
 Open access  Journal Article  DOI:10.1007/S00780-004-0133-8

The Russian option: Finite horizon — Source link 

Goran Peskir

Institutions: Aarhus University

Published on: 01 Apr 2005 - Finance and Stochastics (Springer-Verlag)

Topics: Optimal stopping, Put option, Free boundary problem, Boundary (topology) and Mathematical finance

Related papers:

 On the American option problem

 Local empirical spectral measure of multivariate processes with long range dependence

 Estimation for discretely observed diffusions using transform functions

 Spectral analysis of fractionally cointegrated systems

 Efficient inference in multivariate fractionally integrated time series models

Share this paper:    

View more about this paper here: https://typeset.io/papers/the-russian-option-finite-horizon-
1s9pc0v9aq

https://typeset.io/
https://www.doi.org/10.1007/S00780-004-0133-8
https://typeset.io/papers/the-russian-option-finite-horizon-1s9pc0v9aq
https://typeset.io/authors/goran-peskir-iubfjq454s
https://typeset.io/institutions/aarhus-university-2s1zo7wa
https://typeset.io/journals/finance-and-stochastics-28s0esjg
https://typeset.io/topics/optimal-stopping-gjivb4p9
https://typeset.io/topics/put-option-mtvn7fv6
https://typeset.io/topics/free-boundary-problem-3nbqpd85
https://typeset.io/topics/boundary-topology-2w4tu6ys
https://typeset.io/topics/mathematical-finance-27pxf0m5
https://typeset.io/papers/on-the-american-option-problem-9iz9spt94d
https://typeset.io/papers/local-empirical-spectral-measure-of-multivariate-processes-2dw8eh5s31
https://typeset.io/papers/estimation-for-discretely-observed-diffusions-using-1z6ddffclb
https://typeset.io/papers/spectral-analysis-of-fractionally-cointegrated-systems-589k4fm66k
https://typeset.io/papers/efficient-inference-in-multivariate-fractionally-integrated-3xmignzgwp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-russian-option-finite-horizon-1s9pc0v9aq
https://twitter.com/intent/tweet?text=The%20Russian%20option:%20Finite%20horizon&url=https://typeset.io/papers/the-russian-option-finite-horizon-1s9pc0v9aq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-russian-option-finite-horizon-1s9pc0v9aq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-russian-option-finite-horizon-1s9pc0v9aq
https://typeset.io/papers/the-russian-option-finite-horizon-1s9pc0v9aq


The Russian option: Finite horizon

Peskir, Goran

2005

MIMS EPrint: 2007.37

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


DOI: 10.1007/s00780-004-0133-8
Finance Stochast. 9, 251–267 (2005)

c© Springer-Verlag 2005

The Russian option: Finite horizon

Goran Peskir⋆

Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, 8000 Aarhus, Denmark

(e-mail: goran@imf.au.dk)

Abstract. We show that the optimal stopping boundary for the Russian option with

finite horizon can be characterized as the unique solution of a nonlinear integral

equation arising from the early exercise premium representation (an explicit formula

for the arbitrage-free price in terms of the optimal stopping boundary having a clear

economic interpretation). The results obtained stand in a complete parallel with the

best known results on theAmerican put option with finite horizon. The key argument

in the proof relies upon a local time-space formula.
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1 Introduction

According to the financial theory (see e.g. [14] or [6]) the arbitrage-free price of

the Russian option is given by (2.1) below where M denotes the maximum of the

stock price S. This option is characterized by ’reduced regret’ because its owner
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is paid the maximum stock price up to the time of exercise and hence feels less

remorse for not having exercised the option earlier.

In the case of infinite horizon T , and when Mτ in (2.1) is replaced by e−λτMτ ,

the problem was solved by Shepp and Shiryaev. The original derivation [11] was

two-dimensional (see [9] for a general principle in this context) and the subsequent

derivation [12] reduced the problem to one dimension using a change-of-measure

theorem. The latter methodology will also be adopted in the present article.

Apart from the fact that practitioners find finite horizons more desirable, the

infinite horizon formulation requires the discounting rate λ > 0 to be present, since

otherwise the option price would be infinite. Clearly, such a discounting rate is not

needed when the horizon T is finite, so that the most attractive feature of the option

– no regret – remains fully preserved.

The work of Shepp and Shiryaev [12] showed that the Russian option prob-

lem becomes one-dimensional after the change-of-measure theorem is applied (see

(2.4)–(2.7) below) thus setting the mathematical problem on an equal footing with

the American option problem (put or call) with finite horizon. The latter problem,

on the other hand, has been studied since the 1960’s, and for more details and ref-

erences including the latest definite results we refer to [10]. The main aim of the

present article is to extend these results to the Russian option with finite horizon.

In Sect. 2 we formulate the Russian option problem with finite horizon and recall

some known facts needed later. In Sect. 3 we present the main result and proof. The

key argument in the proof of uniqueness relies upon a local time-space formula

(see [10]). To obtain a more complete understanding of the results given here we

refer to [10] for mathematical complements and to [1] for financial interpretations.

Both carry over to the present case with no major change.

