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Abstract. In this work we introduce and analize a new explicit method for solving numerically scalar
conservation laws. The time-discretization of the method is based on a second order accurate TVD Runge-
Kutta technique (used recently by Osher and Shu [12] to solve scalar conservation laws in the framework of
finite difference schemes), while the space-discretization is based on a discontinuous finite element method
for which the approximate solution is taken to be piecewise linear in space (i.e., the local projection P°P!-
discontinuous Galerkin method introduced recently by Chavent and Cockburn [3]). The resulting scheme
is TVBM (total variation bounded in the means), converges to a weak solution, and is formally second
order accurate in time and space for ¢fl € [0,1/3]. We give extensive numerical evidence that the scheme
does converge to the entropy solution, and that the order of convergence away from singularities is optimal;

i.e., equal to 2 in the norm of L*°(L{2 ).
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1. Introduction. In this work we introduce and analyze a new explicit method, called
the Runge-Kutta Local-Projection Discontinuous-Galerkin P! (RKAIIP!—) method, for
solving numerically the scalar conservation law:

(L.1) Ou + 0, f(u) =0, in (0,T) x C,

' u(t = 0) = uy, on C,
where C is a circle, the nonlinear function f is C?!, and the initial data u, belongs to
the space BV(C), the space of real-valued functions with finite total variation on C. We
have chosen to work in a periodic setting in order to avoid the problem of the numerical
treatment of the boundary conditions. The case of non-periodic boundary conditions will
be considered elsewhere.

The REKAIIP!— method is an explicit conservative scheme that displays a convenient
local maximum principle and has the property of being total variation bounded in the
means (TVBM). At the same time, it is linearly stable under the mild condition ¢fl < 1/3,
and formally second orded accurate in the L*°(0,T; L§?,)-norm even in the presence of
extrema and sonic points. We prove the convergence in L°°(0,T'; L!(C)) of a subsequence of
the sequence of approximate solutions generated by the method to a weak solution of (1.1).
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We also give extensive numerical evidence that the scheme does converge to the entropy
solution— the only weak solution with physically relevant meaning— and that the order of

convergence away from singularities is optimal; i.e., equal to 2 in the L*°(0,T; L{2 )-norm.

Historically, the RK AIIP! — method has been originated from two sources. On the one
hand, recently, Chavent and Cockburn [3] introduced and analyzed what they called the
AIIPO P! — scheme for scalar conservation laws. In this finite element method the approxi-
mate solution is piecewise-constant in time and piecewise-linear in space. It is determined
by using the weak formulation of the explicit Discontinuous Galerkin Method, introduced
by Chavent and Salzano in [4], and a local projection based on the monotonicity-preserving
local projections introduced by Van Leer [10]. This local projection, the AIl, — projection,
guarantees a local maximum principle and the TVDM (total variation diminishing in the
means) property. It was proven that these properties, together with the conservativity of
the scheme, ensure the convergence of a subsequence to a weak solution, and extensive
numerical evidence showing that the scheme converges to the entropy solution at a rate of
O(h) in the norm of L*°(0,T; L'(C)) (even in the presence of discontinuities) was given.
Unfortunatelly, any attempt to obtain higher order accurate extensions of the AIIP° P! —
scheme staying in the framework of this finite element tecnique leads naturally to implicit
schemes. And it is very well known that implicit schemes do not perform as well as explicit
ones for this kind of problems (on this respect we want to bring the reader’s attention to
the explicit-implicit version of the PPM-scheme; see [7]).

On the other hand, also very recently, Shu and Osher [12] showed how to use efficiently
Runge-Kutta techniques in order to obtain total variation diminishing (TVD) high order
accurate time-discretizations of scalar conservation laws. They use the method of lines;
i.e., first, they discretize the equation in space by using a finite difference non-oscillatory
technique. The equation satisfied by the approximate solution can be then written in ODE
form: % up = Lp(up). Then, the latter equation is discretized in time by using a suitably
chosen Runge-Kutta technique. This is done in such a way that the local truncation error of
the resulting scheme is formally O(ATt + h") whenever L;(u) approximates —0, f(u) with
an O(h") error; see [12]. These Runge-Kutta techniques are essentially ODE-discretization
techniques which do not increase the total variation of the spatial part, and so are abso-
lutely independent of the type of discretization used in space as well as of the dimension
of the space variables. As long as the spatial dimension is bigger than one, finite difference
approximations of Ly are difficult to obtain when the domain has a complicated geometry.
However, this is not the case if a finite element discretization technique is used! It is then
very natural to combine the above mentioned Runge-Kutta technighe with the finite ele-
ment space discretization of the P°P'— scheme. The RKAIIP!—scheme is a realizarion
of this idea.

