binaries. The collision rate is therefore
closely related to the binary formation rate, which we now
estimate.

The flux of energy through the half-mass radius of a clus-
ter during one half-mass relaxation time is on the order of
10% of the cluster potential energy, largely independent of
the total number of stars or the details of the cluster’s inter-
nal structure (Goodman 1987). For a system without pri-
mordial binaries this flux is produced by heating due to
dynamically formed binaries (Makino & Hut 1990). It is
released partly in the form of scattering products that
remain bound to the system and partly in the form of poten-
tial energy removed from the system by escapers recoiling
out of the cluster (Hut & Inagaki 1985). Makino & Hut
argue, for an equal-mass system, that a binary generates an
amount of energy on the order of 102kT via binary–single-
star scattering (where the total kinetic energy of the stellar
system is ð3=2NÞckT). This quantity originates from the
minimum binding energy of a binary that can eject itself fol-
lowing a strong encounter. Assuming that the large-scale
energy flux in the cluster is ultimately powered by binary
heating in the core, it follows that the required formation
rate of binaries via three-body encounters is

nbf ’ 10�3 Nc

trlx
: ð7Þ

For systems containing significant numbers of primordial
binaries, which segregate to the cluster core, equivalent
energetic arguments (Goodman & Hut 1989) lead to a simi-
lar scaling for the net rate at which binary encounters occur
in the core.

The above arguments apply to star clusters comprising
identical point-mass stars. In a cluster with a range of stellar
masses, three-body binaries generally form from stars that
are more massive than average. After repeated exchange
interactions, the binary will consist of two of the most mas-
sive stars in the cluster. Conservation of linear momentum
during encounters with lower mass stars means that the
binary receives a smaller recoil velocity, making it less likely
to be ejected from the cluster. The binary must therefore be
considerably harder—e103kT—before it is ejected follow-
ing a encounter with another star (see Portegies Zwart &
McMillan 2000).

However, taking the finite sizes of real stars into account,
it is quite likely that such a hard binary experiences a colli-
sion rather than being ejected. A strong encounter between
a single star and a hard binary generally results in a resonant
interaction. Three stars remain in resonance until at least
one of them escapes or a collision reduces the three-body
system to a stable binary. For harder binaries it becomes
increasingly likely that a collision occurs instead of ejection
(McMillan 1986). In the calculations of Portegies Zwart et
al. (1999), most binaries experience a collision at a binding
energy of order 102kT , considerably smaller than the bind-
ing energy required for ejection. Accordingly, we retain the
above estimate of the binary formation rate (eq. [7]) and
conclude that the collision rate per half-mass relaxation

time is

Ncoll � 10�3fc
Nc

trlx
: ð8Þ

Here we introduce fc � 1, the effective fraction of dynami-
cally formed binaries that produce a collision. Note again
that equation (8) is valid only in the limit where stellar evo-
lution is unimportant.

The most massive star in the cluster is typically a member
of the interacting binary and therefore dominates the colli-
sion rate. Subsequent collisions cause the runaway to grow
in mass, making it progressively less likely to escape from
the cluster. The star that experiences the first collision is
therefore likely to participate in subsequent collisions. The
majority of collisions thus involve one particular object—
the runaway merger—generally selected by its high initial
mass and proximity to the cluster center (see Portegies
Zwart et al. 1999).

For systems containing many primordial binaries the
above argument must be modified. Since dynamically
formed binaries tend to be fairly soft—a few kT—we expect
that the fraction of interactions with primordial binaries
leading to collision is comparable to the value fc above.
However, a critical difference is that, in systems containing
many binaries, the collisions involve many different pairs of
stars, not just the binary containing the massive runaway.
For our proposed runaway scenario to operate, we must
assume that high-mass binaries are rapidly destroyed or
merge following interactions in the core, in which case the
above arguments apply. We note that, once a runaway
begins, binaries have large interaction cross sections and
hence are likely to participate in the runaway process. From
the point of view of producing massive merger products, the
worst-case scenario would be a substantial primordial pop-
ulation of wide high-mass binaries. We are currently carry-
ing out N-body simulations to investigate the behavior of
such systems.

