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1 Introduction

In conformal invariant field theories, the correlation functions of local operators are strongly

constrained by virtue of the operator-state correspondence, which results in a convergent

operator product expansion and well-defined crossing symmetry equations. These are the
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essential ingredients for the numerical bootstrap program [1–7], the analytic results at large

spin [8, 9], and more recently the analysis of causality constraints [10–12].

This work aims to use the exact same CFT structures to constrain non-conformal

quantum field theories. Our main vehicle for doing so is to place the D-dimensional QFT

in hyperbolic space, where the algebra of isometries so(D, 1) coincides with that of a

CFT in d = D − 1 dimensions. We will focus our investigations on boundary correlation

functions ; these can be defined as functional derivatives of the bulk partition function

with respect to the boundary conditions, or alternatively by pushing the insertion points

of bulk correlation functions towards the conformal boundary. Such observables resemble

CFT correlation functions in almost all respects and the aforementioned techniques can

be applied straightforwardly. In this paper we will investigate in particular the power of

numerical bootstrap methods to constrain these QFT observables.

The structure of QFTs in hyperbolic space forms an interesting subject by itself, but

for obvious reasons it would be more interesting if the current setup would also allow us to

determine flat-space observables of the QFT. This leads us to consider the flat-space limit

where we send the radius of curvature R to infinity. In this limit we would like to keep

the masses of the bulk particles fixed, which implies that the scaling dimensions ∆ ∼ mR

of the dual boundary operators will also diverge. We will discuss below how this brings

about interesting challenges for the numerical analysis.

Physically speaking we expect a close connection between the QFT S-matrix and the

flat-space limit of the boundary correlators in hyperbolic space. The most concrete imple-

mentation of this idea comes through the definition of a Mellin space transform of CFT

correlators. As explained in more detail below, there exists significant evidence that the

correct flat-space S-matrix can be reproduced from a simple scaling limit of the Mellin

transform of a boundary correlator.1 At the level of individual diagrams this procedure

simply “removes the circle” from a Witten diagram and transforms it into an ordinary

Feynman diagram, with external legs amputated as per the LSZ prescription. We however

expect the procedure to make sense more generally. We also provide an alternative connec-

tion by expressing the flat-space phase shift directly in terms of (a limit of) the spectrum

and OPE coefficients in the boundary correlation functions. This formula works only for

physical values of the Mandelstam variables but has the significant advantage of making

unitarity manifest.

This paper splits into two main parts. In the first, which comprises sections 2 and 3, we

will discuss the physics of boundary correlators and the flat-space limit. We discuss general

properties, their differences and similarities to ordinary CFT correlation functions, and

our expectations for the flat-space limit and the connection to the S-matrix. The second

part consists of section 4, where we apply numerical bootstrap techniques to boundary

correlators to investigate what information we can gather both about QFTs in hyperbolic

space and how to extrapolate to the flat-space limit. In this initial exploration we have

focused on two-dimensional QFTs in order to simplify the numerical analysis.

1Our prescription deviates slightly from earlier results, since the external particles will be massive rather

than massless in the flat-space limit.
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As explained further below, we have obtained very encouraging results. In particular

we show that our construction allows for the extraction of upper bounds on the residues of

poles in a 2-to-2 elastic scattering amplitude of massive particles, which must be obeyed

by any unitary two-dimensional QFT. We consider it highly nontrivial that such a result

for massive QFTs follows from an analysis of conformal crossing symmetry equations.

Our encouraging results led us to scrutinize the structure of the S-matrix for two-

dimensional QFTs. As explained in our companion paper [13], it is in fact possible to

directly constrain the residues of poles in 2-to-2 elastic amplitudes, using only the assump-

tions of analyticity, crossing symmetry and unitarity and without resorting to a hyperbolic

space construction. In sections 4 and 5 we will discuss the excellent agreement between

these two approaches and the ways in which they complement each other.

2 QFT in hyperbolic space

The study of QFT in hyperbolic space is an old idea [14]. In this section we review the

salient features of this construction, with a focus on the definition of boundary operators

and their correlation functions. In the next section we will discuss how these correlation

functions will morph into an S-matrix in the flat-space limit.

The box. Hyperbolic space (also known as Anti-de Sitter space) is famed for introducing

an IR cutoff while keeping the same number of isometries as in flat space. It can for example

be described by the metric

ds2 = R2dz
2 + dr2 + r2dΩ2

d−1

z2
. (2.1)

Here R is the radius of curvature, r is a radial coordinate for R
d, and the coordinate

z > 0. These coordinates are useful because they give rise to a flat conformal boundary at

z = 0, where the isometry group SO(d+1, 1) acts as the conformal group on R
d. Defining

z = eτ cos ρ and r = eτ sin ρ, we obtain AdS in global coordinates

ds2 = R2dτ
2 + dρ2 + sin2 ρ dΩ2

d−1

cos2 ρ
, (2.2)

where τ ∈ R and 0 < ρ < π
2 . These two coordinate systems are depicted in figure 1.

Boundary operator/bulk state correspondence. Surfaces of constant global time τ

correspond to hemispheres centered around the boundary point z = r = 0 which shrink to

the boundary point B in figure 1 when τ → −∞. This picture leads to a one-to-one map

between states associated to surfaces of constant global time τ and boundary operators

inserted at z = r = 0. On the one hand, the insertion of a boundary operator at z = r = 0

prepares a state in the surface τ = 0. On the other hand, a state can be propagated

backwards in time towards τ → −∞ where it can be seen as a local operator inserted at

the boundary point B. We shall work in an eigenbasis of the Hamiltonian H that generates

global time translations or, equivalently, dilatations around the boundary point B. The

states can be organized into representations of the conformal group, which are labeled by
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Figure 1. Hyperbolic space in Poincaré coordinates (left) and global coordinates (right). Surfaces

of constant τ correspond to hemispheres of radius
√
z2 + r2 = eτ in the right picture. The boundary

point B corresponds to τ = −∞ in global coordinates.

the scaling dimension ∆ and the SO(d) irreducible representation of the primary state. For

example, for a scalar particle of mass m at rest in the center of AdS we have the familiar

relation ∆(∆− d) = m2R2.

Bulk/boundary expansion. The boundary operators can be defined by pushing local

bulk operators towards the conformal boundary. More precisely, we can write a local bulk

operator φi as an infinite sum of boundary operators,2

φi(z, x) =
∑

k

aik z
∆k [Ok(x) + descendants] , (2.3)

where x ∈ R
d is a cartesian coordinate on the flat conformal boundary and we organized

the sum into contributions from the primary operators Ok and its descendants. It is easy

to check that the action of the Killing vectors of hyperbolic space on the field φ induces

the usual action of conformal generators on the primary operators Ok. The (bulk state)-

(boundary operator) map implies that this expansion has a finite radius of convergence

inside correlation functions.

Boundary operator product expansion. The same state-operator map leads to a

convergent Operator Product Expansion (OPE) of the boundary operators

Oi(x)Oj(0) =
∑

k

λijk |x|∆k−∆i−∆j [Ok(0) + descendants] . (2.4)

Conformal theory. The conclusion from the above discussion is therefore that any d+1

dimensional QFT in AdSd+1 can be used to define a set of correlation functions that behave

like correlators of a d dimensional conformal theory (CT). We use this nomenclature to

highlight that the boundary correlation functions of the Oi’s do not define a conventional

full-fledged conformal field theory (CFT) simply due to the absence of operators like a

stress tensor or currents for global symmetries in their OPE. (We discuss what happens to

the bulk QFT stress tensor in appendix A.1.) In any instance, the axioms of a conformal

theory, most notably unitarity and the existence of a convergent OPE are all one needs to

make use of conformal bootstrap techniques.

2We focus on scalar operators for simplicity.
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Our setup differs from the standard AdS/CFT correspondence. There, the existence

of a boundary stress tensor is well-known to correspond to the dynamical bulk metric. In

this paper we instead restrict ourselves to the study of QFT in a fixed AdS background

geometry. It might also be interesting to think about such QFTs as the limit of bulk

graviational theories where the Planck length was sent to zero. This means that the set

of boundary correlators we are studying can be thought of as a sector of the dual CFTd

in the limit of infinite central charge. See for instance [15] for a recent implementation of

this idea.

3 The flat space limit

In hyperbolic space the radius of curvature R acts as a finite-volume regulator, and for very

large values of R we naturally expect to recover the physics of infinite-volume flat space.

In this section we discuss this limit in more detail. We will demonstrate that it translates

into particular scaling limits for the conformal theory described in the previous section.

This will lead us to formulate a precise dictionary between physical flat-space observables

and CT data which we will bootstrap in the following section.

The first element in this dictionary involves the masses in the flat space QFT and the

dimensions of the CT. As discussed above, a scalar particle of mass mi in AdS can for

example be created by a boundary operator of dimension given by ∆i(∆i − d) = m2
iR

2.

Therefore, by changing the AdS radius we smoothly vary the conformal dimensions of the

CT. In this way we obtain a one-parameter family of CTs. We are interested in the limit

where the Compton wave length of the particle is much smaller than the AdS radius so that

the particle perceives its surrounding as flat space. So we are interested in taking miR→ ∞
so that all dimensions of the CT should be taken to infinity with their ratios held constant.

In this way we obtain the following simple relation between the dimensions of the operators

of the CT and the masses of the particles (measured in units of the lightest particle)

mi

m1
= lim

∆i→∞
∆i

∆1
. (3.1)

Notice that it suffices to consider primary boundary operators: these correspond to par-

ticles at rest whereas descendant states become boosted particles in the flat-space limit.

In appendix A we discuss this limit in more detail, including the case where the QFT

flows to a non-trivial IR fixed point. This discussion highlights rather sharply the distinc-

tion between a CFT — where we have at least an operator (the stress tensor) with small

anomalous dimensions — and the CT’s under consideration — where all operators acquire

a parametrically large dimension — alluded to at the end of the last section.

The second element of the dictionary relates flat space scattering amplitudes and cor-

relation functions of the conformal theory. Here we propose two different relations for this

dictionary, each with its own advantages and limitations.

The first is most easily stated if we work in the Mellin representation [16, 17], whose

definition is recalled below. The claim is that the n-particle flat scattering space amplitude

– 5 –
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can be directly extracted from the connected Mellin amplitude M(γij) through the limit

(m1)
a T (ki) = lim

∆i→∞
(∆1)

a

N M

(

γij =
∆i∆j

∆1 + · · ·+∆n

(

1 +
ki · kj
mimj

))

(3.2)

where a = n(d− 1)/2− d− 1 renders the expression dimensionless and where the normal-

ization factor is given by a combination of gamma functions,

N =
1

2
π

d
2Γ

(∑

∆i − d

2

) n
∏

i=1

√

C∆i

Γ(∆i)
, C∆ ≡ Γ(∆)

2π
d
2Γ
(

∆− d
2 + 1

)

. (3.3)

A similar flat space limit formula appeared before for the case of external massless parti-

cles [18, 19]. It would be interesting to understand better the relation between these two

formulas. In particular, the flat space limit formula for external massless particles involves

an integral which is not present in (3.2). We discuss further this relation, its derivation

and its implications in subsection 3.1.

We also found another relation between flat space scattering and the CT data. This

second relation yields an expression for the spin l phase shift δl(s) for a 2-to-2 S-matrix

element describing the scattering of a particle of mass m1 against a particle of mass m2.