The REKAIIP!— method is obtained in three steps:

(1) the conservation law is discretized in space by using the explicit discontinuous-
Galerkin finite element used by Chavent and Salzano [4]. An ODE of the form
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Ed; up = Ly(up) is thus obtained;

(2) the latter ODE is discretized in time by using a suitable chosen TVD Runge-Kutta
technique as indicated by Shu and Osher [12];

(3) a TVBM extension of the TVDM AIl,— projection introduced by Chavent and
Cockburn [3] is then used adequately in order to render the scheme stable and the
sequence of approximate solutions compact in L>°(0, T; L1(C)), without compro-
mising the accuracy of the method.

Higher order accurate versions of this scheme, as well as extensions to the nonperiodic
case will be considered in a forthcoming paper. Also, n-dimensional extensions of it will
be developed elsewhere.

An outline of the paper follows. In Section 2 the discretization of the scalar conservation
law in space is obtained. In Section 3 the time discretization is constructed. In Section 4
the AIlp— projection is studied. In Section 5 the RKAIIP!— method is defined and its
stability, formal accuracy and convergence properties are proven. Finally, in Section 6 our
numerical results are shown.

2. The space-discretization.

2.1 Preliminaires. First, let us introduce some notations. As usual, the set
{xi+1/2}i=0,_“,m_1 is a partition of the circle C. For commodity, we define Tjy1/2 to
be zi11/2 if j = imod(nz), in this way we can write for example z_;/3 = Zn._1/2,
Tpz41/2 = T1/2, Tnz43j2 = T3j2. We define Az; = z;41/3 — T;_1/2, denote by I; the inter-
val (Z;_1/2,Zit1/2), and set h = sup;{Az;}. By I(ai,...,an) we shall denote the closed
interval [ min{ay,..., am},max{ai,...,am}].

The weak formulation on which the discretization in space of the explicit Discontinuous
Galerkin method is based, see [3,4], on the definition of the Godunov numerical flux, and
on a formal integration by parts formula that we next recall.

The Godunov flux associated to the function k, R, is a consistent two-point numerical

flux — hY(w,w) = h(w) — defined to be

hG(w,v) = h(E), with €€ I(w,v):

(2.1) :
(h(€) — h(c)) - sign(w —v) <0, Ve € I(w,v).

See Osher [9], and Brenier and Osher [1] for further details.
The equality:

/ O -
I.

(2.2) '
[ e+ [ fwem = 0 Veedm,
I; al;
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where n, is the outward unit normal to 9I;, is obtained by simply multiplying (1.1) by
¢, integrating over the domain I;, and formally integrating by parts. In order to compute
numerically integrals over I; we shall use a quadrature rule:

L
(2.3) /I P~ Zwl Y(zi1)Az;,
i =1

where z;; =2;+ 6 Az;, 1=1,...,L.

2.2 Space discretization by the discontinuous Galerkin method.

We proceed in two steps. First, we introduce the finite dimensional space V. A
function uy, is said to belong to V},(C) if ux € BV(C) U L}(C) and:

(2.4a) In each element I; C C,uy, is linear: ug|y, € P(L;); i.e.,
uh(x) :ﬂ?¢0(3)+ﬂ?¢1(3)’ z € I;,

where ¢°(s) = 1, and ¢'(s) = 2s, Vs=(c —=z;)/Az; € (—3,1).

(2.4b) The trace of uj in each OI; is chosen as follows:

Uh($i+1/2) = fh,i+1/2,
f(fh,i+1/2) = fG(Uh($i+1/2 + 0), uh($i+1/2 - 0)),

where f€ denotes the Godunov flux (2.1) associated to the function f.

Now, set V4(C) = {vp : [0,T] x C — R|vn(t) € Vi(C),Vt € [0,T]}. The approximate
solution, up, will be taken in the space V,,(C), and will be determined as the unique solution

of:
vt € (0,T), Ve PYIL):

Owup - ¢
I;
L
=D wr flunl(ig) - Oop(wi)) Ay, + &) e =0,
=1 i

satisfying the initial condition uy(t = 0) = Py(un), where P, is the L2~ projection into
the space V,(C).