2 Formulation of the problem

The arbitrage-free price of the Russian option with finite horizon is given by:

V = sup
0≤τ≤T

E
(
e−rτMτ

)
(2.1)

where τ is a stopping time of the geometric Brownian motion S = (St)0≤t≤T

solving:

dSt = rSt dt + σSt dBt (S0 = s) (2.2)

and M = (Mt)0≤t≤T is the maximum process given by:

Mt =
(

max
0≤u≤t

Su

)
∨ m (2.3)

where m ≥ s > 0 are given and fixed. [Throughout B = (Bt)t≥0 denotes a

standard Brownian motion started at zero.] We recall that T > 0 is the expiration

date (maturity), r > 0 is the interest rate, and σ > 0 is the volatility coefficient.
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For the purpose of comparison with the infinite-horizon results [11] we will

also introduce a discounting rate λ ≥ 0 so that Mτ in (2.1) is to be replaced by

e−λτMτ . By the change-of-measure theorem it then follows that:

V = sup
0≤τ≤T

Ẽ
(
e−λτXτ

)
(2.4)

where following the key fact of [12] we set:

Xt =
Mt

St

(2.5)

and P̃ is defined by dP̃ = exp(σBT − (σ2/2) T ) dP so that B̃t = Bt − σt is a

standard Brownian motion under P̃ for 0 ≤ t ≤ T . By Itô’s formula one finds that

X solves:

dXt = −rXt dt + σXt dB̂t + dRt (X0 = x) (2.6)

under P̃ where B̂ = −B̃ is a standard Brownian motion, and we set:

Rt =

∫ t

0

I(Xs = 1)
dMs

Ss

(2.7)

for 0 ≤ t ≤ T . It follows that X is a diffusion in [1, ∞〉 having 1 as a boundary

point of instantaneous reflection. The infinitesimal generator of X is therefore given

by:

LX = −r x
∂

∂x
+

σ2

2
x2 ∂2

∂x2
in 〈1, ∞〉 (2.8)

∂

∂x
= 0 at 1+ .

[The latter means that the infinitesimal generator of X is acting on a space of C2

functions f defined on [1, ∞〉 such that f ′(1+) = 0.] For more details on the

derivation (2.4)–(2.7) see [12].

For further reference recall that the strong solution of (2.2) is given by:

St = s exp
(
σBt + (r − σ2/2) t

)
= s exp

(
σB̃t + (r + σ2/2) t

)
(2.9)

for 0 ≤ t ≤ T under P and P̃ respectively. When dealing with the process X on

its own, however, note that there is no restriction to assume that s = 1 and m = x
with x ≥ 1.

Summarizing the preceding facts we see that the Russian option problem with

finite horizon reduces to solve the following optimal stopping problem (extended

in accordance with a well-known argument from general theory):

V (t, x) = sup
0≤τ≤T−t

Ẽt,x

(
e−λτXt+τ

)
(2.10)

where τ is a stopping time of the diffusion process X satisfying (2.5)–(2.8) above

and Xt = x under P̃t,x with (t, x) ∈ [0, T ] × [1, ∞〉 given and fixed.
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Standard Markovian arguments (cf. [3]) indicate that V from (2.10) solves the

following free-boundary problem of parabolic type:

Vt + LXV = λV in C (2.11)

V (t, x) = x for x = b(t) or t = T (2.12)

Vx(t, x) = 1 for x = b(t) (smooth-fit) (2.13)

Vx(t, 1+) = 0 (normal reflection) (2.14)

V (t, x) > x in C (2.15)

V (t, x) = x in D (2.16)

where the continuation set C and the stopping set S = D̄ are defined by:

C = { (t, x) ∈ [0, T 〉×[1, ∞〉 | x < b(t) } (2.17)

D = { (t, x) ∈ [0, T 〉 × [1, ∞〉 | x > b(t) } (2.18)

and b : [0, T ] → R is the (unknown) optimal stopping boundary, i.e. the stopping

time:

τb = inf { 0 ≤ s ≤ T − t | Xt+s ≥ b(t + s) } (2.19)

is optimal in (2.10) (i.e. the supremum is attained at this stopping time).

It will follow from the result of Theorem 3.1 below that the free-boundary

problem (2.11)–(2.16) characterizes the value function V and the optimal stopping

boundary b in a unique manner. Our main aim, however, is to follow the train

of thought initiated by Kolodner [8] where V is firstly expressed in terms of b,

and b itself is shown to satisfy a nonlinear integral equation. A particularly simple

approach for achieving this goal in the case of the American put option has been

suggested in [7, 5, 1] and we will take it up in the present paper as well. We will

moreover see (as in [10]) that the nonlinear equation derived for b cannot have other

solutions.

3 The result and proof

In this section we adopt the setting and notation of the Russian option problem

from the previous section. Below we will make use of the following functions:

F (t, x) = Ẽ0,x(Xt) =

∫ ∞

1

∫ m

0

(
m∨x

s

)
f(t, s, m) ds dm (3.1)

G(t, x, y) = Ẽ0,x

(
Xt I(Xt ≥y)

)
(3.2)

=

∫ ∞

1

∫ m

0

(
m∨x

s

)
I
((

m∨x
s

)
≥ y

)
f(t, s, m) ds dm

for t > 0 and x, y ≥ 1, where (s, m) 	→ f(t, s, m) is the probability density

function of (St, Mt) under P̃ with S0 =M0 =1 given by (see e.g. [6] p. 368):

f(t, s, m) =
2

σ3
√

2πt3
log(m2/s)

s m
exp

(
− log2(m2/s)

2σ2t
+

β

σ
log(s) − β2

2
t

)

(3.3)
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for 0 < s ≤ m and m ≥ 1 with β = r/σ + σ/2, and is equal to 0 otherwise.

The main result of the paper may now be stated as follows.

Theorem 3.1 The optimal stopping boundary in the Russian option problem (2.10)

can be characterized as the unique continuous decreasing solution b : [0, T ] → R

of the nonlinear integral equation:

b(t) = e−λ(T−t)F (T − t, b(t)) + (r + λ)

∫ T−t

0

e−λu G(u, b(t), b(t + u)) du

(3.4)

satisfying b(t) > 1 for all 0 < t < T . [The solution b satisfies b(T−) = 1 and the

stopping time τb from (2.19) is optimal in (2.10) (see Fig. 1 below).]

The arbitrage-free price of the Russian option (2.10) admits the following ’early

exercise premium’ representation:

V (t, x) = e−λ(T−t)F (T − t, x) + (r + λ)

∫ T−t

0

e−λu G(u, x, b(t + u)) du

(3.5)

for all (t, x) ∈ [0, T ] × [1, ∞〉. [Further properties of V and b are exhibited in the

proof below.]