The relation is even more direct than the previous one but only holds for physical values

of the total energy in the center of mass frame
√
s =

√

m2
1 + k2 +

√

m2
2 + k2, that is for√

s > m1 +m2. It reads

e2iδl(s) = lim
∆i→∞

∑

|∆−E|<δE

[w(∆)λ∆,l]
2 e−iπ(∆−∆1−∆2−l)

/

∑

|∆−E|<δE

[w(∆)λ∆,l]
2 (3.4)

where E/∆1 =
√
s/m1 is the center of mass energy measured in units of the lightest particle

and λ∆,l are the OPE coefficients arising in the OPE of O1 and O2. (The weight w is a

simple function of the CT spectra discussed in detail below and the bin size 1 ≪ δE ≪ E.)

We discuss further this relation, its derivation and its implications in subsection 3.2.

Let us already anticipate that our derivations of these relations contain some heuristic

elements and it would certainly be interesting to try to render them more rigorous. We

also did not rigorously establish the equivalence between these two formulas from a CT

perspective, although we show in appendix C.5 that formulas (3.4) and (3.2) give rise to

the same imaginary part of the flat space scattering amplitude.

In section 4 we are going to analyze the large dimensions conformal theories from a

bootstrap lens thus constraining the space of flat space massive quantum field theories. In

practice we will use (3.1) and a particular restriction of (3.2) to the three particle amplitude

where this formula simplifies dramatically, see e.g. (3.7) below. The reader curious about

the bootstrap details might prefer to take the flat space formulae on faith on a first reading

and jump directly to section 4.

3.1 Mellin approach

The Mellin representation is a very useful Fourier transform of the four point correlation

function with respect to the logarithm of the conformal cross-ratios. We recall that Mellin

– 6 –
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amplitudes M(γij) are defined [16, 17] by expressing an n-point conformal correlation

function as the integral

〈O1(x1) . . .On(xn)〉 =
∫

[dγ]M(γij)
∏

1≤i<j≤n

Γ(γij)

(xi − xj)
2γij

, (3.5)

Here the Mellin variables γij obey the constraints

γij = γji , γii = −∆i ,

n
∑

i=1

γij = 0 . (3.6)

These constraints can be solved in terms of n(n−3)/2 independent variables, which in (3.5)

are integrated along a contour parallel to the imaginary axis as indicated by the symbol [dγ].

For theories in AdS space the Mellin amplitudes are particularly convenient [18, 20, 21]

and exhibit remarkable similarities with scattering amplitudes in flat space. This makes

the Mellin amplitude a natural ingredient in our flat space relation (3.2).

In appendix C we discuss several checks of equation (3.2). In particular, in section C.2

we verified equation (3.2) for an arbitrary contact term interaction using contact Witten

diagrams. In principle this constitutes a derivation of (3.2). After all, we are dealing with

massive particles so we can imagine integrating them out and generating in this way a

plethora of effective contact term interactions. Since (3.2) holds for each of them it should

hold for the sum over all possible interactions. Of course, things would be more subtle if

we were dealing with massless particles. As a further cross-check we also verified (3.2) for

a single scalar exchange in section C.1.2 and for a scalar loop diagram in section C.3.3.

We can also adopt a slightly different point of view and take (3.2) as a definition

of the bulk scattering amplitude in terms of the boundary correlator. This has some

interesting conceptual consequences. The OPE implies a very simple analytic structure

of Mellin amplitudes: they are meromorphic functions with the position of the simple

poles fixed by the scaling dimension of the operators that appear in the OPEs of the

external operators. Moreover, the residues factorize into (sums of) products of lower point

Mellin amplitudes. As explained in detail in appendix C, these analytic and factorization

properties of the Mellin amplitudes imply, via formula (3.2), the expected analytic and

factorization properties of scattering amplitudes. One can thus view this as a first principle

derivation of the S-matrix analyticity and factorization axioms.

On the other hand, unitarity of the S-matrix defined by (3.2) is not obvious. This

should follow automatically from unitarity of the boundary correlators (scaling dimensions

above conformal unitary bounds and real OPE coefficients) however it is not clear what

this implies for the Mellin amplitude. Fortunately, our second relation (3.21) does render

unitarity manifest and by relating the two formulas (see appendix C.5) we explain unitarity

of (3.2).

For the remainder of the paper it is instructive to consider in detail the case of a three

point function of scalar operators. In that case there is no independent Mellin variable,

so (3.2) simplifies dramatically into a relation between the physical three-point couplings

in flat space (measured in units of the lowest mass m1) and the OPE coefficients of the

– 7 –
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Figure 2. Three-point Witten diagram.

boundary conformal theory,

g123 = lim
∆i→∞

λ123 × 2(∆1)
d−5

2

π
d
2Γ(12

∑3
i=1∆i − d

2)

3
∏

i=1

Γ(∆i)

Γ(12
∑3

i=1∆i −∆i)
√

C∆i

. (3.7)

We can in fact re-derive this relation, independently of any Mellin transform, by con-

sidering the case of three weakly coupled scalar fields φi, 1 6 i 6 3, with a cubic vertex

ĝ123 φ1φ2φ3 in AdSd+1. Notice that the coupling ĝ123 is dimensionful; we measure it in units

of the mass of the lightest particle so our dimensionless coupling is g123 = ĝ123/m
(5−d)/2
1 .

The scaling dimension ∆i of the boundary operators is related to the mass mi of the scalar

field φi via m
2
iR

2 = ∆i(∆i − d). The tree level boundary three-point function is given by

the Witten diagram shown in figure 2. This gives

〈O1(x1)O2(x2)O3(x3)〉 = g123(m1R)
5−d
2

∫ ∞

0

dz

zd+1

∫

ddx

3
∏

i=1

√

C∆i
z∆i

[z2 + (x− xi)2]
∆i
, (3.8)

where, as above,

C∆ =
Γ(∆)

2π
d
2Γ
(

∆− d
2 + 1

)

(3.9)

arises from normalizing the boundary operators to have unit two point function. On the

other hand, the boundary three point function is fixed by conformal symmetry up to an

overall constant,

〈O1(x1)O2(x2)O3(x3)〉 =
λ123

x
∆12,3

12 x
∆13,2

13 x
∆23,1

23

, (3.10)

where xij = |xi − xj | and ∆ij,k = ∆i + ∆j −∆k. With our normalizations, this constant

is just the OPE coefficient appearing in (2.4). The integral in (3.8) was computed already

in [22]. By equating the result to (3.10) and taking the flat space limit corresponding to

large external dimensions, we precisely recover (3.7).

Finally let us quote here a particular example of the above relation which will be used

extensively in the bootstrap of section 4. Consider the coupling between two particles of

mass m1 and third particle of mass m2 = αm1. (So that in the CFT we have a correlator

between two operators of large dimension ∆1 and a third operator of dimension ∆2 = α∆1,

– 8 –
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also large.) In this case (3.7) can be simplified into

g112 = 2−
d
2π

d−2

4 (2− α)1/2α1− d
4 (α+ 2)

d+1

2

× lim
∆i→∞

∆
d−2

4

1

(

2α+2(2− α)
α−2

2 (2 + α)
−α−2

2

)∆1

λ112 (3.11)

The term in parentheses is positive and greater than one, so we see that a finite cubic

coupling g112 corresponds to an OPE coefficient λ112 that decays exponentially with ∆1.

This scaling is generic (and unrelated to this particular example) and agrees with the

findings of [23, 24]. As explained there, it has a simple physical explanation. Basically, since

the dimensions are very large the propagation from the boundary to the bulk is governed

by a semi-classical approximation and leads to an exponential weight e−m1L1−m2L2−m3L3

where Li are the (renormalized) length of geodesics connecting the boundary points to an

interaction point in the bulk (whose location maximizes this weight). To measure the flat

space coupling felt by the particles when they reach this interaction point we should thus

strip out this exponential factor as in (3.11).

This physical picture — with particles propagating in the bulk until they meet in a

small region where they effectively interact as in flat space — also explains why any con-

formal bootstrap numerics should be quite challenging. Consider a four point correlation

function of, say, identical boundary operators O. Its leading contribution will be given

by the disconnected contribution where particles fly from one boundary point to another

without any interaction. The interesting part of the result, on the other hand, is the con-

nected contribution which is exponentially smaller. To extract a flat space S-matrix we

need therefore to subtract out the huge disconnected background from the connected con-

tribution which in turn is exponentially small. We should then strip out the exponentially

small propagation weights to finally get an order 1 amplitude in flat space. On top of

all this we must then extrapolate the results of the numerics towards the limit when all

dimensions are scaled to infinity so that the AdS box becomes effectively flat space! In

practice this translates into the necessity of keeping hundreds of digits of precision in any

bootstrap numerics to obtain just a few digits of precision for the flat-space result. It is

the price to pay for such a cool scattering Gedankenexperiment.

3.2 Phase shift

In the case of 2 to 2 scattering there is an alternative way to obtain the scattering amplitude.

The idea is to consider the phase shift δl(s) given by

e2iδl(s) = out〈s, l|s, l〉in = in〈s, l|Ŝ|s, l〉in (3.12)

where Ŝ is the S-matrix and

|s, l〉in ∝
∫

Sd−1

d~nPl(~n · ~n0) |~k1 = k~n,~k2 = −k~n〉in (3.13)

is a two-particle eigenstate of angular momentum. Here,
√
s =

√

m2
1 + k2 +

√

m2
2 + k2

is the total energy in the center of mass frame, ~n0 is an arbitrary unit vector defining a

– 9 –
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reference axis and Pl(~n · ~n0) is the degree l harmonic polynomial on the sphere Sd−1 at

spatial infinity. In this language, unitarity is the simple statement

∣

∣

∣e2iδl(s)
∣

∣

∣ ≤ 1 for s ≥ (m1 +m2)
2 . (3.14)

This construction has a simple analogue in the case of QFT in AdS. Consider the

following bulk state

|Ψl〉 =
∫ 1

0
dx1dx2f(x1, x2) [O1(x1)O2(−x2)|0〉]primaries of spin l (3.15)

produced by the insertion of two boundary operators inside the unit sphere (see figure 3)

and projected onto the space of primary operators of spin l. In appendix B we explain

what is the appropriate weight f(x1, x2) that can be used to produce scattering states in

AdS. Given this weight function, we find that our state |Ψl〉 has a simple expansion in

eigenstates of the cylinder hamiltonian,3

|Ψl〉 =
∑

∆

w(∆)λ∆,l|∆, l〉 , (3.16)

where

w(∆) =

[

4∆2(∆−∆1 −∆2)

(∆2 −∆2
12)(∆ +∆1 +∆2)

]
∆

2

(

∆−∆12

∆+∆12

)

∆12
2

[∆2 − (∆1 +∆2)2]
∆1+∆2

2

, (3.17)

with ∆12 = ∆1 −∆2, and λ∆,l are the OPE coefficients appearing in O1 ×O2.

Let us now also project onto primaries with dimension ∆ ∈]E − δE,E + δE] for

E ≫ δE ≫ 1 and normalize the state. We obtain:

|Ψl(E)〉 = 1
√

Nl(E)

∑

|∆−E|<δE

w(∆)λ∆,l|∆, l〉 , Nl(E) =
∑

|∆−E|<δE

[w(∆)λ∆,l]
2 .

(3.18)

By construction this state has angular momentum l and energy approximately E in AdS.

Moreover, it does not have center of mass motion due to the primary condition.

If the bulk theory is free then the correlation functions of the boundary operators O1

and O2 reduce to products of two-point functions. In this case, the OPE O1×O2 will only

include operators with dimension ∆ = ∆1 +∆2 + l+ 2n for n = 0, 1, 2, . . . . Therefore, the

state described above is the state

|Ψl(E)〉 = 1

n+ − n− + 1

n+
∑

n=n−

|∆1 +∆2 + l + 2n, l〉 , (3.19)

with n± being the closest integer to E±δE−∆1−∆2−l
2 . The state |∆1+∆2+l+2n, l〉 describes

two non-interacting particles in AdS with relative angular momentum l and radial quantum

number n.