Roughly speaking, by using the variational formulation based on (2.2) we force the
approximate solution u; to be an approximation to a weak solution of (1.1); and by using
the definition of its trace as in (2.4b) we are forcing uj to behave like the entropy solution

of (1.1).



We can easily rewrite this as the following initial value problem:

%uh(t) = Lp(un(t)), in (0,T),

uh(t = 0) = Uo h

(2.5a)

where the operator Ly, is given by

Lh(u) BV(C) U LI(C) -—)Vh(C),

u — Wy,

(2.5b)

and the degrees of freedom of wy are given by

wi = — (fG(“(mfﬂ/z)’ u(@i11y2)) — fG(u(xj—lﬂ)’ w1 )/ Az,

(2.5¢) Wi == 3(fG(u($j+l/2)’u(mi_+1/2)) + fG(u(””?—l/z), u(‘”z‘_—1/2))

L
+2{) wi- f(u(zi))})/ Az
=1

Compare this with equations (2.7) in [3].

2.3 The accuracy of the space discretization and the effect of the numerical
integration.

The operator Lj(-) is the discretization by the discontionuous Galerkin method under
consideration of the nonlinear operator —0, f(-). In fact, if the function u is continuous —
and the quadrature rule (2.3) used in (2.5¢) is exact — then from (2.5) it is easy to see that
Lj(u) is nothing but Py(—8, f(u)) - the L?-projection of —9, f(u) on the finite element
space V3, (C). In the following result we make precise this assertion.

PROPOSITION 2.1. Assume that u is an element of W*°°(C), that f' belongs to
W?2°(C(u)), where C(u) denotes the range of u, and that the quadrature rule (2.3) is
exact for polynomials of degree two. Then, there is a constant C such that

| = 8z f(u) — Li(u)llLeo(ey < CR2||OS f(w)| oo (c)-
Proof. Set E;(y) = fI.- P — 2{;1 wip(z; 1)Az;. For « € I; we have
0, f(u(®)) — La(u)(@) = ex(2) + ea(e),

where
e1(z) = —0: f(u(z)) — Pa(=8: f(u))(e),
ez(z) = Pa(=08:f(u))(z) — La(u)(z)
= —12(z — z;) Ei(f(v))/(Az;)*, by the definition of Ly (2.5).
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Now, using the theory of interpolation, see for example Ciarlet [5], we obtain easily

le1]| ooy < C(Azi)? 05 f (u)|| oo (z:),
lleall oo 1y < 6(Az:) 2| E(F(w))lLeo (1)
< C(Az)*105t F(u) 1o 1)

assuming that the quadrature rule (2.3) is exact for polynomials of degree k. By hypothesis
we can take k = 2. This proves the result.

Note that if the quadrature formula (2.3) is exact only for polynomials of degree one
Lj(u) becomes only a first order accurate approximation of —3, f(u)), unless, of course, if
f' = constant.

3. The time-discretization.

3.1 The Runge-Kutta technique. Let {t"},=1 . n.: be a partition of [0,7T], set
At™ = t"*t! —¢7 and let the cfl— number be defined by

A"
Ao, £l Lo (C(uo))

cfl = supiez; n=1,..N

where C(ug) denotes the convex hull of the range of the initial data uo.

Let us introduce the operator H}':

HP : BV(C) N LY(C) — Vi (),

(31) u —Py(u) + At™ - Ly(u).

We now discretize the ODE (2.3) as indicated by Shu and Osher in [12]:

(3.2a) Set up(t = 0) = Pr(uo);
(3.2b) Forn = 0,...,nt — 1 obtain u,(t"*!) from u (") as follows:

(1) Compute wp(t"*!) = H(ua(t™));
(2) Set up(t"*1) = Jun(t™) + g Hp (wa(t"1));

Note that the time step sizes are not necessarilly equal. Note also that at each time step,
up(¢"11) is obtained from uj(t") by simply applying twice the operator Hj'. This makes
the algorithm very easy to code.

As it is very well known, this time discretization of the ODE (2.3) is formally second
order accurate. This fact, together with Proposition 2.1, allows us to say that the method
(2.3) is formally second order accurate.