Proof The proof will be carried out in several steps. We begin by stating some

general remarks which will be freely used below without further mentioning.

It is easily seen that E(max 0≤t≤T Xt) < ∞ so that V (t, x) < ∞ for all

(t, x) ∈ [0, T ]× [1, ∞〉. Recall that it is no restriction to assume that s = 1 and

m = x so that Xt = (Mt ∨x)/St with S0 = M0 = 1. We will write Xx
t instead of

Xt to indicate the dependence on x when needed. Since Mt ∨x = (x−Mt)
++Mt

we see that V admits the following representation:

V (t, x) = sup
0≤τ≤T−t

Ẽ

(
e−λτ (x − Mτ )+ + Mτ

Sτ

)
(3.6)

for (t, x) ∈ [0, T ] × [1, ∞〉. It follows immediately from (3.6) that:

x 	→ V (t, x) is increasing and convex on [1, ∞〉 (3.7)

for each t ≥ 0 fixed. It is also obvious from (3.6) that t 	→ V (t, x) is decreasing on

[0, T ] with V (T, x) = x for each x ≥ 1 fixed.

1. We show that V : [0, T ] × [1, ∞〉 → R is continuous. For this, using sup(f) −
sup(g) ≤ sup(f − g) and (y − z)+ − (x − z)+ ≤ (y − x)+ for x, y, z ∈ R, we

get:

V (t, y) − V (t, x) ≤ (y − x) sup
0≤τ≤T−t

Ẽ
(
e−λτ (1/Sτ )

)
≤ y − x (3.8)

for 1 ≤ x < y and all t ≥ 0, where in the second inequality we used (2.9) to deduce

that 1/St = exp(σB̂t − (r + σ2/2) t) ≤ exp(σB̂t − (σ2/2) t) and the latter is a
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martingale under P̃ . From (3.8) with (3.7) we see that x 	→ V (t, x) is continuous

uniformly over t ∈ [0, T ]. Thus to prove that V is continuous on [0, T ] × [1, ∞〉 it

is enough to show that t 	→ V (t, x) is continuous on [0, T ] for each x ≥ 1 given

and fixed. For this, take any t1 < t2 in [0, T ] and ε > 0, and let τε
1 be a stopping

time such that Ẽ(e−λτε

1 Xx
t1+τε

1

) ≥ V (t1, x) − ε. Setting τ ε
2 = τε

1 ∧ (T − t2) we

see that V (t2, x) ≥ Ẽ(e−λτε

2 Xx
t2+τε

2

). Hence we get:

0 ≤ V (t1, x) − V (t2, x) ≤ Ẽ
(
e−λτε

1 Xx
t1+τε

1

− e−λτε

2 Xx
t2+τε

2

)
+ ε. (3.9)

Letting first t2 − t1 → 0 using τ ε
1 − τε

2 → 0 and then ε ↓ 0 we see that

V (t1, x) − V (t2, x) → 0 by dominated convergence. This shows that t 	→ V (t, x)
is continuous on [0, T ], and the proof of the initial claim is complete.

Denote G(x) = x for x ≥ 1 and introduce the continuation set C = { (t, x) ∈
[0, T 〉 × [1, ∞〉 | V (t, x) > G(x) } and the stopping set S = { (t, x) ∈ [0, T 〉 ×
[1, ∞〉 | V (t, x) = G(x) }. Since V and G are continuous, we see that C is

open and S is closed in [0, T 〉 × [1, ∞〉. Standard arguments based on the strong

Markov property (cf. [13]) show that the first hitting time τS = inf { 0 ≤ s ≤
T − t | (t + s, Xt+s) ∈ S } is optimal in (2.10).

2. We show that the continuation set C just defined is given by (2.17) for some

decreasing function b : [0, T 〉 → 〈1, ∞〉. It follows in particular that the stopping

set S coincides with the closure D̄ in [0, T 〉 × [1, ∞〉 of the set D in (2.18) as

claimed. To verify the initial claim, note that by Itô’s formula and (2.6) we have:

e−λsXt+s = Xt − (r + λ)

∫ s

0

e−λuXt+u du +

∫ s

0

e−λu dMt+u

St+u

+ Ns (3.10)

where Ns = σ
∫ s

0
e−λuXt+u dB̂t+u is a martingale for 0 ≤ s ≤ T − t. Let

t ∈ [0, T ] and x > y ≥ 1 be given and fixed. We will first show that (t, x) ∈ C
implies that (t, y) ∈ C. For this, let τ∗ = τ∗(t, x) denote the optimal stopping time

for V (t, x). Taking the expectation in (3.10) stopped at τ∗ , first under P̃t,y and then

under P̃t,x, and using the optional sampling theorem to get rid of the martingale

part, we find:

V (t, y) − y ≥ Ẽt,y

(
e−λτ∗Xt+τ∗

)
− y (3.11)

= −(r+λ)Ẽt,y

( ∫ τ∗

0

e−λuXt+u du

)
+Ẽt,y

( ∫ τ∗

0

e−λu dMt+u

St+u

)

≥ −(r+λ)Ẽt,x

( ∫ τ∗

0

e−λuXt+u du

)
+Ẽt,x

( ∫ τ∗

0

e−λu dMt+u

St+u

)

= Ẽt,x

(
e−λτ∗Xt+τ∗

)
− x = V (t, x) − x > 0

proving the claim. To explain the second inequality in (3.11) note that the process

X under P̃t,z can be realized as the process Xt,z under P where we set Xt,z
t+u =

(S∗
u ∨ z)/Su with S∗

u = max 0≤v≤u Sv . Then note that Xt,y
t+u ≤ Xt,x

t+u and d(S∗
u ∨

y) ≥ d(S∗
u ∨ x) whenever y ≤ x, and thus each of the two terms on the left-hand
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side of the inequality is larger than the corresponding term on the right-hand side,

implying the inequality. The fact just proved establishes the existence of a function

b : [0, T ] → [1, ∞] such that the continuation set C is given by (2.17) above.