3The state |∆, l〉 = n̂µ1 . . . n̂µl |∆, {µ1, . . . , µl}〉 is a particular component of the SO(d) multiplet of

primary states of dimension ∆ and spin l.
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Figure 3. On the left, we show the euclidean preparation of the two particle scattering state by

the insertion of O1 and O2 inside the unit sphere. Projecting onto primaries of spin l and dimension

∆ ∈]E− 1, E+1] and taking the limit x2 → 1 we obtain the state |Ψl(E)〉. On the right, we depict

the Lorentzian evolution of this state starting from t = 0. The blue lines indicate timelike geodesics

that represent the classical evolution of two massive particles in AdS in the center of mass frame.

The periodicity of these geodesics leads to a scattering event for each time interval ∆t = π.

Timelike geodesics in AdS are periodic. This periodicity gives rise to one scattering

event per global time interval ∆τ = π, as depicted in figure 3. Therefore, we should define

the scattering phase shift by

〈Ψl(E)|e−iπ(H−H0)|Ψl(E)〉 = 〈Ψl(E)|e−iπ(H−∆1−∆2−l)|Ψl(E)〉 (3.20)

where H0 is the free hamiltonian. In the flat space limit, we find

e2iδl(s) = lim
E→∞

1

Nl(E)

∑

|∆−E|<δE

[w(∆)λ∆,l]
2 e−iπ(∆−∆1−∆2−l) (3.21)

with the ratios E/∆1 =
√
s/m1 and E/∆2 =

√
s/m2 fixed, δE → ∞ and δE/E → 0.

This gives a very direct relation between the CT data and the scattering data of the bulk

theory in flat space. In addition, this formula makes unitarity manifest. In particular

we see that absorption, i.e.
∣

∣e2iδl(s)
∣

∣ < 1, corresponds to the existence of several spin l

operators in the band ∆ ∈]E − δE,E + δE] with dimensions that do not differ by even

integers. In this case, |Ψl(E)〉 does not come back to itself after evolving for the time

interval π. In equation (3.21), the phases e−iπ(∆−∆1−∆2−l) will not be aligned and there

will be absorption.

If the QFT is weakly coupled, the two particle states (3.19) only get a small energy

shift. In the language of CT this corresponds to small anomalous dimensions γ(n, l) for

the boundary operators. There can also be new small OPE coefficients λ̃∆,l that appear at
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leading order. In this case, (3.21) simplifies to the relation

2δl(s) = −π lim
n→∞

γ(n, l) + lim
E→∞

i

Nl(E)

∑

|∆−E|<δE

[

w(∆)λ̃∆,l

]2 [

1− e−iπ(∆−∆1−∆2−l)
]

,

(3.22)

with ∆1+∆2+2n
∆1

=
√
s

m1
and ∆2

∆1
= m2

m1
fixed. This is very similar to expressions that appeared

previously [25–27]. Notice that the second term gives a contribution localized at
√
s =

m1∆/∆1 where ∆ is the dimension of the new operators that appear in the OPE when we

turn on a weak interaction.

This construction gives the phase shift in flat space directly from a limit of the CT data.

However, this only works for physical energy E > ∆1+∆2+ l and does not teach us about

the analytic structure of δl(s). In appendix C.5, we explain how formula (3.21) is related

to the Mellin space formula (3.2). Since unitarity is obvious in (3.21) this relation provides

an argument for unitarity of our Mellin space formula (3.2). Moreover, in appendix C.5 we

argue that the spectral density Nl(E) is universal in the flat space limit and, therefore, is

the same as for free fields in AdS.

4 Conformal theory bootstrap

Let us pause to summarize what we have learned so far. Firstly, a quantum field theory

in AdS has a natural set of observables, namely the boundary correlation functions, which

have exactly the same structure as those of an ordinary conformal field theory (except that

they do not feature a stress tensor). Secondly, we have argued that in a specific limit,

corresponding roughly to sending the AdS radius to infinity, these observables transform

into the flat-space S-matrix of the bulk QFT. We can therefore understand flat-space, non-

conformal physics by studying the appropriate limit of the boundary correlators captured

by the conformal theory.

Conformal correlation functions are subject to the well-known crossing symmetry equa-

tions. Fortunately for us, in recent years a growing body of work has shown that these

equations can be mined very effectively to constrain the fundamental observables in uni-

tary CFTs, i.e. the operator scaling dimensions and the OPE coefficients. Here we will

focus on using numerical bootstrap methods to obtain results for massive unitary QFTs.

Other possible analyses of the crossing symmetry equations, for example based on analytic

methods, will be left to future work.

In this paper we focus on two-dimensional QFTs. In that case the boundary correlators

live in a one-dimensional space, which brings about significant numerical simplifications:

there are no spinning operators and four-point functions involve only a single cross-ratio.

We expect to report results for higher-dimensional QFTs in the near future.

4.1 Setup

Let us consider a two-dimensional unitary QFT with a lightest stable massive scalar particle

of mass m1, and focus on the spectrum appearing in the elastic scattering of two such

particles. In flat space this scattering event is described by the S-matrix element S11→11,
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Figure 4. In scenario I we vary m2 and find an upper bound on g112. In scenario II we vary mb

and find an upper bound on g111. In both scenarios the mass of the scattered particle is m1.

but in AdS it is described instead by the CT four-point function

〈O1(x1) . . .O1(x4)〉 (4.1)

of an operator O1 with dimension such that ∆1(∆1 − d) = m2
1. We will submit this four-

point function to a numerical analysis in two following scenarios, displayed in figure 4.4

• In scenario I we assume that the S-matrix has a single pole corresponding to a particle

with mass m2 and then is analytic all the way up to the two-particle continuum at

2m1. This scenario translates into a CT with an OPE of the form:

scenario I: O1 ×O1 = 1 + λ112O2 + . . . (operators with ∆ > 2∆1) . . . (4.2)

with ∆i(∆i − d) = m2
i . The squared OPE coefficient λ2112 corresponds via equa-

tion (3.7) to the residue at the pole, which we denote as g2112. We will be able to

obtain an upper bound on this coefficient as a function of the dimensionless mass

ratio m2/m1.
5 The physical intuition behind this scenario is that the exchanged

particle with mass m2 mediates an attractive force between the particles of mass

m1 with a strength that is parametrized by g2112. If this interaction would be very

strong then we would expect a bound state to form, which would manifest itself as an

additional pole in the S-matrix and an operator of dimension ∆2 < 2∆1 in the CT.

Since we assume that such a state is absent, we have the right to expect an upper

bound on g2112.

4In our companion paper [13] we use a slightly different notation: m1 here becomes m there, and m2

and mb here become m1 there.
5Notice that for m2 6= m1 we assume in particular that the three-point coupling g111 = 0. In realistic

theories this might be due to a symmetry, but we do not have to commit to any specific underlying

mechanism.
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• In scenario II we assume instead that the S-matrix has a pole with residue g2111 that

corresponds to a self-coupling of the scattered particle, and then no other poles up

to a certain threshold which we will call mb. In the CT language this becomes

scenario II: O1 ×O1 = 1 + λ111O1 + . . . (operators with ∆ > ∆b) . . . (4.3)

with the same translations to flat-space quantities as before. We will again obtain an

upper bound on the residue g2111, now as a function of the dimensionless ratio mb/m1.

In this case we can heuristically think of mb as the mass of a bound state of two m1

particles. Since the binding strength is once more parametrized by the resiude g2111,

we now not only expect to find an upper bound on g2111 but also that it will decrease

as we increase mb/m1. This intuition will be borne out below.

The attentive reader will have noticed that scenarios I and II coincide at the single point

when m2 = mb/2 = m1.

In order to obtain the desired upper bounds on the squared OPE coefficients λ211...
we made use of the well-established numerical bootstrap algorithms [3]. The basic idea is

always to start with the conformal block decomposition of the four-point function, which

in one dimension takes the form:

〈O1(0)O1(z)O1(1)O1(∞)〉 = 1

z2∆1

∑

k

λ211kG∆k
(z) , (4.4)

with

G∆k
(z) := z∆k

2F1(∆k,∆k, 2∆k, z) , (4.5)

and with z = (x12x34)/(x13x24) the only independent cross-ratio. Since all four operators

are identical the four-point function obeys the crossing symmetry equation

∑

k

λ211k

(

1

z2∆1
G∆k

(z)− (z → 1− z)

)

= 0 (4.6)

Following standard procedures, we act on this equation with a linear functional α. By

linearity we obtain:

∑

k

λ211k α ·
[

1

z2∆1
G∆k

(z)− (z → 1− z)

]

= 0 (4.7)

Since the λ211k are positive, it is possible to find functionals which lead to impossibilities

under certain assumptions for the structure constants and/or the spectrum. This in turn

allows one to rule out such assumptions and thereby establish rigorous bounds.

For our numerical investigations we adopted the conventional form for α, namely

α · [f(z)] := α1f
′(1/2) + α2f

′′(1/2) + · · ·+ αNf
(N)(1/2) . (4.8)

The even derivatives vanish identically in (4.7) so the finitely many real numbers α2i−1,

i ∈ 1, 2, . . . , ⌊(N + 1)/2⌋ completely parametrize our functional. As N increases the class
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Figure 5. Numerical bounds for scenario I in the specific case with ∆2 = 1.2∆1. The orange line

is the extrapolation of the numerical results to N = ∞ and for large ∆1 it accurately matches the

expected flat-space slope as indicated by the dashed line.

of functionals we work with becomes more general and the bounds get better. Of course,

searching for functionals for larger values of N also requires greater computational re-

sources. As indicated in the various plots below, our results were obtained with N . 200

for scenario I and with N . 300 scenario II.

The specific algorithm to constrain OPE coefficients was first introduced in [5]. Cur-

rent state-of-the-art methods have been encoded in specialized software packages like

JuliBootS [28] and SDPB [29], both of which were used to obtain the results discussed

below. For the high-precision results of scenario II we also made essential use of the ‘flow’

method discussed recently in [30].6 Notice that the flat-space limit dictates that our main

interest is the behavior of the numerical bounds as ∆ → ∞, which is very different from

the usual searches where ∆ is usually O(1). For large ∆ the numerical bootstrap analysis

is unfortunately less efficient, as evidenced both by our numerical results and the ∆ ≫ N2

analysis in appendix D. We will therefore resort to an extrapolation procedure that we

explain below.

4.2 Results for scenario I

We need to perform various extrapolations of our numerical results to obtain a physically

relevant answer. We will therefore begin by explaining this procedure using figures 5 and 6;

our final result is shown in figure 7.

Let us begin with the blue data in figure 5, which are our ‘bare’ results for the specific

representative case with ∆2 = 1.2∆1. Different lines correspond to different computational

complexity as parametrized by N . It is clear that our bounds still heavily depend on N ,

especially for large ∆1. In order to get physically interesting results we therefore extrapolate

the bounds to N = ∞, using a degree eight polynomial in N−1. The result of such an

6Full details of the numerical implementations are available from the authors upon request.