3.2 The linear stability. In this Subsection we assume that Az; = h, that At" = At,
and that f'(u) = constant. In this case the operator H}, in this Subsection writ-
ten simply Hy, is linear. The L2-stability of the iterative procedure defined by (3.2),
up(t"t1) = 2[Id+ HpoH)(us(t™)), is a necessary condition for its stability. Indeed, if the
method is L%-unstable it is then automatically LP-unstable, Vp € [1,00]. The reciprocal
of this statement is not necessarilly true; see Geveci [6]. In what follows we display the
necessary and suficient condition under which L%—stability is achieved.

An iterative procedure up(t"1) = A(un(t")), un(0) = Pp(u,) is said to be L? — stable
if is there exists a constant C independent of the discretization parameters and the initial
data ug such that

[un(t™)lL2c) < C - [luollL2(ey,

for every t"* € [0,T]. The iterative procedure u,(t"*1) = Hj(uy(t")) was proved to be
L2-stable if and only if the extremely restrictive condition c¢fl = O(hl/z) 1s satisfied; see
[2,3]. In our case we have a much more satisfactory result:

PROPOSITION 3.1. Let f be an affine function on u. Then, the method (3.2) is L?-
stable if and only if ¢fl < 1/3.

See [2,3] for details on the proof for a simpler case. It is interesting to note that the
application of the Runge-Kutta technique has a stabilizing effect. We can interpret this by
pointing out that in the P®P!— scheme the precision in space was higher than the one in
time, and this was responsible for the restrictive ¢fl— condition for the scheme, whereas
now both the precision in space and the one in time are the same! Another interpretation
is that if A denotes the symbol of the operator Hj, and I' denotes the curve in the complex
plane of its eigenvalues, the condition cfl = O(h!/?) reflects the fact that there is a part
of T' that lies outside the unit disk and that its farthest point is at a distance of O(cfI?)
from it. This part of " lies in a neighborhood of z = 1 (the fact that the point z = 1 lies
in T reflects the fact that the scheme is consistent). In our case A = F(A) = $[Id + A?]
is the symbol of the new operator 3[Id + HyoH}) and the curve of its eigenvalues is
F(T') = 1[1 + T'?]. Note that the transformation F' leaves the point z = 1 invariant, and
that, by the preceding result, for cfl < 1/3, F(I") lies entirely in the unit disk. Roughly
speaking F' pushes I into the unit circle.

Although we have L%(C)— stability of the method under a very mild cf! condition
in the linear case, this does not ensure its L%(C)— stability in the nonlinear case. In
order to render the scheme not only L%(C)— stable but L>=(C) U BV(C)— stable, without
compromising its formal second order accuracy, we are going to use the AIl,— projection,
that we study in detail in the next Section.



4. The Local Projection All,.

4.1 Definition of the operator AIl,. The AIl,— operator we are going to use is a
simplified TVBM version — inspired on the TVB-technique introduced by Shu, [11]- of the
AIl,— projection used by Chavent and Cockburn, [3]. We shall define the operators AII,
in three steps.

Let us first introduce the following projection operator:

b, ife>b,
(4.1a) Plaglc)=14 ¢, ifc€la,b,
a, ife<a.

Next, let M be a nonnegative real number that is going to be a parameter whose
purpose is to prevent the AIl,— projection of destroying the second order accuracy of the
scheme. This paramenter is strongly related to the second derivative of the initital data
u,, and will be estimated later. It was set equal to 0 for the AIIP®P!— scheme; see [3].
Let wy, be an element V,(C). We associate to M, and wy, the set of intervals {las,i}i=1.... n2
defined as follows

nM,i = [I(O,Wil/g)nI(O,Uﬁrl/z)]U[—M'hZ,M'hz],
(4.1b) Ny 1y = Wi — Wi,
77,':,1/2 =Wi41 — w;.
Finally, we define the operator AIl}, as follows:

AHh . Vh(C) —)Vh(C),

Wp — W*h,

(4.1¢)
where, the degrees of freedom of w*} are defined by:

(4.1d)

4.2 Properties of the operator All,. The following result is a straightforward
consequence of the definition of the AIl;— operator, (4.1). We use the notation introduced
above.

LEMMA 4.1. The All,— operator is a projection

(1) Allp(w*s) = w*s;



satisfying the following global properties:

(2) W = Wy,

(3) fc w*p = fc Why
(4) llw*nlleo(ey < [@nllpescy + M - R%;
(5) llollrcy < 3h - |[BrllBv(c) + M - |C| - R2.