2.3. AverageMass Increase per Collision

Once begun, the collision runaway dominates the colli-
sion cross section. The average mass increase per collision
depends on the characteristics of the mass function in the
cluster core. A lower limit for stars that participate in colli-
sions can be derived from the degree of segregation in the
cluster. Inverting equation (4) results in an estimate (still
assuming an isothermal sphere) of the minimum mass of a
star that can reach the cluster core in time t because of
dynamical friction:

mf ¼ 1:9 M�
1 Myr

t

Rc

1 pc

� �3=2 Mc

1 M�

� �1=2

ln�cð Þ�1 : ð9Þ

Thus, at time t and for a given mass m, there is a maximum
radius rðtÞ inside of which stars of mass m will have segre-
gated to the core. The stars contributing to the growth of
the runaway are likely to be among those more massive than
mf , because their number density in the core is enhanced by
mass segregation, their collision cross sections are larger,
and they contribute more to h�micoll when they do collide.

The shape of the central mass function of a segregated
cluster is not trivial to derive. In thermal equilibrium, the
central number densities of stars of different masses would
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be expected to scale as

n0ðmÞ � m3=2 dN

dm
; ð10Þ

where dN=dm is the global (Scalo) initial mass function,
which scales roughly as m�2:7 at the high-mass end (me10
M�). However, as discussed in x 3, the distribution of secon-
dary masses (i.e., the masses of the lighter stars participating
in collisions) does not follow the above simple relation.
Rather, we find that stars in the core do not reach thermal
equilibrium (a result generally consistent with earlier find-
ings by Chernoff & Weinberg 1990 and Joshi, Nave, &
Rasio 2001) and that the dynamical nature of the collisional
processes involved means that more massive stars tend to be
consumed before lower mass stars arrive in the core. In
addition, most collisions involve three-body binary forma-
tion and binary interactions in a multimass environment,
further complicating the connection between stellar den-
sities and secondary masses.

Empirically, we find that the secondary mass distribution
is quite well fitted by a power law, dN=dm / m�2:3 (coinci-
dentally very close to a Salpeter distribution). Integrating
this expression from a minimum mass of mf (and ignoring
the upper limit) results in a mean mass increase per collision
of

h�micoll ’ 4mf : ð11Þ

We neglect stars with masses less than mf . Substitution of
equation (1) into equations (9) and (11) then results in a
mass increase per collision of

h�micoll ’ 4
trlx
t
hmi ln�c : ð12Þ

Taken over the entire ‘‘ collisional ’’ lifetime of the core, it is
perhaps not surprising that the net distribution of secondary
masses tends to follow the overall distribution of high-mass
stars.

2.4. Lifetime of a Cluster in a Static Tidal Field

With simple expressions for Ncoll and h�micoll now in
hand, we return to the determination of the runaway growth
rate (eq. [6]). The evaporation of a star cluster that fills its
Jacobi surface in an external potential is driven by tidal
stripping. Portegies Zwart et al. (2001a) have studied the
evolution of young compact star clusters within �200 pc of
the Galactic center. Their calculations employed direct N-
body integration, including the effects of both stellar and
binary evolution and the (static) external influence of the
Galaxy, and made extensive use of the GRAPE-4 (Makino
et al. 1997) special-purpose computer. They found that the
mass of a typical model cluster decreased almost linearly
with time:

Mc ¼ Mc0 1� t

tdisr

� �
: ð13Þ

Here Mc0 is the mass of the cluster at birth and tdisr is the
cluster’s disruption time. Portegies Zwart et al. (2001a)
found that their model clusters dissolved within about 30%
of the two-body relaxation time at the tidal radius (defined
by substituting the tidal radius instead of the virial radius in
eq. [1]). In terms of the half-mass relaxation time, we find
tdisr ¼ ð1:6 5:4Þtrlx, depending on the initial density profile

(the range corresponds to King 1966 dimensionless depths
W0 ¼ 3–7; more centrally condensed clusters live longer).

Substituting equations (8) and (12) into equation (6) and
defining Mc0 ¼ Nchmi to rewrite equation (13) in terms of
the number of stars in the cluster, we find

dmr

dt
¼ 4� 10�3fc

Nchmi ln�c

t

¼ 4� 10�3fcMc0 ln�c
1

t
� 1

tdisr

� �
: ð14Þ

Integrating from t ¼ tcc to t ¼ tdisr results in

mr ¼ mseed þ 4� 10�3fcMc0 ln�c ln
tdisr
tcc

� �
þ tcc
tdisr

� 1

� �
:

ð15Þ

Here mseed is the seed mass of the star that initiates the run-
away growth, most likely one of the most massive stars ini-
tially in the cluster. With tcc ’ 0:2trlx, equation (15) reduces
to

mr ¼ mseed þ 4� 10�3fcMc0� ln�c ; ð16Þ

where � ’ ln tdisr=tcc þ tcc=tdisr � 1 � 1.