Let us show that b is decreasing. For this, with x ≥ 1 and t1 < t2 in [0, T ] given

and fixed, it is enough to show that (t2, x) ∈ C implies that (t1, x) ∈ C. To verify

this implication, recall that t 	→ V (t, x) is decreasing on [0, T ], so that we have:

V (t1, x) ≥ V (t2, x) > x (3.12)

proving the claim.

Let us show that b does not take the value ∞. For this, assume that there exists

t0 ∈ 〈0, T ] such that b(t) = ∞ for all 0 ≤ t ≤ t0. It implies that (0, x) ∈ C for

any x ≥ 1 given and fixed, so that if τ∗ = τ∗(0, x) denote the optimal stopping

time for V (0, x), we have V (0, x) > x which by (3.10) is equivalent to:

Ẽ0,x

( ∫ τ∗

0

e−λu dMu

Su

)
> (r + λ) Ẽ0,x

( ∫ τ∗

0

e−λuXu du

)
. (3.13)

Recalling that Mu = S∗
u ∨ x we see that:

Ẽ0,x

( ∫ τ∗

0

e−λu dMu

Su

)
≤ Ẽ

((
max

0≤u≤T
(1/Su)

)(
(S∗

T ∨ x) − x
))

(3.14)

≤ Ẽ

((
max

0≤u≤T
(1/Su)

)
S∗

T I(S∗
T > x)

)
→ 0

as x → ∞. Recalling that Xu = (S∗
u ∨ x)/Su and noting that τ∗ > t0 we see that:

Ẽ0,x

( ∫ τ∗

0

e−λuXu du

)
≥ e−λt0 x Ẽ

( ∫ t0

0

du

Su

)
→ ∞ (3.15)

as x → ∞. From (3.14) and (3.15) we see that the strict inequality in (3.13) is

violated if x is taken large enough, thus proving that b does not take the value ∞
on 〈0, T ]. To disprove the case b(0+) = ∞, i.e. t0 = 0 above, we may note that

the gain function G(x) = x in (2.10) is independent of time, so that b(0+) = ∞
would also imply that b(t) = ∞ for all 0 ≤ t ≤ δ in the problem (2.10) with the

horizon T + δ instead of T where δ > 0. Applying the same argument as above to

the T + δ problem (2.10) we again arrive to a contradiction. We thus may conclude

that b(0+) < ∞ as claimed.Yet another quick argument for b to be finite in the case

λ > 0 can be given by noting that b(t) < α for all t ∈ [0, T ] where α ∈ 〈1, ∞〉 is

the optimal stopping point in the infinite horizon problem given explicitly in (2.3)

of [11]. Clearly b(t) ↑ α as T → ∞ for each t ≥ 0, where we set α = ∞ in the

case λ = 0.

Let us show that b cannot take the value 1 on [0, T 〉. This fact is equivalent to the

fact that the process (St, Mt) in (2.1) [ with r+λ instead of r ] cannot be optimally

stopped at the diagonal s = m in 〈0, ∞〉×〈0, ∞〉. The latter fact is well-known for

diffusions in the maximum process problems of optimal stopping with linear cost

(see e.g. Proposition 2.1 in [9]) and only minor modifications are needed to extend

the argument to the present case. For this, set Zt = σBt + (r − σ2/2) t and note
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that the exponential case of (2.1) [ with r + λ instead of r ] reduces to the linear

case of [9] for the diffusion Z and c = r + λ by means of Jensen’s inequality as

follows:

E
(
e−(r+λ)τMτ

)
= E

(
exp

(
max

0≤t≤τ
Zt − c τ

))
(3.16)

≥ exp
(
E

(
max

0≤t≤τ
Zt − c τ

))
.

Denoting τn = inf {t > 0 | Zt �= 〈−1/n, 1/n〉} it is easily verified that (cf.

Proposition 2.1 in [9]):

E
(

max
0≤t≤τn

Zt

)
≥ δ

n
and E(τn) ≤ κ

n2
(3.17)

for all n ≥ 1 with some constants δ > 0 and κ > 0. Choosing n large enough,

upon recalling (3.16), we see that (3.17) shows that it is never optimal to stop at

the diagonal in the case of infinite horizon. To derive the same conclusion in the

finite horizon case replace τn by σn = τn ∧T and note by Markov’s inequality and

(3.17) that:

E
(

max
0≤t≤τn

Zt − max
0≤t≤σn

Zt

)
≤ 1

n
P

(
τn > T

)
(3.18)

≤ E(τn)

n T
≤ κ

n3 T
= O(n−3)

which together with (3.16) and (3.17) shows that:

E
(
e−(r+λ)σnMσn

)
≥ exp

(
E

(
max

0≤t≤σn

Zt − c σn

))
> 1 (3.19)

for n large enough. From (3.19) we see that it is never optimal to stop at the diagonal

in the case of finite horizon either, and thus b does not take the value 1 on [0, T 〉 as

claimed.

Since the stopping set equals D̄ = { (t, x) ∈ [0, T 〉 × [1, ∞〉 | x ≥ b(t) } and b
is decreasing, it is easily seen that b is right-continuous on [0, T 〉. Before we pass

to the proof of its continuity we first turn to the key principle of optimal stopping

in the problem (2.10).

3. We show that the smooth-fit condition (2.13) holds. For this, let t ∈ [0, T 〉 be

given and fixed and set x = b(t). We know that x > 1 so that there exists ε > 0
such that x − ε > 1 too. Since V (t, x) = G(x) and V (t, x − ε) > G(x − ε), we

have:

V (t, x) − V (t, x − ε)

ε
≤ G(x) − G(x − ε)

ε
= 1 (3.20)

so that by letting ε ↓ 0 in (3.20) and using that the left-hand derivative V −
x (t, x)

exists since y 	→ V (t, y) is convex, we get V −
x (t, x) ≤ 1. To prove the reverse

inequality, let τε = τ∗
ε (t, x − ε) denote the optimal stopping time for V (t, x − ε).