Thus, the operator AIl,— is a conservative, (3), (local) projection, (1), that leaves
invariant the means, (2). Properties (4) and (5) allow us to control AIl,(wp) only in
terms of wj. This is the key fact that will allow us to obtain the compactness of the
sequence of approximate solutions generated by the RKAIIP! — scheme, as we shall see in
the next Section.

Next, we show that when the solution of the conservation law is smooth enough, the
application of the AIl;— projection does not destroy the already achieved accuracy of the
scheme. We state this property in the following way:

LEMMA 4.2. Let u be an element of C?(C). Let Py, be the L?>— projection into V;(C).
Then, there exists an h, = ho(u) > 0 and an M, = M,(u) such that if M > M,:

Al'[h(Ph(u)) = Ph(u), Vh S ho.

Proof. Let us assume that u € C3(C), the extension of the proof to the case under
consideration is straightforward. Let x be an arbitrary point of C, set w, = Pp(u) and
w*y, = All,(wy). By using Taylor expansion we can easily find that

Win — 0 = (P2 E0 5 u(a) 4 O(42),
Az;

i = [57]- dsu(a)+
Ami

| 5 (z; — 2)])0zu(z) + O(A®).

If O;u(z) # 0 it is clear that for h small enough @w; will lie in the interval
I(0,w; —w;—1)NI(0,w;4; —w;) for ¢ =1,--- ,nz. In this case we shall have ¥* = ¥; see
(4.1).

Now let us consider the case d,u(z) = 0. Set X = {z € C: O,u(z) =0, 0,,u(z) # 0}
and JY = {j: the interval I(z;, ) is covered by at most v intervals I;, where z € X'}.
From the above expressions we see that for h small there is a constant independent of h,
Co, such that maz (je 7v}|W;] < Cogh?supizexy|Ozou(z)]. Thus, in order to have ¥} = 10;
for j € JY it is enough to take M, = co5sup(zecx}|0zzu(x)|. This proves the result.
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4.3 Estimating M - h%. From the last proof we can obtain an algorithm for obtaining
the quantity M, = M,h? directly from P (u). First, note that

Wity — Wi = [%(Awi+1($i+1 — ) — Azi(zi — )] - Ozpu(z) + O(R)

In particular, when Az; = h then w;4; — W; = %hz - Opzu(z) + O(hg). The inter-
est of this expression is that in fact it does not depend on z as h | 0. Next, note
that if u has a local maximum or minimum at x and z € I; then for A small enough
at x the function wp, where w, = Pju, has also a local maximum or minimum, re-
spectively. These remarks motivate the following algorithm for estimating numerically

M, = M,h2.

(4.2a) Compute wp = Ppuy;

(4.2b) Set Ip = {j : (Wj41 —w;) - (Wj—1 — W;) > 0 and u, has no jumps in I;};
(4.3b) Set M, = 2maw{jezh}{|d)j+1 — W, |bj—y — W;l}.

The set 7, is an approximation of J;}. Note that when Az; = h, then
M, = h? - supizex}|Osou(x)] + O(h*). Compare this with the M, - h? obtained in the
proof of Lemma 4.2.

We end this Section by noting that if the solution of (1.1) is always smooth, the absolute
values of its second derivative at its extrema never increase. In this way if M, = M,(u,)
is such that AIl(us ) = U, it is reasonable to expect that AIl,(us(t")) = u,(t") for
n=1-nt

5. The RKAIIP!— method.

5.1 Definition. We can now define the RKAIIP!— method as follows:
(5.1a) Set up(t = 0) = Py(uo);

(5.1b) For n = 0,...,nt — 1 the approximate solution u(t"*!) is obtained from u} as
follows:

(1) Compute wy (") = AIL(H(un(t™)));
(2) Set up(t™t) = Al (Fun(t™) + 3 Hp(wi(t™11)));

Compare with algorithm (3.2).