3. RESULTS OF N-BODY SIMULATIONS

The development of the GRAPE family of special-pur-
pose computers makes it relatively straightforward to test
and tune the above simple model using directN-body calcu-
lations. Table 1 summarizes the results of an extensive series
of detailed N-body simulations of core collapse and stellar
collisions in dense star clusters containing up to 65,536
stars. These simulations were performed using the ‘‘ Star-
lab ’’ software environment (see Portegies Zwart et al.
2001b) running on the GRAPE-6 (Makino 2001). The cal-
culations were performed with initially single stars but, as
just discussed, the presence of primordial binaries is not
likely to change the picture qualitatively. To expand on
these findings, we have performed an additional series of
simulations with �104 stars using the same software and
hardware. Further simulations of systems containing sub-
stantial numbers of primordial binaries are in progress but
are much more time consuming, because of the complexity
of following binary and multiple encounters in a large-N
context.

3.1. Core Collapse

In our isolated star clusters (three calculations) with 104

identical single point masses distributed as a Plummer
model, core collapse occurs at tcc ’ 15:2� 0:1ð Þtrlx. This
result is consistent with earlier calculations of, e.g., Cohn
(1980) andMakino (1996). Doubling the mass of 20% of the
stars reduced the core collapse time to tcc ’ 7:2trlx. Making
20% of the stars 10 or 100 times more massive reduced the
time of core collapse further, to tcc ’ 1:4trlx and
tcc ’ 0:16trlx, respectively.

The more realistic models of Portegies Zwart et al. (1999)
with 6144 and 12,288 single stars drawn from a Scalo (1986)
initial mass function also include mass loss from stellar evo-
lution. The initial density distributions for these models
were W0 ¼ 6 King (1966) models. Core collapse in these
models occurred at tcc ’ 0:19� 0:08ð Þtrlx. The slightly later
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collapse compared to the models just described, containing
104 identical point masses and a heavy component, may be
attributable to the rather different mass function, as well as
to stellar mass loss, which tends to delay core collapse.

3.2. Collision Rate

Relaxing the assumption of point masses to include finite
stellar sizes introduces collisions into our models. In all cal-
culations, the first collision occurred shortly after the forma-
tion of the first e10 kT binary by a three-body encounter,
i.e., close to the time of core collapse. When stars were given
unrealistically large radii (100 times larger than normal), the
first collisions occurred only slightly (about 5%) earlier.

As discussed earlier, the first star to experience a collision
was generally one of the most massive stars in the cluster;
this star then became the target for further collisions. In
models with initial relaxation times greater than about 30
Myr, the target star exploded in a supernova before experi-
encing runaway growth. The collision rates in these clusters
were considerably smaller than for clusters with smaller
relaxation times (see Fig. 1). As discussed in more detail in
x 4, the onset of stellar evolution terminates the collision
process; premature disruption of the cluster also ends the
period of runaway growth.

The 45N-body calculations listed in Table 1 span a broad
range of initial conditions. The number of stars varied from
1k (1024) to 64k (65,536). Initial density profiles and veloc-
ity dispersion for the models were taken from Heggie-Ram-
amani models (Heggie & Ramamani 1995) withW0 ranging

from 1 to 7. At birth, the clusters were assumed to fill their
zero-velocity (Jacobi) surfaces in the Galactic tidal field. In
most cases we adopted an initial mass function between 0.1
and 100 M� suggested for the solar neighborhood by Scalo
(1986). However, several calculations were performed using