– 15 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
3

Figure 6. Visualization of the double extrapolation procedure. Blue dots: some of our raw data

points; each column of points corresponds to a series obtained with increasing N . Orange dots:

extrapolation to N = ∞. Orange lines: fits and extrapolations to infinite ∆. Similar extrapolations

from data not shown lead to the series of red dots at the back surface. These constitute our

main result and are shown independently in figure 7. Black line: exact result from the S-matrix

bootstrap [13] which tracks our numerical result.

extrapolation is represented by the larger orange points; this is our prediction for the upper

bound that we would have obtained with infinite computational resources.7

The next step is to translate the upper bound on λ2112 to an upper bound on the flat-

space coupling g2112 using the results of the previous sections. For the plotted data we can

use equation (3.11) with α = 1.2 = 6/5. To leading order this results in

log(g2112) = log(λ2112) + 2∆1 log(25/16) +O(log(∆1)) . (4.9)

The dashed line in figure 5 is a least-squares fit to the orange data of a straight line with

slope −2∆1 log(25/16). The good fit is our first indication of success and puts us in an

excellent position to extract an upper bound on g2112 for the flat-space S-matrix. We note

that the results for other values of the ratio ∆2/∆1 show very similar behavior.

The true flat-space bound is then obtained by a further extrapolation to large ∆1

as visualized in figure 6. Although we have obtained bare data for 19 different ratios of

∆2/∆1, for clarity of presentation we have chosen to show only the bare data for ∆2/∆1

equal to 3/5, 6/5 and 9/5. Compared to figure 5 we have also translated the vertical axis

from log(λ2112) to log(g2112) using (3.7), so the orange extrapolations are now approximately

constant rather than sloping down. We fitted this rescaled data with a quadratic polynomial

7As cross-checks on the extrapolation procedure, we have checked that extrapolation using smaller values

of N can reproduce the results of higher values, and also that the final answer does not sensitively depend

on the degree of extrapolation or which exact values of N one includes.
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Figure 7. The double extrapolation to infinite N and to the flat-space limit results in the plotted

points, each one corresponding to a different ratio ∆2/∆1 ≃ m2/m1. The blue curve is the exact

result of the S-matrix bootstrap obtained in our companion paper [13].

in ∆−1 to obtain the red points projected on the back surface. These constitute our final

result, i.e., the red data points should be true upper bounds for g2112 in any flat-space

S-matrix. Figure 7 shows the same results more clearly.

Our data points in figure 7 are in good agreement with the blue curve corresponding

to the function

(gmax
112 )2 =

4
(

µ2(4− µ2)
)3/2

|µ2 − 2| , µ = m2/m1 . (4.10)

This curve is obtained from an analysis described in our companion paper [13], where we

bootstrap two-dimensional scattering amplitudes directly. It can be obtained from the

residue of the pole at s = m2
2 of the two-dimensional S-matrix8

S(s) = sgn(m2
2 − 2m2

1)

√
s
√

4m2
1 − s+m2

√

4m2
1 −m2

2√
s
√

4m2
1 − s−m2

√

4m2
1 −m2

2

. (4.11)

As detailed in [13], we can prove that this is the S-matrix that maximizes g2112 under the

assumptions of scenario I. We find the agreement between our numerical data and (4.10)

quite remarkable. In particular, neither the symmetry of (4.10) under µ2 → 4 − µ2 nor

the singularity at µ2 = 2 are in any way obvious from the setup of the CT problem and

instead are an output of our numerical analysis.9

Let us recap. Using the conformal bootstrap methods for the CT observables that

correspond to a QFT in AdS we were able to obtain nonperturbative upper bounds on

the residues g2112 for any flat-space QFT in two spacetime dimensions. Within numerical

errors, these bounds are in agreement with the bounds obtained from a direct analysis of

the flat-space S-matrix. We believe that this lends significant credibility to the relation

between CT observables and the flat-space S-matrix.

8More precisely, the residue is related to (gmax
112 )2 by a Jacobian factor J2 [13].

9Preliminary numerical results indicate that the peak has finite height for all finite ∆, so the divergence
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Figure 8. Upper bound on log(g2111) as a function of ∆1, for a gap ∆b = 1.85∆1 in scenario II.

The different curves correspond to different numbers of derivatives N ranging from 40 (top) to 300

(bottom). Each curve is an upper bound, which gets stronger as N increases. In red we show the

extrapolation to infinite N , enlarged in the inset. It varies relatively little and seems to asymptote

to a constant at large ∆1.

4.3 Scenario II

In the previous subsection we presented the core ideas behind the numerical analysis and

demonstrated the feasibility of the method for QFTs captured by scenario I. In this section

we instead take a more in-depth look and aim for a precision analysis, this time in the

context of scenario II. We recall that in this scenario we maximize λ2111 subject to the

constraint that other operators have scaling dimensions greater than some value ∆b.

In figure 8 we show the raw numerical bootstrap bounds as a function of ∆1, using a

representative value ∆b = 1.85∆1. Other values of ∆b/∆1 give similar results. In contrast

to figure 5 we have chosen here to show the results directly for g111 which we recall is

related to the OPE coefficient λ111 via equation (3.7). The different curves correspond to

different values of N .

As before, we observe that our bounds vary substantially with N . We therefore per-

formed an extrapolation to N = ∞, which should be free of artefacts due to finite com-

putational resources and therefore a closer representative of actual physics. Aiming for

the highest possible precision, we have in this case obtained data for values of N up to

300 and subsequently fitted our best 30 results to a degree 29 polynomial in N−1. The

reason why we can get away with such an extreme fit is that our numerical bounds were

obtained with a very small relative accuracy of 10−100. By doing various cross-checks we

convinced ourselves of the reliability of this extrapolation procedure. Some more details

on the extrapolation are provided below.

We once more discover an excellent match between the extrapolated curve and the

exponential decrease predicted by equation (3.11) with α = 1, which is visible in figure 8

likely only occurs in the ∆ → ∞ limit.
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Figure 9. Upper bound on the flat space self-coupling g111 as a function of the mass ratio mb/m1.

The dots are our numerical results obtained by extrapolation to infinite derivatives and infinite ∆1.

The solid blue curve shows the same quantities for the exact S-matrix explained in the main text.

as a nearly flat result. This allows us to perform a secondary extrapolation to infinite ∆1

by fitting a quadratic polynomial in 1/∆1. The results of this secondary extrapolation are

shown as the red data points in figure 9. We claim that these are upper bounds on g111 as

a function of the mass ratio mb/m1, valid for any unitary two-dimensional QFT described

by scenario II.

Our numerical analysis again matches an exact S-matrix bound which is shown as the

solid curve in figure 9. As explained in our companion paper [13], this curve corresponds

to the coupling (gmax
111 )2 determined from the amplitude

S(s) =
sinh(θ) + i sin(α1)

sinh(θ)− i sin(α1)
· sinh(θ) + i sin(α2)

sinh(θ)− i sin(α2)
(4.12)

where cosh(θ/2) = s/2, cos(α1/2) = 1/2 and cos(α2/2) = mb/(2m1). Concretely we obtain

that

(gmax
111 )2 =

36 + 24
√
3 sin(α2)√

3− 2 sin(α2)
(4.13)

and our numerical results match this curve with a difference smaller than a part in a thou-

sand! This strongly suggests that our extrapolations are reliable and a precision analysis

is possible using the CT framework.

Spectrum and phase shift

Precisely when the numerical OPE coefficient bound is saturated we can extract an ap-

proximate solution to the crossing symmetry equations as a side result from the numerical

analysis [31, 32]. This gives us an approximate spectrum that we can compare against our

flat-space intuitions and use to test the phase-shift formula.

In figure 10 we show the approximate spectrum of the CT as obtained from our nu-

merical analysis, for the specific case ∆b/∆1 = 1.85 and for N = 300. The figure shows a
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Figure 10. Spectrum of operator dimensions of the solution to crossing symmetry that saturates

the N = 300 bound for ∆b/∆1 = 1.85, as a function of ∆1. As ∆1 increases the spectrum includes

two bound states and a “two-particle continuum” starting at roughly 2∆1.

clear approach toward the spectrum of the flat-space amplitude (4.12) for large ∆1, with no

further operators in the gap between 1.85∆1 and 2∆1 and then a “two-particle continuum”

above 2∆1. Although we do not show it here, extrapolation to infinite ∆1 corroborates

this picture.

We can go further and also compute the phase shift. To do so we fix large ∆1 and

extrapolate to infinite number of derivatives the spectrum of operator dimensions. In

figure 11, we plot the resulting phase shift, which is given by e2iδ(s) = e−iπ(∆−2∆1) for the

discrete values of ∆/∆1 =
√
s/m1 that appear in the conformal block decomposition of

the four-point function. These results are compared with the phase shifts corresponding

to the exact S-matrix S(s) = e2iδ(s) given in (4.12), and we see that the agreement is

excellent.10 Notice that our procedure corresponds to the application of formula (3.21)

with a small energy width δE ∼ 1 so that there is only one primary operator per energy

bin. This can seem surprising because formula (3.21) was derived assuming δE ≫ 1.

Therefore, we should be able to obtain the same phase shift using δE ≫ 1 which means

many operators per energy bin. Fortunately this follows from the natural assumption that

the limit ∆1 → ∞ leads to a figure similar to 11 with the primary operators (red dots)

densely packed along the black curve. In that case, averaging eiπ(2∆1−∆) over all operators

O∆ with |∆ − E| < δE ≪ E gives a result independent of δE in the flat space limit

E ∼ ∆1 → ∞.

Extrapolations. Using figure 12 we will now provide a few more details concerning

our N → ∞ extrapolation procedure. We emphasize that there is currently no analytic

10For values of
√
s/m1 greater than about 2.5 our numerical estimate of the spectrum is not reliable and

we do not show this data here.
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Figure 11. Exact vs numerical phase shift. In black the exact phase shift corresponding to the

S-matrix given in (4.12). The red dots are determined numerically from the conformal bootstrap.

understanding of the large N behavior of numerical bootstrap bounds, so we will restrict

ourselves to a qualitative discussion.11

On the left of figure 12 we show the result of a single extrapolation. The dots

correspond to all our raw data for a (representative) data point with ∆1 = 39.4 and

∆b/∆1 = 1.85. The red curve shows the extrapolation using a degree 29 polynomial in

N−1 that uses only the last 30 data points (also in red). This is the extrapolation that

we used for all the scenario II results. Obviously, our N → ∞ estimate is given by the

intersection point of this curve with the vertical axis. We have also drawn the yellow curve,

which is an indication of the kind of result that we would have obtained with fewer data

points. For this particular example we used a degree seven fit through the eight circled

data points with 20 ≤ N ≤ 50. This extrapolation is quite a bit off, and we conclude that

such values of N are insufficient to obtain a reliable result. Qualitatively we can explain

the unreliability of our low-N extrapolations by the sharp downward slope of the raw data

points as N increases, which is not captured by the low N values. This poses an obvious

challange when the numerical results become more difficult to obtain, for example when

we consider CTs in higher dimensions.

On the right we show, besides the raw data, the extrapolations involving all data

points with N ranging from 20 to 50, 60, 80 and 100. For larger values of ∆ we observe not

merely a worse convergence of the numerical bounds but also far less reliable extrapolations.

Clearly, only the last curve really comes close to our best extrapolations.

5 Conclusion

By putting a QFT in an AdS background we can define a set of boundary ‘conformal

theory’ observables which are near-identical to the correlation functions of a CFT; they

11In other bootstrap analyses the extrapolations have nevertheless been very useful, see e.g. [33], and

yielded results that are consistent with expectations.
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Figure 12. Testing the extrapolations to infinite N . See the main text for explanations.

only lack a stress tensor operator. Upon taking the AdS radius to infinity these observables

should transform smoothly into the flat-space S-matrix of the QFT. This paper offers three

concrete results that solidify this idea:

• We proposed a precise formula for the map between the CT correlation functions

and scattering amplitudes. Our formula fundamentally relies on the Mellin space

description of the CT observables [16, 17], and we have shown that our formula

works in specific perturbative examples.