5.2 Convergence properties of the RKAIIP!— method. We need the following
result.

LEMMA 5.1. Let uy be any element of the space C(C) = AllL(V4(C)), and suppose
that h - nz < C,|C|. Then, for cfl € [0,1/2]:

23 (un)llBvey < [@nllBv(ey + C -,
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where C = 8C, - cfl- M - |C|.
Proof. Set wp = H'(up). The means of wy, are given by:
w; =U; — (Atn/Axi)(fGi+l/2 - sz'—1/2)-

In order to rewrite this equation adequately, note that as up € C(C) = AIlL(V4(C)) we
have that ii; = Py, (i;); see (4.1c). Then, if we set

Wi = P“(M=0),.’(ui)’
Ty = U; — Uy,

we have that |r;| < h2M. Now, we rewrite this equation as follows:

W; =U; + O (Wig1 — ;) + DI(Wi—y — ;) + AL (=rig1 + 1) + Bl (ricy —13),

where
An A" fG(Tigy — Uiy, Ui + 1) — O — @, T + 1)
i ' — ~ — ~ ’
Az; (Tip1 — ig1) — (T — ;)
n A" fG(Ei_ﬁiaﬂi"i‘az)_ G( uz,uz 1+ul 1)
.Bz = .
A"Ei (uz 1+uz 1)—(U1+’U,)
and
cr — 1__ﬂ - AP,
ot . —of
=(1 Yioi — Vi Br.
= ( +u, —— =)

We only have to follow [3] in order to obtain
[@rllBv(c)y < lIurllBv(cy + 8maz:{ A}, Bl'} - maz;{|r:|}nz,

for cfl € [0,1/2]. Finally, as maz;{A}, B}'} < cfl, maz;{|r;|} < h2M, and nz < C,|C|h~*
the result follows.

Let {us(t")}n=0,. ,nt be the sequence generated by the RKAIIP!— method (5.1). Let
us define its Q' — interpolate, denoted again by uy, as follows:

t—t" n+1 tn+1_t n n yn+l
un(®) = () [ ), vt € e, 1)

THEOREM 5.2. Suppose that cfl € [0,1/2], that nz-h < C,|C|, and that nt-h < C;T.
Let {up}njo be the sequence of Q' — interpolates of the approximate solution defined by
the RKAIIP'— method (5.1). Then

[@n(t)llBvic) < llwollBV(c) + s
- 1
lan(t)llLreey <h- {§||uoI|BV(C) + C},Vt € [0, T,
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where C =max{8C,C4 - cfl- M -T -|C|,2M - |C| - h}. In oter words, the scheme is TVB.

Proof. It is enough to prove these inequalities for ¢ = t”. Noting that u,(t"t!) =
w*y = Allp(ws), with wy = Jup(t™) + $ HHAIL(HP(un(t™)))), the second inequality is
obtained easily from the first one:

[@n(#" ) Liey = 1@3 12 (c)
1
< 5h- [@allaviey + M -[C]- h?, by (5), Lemma 4.1,

1
=5h- @ wllBvie) + M -[C]- h?by (2), Lemma 4.1,

1. 1
< §h‘ [@a (") Bv(c) + EC'

The first one is obtained as follows:
1Ta (" ) Bviey = [@*nllBv(c)

= 15T (") + S ER AT (HE (ua () | 3vic
< %[llﬂh(tn)HBV(C) + (1 H (AT (H7 (w (t™) | BV (0)]

1, e,
< SlE()llavie) + 1 Hn(un(E*NliBvie) + C" - A,
by Lemma 5.1, and (2), Lemma 4.1,

= %[”ﬂh(t")llBV(C) + @™l Bve) +2C" - H],
again by Lemma 5.1,

< [@n(™)lBviey +C" - b,

lBvc) +C' - nt-h,

< ||uollBV(cy + C'-C, - T, by hypothesis.

S “ﬂo,h

The result follows from the fact that C' = 8C, - ¢fl- M - |C|; see Lemma 5.1.

COROLLARY 5.3. Suppose the hypothesis of the preceding Theorem are verified. Then,
there is a subsequence of the sequence {up}o generated by the RKAIIP!— method (5.1)
that converges to a weak solution of (1.1).

Proof. By Theorem 5.2 there is a subsequence {up }pjo that converges in
L*>(0,T; L*(C)) to a function u* € L*°(0,T; L' (C)N BV(C)). Let us think of the functions
iy, as already known parameters that tend to 0 in L°(0,T; L*(C)), and let us consider the
scheme (5.1) as a scheme only for the means %y. It can be easily seen that this scheme is
a conservative scheme whose numerical flux is consistent with f. Thus, the limit u* must
be a weak solution of (1.1) by the well known Lax-Wendroff Theorem, {8]. This proves the

result.
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6. Numerical results.