TABLE 1

Overview of theN-Body Calculations onWhich the Collision Rates Reported in this

Paper Are Based

Model

hNi
(�k) IMF hW0i htrlxi Nrun hNcolli htlasti fcoll

R34W7 ........... 12 Scalo 7 0.4 2 16. 10.4 �3.90

KML112......... 4 �2 7 0.5 2 4.0 1.9 �3.29

KML101......... 4 �2 4 1.4 2 2.0 1.0 �3.31

KML142......... 6 �2.35 4 1.9 1 1.0 2.2 �4.13

KML111......... 4 �2 1 2.3 2 0.5 6.7 �4.74

R90W7 ........... 12 Scalo 7 2.8 1 13. 10.0 �3.98

N64R6r36....... 64 Scalo 3 3.2 1 10. 1.0 �3.82

R34W4 ........... 12 Scalo 4 3.2 3 6.3 30.0 �4.71

KML144......... 14 �2.35 4 3.9 1 2.0 2.4 �4.24

R150W7.......... 12 Scalo 7 4.5 2 10. 21.3 �4.42

6k6X5* ........... 6 Scalo 6 5.0 1 21. 47.9 �4.15

R34W1 ........... 12 Scalo 1 5.5 3 4.7 29.1 �4.88

R90W4 ........... 12 Scalo 4 8.1 5 5.8 10.0 �4.33

Nk6X10* ........ 9 Scalo 6 10.0 8 10. 18.0 �4.22

R150W4.......... 12 Scalo 4 13.0 4 8.5 7.3 �4.02

R90W1 ........... 12 Scalo 1 14.6 1 7.0 9.8 �4.24

6k6X20* ......... 6 Scalo 6 20.0 2 4.0 95.4 �5.17

R150W1.......... 12 Scalo 1 23.6 2 3.0 2.1 �3.93

R300W4.......... 12 Scalo 4 55.6 1 1.0 10.0 �5.09

R34W1 ........... 32 Scalo 1 58.1 1 4.0 35.8 �5.47

Notes.—The first column gives the name of the model, as defined in previous publications (the
names RxWx and KMLx are from Portegies Zwart et al. 2001b [see also Portegies Zwart et al.
2001a]; the other models are described in detail by Portegies Zwart et al. 1999). The next five col-
umns give the number of stars (in units of k¼ 1024), the initial mass function (Scalo 1986 or a
power law with slope as indicated), the initial King parameter W0, the initial relaxation time (in
megayears), and the number of runs performed with these initial conditions (Nrun). The final three
columns give the average number of collisions in these calculations, the moment the last collision
occurred, and the mean collision rate per megayear per star. The models indicated with an asterisk
(*) were computed without a Galactic tidal field (see Portegies Zwart et al. 1999).

Fig. 1.—Mean collision rate fcoll ¼ Ncoll=Nctlast as a function of initial
relaxation time for all models of Table 1. Here tlast is the time of the last col-
lision in the cluster. The open circles give the results of systems that are iso-
lated from the Galactic potential (see Portegies Zwart et al. 1999). Vertical
bars represent Poissonian 1 � errors. The solid line is a least-squares fit to
the data (see eq. [17]). The strong reduction in the collision rate for the clus-
ter with an initial relaxation time trlxe30Myr is probably real.
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power-law initial mass functions with exponents of �2 or
�2.35 (Salpeter) and lower mass limits of 1 M�. The model
with 64k stars (model N64R6r36) was initialized with a
Scalo (1986) mass function but with a lower mass limit of
0.3M� instead of the 0.1M� used in the other models. The
characterization of the tidal field is discussed in Portegies
Zwart et al. (2001b).

The number of collisions in these simulations ranged
from 0 to 24. Figure 1 shows the mean collision rate Ncoll

per star per million years as a function of the initial half-
mass relaxation time. The solid line in Figure 1 is a fit to the
simulation data and has

Ncoll ¼ 2:2� 10�4 Nc

trlx
ð17Þ

for trlxd20 30Myr, consistent with our earlier estimate (eq.
[8]) if fc ¼ 0:2. The quality of the fit in Figure 1 is quite strik-
ing, especially when one bears in mind the rather large
spread in initial conditions for the various models.

Figure 2 shows the cumulative mass distributions of the
primary (more massive) and secondary (less massive) stars
participating in collisions. We include only events in which
the secondary experienced its first collision (that is, we omit
secondaries that were themselves collision products). In
addition, we distinguish between collisions early in the evo-
lution of the cluster and those that happened later by subdi-
viding our data based on the ratio � ¼ tcoll=tf , where tcoll is
the time at which a collision occurred and tf is the dynami-
cal friction timescale of the secondary star (see eq. [4]). The
solid curves in Figure 2 show cuts in the secondary masses
at �d1, �d5, and � < 1 (rightmost solid curve). The mean
secondary masses are hmi ¼ 4:0� 4:8, 8:2� 6:5, and
13:5� 8:8M� for �d1, 5, and1, respectively.