• For physical energies we have also shown that the phase shift can be obtained directly

as a limit of CFT data. At weak coupling this matches a known result [27] but we

claim that it holds nonperturbatively.

• We have applied numerical conformal bootstrap methods to the CT observables for

two-dimensional unitary QFTs, and by means of various extrapolations obtained non-

perturbative bounds for their flat-space scattering amplitudes. These results match

precisely to the analytic S-matrix bootstrap discussed in [13].

Our results highlight once more the remarkable richness of the conformal crossing symmetry

equations, which apparently “know” not only about CFTs but also about massive QFTs

in AdS. Furthermore, we have shown above that the modern bootstrap methods of [3]

allow us to successfully extract this information and translate it into precise upper bounds.

Our results clearly raise the urgent question whether similar nonperturbative results can

be obtained for higher-dimensional theories. In that case the numerical analysis is more

involved: there are spinning operators in the CT and there are two cross-ratios rather

than a single one. We nevertheless expect to report on this question in the near future.

Another avenue for progress would be the numerical analysis of multiple correlators as

in [7]. This has the potential to drastically improve our numerical bounds and, as we

explain in [13], is likely to be essential for the generalization of the S-matrix bounds to

non-integrable theories.
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To gain a better intuition into the structure of the CT observables it would be inter-

esting to work out further explicit examples. We can for example consider weakly coupled

theories. Even in this case there are numerous subtleties that arise when placing quantum

field theories in hyperbolic space, mostly related to the matter of boundary conditions.

Already in the simplest example, namely a free scalar field, the work of Breitenlohner and

Freedman shows that not all boundary conditions are consistent with general positivity

conditions. Infrared divergences introduce further complications: for classical field theories

this has been demonstrated convincingly already in older work on holographic renormal-

ization [34] in the context of AdS/CFT, whereas for loop diagrams some work remains to

be done. For Yang-Mills theories it would further be interesting to understand the space

of boundary conditions better [35, 36]. Finally there are some questions about confining

theories in hyperbolic space, discussed already in [14] and more recently in [37]. Although

we have sidestepped these and other subtleties in this work, they certainly deserve fur-

ther attention.

It is not hard to check that the S-matrices that we recover at our numerical bounds

saturate unitarity without particle production [13]. Therefore, in the cases that they corre-

spond to a physical theory this is bound to be an integrable QFT. This naturally raises the

question whether integrability survives in some form when the QFTs are put in hyperbolic

space, which to the best of our knowledge is currently unanswered. It would be great to

have integrable strongly coupled boundary CTs as analytic examples where we can explic-

itly recover the flat-space S-matrices from the formulae we presented above. One example

is to consider the integrable massive deformation of the Ising model that just corresponds

to giving mass to the free fermions. In this case, we should be able to start from any of

the 3 possible BCFT of the 2D Ising in the UV, and see where we end up in the IR. This

has been studied in [38, 39].

Our viewpoint could also be of use for the analytic properties of the S-matrix in QFT.

These are usually assumed to be relatively straightforward, with simple poles and cuts as

dictated by a perturbative analysis, but we are not aware of any nonperturbative proof.

In contrast, the analyticity of the boundary CT observables follows essentially from the

operator-state correspondence and is therefore on a much firmer footing. The fact that our

CT analysis agrees with the S-matrix bootstrap which fundamentally assumes analyticity

is remarkable. Perhaps our viewpoint could be used to define the famous “analytic” S-

matrix as the flat-space limit of the boundary CT observables. In this way, the analyticity

properties of the S-matrix would follow from the well established meromorphicity of the

Mellin amplitude.

In this paper we focused on the flat-space limit which practically implied sending ∆ →
∞. However we need not have done so: the CT construction shows that the undoubtedly

rich physics of QFTs in AdS is described by finite values of ∆. In such cases there exists

a one-parameter family of CTs corresponding to each relevant bulk coupling µiR. These

lines of CTs begin (and possibly end) at BCFTs corresponding to the UV (and possibly

IR) bulk CFT, but in between they describe the physics of massive theories. It would of

course be very interesting to get a handle on such flows, and we may even speculate that

they are sometimes described by “extremal flows” as in [30]. In any case, we find it striking
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that the d dimensional crossing symmetry equations know about d+1 dimensional massive

QFT physics in such a crisp way. What else do they know?
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A RG flows in hyperbolic space

We will consider an RG flow connecting a CFTUV to a CFTIR or to a gapped phase. Let

us start by placing the CFTUV in hyperbolic space. This requires the choice of conformal

invariant boundary conditions. In fact, since hyperbolic space is conformal to half of

Euclidean space, this is equivalent to Boundary CFT (BCFT). For example, correlators of

local primary operators φi of the CFTUV in AdS are simply related to the same correlators

in flat space BCFT,

〈φ1(z1, x1) . . . φn(zn, xn)〉AdSd+1
= z∆̃1

1 . . . z∆̃n
n 〈φ1(z1, x1) . . . φn(zn, xn)〉Rd×R+ (A.1)

where ∆̃i is the UV scaling dimension of φi. Furthermore, the boundary operators Ok

defined by the operator boundary expansion (2.3) are just the standard boundary operators

of BCFT.

We then turn on a relevant deformation of the bulk CFTUV . Formally, we can write

the boundary correlators as follows

G1...n(x1, . . . , xn;µR) =

〈

O1(x1) . . .On(xn)e
µD−∆̃r

∫
AdS

dDxφr(x)
〉

AdS
〈

eµ
D−∆̃r

∫
AdS

dDxφr(x)
〉

AdS

, (A.2)

where φr is a relevant scalar operator of the bulk CFTUV with dimension ∆̃r < D. The

mass scale µ in AdS gives rise to a dimensionless parameter µR that characterizes the

boundary correlators along the flow. In particular, the spectrum of boundary scaling

dimensions ∆k will vary continuously with the parameter µR. If the RG flow ends in

a CFTIR, then ∆k(µR) interpolates between the spectrum of boundary operators of the
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BCFTs describing the UV and IR fixed points in AdS, when µR varies from 0 to ∞.

If the RG flow ends in a gapped phase, then all boundary dimensions ∆k(µR) become

parametrically large when µR → ∞ and one can read off the mass spectrum of the bulk

QFT from the limit
mk

m1
= lim

µR→∞
∆k(µR)

∆1(µR)
. (A.3)

One simple example is the flow of a free scalar field when we turn on the relevant

deformation corresponding to the mass. The UV starting point depends on the boundary

condition we choose for the free scalar. There are two possible BCFT: Dirichlet, which has

φ = 0 at the boundary and Neumann, which has ∂zφ = 0 at the boundary. If we choose the

Dirichlet BCFT, then the lowest boundary operator is O(x) = ∂zφ(0, x) with dimension

∆ = d+1
2 , where d = D − 1 is the boundary dimension. If we choose the Neumann BCFT,

then the lowest boundary operator is O(x) = φ(0, x) with dimension ∆ = d−1
2 . These are

the two possible values of the dimension of the CFT operator dual to a scalar in AdSd+1

with mass squared given by −d2−1
4R2 , which is the mass of a conformally coupled scalar.

When we turn on the relevant deformation 1
2µ

2φ2, we find

∆ =
d±

√

1 + (2µR)2

2
. (A.4)

This means that if we start with the Neumann BCFT we can not increase µR arbitrarily

without violating the unitary bounds of the BCT. On the other hand, starting from the

Dirichlet BCFT we can go all the way into the deep infrared to find ∆ ≈ µR, as expected

for a particle of mass µ≪ 1
R in AdS.

This example shows that not all possible boundary conditions of the CFTUV are con-

venient to study RG flows. It would be interesting to understand this point in more detail.

However, for our conformal bootstrap approach we only have to assume that there is at

least one boundary condition that is consistent along the entire flow.

A.1 Stress-energy tensor

The bulk QFT has a local stress-energy tensor. Here, we would like to discuss what

boundary operators can be obtained by pushing the bulk stress tensor to the boundary

of AdS. The asymptotic expansion of the stress tensor must be compatible with the

conservation equations

zd∂z

(

z−dT z
z

)

+ ∂µT
µ
z +

1

z
Tµ

µ = 0 , zd+1∂z

(

z−d−1T z
ν

)

+ ∂µT
µ
ν = 0 . (A.5)

This suggests the following behaviour

T z
z ≈ z∆DD , Tµ

ν ≈ z∆ttµν −
∆D − d

d
z∆DδµνD , (A.6)

T z
ν ≈ 1

d
z∆D+1∂νD − 1

∆t − d
z∆t+1∂µt

µ
ν , (A.7)

where D is a scalar boundary operator, tµν is a spin 2 (traceless) boundary operator and

we neglected the contribution from higher dimension operators. The boundary scaling
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dimensions ∆D and ∆t can vary independently along the flow as we increase µR. In the

CFTUV the bulk stress tensor is traceless. This gives T z
z+T

µ
µ = (d+1−∆D)D = 0, which

implies that ∆D = d+ 1 and D is called the displacement operator in BCFT.

Let us check these equations explicitly in the case of a massive free scalar field in AdS.

The stress tensor is given by (see for example [40])

T a
b = ∇aφ∇bφ− 1

4d

[

(d− 1)∇a∇b + δab
(

∇2 + d(d− 1)
)]

φ2 , (A.8)

and the equation of motion is

∇2φ = −d
2 − 1

4
φ+ µ2φ . (A.9)

One can check conservation ∇aT
a
b = 0 and T a

a = −µ2φ2. The asymptotic behavior of the

bulk scalar field is given by

φ(z, x) ≈ z∆O(x) , (A.10)

where the scaling dimension is given in (A.4). This gives

T z
z ≈

2∆− d+ 1

4
z2∆O2 , ∆t = 2∆+ 2 . (A.11)

For Dirichlet boundary conditions, 2∆ starts from d + 1 in the UV and grows after the

massive deformation. In this case, ∆D = 2∆ and the lowest boundary spin 2 operator has

∆t = ∆D + 2. With Neumann boundary conditions, the situation is more subtle. In this

case the boundary operator O has dimension ∆ = d−1
2 in the CFTUV . In agreement with

the discussion above, one can check that D ∼ (∂O)2 and ∆D = d + 1 as required for a

displacement operator. However, as soon as we move away from the UV fixed point, the

stress-tensor is no longer required to be traceless and this allows for a coupling to the scalar

operator O2 which has (smaller) dimension 2∆ = d− 1 +O(µ2R2).