6.1 The test problems. In this Subsection we test the RICAIIP!— method in six
different problems (1.1) for which we can calculate the exact solution. Our test problems
are defined by giving the circle C— that we identify with the intervall [0,1), the final time
T, the nonlinearity f, and the initial data uy on §; see the table 6.1. Their corresponding
exact solutions are displayed on Figures 6.1. On table 6.2 we define the sets C' on which
the entropy solution u can be considered smooth. They have been obtained from C by
subtracting subsets of it that contained discontinuities of either u or 9, u.

Table 6.1 . Definition of the test problems.

problem C T f(uw) uo(z)
1 [0,1) 0.15 u 3(1 + 1sin(4nz))
2a 0.15
2b [0,1) 1/m u?/2 3(3 + sin(272))
2c 0.55
3 [0,1) 0.1 e ra— (1 + 1sin(4nz))

1, if z € (0.4,0.6),
4 0,1 0.15
[0,1) u { 0, otherwise.
1, if z € (0.5,1.5),
5 [0,2) 0.5 u(l —u) { 0 otherwise
1 if z € (0.5,1.5)
1 u? ’ ’ ?
6 [0,2) 0.5 2 u24(1—u)? {0, otherwise.

6.2 The results. The quadrature rule (2.3) used in these computations is the three-
point Gauss rule. Although Corollary 5.3 ensures the convergence of the method for
cfl € [0,1/2], Proposition 3.1 guarantees L2-stability only for c¢fl € [0,1/3] in the linear
case. This is why we are going to perform our computations with ¢fl = 1/3. On table
6.3 we display the L!(C')—errors, and on table 6.4 the L>°(C') ones. Details of how the
discontinuities are captured are shown on Figures (6.2).

Let us point out that the algorithm (4.2) that allows us to compute M, = M - h?,
although convenient for the test problems we considered, is not unique. A more complete
treatment of the way in which this quantity can be estimated numerically will be considered
in a forthcoming paper.
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Figures 6.1 . The entropy solutions u(T) of the test problems.
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Table 6.2 . Definition of the domains C' on which «(7) is smooth.

problem C’ singularities of u(T)
1 [0,1) none
2a [0,1) none
2b [0,.04]U[.14,1) shock appears near x=0.08
2¢ [0,.09]U[.19,1) shock near x=0.14
3 [0,1) none
4 [0,.5]U[.6,.7]U[.8,1) two contact disc. at x=0.55, 0.75
stationary shock at x=0.5,
.05,.4 .95,.9 1.05,1.95
5 [-05,.45]U[.55,.95]U1.05,1.95] {two disc. of J;u at x=1, 2.
6 [0,.75]U[.85,1.75]U[1.85,2) two shocks near x=0.8,1.8

Table 6.3 . L'-errors and orders of convergence for c¢fl = 1/3. The quantity

ey is equal to [|u(T) — un(T)||11(cry, and a; is the corresponding order of convergence. For
all the tests we have taken Az = %6' The sets C' are defined in table 6.2.

no projection M=0 M- h?=M,

problem 104 - ¢4 a 10% - ¢4 ay 10% - eg oy
1 0.57 1.97 1.28 2.24 0.57 1.97
2a 0.21 1.96 0.34 2.11 0.21 1.96
2b 0.09 2.01 0.30 2.25 0.09 2.01
2¢c 0.02 2.00 0.02 2.00 0.02 2.00
3 0.87 1.94 1.25 2.06 0.87 1.94

4 214 1.00 0.0004 - 0.0004 -
5 7.20 1.13 6.19 0.99 6.19 0.95
6 248 0.002 0.39 0.99 0.39 0.99
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Table 6.4 . L*-errors and orders of convergence for cfl = 1/3. The quantity
€co is equal to ||u(T) — up(T)| e (¢r), and @ is the corresponding order of convergence.

For all the tests we have taken Az = zlﬁ. The sets C' are defined in table 6.2.

no projection M=0 M-h? =M,
problem 10% - eop Qoo 10% - e U 10% - e Qoo
1 1.56 1.94 10.1 1.55 1.56 1.94
2a 1.28 1.98 5.04 1.24 1.28 1.98
2b 1.22 2.04 6.51 1.71 1.22 2.04
2c 0.15 1.81 0.15 1.80 0.15 1.81
3 10.5 1.95 10.5 1.95 10.5 1.95

4 199.4 1.16 0.05 - 0.05 -
5 24.15 1.82 16.31 0.96 16.31 0.96
6 1966 0.08 2.63 1.06 2.63 1.06

( Some of the results corresponding to problem 4 have not been included, for in this case
a superconvergenge, that is far from being typical, is observed. This is due to the facts
that, on C', we have 02u = 0,Vn > 0, and that the approximate solution does not oscillate!
When the projection is not used, strong oscillations away of the discontinuities appear.)