The distribution of primary masses in Figure 2 (dashed
curve) hardly changes as we vary the selection on � . We
therefore show only the full (�d1) data set for the primar-
ies. In contrast, the distribution of secondary masses

changes considerably with increasing � . For small � , secon-
daries are drawn primarily from low-mass stars. As �
increases, the secondary distribution shifts to higher masses
while the low-mass part of the distribution remains largely
unchanged. The shift from low-mass (d8M�) to high-mass
collision secondaries (e8 M�) occurs between � ¼ 1 and
� ¼ 5. This is consistent with the theoretical arguments pre-
sented in x 2.3. During the early evolution of the cluster
(�d1), collision partners are selected more or less randomly
from the available (initial) population in the cluster core; at
later times, most secondaries are drawn from the mass-seg-
regated population.

Interestingly, although hard to see in Figure 2, all the
curves are well fitted by power laws between �8 and �80
M� (0.8 and 30 M� for the leftmost curve). The power-law
exponents are �0.4, �0.5, and �2.3 for �d1, 5, and 1 and
�0.3 for the primary (dashed ) curve. (Note that the Salpeter
mass function has exponent�2.35.)

Figure 3 shows the maximum mass of the runaway colli-
sion product as function of the initial mass of the star clus-
ter. Only the left side (logM=M�d7) of the figure is
relevant here; we discuss the extrapolation to larger masses
in x 4.3. The N-body results are consistent with the theoreti-
cal model presented in equation (15).

Fig. 2.—Cumulative mass distributions of primary (dashed curve) and
secondary (solid curves) stars involved in collisions. Only those secondaries
experiencing their first collision are included. From left to right, the solid
curves represent secondary stars for which � � tcoll=tfd1, 5, and 1. The
numbers of collisions included in each curve are 18 (for tcoll=tfd1) and 42
and 95 (two rightmost solid curves). The dotted curve gives a power-law fit
with the Salpeter exponent (between 5 and 100 M�) to the rightmost solid
curve (�d1).

Fig. 3.—Mass after a period of runaway growth as a function of the mass
of the star cluster. The solid line is mr ¼ 30þ 8� 10�4Mc0 ln�c (see eq.
[16] with fc ¼ 0:2, � ¼ 1, and ln�c ¼ lnMc0=M�, where Mc0 is the initial
mass of the cluster or 106 M�, whichever is smaller). This relation may
remain valid for larger systems built up from many clusters having masses
d106M�. For clusters withMc0e107 M�, we therefore extend the relation
as a dashed line. The logarithmic factor, however, remains constant, since it
refers to the clusters out of which the bulge formed, not the bulge itself. The
bottom dashed line shows 0:01mr. The five error bars to the left give a sum-
mary of the results presented in Table 1; the data are averages of (left to
right) 4k stars (models KML101, KML111, and KML112), 6k stars (model
6k6X10), 12k stars (models RxW4 and 12k6X10), 14k stars (model
KML144), and 64k stars (model N64R6r36). The downward-pointed
arrow gives the upper limit for the mass of a compact object in the globular
cluster M15 (Gebhardt et al. 2000), and the error bar to the right gives the
mass estimate for the compact object associated with Chandra source 7 in
the irregular galaxy M82 (Matsumoto & Tsuru 1999). The Milky Way is
represented by the star symbol using the bulge mass from Dwek et al.
(1995) and the black hole mass from Eckart & Genzel (1997) and Ghez et
al. (1998). Bullets and triangles (upper right) represent the bulge masses and
measured black hole mass of Seyfert galaxies and quasars, respectively
(both from Wandel 1999, 2002). The dotted lines gives the range in solu-
tions to least-squares fits to the bullets and triangles (Wandel 2002).
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4. DISCUSSION

Early core collapse in dense star clusters may initiate a
phase of runaway stellar growth, leading to an object con-
taining up to �0.1% of the total cluster mass. We do not
address here the state of this object, which could be a black
hole or a star. If the object is a helium- or hydrogen-burning
star, it may collapse into a compact object when it exhausts
its central fuel. The amount of mass lost in the supernova
explosion and whether the compact object receives a veloc-
ity kick are important considerations for the future evolu-
tion of the collision runaway. An extensive parameter study
of the details of the supernova is beyond the scope of this
paper. The basis of our analysis, however, is simple and
robust to quite substantial perturbations.

We now consider the circumstances under which runaway
growth may be prevented or terminated at an early stage.
Premature termination of the runaway occurs when stellar
mass loss starts to drive the expansion of the star cluster or
when the star cluster is disrupted by external influences. At
the end of this section (x 4.3) we briefly discuss the applica-
tion of runaway growth to the possible formation of super-
massive black holes in the bulges of galaxies.

