
The Runos OpenFlow Controller

Alexander Shalimov
Applied Research Center for

Computer Networks
Lomonosov Moscow State University

ashalimov@arccn.ru

Sergey Nizovtsev
Applied Research Center for

Computer Networks
snizovtsev@arccn.ru

Danila Morkovnik
Applied Research Center for

Computer Networks
Lomonosov Moscow State University

dmorkovnik@arccn.ru

Ruslan Smeliansky
Applied Research Center for

Computer Networks
Lomonosov Moscow State University

smel@arccn.ru

Abstract—The Runos is a C++ OpenFlow controller that has
been developing since 2014 in order to answer on the well-known
question ”Could an OpenFlow controller be both easy to develop
applications for and also high performance?” [1]. The controller
includes the most fruitful techniques from the latest research
on simplifying SDN programming such as Pyretic and Maple
and combines them in right way to achieve high performance
and production quality, programmability, usability. Runos is
widely used in different POCs showing interests for third-party
developers. The project is in http://arccn.github.io/runos/.

I. INTRODUCTION

The performance of OpenFlow controllers that has been
widely discussed for a couple years [2]. But despite the fact of
that there are a lot research on SDN programming and policies,
they are not used in production SDN controllers. Applications
for modern controllers are still developed as solid block of
code created by single group of developers. The controllers still
have a problem with running multiple third party application
independently and need a time for manual connecting them
in one execution pipeline (parameters modification, interfaces
binding, assigning different flow tables, etc). The controller
also don’t have built-in flow rules conflict resolution system
and thus applications might send overlapping rules. The sim-
plest example is having two applications: forwarding and span.
Forwarding application says this flow should go over port 1,
while Span application wants the flow to be mirrored over port
5.

This paper describes Runos OpenFlow controller: architec-
ture decisions, performance evaluation, programmable simplic-
ity, and two usecases on using the controller.

II. DESIGN

A. Language and tools

In order to enable high performance solution we use C++11
language. Comparing to Java, C++ produces fully compiled
code reducing intermediate overheads and can achieve lower
delays: 1. C++ has wide low level network primitives that
fit high performance requirements; 2. we also can use fast
packet processing libraries like DPDK and Netmap; 3. C++
has more advanced multithreading locking techniques. As

a runtime we use QT and Boost.ASIO. They provide us
wide inter- and inner- thread communication with dynamic
decisions on having separate event loop for modules. This
simplifies multicore scalability: we run all modules as logical
QT threads and depending on number of physical cores the
runtime chooses what logical threads should be combined to
run on a single physical thread (based on configuration file).
QT also has in-build signal/slots mechanism allowing easily
subscribe on controller services from new applications.

B. Architecture

In order to make the controller faster, we have to rely
on multicore system with threading mechanisms. Runos
runs the dedicated number of worker threads (libfluid
- http://opennetworkingfoundation.github.io/libfluid/) to com-
municate with network switches and the dedicated number of
threads to run network applications. We use run to completion
model with pipelines. Applications say their requirement on
when they should be executed (e.g., after firewall, but before
load balancer). The controller determines the final order and
creates the pipelines (see next section). The pipeline executes
in libfluid threads’ context. Applications register their own
short callbacks in the pipeline (e.g. hash lookup based on mac
learning table). For deeper processing the OpenFlow message
should be moved to the associated QT application thread.

III. FEATURES

A. Speed

Figure 1 shows the renewed throughput for the existing
controller against Runos with 8M flows per second (the line
named easy). In our previous work [3], we have created in-
kernel and fusion controller where the controller resides as a
module in the Linux kernel that has the fastest performance.
This also shows how improving application programmability
affects overall performance of the controllers)from the inker-
nel version down to the easy version).

B. Modularity

Effective multi-threading. Runos uses multi-thread asyn-
chronous task from Boost.Asio (together with QT SDK). It
spawns a fixed number of threads running Boost.Asio tasks

Fig. 1. The average throughput achieved with different number of threads
(with 32 switches, 105 hosts per switch)(Intel(R) Xeon(R) CPU E5645
2.40GHz)

synchronized by strands to reduce context-switching overhead
(strand is defined as strictly sequential invocation of event
handlers i.e. threads without explicit locking). This approach is
often called as ”green threads” or ”userspace threads”. It allows
to take advantage of both preemtive (kernel) and cooperative
(userspace) scheduling models.