We then have:
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V (t, x) − V (t, x − ε)

ε
(3.21)

≥ 1

ε
Ẽ

(
e−λτε

(
(x − Mτε

)+ + Mτε

Sτε

− (x − ε − Mτε
)+ + Mτε

Sτε

))

=
1

ε
Ẽ

(
e−λτε

Sτε

(
(x − Mτε

)+ − (x − ε − Mτε
)+

))

≥ 1

ε
Ẽ

(
e−λτε

Sτε

(
(x − Mτε

)+ − (x − ε − Mτε
)+

)
I(Mτε

≤ x − ε)

)

= Ẽ

(
e−λτε

Sτε

I(Mτε
≤ x − ε)

)
→ 1

as ε ↓ 0 by bounded convergence since τε → 0 so that Mτε
→ 1 with 1 < x − ε

and likewise Sτε
→ 1. It thus follows from (3.21) that V −

x (t, x) ≥ 1 and therefore

V −
x (t, x) = 1. Since V (t, y) = G(y) for y > x, it is clear that V +

x (t, x) = 1. We

may thus conclude that y 	→ V (t, y) is C1 at b(t) and Vx(t, b(t)) = 1 as stated in

(2.13).

4. We show that b is continuous on [0, T ] and that b(T−) = 1. For this, note first

that since the supremum in (2.10) is attained at the first exit time τb from the open

set C, standard arguments based on the strong Markov property (cf. [3]) imply that

V is C1,2 on C and satisfies (2.11). Suppose that there exists t ∈ 〈0, T ] such that

b(t−) > b(t) and fix any x ∈ [b(t), b(t−)〉. Note that by (2.13) we have:

V (s, x) − x =

∫ b(s)

x

∫ b(s)

y

Vxx(s, z) dz dy (3.22)

for each s ∈ 〈t−δ, t〉 where δ > 0 with t−δ > 0. Since Vt−rxVx+(σ2/2)x2Vxx−
λ V = 0 in C we see that (σ2/2) x2Vxx = −Vt + r x Vx + λ V ≥ r Vx in C since

Vt ≤ 0 and Vx ≥ 0 upon recalling also that x ≥ 1 and λ V ≥ 0. Hence we see that

there exists c > 0 such that Vxx ≥ cVx in C∩{(t, x) ∈ [0, T 〉×[1, ∞〉 | x ≤ b(0)},

so that this inequality applies in particular to the integrand in (3.22). In this way

we get:

V (s, x) − x ≥ c

∫ b(s)

x

∫ b(s)

y

Vx(s, z) dz dy = c

∫ b(s)

x

(
b(s) − V (s, y)

)
dy

(3.23)

for all s ∈ 〈t − δ, t〉. Letting s ↑ t we get:

V (t, x) − x ≥ c

∫ b(t−)

x

(
b(t−) − y

)
dy = (c/2)

(
b(t−) − x

)2
> 0 (3.24)

which is a contradiction since (t, x) belongs to the stopping set D̄. This shows that

b is continuous on [0, T ]. Note also that the same argument with t = T shows that

b(T−) = 1.

5. We show that the normal reflection condition (2.14) holds. For this, note first that

since x 	→ V (t, x) is increasing (and convex) on [1, ∞〉 it follows that Vx(t, 1+) ≥
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1

α

x

τb T

M t

St=

t X t→

t b(t)→

Fig. 1. A computer drawing of the optimal stopping boundary b from Theorem 3.1. The number α is the

optimal stopping point in the case of infinite horizon. If the discounting rate λ is zero, then α is infinite

(i.e. it is never optimal to stop), while b is still finite and looks as above

0 for all t ∈ [0, T 〉 . Suppose that there exists t ∈ [0, T 〉 such that Vx(t, 1+) > 0.

Recalling that V is C1,2 on C so that t 	→ Vx(t, 1+) is continuous on [0, T 〉, we

see that there exists δ > 0 such that Vx(s, 1+) ≥ ε > 0 for all s ∈ [t, t + δ] with

t + δ < T . Setting τδ = τb ∧ (t + δ) it follows by Itô’s formula, using (2.11), and

the optional sampling theorem (since Vx is bounded) that:

Ẽt,1

(
e−λτδ V (t + τδ, Xt+τδ

)
)

(3.25)

= V (t, 1) + Ẽt,1

( ∫ τδ

0

e−λu Vx(t + u, Xt+u) dRt+u

)
.

Since (e−λ(s∧τb)V (t + (s ∧ τb), Xt+(s∧τb)))0≤s≤T−t is a martingale under P̃t,1,

we see that the expression on the left-hand side in (3.25) equals the first term on

the right-hand side, and thus:

Ẽt,1

( ∫ τδ

0

e−λu Vx(t + u, Xt+u) dRt+u

)
= 0. (3.26)

On the other hand, since Vx(t+u, Xt+u)dRt+u = Vx(t+u, 1+)dRt+u by (2.7),

and Vx(t + u, 1+) ≥ ε > 0 for all u ∈ [0, τδ], we see that (3.26) implies that:

Ẽt,1

( ∫ τδ

0

dRt+u

)
= 0. (3.27)

By (2.6) and the optional sampling theorem we see that (3.27) is equivalent to:

Ẽt,1

(
Xt+τδ

)
− 1 + r Ẽt,1

( ∫ τδ

0

Xt+u du

)
= 0. (3.28)
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Since Xs ≥ 1 for all s ∈ [0, T ] we see that (3.28) implies that τδ = 0 P̃t,1-a.s. As

clearly this is impossible, we see that Vx(t, 1+) = 0 for all t ∈ [0, T 〉 as claimed

in (2.14).