4.1. Prevention of the Collision Runaway

Runaway growth in a star cluster can only occur when
stellar evolution is relatively unimportant compared to the
dynamical evolution of the cluster. Stellar mass loss tends to
heat the cluster by loss of potential energy and can easily
reverse core collapse. This is particularly true for the most
massive stars, which dominate the dynamics of the cluster
core and are also the first to lose substantial amounts of
mass in stellar winds and supernovae. The prevention of
core collapse also prevents the first or any subsequent colli-
sions, and a reversal of core collapse terminates the collision
runaway. As a rule of thumb, we argue that runaway growth
can be prevented when the timescale for the most massive
stars to segregate to the cluster center exceeds the lifetimes
of those stars.

The main-sequence lifetime (tms) for stars more massive
than�25M� is a rather flat function of mass. For high met-
allicities, the most massive stars (me85 M�) actually live
longer than stars with masses between 25 and 65 M� (Mey-
net et al. 1994). For Z ¼ 0:04 (recall that the solar metallic-
ity is Z� ¼ 0:02), the hydrogen plus helium burning lifetime
varies from 6.27 Myr for a 25M� star to 7.57 Myr for a 120
M� star. For low metallicities (Z ¼ 0:001), the range
becomes 8.19–3.20 Myr for the same masses (see Meynet et
al. for details).

For the star cluster to experience core collapse before the
most massive stars evolve, we require tcc ’ 0:2trlxd
tmsð120 M�Þ � 3:20–7.57 Myr for Z ¼ 0:001–0.04. Run-
away growth therefore does not occur in star clusters with
initial relaxation times trlxe16–38 Myr. For definiteness,
we conclude that clusters with trlxd25 Myr experience core
collapse before the most massive stars explode and are
therefore prone to runaway collision.

The half-mass radius of a tidally limited cluster expands
during core collapse, causing the mean relaxation time to
increase by about a factor of 4 (see Portegies Zwart et al.
2001b). A cluster with an initial relaxation time of trlx ’ 25
Myr will therefore have a relaxation time of about 100 Myr
after core collapse. Such a cluster will not experience any

further collision runaway but may still contain the evidence
of such a phase in the form of a central compact object with
a mass d0.1% of the initial cluster mass. The cluster may
also be relatively depleted in low-mass compact objects
(stellar mass black holes and neutron stars), since these are
consumed during the runaway growth phase (Portegies
Zwart et al. 1999).

4.2. Early Termination of the Runaway by Tidal Disruption

A star cluster in orbit around the Galactic center is sub-
ject to dynamical friction, in much the same way as dynami-
cal friction drives massive stars toward the cluster center.
This causes the cluster to spiral into the Galactic center,
where it is destroyed (see Gerhard 2001). We derive here in
some detail the dynamical friction timescale for a star clus-
ter in the potential of the Galactic center. We assume con-
stant cluster mass Mc, deferring the more realistic case of a
time-dependent cluster mass (see eq. [13]) to S. L. W.
McMillan & S. F. Portegies Zwart (2002, in preparation).

The drag acceleration due to dynamical friction is (eq. [7-
18] in Binney & Tremaine 1987)

a ¼ � 4� ln�GG
2Mc�GðRGÞ
v20

erf ðX Þ � 2Xffiffiffi
�

p e�X 2

� �
: ð18Þ

Here ln�G is the Coulomb logarithm for the Galactic cen-
tral region, for which we adopt ln�G � RG=Rc, erf is the
error function, and X � v0=

ffiffiffi
2

p
VG, where VG is the one-

dimensional velocity dispersion of the stars at distance RG

from the Galactic center.
The mass of the Galaxy lying within the cluster’s orbit at

distance RG (d500 pc) from the Galactic center is (Sanders
& Lowinger 1972;Mezger, Duschl, & Zylka1996)

MGðRGÞ ¼ 4:25� 106
RG

1 pc

� �1:2

M� : ð19Þ

Its derivative, the local Galactic density (see Portegies Zwart
et al. 2001a) is

�GðRÞ ’ 4:06� 105
RG

1 pc

� ��1:8

M� pc�3 : ð20Þ

For in-spiral through a sequence of nearly circular orbits,
the function erf ðX Þ � 2X=

ffiffiffi
�

p
ð Þ exp ð�X 2Þ appearing in

equation (18) may be determined as follows.
Following Binney &Tremaine (p. 226), we write the equa-