Support of user-defined custom OXM fields. With Runos
we can add arbitrary fields types if the custom switch supports
them. Pluggable OXM field architecture lets us to define our-
own fields and use them together with flow rule compiler. In
the future, we can easily integrate with P4 for defining exact
packet processing logic in the switch.

C. Programmability

Algorithmic policies. Maple engine [4] is tightly integrated
with Runos and makes applications shorter, maintainable and
reliable. Maple generates and updates flow entries for program-
mers and ensures no rule collisions. A programmer uses load,
compare or rewrite operators in imperative manner (see next
section). Runos will generate correct minimal-match flow rules
for switches.

Client-friendly API using EDSL grammar. Runos lets
you think that packet’s header fields are just variables.
We can index, compare or modify them without knowl-
edge about underlying Maple engine, openflow protocol de-
tails, and table features. Basically, instead of manually us-
ing Maple’s load, match, compare primitives we encode
them in C++ operators: pkt[eth src] == eth addr (this will
produce Maple’s compare primitive for programmers). Also
thanks to Boost.Proto expression templates, Runos gets the
whole expression and does some compile-time symbolic op-
timizations that reduces number of flow rules. For example,
if (ethsrc == A || ethdst == B) doA else doB . Runos
sees the entire expression and understands that it’s enough
to use three openflow rules to express this policy instead of
four as in raw Maple engine that works with all comparison
separately.

Pyretic-like composition of modules. You can use parallel
and sequential modules composition operators to statically
configure packet handling pipeline. Based on Pyretic style
policies [5], Runos arranges packet handlers into arbitrary
tree-like processing factory using static definitions. This is

a step further from linear modules composition as in other
controllers.

D. Applications

Enterprise/Campus Networks The Runos is used as main
controller for EasyWay management system [6]. Easyway im-
plements semantic network management where administrators
simply say what they want from the network but not how
and a SDN/OpenFlow controller will automatically program
the network elements. All low level details are hidden from
administrators (e.g., choosing IP addressing scheme). From
Runos point of view, Easyway is a network application that
widely leverages different services like like device and link
monitoring, topology, routing with QoS support, DNS proxy,
DHCP proxy, ARP proxy, BGP, load balancing, firewall, ACL,
NAT.

WAN segment (Service Provider) The Runos is also
used to manage dedicated WAN segment. It is green field
deployment where we have two types of physical devices: two
distribution OpenFlow switches (400Gbps) connected with set
of aggregation OpenFlow switches (40Gbps). One aggregation
switch is for one place (city, town, village). The goal is to
implement all required services for end-host communication.
Runos has the following list of applications: L2 pseudo wires
(PBB based), bridge domain, multiple pathes (active/standby),
VLAN enumeration, hierarchical QoS, L3 multicast, BFD
extension for OpenFlow.

IV. CONCLUSION

The Runos OpenFlow contoller introduces novel combi-
nation of the latest techniques on simplifying programming
with SDN together with high performance and quality. The
controller provides carrier grade performance, understandable
programming model for network developers, and composition
language suitable for network administration.

ACKNOWLEDGMENT

This research is supported by the Ministry of educa-
tion and science of the Russian Federation, Unique ID
RFMEFI60914X0003.

REFERENCES

[1] David Erickson, The Beacon OpenFlow Controller, Proceeding of the
ACM SIGCOMM HOTSDN 13, Hong Kong.

[2] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, R. Smeliansky,
Advanced Study of SDN/OpenFlow controllers, Proceedings of the CEE-
SECR13: Central and Eastern European Software Engineering Confer-
ence in Russia, ACM SIGSOFT, October 23-25, 2013, Moscow, Russian
Federation

[3] Shalimov A., Ivashchenko P. Inkernel offloading of an SDN/OpenFlow
Controller Proceedings of the Modern Networking Technologies (MoN-
eTec), IEEE, Moscow, Russia, 2014

[4] Andreas Voellmy, Junchang Wang, Y. Richard Yang, Bryan Ford, and
Paul Hudak. Maple: Simplifying SDN programming using algorithmic
policies. In SIGCOMM, 2013

[5] J. Reich, C. Monsanto, N. Foster, J. Rexford and D. Walker ”Modular
SDN programming with pyretic”, USENIX Mag., vol. 38, no. 5, 2013

[6] A. Shalimov, D. Morkovnik, S. Nizovtsev, R. Smeliansky Easy-
Way: Simplifying and automating enterprise network management with
SDN/OpenFlow// 10th Central and Eastern European Software Engineer-
ing Conference in Russia, CEE-SECR 2014, ACM SIGSOFT, Moscow,
Russia.