6. We show that b solves the equation (3.4) on [0, T ]. For this, set F (t, x) =
e−λtV (t, x) and note that F : [0, T 〉 × [1, ∞〉 → R is a continuous function

satisfying the following conditions:

F is C1,2 on C ∪ D (3.29)

Ft + LXF is locally bounded (3.30)

x 	→ F (t, x) is convex (3.31)

t 	→ Fx(t, b(t)±) is continuous. (3.32)

To verify these claims, note first that F (t, x) = e−λtG(x) = e−λtx for

(t, x) ∈ D so that the second part of (3.29) is obvious. Similarly, since F (t, x) =
e−λtV (t, x) and V is C1,2 on C, we see that the same is true for F , implying the

first part of (3.29). For (3.30), note that (Ft + LXF )(t, x) = e−λt(Vt + LXV −
λV )(t, x) = 0 for (t, x) ∈ C by means of (2.11), and (Ft + LXF )(t, x) =
e−λt(Gt + LXG − λG)(t, x) = −(r + λ) x e−λt for (t, x) ∈ D, implying the

claim. [When we say in (3.30) that Ft + LXF is locally bounded, we mean that

Ft+LXF is bounded on K∩(C∪D) for each compact set K in [0, T 〉×[0, ∞〉.] The

condition (3.31) follows by (3.7) above. Finally, recall by (2.13) that x 	→ V (t, x)
is C1 at b(t) with Vx(t, b(t)) = 1 so that Fx(t, b(t)±) = e−λt implying (3.32).

Let us also note that the condition (3.31) can further be relaxed to the form where

Fxx = F1 + F2 on C ∪ D where F1 is non-negative and F2 is continuous on

[0, T 〉 × [1, ∞〉. This will be referred to below as the relaxed form of (3.29)–(3.32)

(for more details see [10]).

Having a continuous function F : [0, T 〉× [1, ∞〉 → R satisfying (3.29)–(3.32)

one finds in exactly the same way as (2.30) in [10] is derived from (2.26) in [10]

that for t ∈ [0, T 〉 the following change-of-variable formula holds:

F (t, Xt) = F (0, X0) +

∫ t

0

(Ft + LXF )(s, Xs) I(Xs �= b(s)) ds (3.33)

+

∫ t

0

Fx(s, Xs) σXs I(Xs �= b(s)) dB̂s

+

∫ t

0

Fx(s, Xs) I(Xs �= b(s)) dRs

+
1

2

∫ t

0

(
Fx(s, Xs+) − Fx(s, Xs−)

)
I(Xs = b(s)) dℓb

s(X)

where ℓb
s(X) is the local time of X at the curve b given by:

ℓb
s(X) = P − lim

ε↓0

1

2ε

∫ s

0

I(b(r) − ε < Xr < b(r) + ε) σ2X2
r dr (3.34)

and dℓb
s(X) refers to the integration with respect to the continuous increasing

function s 	→ ℓb
s(X). Note also that the formula (3.33) remains valid if b is replaced
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by any other continuous function of bounded variation c : [0, T ] → R for which

(3.29)–(3.32) hold with C and D defined in the same way.

Applying (3.33) to e−λsV (t+s, Xt+s) under P̃t,x with (t, x) ∈ [0, T 〉× [1, ∞〉
yields:

e−λsV (t + s, Xt+s) (3.35)

= V (t, x) +

∫ s

0

e−λu
(
Vt + LXV − λV

)
(t + u, Xt+u) du + Ms

= V (t, x)+

∫ s

0

e−λu
(
Gt+LXG−λG

)
(t+u, Xt+u)I(Xt+u≥b(t+u)) du+Ms

= V (t, x) − (r + λ)

∫ s

0

e−λuXt+u I(Xt+u ≥ b(t + u)) du + Ms

upon using (2.11), (2.12)+(2.16), (2.14), (2.13) and Gt+LXG−λG = −(r+λ)G,

where we set Ms =
∫ s

0
e−λuVx(t + u, Xt+u) σXt+u dB̂t+u for 0 ≤ s ≤ T − t.

Since 0 ≤ Vx ≤ 1 on [0, T ] × [1, ∞〉, it is easily verified that (Ms)0≤s≤T−t is a

martingale, so that Ẽt,x(Ms) = 0 for all 0 ≤ s ≤ T − t. Inserting s = T − t
in (3.35), using that V (T, x) = G(x) = x for all x ∈ [1, ∞〉, and taking the

P̃t,x-expectation in the resulting identity, we get:

e−λ(T−t)Ẽt,x(XT ) (3.36)

= V (t, x) − (r + λ)

∫ T−t

0

e−λuẼt,x

(
Xt+u I(Xt+u ≥ b(t + u))

)
du

for all (t, x) ∈ [0, T 〉 × [1, ∞〉. By (3.1) and (3.2) we see that (3.36) is the early

exercise premium representation (3.5). Recalling that V (t, x) = G(x) = x for

x ≥ b(t), and setting x = b(t) in (3.36), we see that b satisfies the equation (3.4)

as claimed.

7.1. We show that b is the unique solution of the equation (3.4) in the class of

continuous decreasing functions c : [0, T ] → R satisfying c(t) > 1 for all 0 ≤ t <
T . The proof of this fact will be carried out in several remaining subsections to the

end of the main proof. Let us thus assume that a function c belonging to the class

described above solves (3.4), and let us show that this c must then coincide with

the optimal stopping boundary b.