B Scattering states

Let us start with the case of AdS2 and consider the following state in radial quantization

|ψ〉 =
∫ 1

0
dy 4y

(

1− y2
)∆−2O∆(y)|0〉 =

∞
∑

n=0

2Γ(∆− 1)Γ
(

n
2 + 1

)

n!Γ
(

n
2 +∆

) ∂nO∆(0)|0〉 . (B.1)

We are interested in the case where the primary state O∆(0)|0〉 is the lowest energy state

of a stable particle in AdS2. Then |ψ〉 is just a specific linear combination of boosted

versions of this one-particle state. The reason for this particular choice becomes clear once

we consider the associated bulk wave-function,

ψ(τ, ρ) ∝
∫ 1

0
dy 4y

(

1− y2
)∆−2

(

eτ cos ρ

e2τ cos2 ρ+ (eτ sin ρ− y)2

)∆

(B.2)

where the last factor is the scalar bulk to boundary propagator written in Euclidean bulk

global coordinates. We want to study the Lorentzian time evolution of this state. In
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particular, we want to focus on a small flat space scattering region t ∼ ρ ∼ 1
∆ ≪ 1 where

the Lorentzian time t is given by τ → i(t + π
2 ). In other words, the scattering event will

happen after a time interval of π
2 as depicted in figure 3. In this small flat space region,

we have

ψ ∼
∫ 1

0
dy

4y

(1− y2)2
e
−i∆t 1+y2

1−y2
−i∆ρ 2y

1−y2 . (B.3)

Changing to the integration variable ω = ∆1+y2

1−y2
, we obtain

ψ ∼
∫ ∞

∆
dωe−itω−iρ

√
ω2−∆2

, (B.4)

which is a linear combination of all on-shell states with energy varying from ∆ to ∞ and

with negative spatial momentum. The important feature of this state is that the spectral

weight is constant. This makes it easy to construct localized wave packets by considering

projections to an energy band of width δω satisfying ∆ ≫ δω ≫ 1. More precisely, the

wave packet

ψq(t, ρ) ∼
∫ ∞

∆
dω q(ω)e−itω−iρ

√
ω2−∆2

, (B.5)

where q(ω) is a smooth envelope of width δω around a central frequency E ∼ ∆, corresponds

to the state

|ψq〉 =
∫ 1

0
dy q

(

∆
1 + y2

1− y2

)

4y
(

1− y2
)∆−2O∆(y)|0〉 . (B.6)

It is instructive to consider the wave function of this state at τ = 0. Using the same logic

as in (B.2), we find

ψq(0, ρ) ∼
∫ 1

0
dy q

(

∆
1 + y2

1− y2

)

4y
(

1− y2
)∆−2

(

cos ρ

cos2 ρ+ (sin ρ− y)2

)∆

. (B.7)

For positive ρ, the integral is dominated by a saddle point at y = tan ρ and we obtain

ψq(0, ρ) ∼
cos ρ

1 + cos ρ
q (∆ tan ρ) . (B.8)

The means that the initial wave function is peaked at ρ = arctan E
∆ with a width δρ ∼

δω/∆ ≪ 1. For negative ρ the initial wave-function is exponentially small.

The next step is to construct scattering states. The natural starting point is

|Ψ〉 =
[∫ 1

0
dy1

∫ 0

−1
dy2 16y1y2

(

1− y21
)∆1−2 (

1− y22
)∆2−2O1(y1)O2(y2)|0〉

]

primaries

(B.9)

projected to primary states so that there is no center of mass motion. Using the OPE

O1(y1)O2(y2) =
∑

∆

λ∆(y1 − y2)
∆−∆1−∆2 [O∆(0) + descendants] , (B.10)

we find

|Ψ〉 =
∑

∆

w̄(∆)λ∆O∆(0)|0〉 , (B.11)
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where

w̄(∆) =

∫ 1

0
dy1

∫ 0

−1
dy2 16y1y2

(

1− y21
)∆1−2 (

1− y22
)∆2−2

(y1 − y2)
∆−∆1−∆2 . (B.12)

For large ∆ ∼ ∆1 ∼ ∆2 ≫ 1 this integral is dominated by a saddle point at

y⋆1 =

√

(∆−∆1 −∆2)(∆−∆1 +∆2)

(∆ +∆1 +∆2)(∆ +∆1 −∆2)
, y⋆2 = −

√

(∆−∆1 −∆2)(∆ +∆1 −∆2)

(∆ +∆1 +∆2)(∆−∆1 +∆2)
,

where we assumed that the total energy ∆ > ∆1 +∆2. It is nice to check that this saddle

corresponds to the total energy

ω1 + ω2 = ∆1
1 + (y⋆1)

2

1− (y⋆1)
2
+∆2

1 + (y⋆2)
2

1− (y⋆2)
2
= ∆ (B.13)

and to zero total spatial momentum

√

ω2
1 −∆2

1 −
√

ω2
2 −∆2

2 = ∆1
2y⋆1

1− (y⋆1)
2
+∆2

2y⋆2
1− (y⋆2)

2
= 0 . (B.14)

This means that the normalized state

|Ψ(E)〉 = 1
√

N(E)

∑

|∆−E|<δE

w̄(∆)λ∆|∆〉 , N(E) =
∑

|∆−E|<δE

[w̄(∆)λ∆]
2 , (B.15)

with E > ∆1 + ∆2 ≫ δE ≫ 1, is an appropriate scattering state. Notice that the slow

dependence (power law) of w̄ on ∆ cancels out in this state because the energy band δE is

much smaller than the average energy E. Therefore, it is sufficient to use the exponential

dependence

w̄(∆) → w(∆) ≡
[

4∆2(∆−∆1 −∆2)

(∆2 −∆2
12)(∆ +∆1 +∆2)

]
∆

2

(

∆−∆12

∆+∆12

)

∆12
2

[∆2 − (∆1 +∆2)2]
∆1+∆2

2

, (B.16)

where ∆12 = ∆1 −∆2.

The generalization to higher spacetime dimensions is straightforward. We can start

from a state analogous to (B.9) by placing the operators at points y1n̂ and y2n̂ for some

unit vector n̂. Then, we project to primaries of a given spin l and with scaling dimension

∆ in an energy band |∆− E| < δE. This gives

|Ψl(E)〉 = 1
√

Nl(E)

∑

|∆−E|<δE

w(∆)λ∆,l|∆, l〉 , Nl(E) =
∑

|∆−E|<δE

[w(∆)λ∆,l]
2 , (B.17)

where |∆, l〉 = n̂µ1
. . . n̂µl

Oµ1...µl

∆,l (0)|0〉.
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C Scattering amplitudes from Mellin amplitudes

In this appendix, it will be convenient to use the embedding formalism [41] where a point

in AdS is represented by a vector X ∈ R
d+1,1 such that X ·X = −R2. A boundary point

is represented by a null ray P ∼ λP (λ ∈ R) for P ∈ R
d+1,1 and P · P = 0.

Mellin amplitudes M(γij) are defined by [16, 17]

〈O1(P1) . . .On(Pn)〉 =
∫

[dγ]M(γij)
∏

1≤i<j≤n

Γ(γij)

(−2Pi · Pj)
γij , (C.1)

where the Mellin variables obey the constraints

γij = γji , γii = −∆i ,

n
∑

i=1

γij = 0 . (C.2)

From the Mellin amplitude, the associated flat space scattering amplitude can be obtained

from formula (3.2) which we rewrite here in the slightly different way

(m1)
a T (ki) = lim

∆1→∞
(∆1)

a

N M

(

γij =
∆i∆j +R2ki · kj
∆1 + · · ·+∆n

+O(∆1)
0

)

(C.3)

where the AdS radius R appears in the relation m2
iR

2 = ∆i(∆i− d). For completeness, we

also reproduce here the normalization factor

N =
1

2
π

d
2Γ

(∑

∆i − d

2

) n
∏

i=1

√

C∆i

Γ(∆i)
. (C.4)

In this appendix we shall test this formula in some simple examples, present a perturbative

derivation and analyse its consequences for the analytic structure of the flat space S-matrix.

Before that, notice that in formula (C.3) the Mellin variables take values consistent with

the constraints (C.2). More precisely, the parameterization holds for γij with i 6= j (γii
should still be set to −∆i explicitly), and by adding the finite piece

d

n− 2

[

∆i +∆j

∆1 + · · ·+∆n
− 1

n− 1

]

(C.5)

we guarantee consistency with the last constraint in (C.2).

C.1 Examples

We start by testing formula (C.3) with simple Witten diagrams.

C.1.1 Contact interaction

Consider the simplest contact interaction gφ1 . . . φn in AdS. This leads to a boundary

n-point function

〈O1(P1) . . .On(Pn)〉 = g

∫

AdS
dX

n
∏

i=1

R
1−d
2

√

C∆i

(−2Pi ·X/R)∆i
(C.6)
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where we are using the embedding formalism and normalized the boundary operators to

have unit two point function. This gives the Mellin amplitude

M =
1

2
gRn 1−d

2
+d+1π

d
2Γ

(∑

∆i − d

2

) n
∏

i=1

√

C∆i

Γ(∆i)
(C.7)

and through formula (C.3) we obtain the scattering amplitude T = g. Notice that the

coupling g is dimensionful and the powers of the AdS radius R appearing in the Mellin

amplitude make the combination dimensionless.

C.1.2 Scalar exchange

Let us see how formula (C.3) works for a scalar exchange diagram in AdS. The associated

Mellin amplitude was computed in [18],

M = −g2R5−dN
∞
∑

q=0

Wq

∆1 +∆3 − 2γ13 −∆− 2q
, (C.8)

with

Wq =
Γ
(

∆1+∆3+∆−d
2

)

Γ
(

∆2+∆4+∆−d
2

)

2Γ
(∑

i ∆i−d
2

)

(

1 + ∆−∆1−∆3

2

)

q

(

1 + ∆−∆2−∆4

2

)

q

q!Γ
(

∆− d
2 + 1 + q

) (C.9)

In the limit of large ∆’s (of the same order), the residues Wq peak around q = q⋆ = O(∆)

with a width δq = O(
√
∆). More precisely,

Wq =
exp

[

− (q−q⋆)2

2δq2

]

√
2π (∆1 +∆2 +∆3 +∆4) δq

[

1 +O

(

1√
∆

)]

(C.10)

with

q⋆ =
(∆1 +∆3 −∆) (∆2 +∆4 −∆)

2 (∆1 +∆2 +∆3 +∆4)
, (C.11)

δq2 =
(∆1 +∆3 +∆) (∆2 +∆4 +∆) (∆1 +∆3 −∆) (∆2 +∆4 −∆)

2 (∆1 +∆2 +∆3 +∆4)
3 (C.12)

This is depicted in figure 13. We can then approximate the sum over q by an integral, to

obtain
∞
∑

q=0

Wq

∆1 +∆3 − 2γ13 −∆− 2q
≈
∫

dq
Wq

∆1 +∆3 − 2γ13 −∆− 2q

≈ 1

∆1 +∆2 +∆3 +∆4

1

∆1 +∆3 − 2γ13 −∆− 2q⋆

→ − 1

R2

1

(k1 + k3)2 +m2

Finally, we conclude that the flat space limit formula (C.3) leads to

T = g2
1

(k1 + k3)2 +m2
(C.13)

as expected.
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Figure 13. The left figure shows the position of the poles of the Mellin amplitude associated with

a tree-level scalar exchange Witten diagram. The middle figure shows the scaling of the residues of

these poles in the flat space limit ∆ → ∞. On the right, we show the resulting analytic structure

for the scattering amplitude. The infinite sequence of poles of the Mellin amplitude gives rise to a

single pole in the scattering amplitude.

C.2 Perturbative derivation

Now consider more general contact interactions involving derivatives

g∇ . . .∇φ1 . . .∇ . . .∇φn. In order to determine the contact Witten diagram associ-

ated with this vertex we start by computing the covariant derivative

∇A
1

(−2P ·X)∆
= 2∆

PA + (P ·X)XA

(−2P ·X)∆+1
≡ −∆

QA

(−2P ·X)∆
(C.14)

where it is convenient to introduce the notation

QA :=
PA + (P ·X)XA

(P ·X)
(C.15)

Here we used the fact that covariant derivatives in AdS can be computed as partial deriva-

tives in the embedding space projected to the tangent space of AdS [42]. We have set

R = 1 to avoid cluttering the equations. Notice that

∇B(PA + (P ·X)XA) = (ηAB +XAXB) (P ·X) ≡ (P ·X)GAB (C.16)

and that ∇CGAB = 0 because GAB is the AdS metric. By iterating these derivatives, we

conclude that l covariant derivatives lead to

∇A1
. . .∇Al

1

(−2P ·X)∆
=

[ l2 ]
∑

k=0

∑

perm
σ

ck(σ)
GA1A2

. . . GA2k−1A2k
QA2k+1

. . . QAl

(−2P ·X)∆

for some coefficients ck(σ) where σ labels the permutations of the indices {A1, . . . , Al}.
Furthermore, it is not hard to see that ck ∼ ∆l−k for large ∆. Thus, the terms with k = 0

dominate at large ∆ and we find

∇A1
. . .∇Al

1

(−2P ·X)∆
≈ (−∆)l

(−2P ·X)∆
QA1

. . . QAl
.