tion of dynamical equilibrium for stars near the Galactic
center as

dP

dRG
¼ ��G

GMGðRGÞ
R2

G

; ð21Þ

where P ¼ kT�=hmi, ð3=2ÞkT ¼ 1
2 hmihv2i. Since �2 ¼ 1

3 hv2i,
it follows that P ¼ �2�, and equation (21) becomes

d

dr
ð�2�Þ ¼ � �

r
v20 ; ð22Þ

where v0 is the circular orbital velocity at radius R:
V2

G ¼ GMGðRGÞ=RG. For MG / Rx
G (see eq. [19]) and

assuming thatV 2
G / v20 � Rx�1

G , we findV2
G� � R2x�4

G , so

r
d

dr
ðV2

G�Þ ¼ ð2x� 4ÞV2
G� ¼ ��v20 ; ð23Þ
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and henceX ¼ 2� xð Þ1=2. Equation (18) then becomes

a ¼ �1:2 ln�G
GMc

R2
G

erf ðXÞ � 2Xffiffiffi
�

p exp �X 2
� �� �

: ð24Þ

For x ¼ 1:2,X ¼ 0:89 and

a ¼ �0:41 ln�G
GMc

R2
G

: ð25Þ

Again following Binney & Tremaine, defining L ¼ RGv0
and setting dL=dt ¼ aRG, we can integrate equation (25)
with respect to time to find an in-spiral time from initial
radiusRi of

Tf ’
1:28

ln�G

MGðRiÞ
Mc

GMGðRiÞ
R3

i

� ��1=2

ð26Þ

’ 1:4
Ri

10 pc

� �2:1106 M�

Mc
Myr: ð27Þ

For definiteness, we have assumed ln�G � 4
(�G � RG=Rc � 100) in equation (27), corresponding to a
distance of about 10–30 pc from the Galactic center.

The maximum mass of the runaway merger for clusters
that are disrupted by in-spiraling (which of course always
destroys the cluster before it reaches the center) may be cal-
culated by replacing tdisr in equation (15) with Tf . The right-
hand side of that equation then becomes a function of

Tf

tcc
’ 9:0

Ri

10 pc

� �2:1 0:25 pc

Rc

� �3=2 105 M�
Mc

� �3=2

: ð28Þ

We can also estimate the maximum initial distance from
the Galactic center for which core collapse occurs (and
hence runaway merging may begin) before the cluster
disrupts by setting Tf ¼ tcc. The result is Rie

0:0025 pc RcMc= pc M�ð Þ½ �0:71. For Rc ¼ 0:25 pc and
Mc ¼ 105 M�, we findRie3:3 pc.

4.3. Speculation on the Formation
of Supermassive Black Holes

A million solar mass star cluster formed at a distance of
d30 pc from the Galactic center can spiral into the Galactic
center by dynamical friction before being disrupted by the
tidal field of the Galaxy (see Gerhard 2001). Only the dens-
est star clusters survive to reach the center. These clusters
are prone to runaway growth and produce massive compact
objects at their centers. Upon arrival at the Galactic center,
the star cluster dissolves, depositing its central black hole
there. Black holes from in-spiraling star clusters may subse-
quently merge to form a supermassive black hole. Ebisuzaki
et al. (2001) have proposed that such a scenario might
explain the presence of the central black hole in the Milky
Way.

If we simply assume that bulges and central supermassive
black holes are formed from disrupted star clusters, this
model predicts a relation between black hole and bulge
masses in galaxies similar to the expression (eq. [16]) con-
necting the mass of an IMBH to that of its parent cluster.
However, the ratio of stellar mass to black hole mass might
be expected to be smaller for galactic bulges than for star
clusters, because not all star clusters produce a black hole
and not all star clusters survive until the maximum black
hole mass is reached. We would expect, however, that the

general relation between the black hole mass and that of the
bulge remains valid.

Figure 3 shows the relation between the black hole mass
and the bulge mass for several Seyfert galaxies and quasars.
The expression derived in x 2 and the results of our N-body
calculations (x 3) are also indicated. The solid and dashed
lines (eq. [15]) fit the N-body calculations and enclose the
area of the measured black hole mass–bulge masses. On the
way, the solid line passes though two other black hole mass
estimates, for M82 and the globular cluster M15. We note
that the observed relation between bulge and black hole
masses has a spread of 2 orders of magnitude. If this bold
extrapolation really does reflect the formation process of
bulges and central black holes, this spread could be inter-
preted as a variation in the efficiency of the runaway merger
process. In that case, only about one in a hundred star
clusters reaches the galactic center, where its black hole is
deposited.