For this, in view of (3.36), let us introduce the function:

U c(t, x) = e−λ(T−t)Ẽt,x(XT ) (3.37)

+(r + λ)

∫ T−t

0

e−λuẼt,x

(
Xt+u I(Xt+u ≥ c(t + u))

)
du

for (t, x) ∈ [0, T 〉 × [1, ∞〉. Using (3.1) and (3.2) as in (3.5) we see that (3.37)

reads:

U c(t, x) = e−λ(T−t)F (T − t, x) + (r + λ)

∫ T−t

0

e−λu G(u, x, c(t + u)) du

(3.38)
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for (t, x) ∈ [0, T 〉 × [1, ∞〉. A direct inspection of the expressions in (3.38) using

(3.1)–(3.3) shows that U c
x is continuous on [0, T 〉 × [1, ∞〉.

7.2. In accordance with (3.5) define a function V c : [0, T 〉 × [1, ∞〉 → R by

setting V c(t, x) = U c(t, x) for x < c(t) and V c(t, x) = G(x) for x ≥ c(t)
when 0 ≤ t < T . Note that since c solves (3.4) we have that V c is continuous on

[0, T 〉 × [1, ∞〉, i.e. V c(t, x) = U c(t, x) = G(x) for x = c(t) when 0 ≤ t < T .

Let C and D be defined by means of c as in (2.17) and (2.18) respectively.

Standard arguments based on the Markov property (or a direct verification)

show that V c i.e. U c is C1,2 on C and that:

V c
t + LXV c = λV c in C (3.39)

V c
x (t, 1+) = 0 (3.40)

for all t ∈ [0, T 〉. Moreover, since U c
x is continuous on [0, T 〉 × [1, ∞〉 we see that

V c
x is continuous on C̄. Finally, it is obvious that V c i.e. G is C1,2 on D̄.

7.3. Summarizing the preceding conclusions one can easily verify that the function

F : [0, T 〉 × [1, ∞〉 → R defined by F (t, x) = e−λtV c(t, x) satisfies (3.29)–

(3.32) (in the relaxed form) so that (3.33) can be applied. In this way, under Pt,x

with (t, x) ∈ [0, T 〉 × [1, ∞〉 given and fixed, using (3.40) we get:

e−λsV c(t + s, Xt+s) = V c(t, x) (3.41)

+

∫ s

0

e−λu
(
V c

t +LXV c−λV c
)
(t+u, Xt+u)I(Xt+u �=c(t+u)) du+M c

s

+
1

2

∫ s

0

e−λu∆xV c
x (t + u, c(t + u)) dℓc

u(X)

where M c
s =

∫ s

0
e−λuV c

x (t + u, Xt+u) σXt+u I(Xt+u �= c(t + u)) dB̂t+u and

we set ∆xV c
x (v, c(v)) = V c

x (v, c(v)+) − V c
x (v, c(v)−) for t ≤ v ≤ T . Moreover,

it is readily seen from the explicit expression for V c
x obtained using (3.38) above

that (M c
s )0≤s≤T−t is a martingale under P̃t,x so that Ẽt,x(M c

s ) = 0 for each

0 ≤ s ≤ T − t.

7.4. Setting s = T − t in (3.41) and then taking the P̃t,x-expectation, using that

V c(T, x) = G(x) for all x ≥ 1 and that V c satisfies (3.39) in C, we get:

e−λ(T−t)Ẽt,x(XT ) = V c(t, x) (3.42)

− (r + λ)

∫ T−t

0

e−λuẼt,x

(
Xt+u I(Xt+u ≥ c(t + u))

)
du

+
1

2

∫ T−t

0

e−λu∆xV c
x (t + u, c(t + u)) duẼt,x(ℓc

u(X))

for all (t, x) ∈ [0, T 〉 × [1, ∞〉. Comparing (3.42) with (3.37), and recalling the

definition of V c in terms of U c and G, we get:
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∫ T−t

0

e−λu∆xV c
x (t + u, c(t + u)) duẼt,x(ℓc

u(X)) (3.43)

= 2
(
U c(t, x) − G(x)

)
I(x ≥ c(t))

for all 0 ≤ t < T and x ≥ 1, where I(x ≥ c(t)) equals 1 if x ≥ c(t) and 0 if

x < c(t).

7.5. From (3.43) we see that if we are to prove that:

x 	→ V c(t, x) is C1 at c(t) (3.44)

for each 0 ≤ t < T given and fixed, then it will follow that:

U c(t, x) = G(x) for all x ≥ c(t). (3.45)

On the other hand, if we know that (3.45) holds, then using the general fact:

∂

∂x

(
U c(t, x) − G(x)

)∣∣∣
x=c(t)

(3.46)

= V c
x (t, c(t)−) − V c

x (t, c(t)+) = −∆xV c
x (t, c(t))

for all 0 ≤ t < T , we see that (3.44) holds too (since U c
x is continuous). The

equivalence of (3.44) and (3.45) suggests that instead of dealing with the equation

(3.43) in order to derive (3.44) above we may rather concentrate on establishing

(3.45) directly.

7.6. To derive (3.45) first note that standard arguments based on the Markov property

(or a direct verification) show that U c is C1,2 on D and that:

U c
t + LXU c − λU c = −(r + λ) G in D. (3.47)

Since the function F : [0, T 〉 × [1, ∞〉 → R defined by F (t, x) = e−λtU c(t, x) is

continuous and satisfies (3.29)–(3.32) (in the relaxed form), we see that (3.33) can

be applied just like in (3.41) with U c instead of V c, and this yields:

e−λsU c(t + s, Xt+s) = U c(t, x) (3.48)

−(r + λ)

∫ s

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du + M̃ c
s

upon using (3.39)+(3.40) and (3.47) as well as that ∆xU c
x(t + u, c(t + u)) = 0

for 0 ≤ u ≤ s since U c
x is continuous. In (3.48) we have M̃ c

s =
∫ s

0
e−λu U c

x(t +

u, Xt+u) σXt+u I(Xt+u �= c(t + u)) dB̂t+u and (M̃ c
s )0≤s≤T−t is a martingale

under Pt,x.