This means that the correlation function is given by

〈O1(P1) . . .On(Pn)〉 ≈ g

∫

AdS
dX

n
∏

i=1

(−∆i)
αi
√

C∆i

(−2Pi ·X)∆i

∏

i<j

(Qi ·Qj)
αij (C.17)
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where αij are the number of contractions between derivatives acting on φi and φj in the

interaction vertex. We also used αi =
∑

j αij for the total number of derivatives acting on

field φi. The inner product

Qi ·Qj = 1− 2
(−2Pi · Pj)

(−2Pi ·X)(−2Pj ·X)
(C.18)

gives rise to the same type of integrals as the pure contact diagram studied above. More

precisely, we obtain a linear combination of terms of the form

D∆1+Λ1...∆n+Λn(P1, . . . , Pn)

n
∏

i<j

(−2Pi · Pj)
λij (C.19)

where λij are non-negative integers, Λi =
∑

j λij and

D∆1...∆n =

∫

AdS
dX

n
∏

i=1

1

(−2Pi ·X)∆i
. (C.20)

The Mellin amplitudes of (C.19) are given by [18]
(

1
2

∑

k ∆k − d
2

)

∑
i<j λij

∏

i(∆i)Λi

∏

i<j

(γij)λij
(C.21)

times a constant independent of λij . For large γij ∼ ∆i we can approximate the Pochham-

mer symbols by powers
(

1
2

∑

k ∆k − d
2

)

∑
i<j λij

∏

i(∆i)Λi

∏

i<j

(γij)λij
≈
∏

i<j

(

2γij
∆i∆j

∑

k ∆k

)λij

. (C.22)

We conclude that, at large γij ∼ ∆i, the Mellin amplitude can be obtained with the simple

replacement rule

Qi ·Qj → 1− γij
∆i∆j

n
∑

k=1

∆k . (C.23)

This leads to

M ≈ 1

2
gRn 1−d

2
+d+1−Nπ

d
2Γ

(∑

∆i − d

2

) n
∏

i=1

√

C∆i

Γ(∆i)

∏

i<j

(

∆i∆j − γij

n
∑

k=1

∆k

)αij

(C.24)

where N = 2
∑

i<j αij is the total number of derivatives in the interaction vertex and we

reintroduced the necessary factors of R to make the expression dimensionless. Applying

the flat space limit formula (C.3) we obtain the scattering amplitude

T = g
∏

i<j

(−ki · kj)αij . (C.25)

We conclude that formula (C.3) works for any contact interaction with an arbitrary number

of derivatives. Since any diagram involving massive particles can be expanded as an infinite

sum of contact interactions with derivatives (i.e. we can integrate out the massive particles)

then this example provides a (perturbative) proof of formula (C.3).
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C.3 S-matrix analyticity and factorization from the OPE

The Mellin amplitude has a simple analytic structure entirely controlled by the OPE of

the conformal theory. In particular, if we assume a generic discrete spectrum of scaling

dimensions without degeneracies, then the Mellin amplitude is meromorphic with simple

poles at

γLR ≡
∑

a∈L

∑

j∈R
γaj = ∆− l + 2q , q = 0, 1, 2, . . . (C.26)

where L and R are two disjoint sets whose union is {1, . . . , n}. ∆ and l are the dimension

and spin of an operator that appears in the OPEs
∏

a∈LOa and
∏

j∈R Oj . Moreover, the

residue of this pole is completely fixed by the OPE coefficient (function) of this operator

in these OPEs. In fact, one can write factorization formulas for the residues in terms of

lower point Mellin amplitudes [20, 21].

In order to reproduce the expected factorization pole in flat space, we need that the

sum over the satellite poles q localizes around

q⋆ =

(

∆−∑a∈L∆a

)

(

∆−∑j∈R ∆j

)

2
∑

i∆i
(C.27)

This leads to
1

γLR −∆+ l − 2q⋆
→
∑

i∆i

R2

1

kL · kR −m2
(C.28)

where kL =
∑

a∈L ka is the momenta injected on the left part of the amplitude and similarly

for kR. Notice that in the flat space limit the spin l is kept fixed while ∆ ≈ mR→ ∞.

C.3.1 Factorization on scalar particle

Let us see how this works when the exchanged operator is a scalar. In this case, the residues

of the Mellin amplitude are given by [20, 43]

Qq =
−2Γ(∆)q!
(

∆− d
2 + 1

)

q

LqRq , Lq =
∑

nab≥0
∑

nab=q

ML(γab + nab)
∏

1≤a<b≤k

(γab)nab

nab!
(C.29)

and similarly for Rq. Here we are dividing the n external legs into a left group from 1 to

k and a right group from k+ 1 to n. We shall assume that the Mellin amplitudes ML and

MR do not grow (or decay) exponentially for γab ∼ ∆a → ∞. On the other hand,

∏

1≤a<b≤k

(γab)nab

nab!
≈ eFL

∏

1≤a<b≤k

1
√

2πδn2ab

exp

[

−(nab − n⋆ab)
2

2δn2ab

]

(C.30)

with

FL = q log

(

1 + rL
rL

)

+
q

rL
log (1 + rL) , rL =

q
∑

a<b γab
, (C.31)

n⋆ab = rLγab , δn2ab = rL(1 + rL)γab . (C.32)

– 33 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
3

This gives

Lq ≈ ML ((1 + rL)γab) e
FL

∏

1≤a<b≤k

∫

dnab
1

√

2πδn2ab

exp

[

−(nab−n⋆ab)2
2δn2ab

]

δ

(

q−
∑

nab

)

= ML ((1 + rL)γab) e
FL

∫

ds

2π

∏

1≤a<b≤k

∫

dnab

exp

[

−(nab−n⋆
ab)

2

2δn2
ab

+ is (nab − n⋆ab)

]

√

2πδn2ab

= ML ((1 + rL)γab) e
FL

1
√

2πq(1 + rL)

Putting things together we find

Qq ≈ −2
(∆ + q)

d−1

2 exp [F0 + FL + FR]

∆
d
2

√

q(1 + rL)(1 + rR)
ML ((1 + rL)γab)MR ((1 + rR)γij) (C.33)

where

F0 = 2∆ log∆−∆+ q log q − (q +∆) log(q +∆) . (C.34)

The sum over q is also dominated by a saddle point,

F0 + FL + FR ≈ F⋆ −
(q − q⋆)

2

2δq2
(C.35)

where q⋆ is given by (C.27) and

F⋆ = 2∆ log∆−∆+
Σ

2
log

Σ

2
− ΣL

2
log

ΣL

2
− ΣR

2
log

ΣR

2
(C.36)

δq2 =
q⋆

(1 + rL)(1 + rR)
=

(Σ− ΣL) (Σ− ΣR) ΣLΣR

2Σ3
(C.37)

with

Σ =
n
∑

i=1

∆i , ΣL = ∆+
∑

a∈L
∆a , ΣR = ∆+

∑

j∈R
∆j . (C.38)

The contribution from the poles of the Mellin amplitude is given by

∞
∑

q=0

Qq

γLR−∆−2q
≈
∫ ∞

0
dq

Qq

γLR −∆− 2q

→ −2
(∆ + q⋆)

d−1

2 exp [F⋆]
√

2πδq2

∆
d
2

√

q⋆(1+rL)(1+rR)
ML

(

γLab
)

MR

(

γRij
)

∑

i∆i

R2

1

kL · kR−m2

= 4

√
2π exp [F⋆]

R2

[

ΣLΣR

2Σ

]
d+1

2

∆− d
2ML

(

γLab
)

MR

(

γRij
) 1

k2L +m2

≈ 1

R2

N
NLNR

ML

(

γLab
)

MR

(

γRij
) 1

k2L +m2

where

γLab = (1 + rL)γab →
∆a∆b +R2ka · kb

ΣL
(C.39)
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is exactly what it should be to correspond to the flat space limit of the left Mellin amplitude.

This leads to the factorization formula

T ≈ TLTR
k2L +m2

, (C.40)

with

TL = lim
∆→∞

1

NL
R(k+1) d−1

2
−d−1ML

(

γab =
∆a∆b +R2ka · kb

ΣL

)

(C.41)

and similarly for TR.

C.3.2 Factorization of four-particle amplitude

The four point Mellin amplitude has a semi-infinite sequence of poles associated to each

primary operator exchanged,

M ≈ λ12kλ34kQl,q(γ13)

γLR −∆+ l − 2q
, q = 0, 1, 2, . . . (C.42)

where ∆ and l are the dimension and spin of the exchanged operator Ok and λ’s are OPE

coefficients. The residue is a Mack polynomial of degree l in the Mellin variable γ13. We

follow the conventions of [44],

Ql,q(γ13) = − 2Γ(∆ + l)(∆− 1)l

4lΓ
(

∆+l+∆12

2

)

Γ
(

∆+l−∆12

2

)

Γ
(

∆+l+∆34

2

)

Γ
(

∆+l−∆34

2

) (C.43)

× Ql,q(γ13)

q!
(

∆− d
2 + 1

)

q
Γ
(

∆1+∆2−∆+l
2 − q

)

Γ
(

∆3+∆4−∆+l
2 − q

) .

In the flat space limit γ13 ∼ ∆ ∼ q ∼ ∆i ≫ 1 we find

Ql,q(γ13) ≈
l!