4.4. Is the Globular ClusterM15 a Special Case?

The possible black hole in the globular cluster M15 may
have been formed by a scenario different from the one
described in this paper, since the cluster’s initial relaxation
time probably exceeded our upper limit of 25 Myr. The cur-
rent half-mass relaxation time of M15 is about 2.5 Gyr
(Harris 1996), which is far more than our 100 Myr limit for
forming a massive central object from a collision runaway.

An alternative is provided by Miller & Hamilton (2002),
who describe the formation of massive (�103 M�) black
holes in star clusters with relatively long relaxation times. In
their model the black hole grows very slowly over a Hubble
time via occasional collisions with other stars, in contrast to
the model described here, in which the runaway grows much
more rapidly, reaching a characteristic mass of about 0.1%
of the total birth mass of the cluster within a fewmegayears.

One possible way aroundM15’s long relaxation time may
involve the cluster’s rotation. Gebhardt et al. (2000) and K.
Gebhardt et al. (2001, private communication) have mea-
sured radial velocities of individual stars in the crowded cen-
tral field, down to 200 of the cluster center. They find that,
both in the central part of the cluster (r < 0:1rhm) and out-
side the half-mass radius, the average rotation velocity is
substantial (vrote0:5hv2i1=2). Rotation is quickly lost in a
cluster, so to explain the current rotation,M15’s initial rota-
tion rate probably must have been even larger than observed
today (see Einsel & Spurzem 1999). Hachisu (1979, 1982)
found, using gaseous cluster models, that an initially rotat-
ing cluster tends to evolve into a ‘‘ gravo-gyro catastrophe ’’
that drives the cluster into core collapse far more rapidly
than would occur in a nonrotating system. If the gravo-
gyro–driven core collapse occurred within 25 Myr, a colli-
sion runaway might have initiated the growth of an inter-
mediate-mass black hole in the core ofM15.

5. CONCLUSIONS

We study the runaway growth of a single star in a dense
star cluster using a combination of complementary
approaches. Our semianalytic analysis is supported by
detailed N-body calculations in which the effects of stellar
evolution, stellar dynamics, binary evolution, and the per-
turbing effect of a background Galactic potential are taken
self-consistently into account.
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Star clusters with initial half-mass relaxation times
trlxd25 Myr experience a phase of runaway growth. In this
phase a single seed star grows to a mass of about 0.1% of the
total mass of the cluster. The first collision occurs at the
moment the cluster core collapses. This happens at about
0.2trlx but no later than about 5 Myr (the evolution time-
scale for a e50 M� star). The star that experiences the first
collision becomes the target for further collisions, initiating
runaway growth. The growth phase is terminated by (1) the
disruption of the cluster in the tidal field of the Galaxy (at
td5trlx) or (2) the reversal of core collapse bymass loss from
the evolving stellar population (after about 25Myr).

A star cluster can survive for longer than 5trlx if, for exam-
ple, it did not initially fill its Jacobi surface (‘‘ Roche lobe ’’)
in the Galactic tidal field. (Examples are NGC 3603 and
R136, the dense star cluster in the 30 Doradus region in the
Large Magellanic Cloud.) Such clusters go though a phase
of runaway stellar growth but recover after stellar mass loss
drives the reexpansion of the cluster core.

From an observational point of view, a tidally limited
cluster experiences three very distinct evolutionary phases: a
precollapse phase until 0.2trlx and a phase of deep core col-
lapse (from 0.2trlx to about 25 Myr) followed by an expan-
sion phase eventually leading to the disruption of the
cluster. During the expansion phase the cluster half-mass
radius expands, causing the mean relaxation time to
increase by a factor of 4 (see Portegies Zwart et al. 2001b). A
cluster in this final phase will be observable with a current
relaxation time less than �4� 25 Myr ¼ 100 Myr. The
clearest indication of its previous phase of core collapse and

runaway growth would be the presence of a central compact
object with a mass d0.1% of the initial cluster mass. The
cluster may also be relatively depleted in low-mass compact
objects (stellar mass black holes and neutron stars), since
these are consumed during the runaway growth phase.

Star clusters with an initial relaxation time trlxe25 Myr
do not experience a phase of runaway growth, since core
collapse is prevented by mass loss from the most massive
stars. These clusters may experience core collapse after
�100 Myr, when stellar evolution slows (Takahashi & Port-
egies Zwart 1998). This later core collapse, however, does
not lead to a phase of runaway growth. In such old clusters
multiple collisions are still likely to be common and may
lead to blue stragglers with a mass more than twice the turn-
offmass.
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