Next note that Itô’s formula implies:

e−λsG(Xt+s) = G(x) − (r + λ)

∫ s

0

e−λuXt+u du + Ms +

∫ s

0

e−λu dRt+u

(3.49)



The Russian option: Finite horizon 265

upon using that Gt+LXG−rG = −(r+λ)G as well as that Gx(t+u, Xt+u) = 1

for 0 ≤ u ≤ s. In (3.49) we have Ms =
∫ s

0
e−λu σXt+u dB̂t+u and (Ms)0≤s≤T−t

is a martingale under Pt,x.

For x ≥ c(t) consider the stopping time:

σc = inf { 0 ≤ s ≤ T − t | Xt+s ≤ c(t + s) }. (3.50)

Then using that U c(t, c(t)) = G(c(t)) for all 0 ≤ t < T since c solves (3.4), and

that U c(T, x) = G(x) for all x ≥ 1 by (3.37), we see that U c(t + σc, Xt+σc
) =

G(Xt+σc
). Hence from (3.48) and (3.49) using the optional sampling theorem we

find:

U c(t, x) = Et,x

(
e−λσcU c(t + σc, Xt+σc

)
)

(3.51)

+ (r + λ) Et,x

( ∫ σc

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du

)

= Et,x

(
e−rσcG(Xt+σc

)
)

+ (r + λ) Et,x

( ∫ σc

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du

)

= G(x) − (r + λ) Et,x

( ∫ σc

0

e−λuXt+u du

)

+ (r + λ) Et,x

( ∫ σc

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du

)
= G(x)

since Xt+u ≥ c(t + u) > 1 for all 0 ≤ u ≤ σc. This establishes (3.45) and thus

(3.44) holds too.

It may be noted that a shorter but somewhat less revealing proof of (3.45) [and

(3.44)] can be obtained by verifying directly (using the Markov property only) that

the process:

e−λsU c(t + s, Xt+s) + (r + λ)

∫ s

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du (3.52)

is a martingale under Pt,x for 0 ≤ s ≤ T − t. This verification moreover shows

that the martingale property of (3.52) does not require that c is increasing but

only measurable. Taken together with the rest of the proof below this shows that

the claim of uniqueness for the equation (3.4) holds in the class of continuous

functions c : [0, T ] → R such that c(t) > 1 for all 0 < t < T .

7.7. Consider the stopping time:

τc = inf { 0 ≤ s ≤ T − t | Xt+s ≥ c(t + s) }. (3.53)

Note that (3.41) using (3.39) and (3.44) reads:

e−λsV c(t + s, Xt+s) = V c(t, x) (3.54)

−(r + λ)

∫ s

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du + M c
s
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where (M c
s )0≤s≤T−t is a martingale under P̃t,x. Thus Ẽt,x(M c

τc
) = 0, so that after

inserting τc in place of s in (3.54), it follows upon taking the P̃t,x-expectation that:

V c(t, x) = Ẽt,x

(
e−λτcXt+τc

)
(3.55)

for all (t, x) ∈ [0, T 〉×[1, ∞〉 where we use that V c(t, x) = G(x) = x for x ≥ c(t)
or t = T . Comparing (3.55) with (2.10) we see that:

V c(t, x) ≤ V (t, x) (3.56)

for all (t, x) ∈ [0, T 〉 × [1, ∞〉.
7.8. Let us now show that b ≥ c on [0, T ]. For this, recall that by the same arguments

as for V c we also have:

e−λsV (t + s, Xt+s) = V (t, x) (3.57)

−(r + λ)

∫ s

0

e−λuXt+u I(Xt+u ≥ b(t + u)) du + M b
s

where (M b
s )0≤s≤T−t is a martingale under P̃t,x. Fix (t, x) ∈ [0, T 〉 × [1, ∞〉 such

that x > b(t) ∨ c(t) and consider the stopping time:

σb = inf { 0 ≤ s ≤ T − t | Xt+s ≤ b(t + s) }. (3.58)

Inserting σb in place of s in (3.54) and (3.57) and taking the P̃t,x-expectation, we

get:

Ẽt,x

(
e−λσbV c(t + σb, Xt+σb

)
)

(3.59)

= x − (r + λ) Ẽt,x

( ∫ σb

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du

)

Ẽt,x

(
e−λσbV (t + σb, Xt+σb

)
)

(3.60)

= x − (r + λ) Ẽt,x

( ∫ σb

0

e−λuXt+u du

)
.

Hence by (3.56) we see that:

Ẽt,x

( ∫ σb

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du

)
≥ Ẽt,x

( ∫ σb

0

e−λuXt+u du

)

(3.61)

from where it follows by the continuity of c and b, using Xt+u > 0, that b(t) ≥ c(t)
for all t ∈ [0, T ].

7.9. Finally, let us show that c must be equal to b. For this, assume that there is

t ∈ 〈0, T 〉 such that b(t) > c(t), and pick x ∈ 〈c(t), b(t)〉. Under P̃t,x consider

the stopping time τb from (2.19). Inserting τb in place of s in (3.54) and (3.57) and

taking the P̃t,x-expectation, we get:
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Ẽt,x

(
e−λτbXt+τb

)
= V c(t, x) (3.62)

−(r + λ) Ẽt,x

( ∫ τb

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du

)

Ẽt,x

(
e−λτbXt+τb

)
= V (t, x). (3.63)

Hence by (3.56) we see that:

Ẽt,x

( ∫ τb

0

e−λuXt+u I(Xt+u ≥ c(t + u)) du

)
≤ 0 (3.64)

from where it follows by the continuity of c and b using Xt+u > 0 that such a point

x cannot exist. Thus c must be equal to b, and the proof is complete.

Note added in proof. I thank Andreas Kyprianou for stimulating discussions and

the preprint [2]. I also thank Erik Ekström for his interest in the first draft of the

present paper and for sending me his preprint [4]. Both [2] and [4] provide useful

additions to the main result of the present paper.
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