As the preceding results show, L! second order accuracy has been obtained for test
problems 1, 2, and 3, and this is regardless of the values of M. Uniform second order
accuracy away form discontinuities has also been obtained, but this time the influence of
the AIl,— projection is evident, as expected.

For M small enough the AIl, — projection is not equal to the identity, and its applica-
tion produces loss of accuracy only near the extrema:

(1) that the influence of the AIl,— projection appears only in the presence of extrema
can be verified by noting that in problem 2c, for which the entropy solution does
not have extrema but two smooth monotone regions between the shokes, the results
are independent of the value of M (the value of M for problems 4,5,6 is zero);

(2) that this lost of accuracy is indeed of a local character can be verified by comparing
the corresponding L! — and L — errors on tables 6.3 and 6.4, respectively (consider

the problems 1, 2a,b and 3 — that are the only ones for which the entropy solution
does have extrema). Note how the lost of accuracy is greater when M = 0, and
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how in this case the order of convergence is lowered dramatically for the L> norm
while the one of the L' norm remains the same. (This cannot be seen for problem
3 because the maximum error is attained not at the extrema but at some points
between them at which the function |0, u| becomes very big!);

(3) that for "big” values of M the AIl,— projection reduces to the identity can be ver-

ified by noting that the results with no projection coincide with the ones obtained
with M calculated by (4.2).

In problems 4, 5, and 6 for which the initial data presents a discontinuity, we see that
the introduction of the AIl, — projection (i) improves the accuracy of the method, and (ii)
enforces the convergence to the entropy solution. The most dramatic case is, of course,
problem 6 (the nonlinearity f is nonconvex) for which the scheme without projection does
not converge to the entropy solution.

Figure 6.2a. Detail of the convergence in test problem 5: Aproximation to a
discontinuity of 9,u when the nonlineariry f is concave. Note how the discontinuity
of O,u is approximated without any oscillation. The "corner” is very well reproduced by
the approximate solution u; in a single element. However, its position with respect to the
"right corner” is correct up to an element. We found that in this case the L!(C)— error is
O(Axz). This reflects the fact that the initial data is discontinuous, and indicates that this
picture is essentially the same for all the values of Ar. In this case algorithm (4.2) gives
M =0, so that the AIl, — projection mantains the range of the approximate solution in
[0,1].

1,01 . Y Y

1,00 |

0.98 ;

0.98 ;

0-87.98 : 0.199 l 1-100 ‘ 1~4°1 ‘ 1.0z
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Figure 6.2b. Detail of the convergence in test problem 2c: Aproximation
to a discontinuity of v when the nonlineariry f is convex. The discontinuity has
been captured withing a single element. In this case the value of M is different from zero,
nevertheless, no visible oscillation has been introduced, as expected.

0.8 T T

T Y T T Y T T T T T T ~T

-0.2 —

-0.q L—. S B . A . —
0.130 0.135 0. 140 0.14% 0.150

Figure 6.2c. Detail of the convergence in test problem 2c: Aproximation
to a discontinuity of u when the nonlineariry f is nonconvex. This is the most
difficult case. Note, however, how the discontinuity of v is approximated without any
oscillation, and how at least 90% of it has been captured withing a single element.

1.0 T T T T

.78 1.
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All these calculations have been redone for ¢fl = 1/6 with identical results. The

influence of this decrease of cf/— number was negligible.

6.3 Conclusion. Qur numerical results indicate that the RKAIIP!— method is a

stable method that converges to the entropy solution, even in the presence of a nonconvex
nonlinearity f. In smooth regions of the entropy solution the method was found to be
uniformly second order accurate away from the discontinuiies when the initial data was
smooth, and was able to capture shocks, essentially, within a single element.

We want to stress the fact that this method is easy to code, and that its definition

does not depend on the type of nonlinearity f under consideration.

Higher order versions of this method, as well as extensions to the nonperiodic case.

constitute the object of work in progress.

[8]
[9]
(10]
[11]
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