2l
(

d
2 − 1

)

l

∆−2l
[(

∆2 −∆2
12

) (

∆2 −∆2
34

)

q(∆ + q)
]

l
2 (C.44)

× Cl





2q
(

∆2 +∆12∆34

)

+∆ [(∆ +∆12) (∆ +∆34)− 4γ13∆]

2
√

q(q +∆)
(

∆2 −∆2
12

) (

∆2 −∆2
34

)



 ,

where Cl(z) ≡ C
( d−2

2 )
l (z) is the Gegenbauer polynomial appropriate for spin l partial waves

in (d + 1)-dimensional flat spacetime. The q dependence is polynomial. In the flat space

limit, the other factors present in (C.43) are peaked around q = q⋆ with

q⋆ =
(∆1 +∆3 −∆) (∆2 +∆4 −∆)

2 (∆1 +∆2 +∆3 +∆4)
. (C.45)

This together with the flat space limit rule γ13 → (∆1∆3 + R2k1 · k3)/(
∑

i∆i) simplifies

the argument of the Gegenbauer polynomial to

cos θ =

(

s+m2
1 −m2

2

) (

s+m2
3 −m2

4

)

− 4s k1 · k3
4
√

[

(k1 · k2)2 −m2
1m

2
2

] [

(k3 · k4)2 −m2
3m

2
4

]

, (C.46)
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where θ is the usual scattering angle and s = −(k1 + k2)
2. This gives the following

factorization formula for scattering amplitudes

T ≈ TLTR
(k1 + k2)2 +m2

l!Cl (cos θ)

2l
(

d
2 − 1

)

l

(C.47)

with

TL = lim
∆→∞

1

N R
d−5

2
λ12k

Γ
(

∆1+∆2−∆
2

)

Γ
(

∆+∆2−∆1

2

)

Γ
(

∆+∆1−∆2

2

)

where N is given by

N =
1

2
π

d
2Γ

(

∆1 +∆2 +∆− d

2

)

√

C∆1

Γ(∆1)

√

C∆2

Γ(∆2)

√C∆
Γ(∆)

. (C.48)

C.3.3 Two-particle cut

Let us consider a one-loop diagram that gives rise to a two-particle cut in the scattering

amplitude

T = g2
∫

dDq

(2π)D
1

q2 +m2

1

(q − p)2 + m̄2
(C.49)

= g2
Γ
(

2− D
2

)

(4π)
D
2

∫ 1

0
dt
[

t(1− t)p2 + tm2 + (1− t)m̄2
]
D
2
−2

(C.50)

We are assuming D < 4 in order to get a UV finite integral. This amplitude can also be

written in the Kallen-Lehmann spectral representation

T =

∫ ∞

(m+m̄)2
dµ2

ρ(µ2)

p2 + µ2
(C.51)

where the spectral density of the two-particle cut is given by

ρ(µ2) =
T (p2 = −µ2 − iǫ)− T (p2 = −µ2 + iǫ)

2πi

= g2
Γ
(

2− D
2

)

(4π)
D
2

∫ 1

0

dt

2πi

[

(−z(t, µ)− iǫ)
D
2
−2 − (−z(t, µ) + iǫ)

D
2
−2
]

= −g2 1
π

Γ
(

2− D
2

)

(4π)
D
2

sin
πD

2

∫ 1

0
dtΘ(z(t, µ)) (z(t, µ))

D
2
−2

= −g2 1
π

Γ
(

2− D
2

)

(4π)
D
2

sin
πD

2
µD−4

∫ t2

t1

dt ((t− t1)(t2 − t))
D
2
−2

= −g2 1
π

Γ
(

2− D
2

)

(4π)
D
2

sin
πD

2
µD−4(t2 − t1)

D−3Γ
2
(

D
2 − 1

)

Γ (D − 2)

= g2
42−D

2π
D−1

2 Γ
(

D−1
2

)

µ2−D
[

µ4 +m4 + m̄4 − 2µ2(m2 + m̄2)− 2m2m̄2
]
D−3

2

– 36 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
3

where z(t, µ) = t(1− t)µ2 − tm2 − (1− t)m̄2 = µ2(t− t1)(t2 − t1). It is convenient to write

µ = m+ m̄+ 2y to find

T =

∫ ∞

0
dy

ρ̃(y)

p2 + (m+ m̄+ 2y)2
, (C.52)

with

ρ̃(y) = g2
1

2π
D−1

2 Γ
(

D−1
2

)

(m+ m̄+ 2y)3−D [y (m+ y) (m̄+ y) (m+ m̄+ y)]
D−3

2 . (C.53)

The corresponding loop diagram in AdS can be computed with the use of the following

identity [19]

G∆(X,Y )G∆̄(X,Y ) =
∞
∑

n=0

anG∆+∆̄+2n(X,Y ) (C.54)

where

an =
1

RD−2

(

D−1
2

)

n

(

∆+ ∆̄ + 2n
)

3−D
2

(

∆+ ∆̄ + n+ 2−D
)

n

2π
D−1

2 n! (∆ + n) 3−D
2

(

∆̄ + n
)

3−D
2

(

∆+ ∆̄ + n− D−1
2

)

n

(C.55)

This means that the loop is equivalent to an infinite sum of scalar exchanges like the ones

we studied in section C.1.2. We conclude that the flat space limit leads to

T = lim
R→∞

∞
∑

n=0

an
g2

p2 +
(

∆+ ∆̄ + 2n
)2
/R2

(C.56)

where the limit should be taken with m = ∆/R and m̄ = ∆̄/R fixed. Remarkably, in this

limit, we find

an ≈ 1

R
ρ̃(y) (C.57)

where we also kept y = n/R fixed. This leads directly to the spectral representation (C.52).

C.4 Many point functions

When n ≥ d+ 3 not all 1
2n(n− 3) cross ratios are independent. This follows from the fact

that d+3 vectors Pi ∈ R
d+1,1 can not be linearly independent. Therefore, the determinant

of the (d+ 3)× (d+ 3) matrix with entries (−2Pi · Pj) vanishes,

det
i,j

(−2Pi · Pj) = 0 . (C.58)

This leads to non-uniqueness of the Mellin amplitude. The Mellin amplitude M0 defined by

Λ(P1, . . . , Pn) det
i,j

(−2Pi · Pj) =

∫

[dγ]M0(γij)
∏

1≤i<j≤n

Γ(γij)

(−2Pi · Pj)
γij , (C.59)

where Λ is any Lorentz invariant homogeneous function (with appropriate weights), is

equivalent to zero. In the flat space limit (large γij), we obtain

M0(γij) ≈MΛ(γij) det
i,j

(γij) , (C.60)
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assuming that the Mellin amplitude MΛ does not depend exponentially on γij for large γij .

Let us see what this gives under the flat space limit formula (C.3),

det
i,j

(γij) ∼ det
i,j

(mimj + ki · kj) = det
i,j

(ki · kj) +
d+3
∑

l=1

det
i,j

(δilmimj + ki · kj) , (C.61)

where we have used linearity of the determinant with respect to each line of the matrix.

By expanding these determinants along line l, it is clear that all these determinants of

(d+3)×(d+3) matrices can be written as linear combinations of determinants deti,j (ki ·kj)
of (d+ 2)× (d+ 2) matrices. But these must vanish because the momenta ki are (d+ 1)-

dimensional vectors. Therefore, the non-uniqueness of the Mellin amplitude as a function

of γij maps into the same type of non-uniqueness of the scattering amplitudes when written

in terms of the Mandelstam invariants.

C.5 Relation to phase shift formula

In this section we show that the imaginary part of the scattering amplitude T (s, t) obtained

from the flat space limit formula (3.2) using Mellin amplitudes agrees with the result that

follows from the phase shift formula (3.21). For simplicity, we restrict ourselves to the case

of equal external operators and denote them by O1.

We saw in C.3.2 that each operator exchanged in the OPE gives rise to a pole in the

scattering amplitude, whose residue is related to the product of OPE coefficients. Taking

the imaginary part of equation (C.47), we conclude that

ImT (s, t) = lim
∆1→∞

∑

∆,l

W δ(s−m2)Cl(z) , z = cos θ =
u− t

u+ t
, (C.62)

where the sum runs over all primary operators O∆,l with (even) spin l and dimension ∆

that appear in the OPE O1 × O1. The mass m is given by m = lim∆1→∞∆m1

∆1
and the

weight W is given by

W = πm5−d
1 ∆d−5

1

l!

2l
(

d
2 − 1

)

l

4Γ2 (∆)Γ4 (∆1)

πdΓ2
(

2∆1+∆−d
2

)

Γ2
(

2∆1−∆
2

)

Γ4
(

∆
2

)

C2
∆1

C∆
λ2∆,l . (C.63)

The 2 to 2 scattering amplitude of identical scalar particles in (d + 1) spacetime di-

mensions can also be written as

T (s, t) = i
2
√
s

(s− 4m2)
d−2

2

∞
∑

l=0

even

(

1− e2iδl(s)
)

P
(d)
l (z) (C.64)

where δl(s) is the phase shift and

P
(d)
l (z) = 22d−3π

d
2
−1(d+ 2l − 2)Γ

(

d

2
− 1

)

Cl(z) (C.65)
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Figure 14. Each operator of dimension ∆ and spin l makes a localized contribution to 1 −
Re e2iδl(s). The height of the rectangle is given by (C.68). In the flat space limit this contribution

becomes proportional to δ(s − m2). The sum over the contribution of all operators produces a

smooth function of s.

are harmonic polynomials on the sphere Sd−1 at spatial infinity. The normalization of the

polynomials was chosen in order to describe easily free propagation. More precisely, they

lead to the following identity

i(2π)d+1δ(d+1)

(

∑

ki

)

i
2
√
s

(s− 4m2)
d−2

2

∞
∑

l=0

even

P
(d)
l (z)

+4E1E2(2π)
2d
[

δ(d)(k1 − k3)δ
(d)(k2 − k4) + δ(d)(k1 − k4)δ

(d)(k2 − k3)
]

= 0 .

Taking the imaginary part of (C.64) we obtain

ImT (s, t) =
2
√
s

(

s− 4m2
1

)
d−2

2

∞
∑

l=0

even

[

1− Re e2iδl(s)
]

P
(d)
l (z) . (C.66)

From the phase shift flat space limit formula (3.21) we find

1− Re e2iδl(s) = lim
∆1→∞

1

Nl(E)

∑

|∆−E|<δE

[w(∆)λ∆,l]
2 [1− cosπ(∆− 2∆1 − l)] (C.67)

This means that each operator of dimension ∆ contributes a regularized delta-function

to (C.67) as depicted in figure 14. More precisely, it contributes

1− Re e2iδl(s) = lim
∆1→∞

[w(∆)λ∆,l]
2 [1− cosπ(∆− 2∆1 − l)]

Nl(∆)
(C.68)

if
m2

1

∆2
1

(∆− δE)2 < s <
m2

1

∆2
1

(∆ + δE)2 (C.69)
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and zero for other values of s. Thus,

1−Re e2iδl(s) = lim
∆1→∞

∑

∆

δ(s−m2)
4δE∆m2

1

∆2
1

[w(∆)λ∆,l]
2 [1− cosπ(∆− 2∆1 − l)]

Nl(∆)
, (C.70)

which leads to (C.62) with the following expression for the weight

W =
m 22d−2π

d
2
−1(d+ 2l − 2)Γ

(

d
2 − 1

)

(

m2 − 4m2
1

)
d−2

2

4δE∆m2
1

∆2
1

[1− cosπ(∆− 2∆1 − l)]

Nl(∆)
[w(∆)λ∆,l]

2 .

(C.71)

One can easily check that (C.63) and (C.71) are equivalent if

Nl(∆) ≈ δE
∆d/2 (∆− 2∆1)

− d
2 ∆d−4∆1

1 (∆ + 2∆1)
− 3d

2 23d−4∆1+lΓ
(

d
2 + l

)

π l!
(C.72)

in the flat space limit ∆ ∼ ∆1 ≫ δE ≫ l ∼ 1. This asymptotic behaviour of the spectral

weight

Nl(E) =
∑

|∆−E|<δE

[w(∆)λ∆,l]
2 (C.73)

is the same as for generalized free fields. More precisely, one can check that the exact

formula for free fields in AdS [45]

λ2∆,l =
2l+1

[(

∆1 − d
2 + 1

)

n
(∆1)l+n

]2

l!n!
(

d
2 + l

)

n
(n+ 2∆1 − d+ 1)n (l + 2n+ 2∆1 − 1)l

(

l + n+ 2∆1 − d
2

)

n

, (C.74)

with ∆ = 2∆1 + 2n + l, has exactly the asymptotic behavior (C.72). This asymptotic

behavior is also compatible with the general results of [46] but it is stronger. We claim

that QFT in AdS leads to this universal asymptotic form of the spectral density Nl(∆).

This follows from the bulk wave-function construction of appendix B. The point is that

this is the spectral density of a two particle state in AdS, where the particles are very

well separated in the initial time slice. Therefore, locality of the interactions allows us to

measure the energy distribution of the state reliably in the initial time slice. This proves

that the phase shift and the Mellin formulas lead to the same imaginary part of the flat

space scattering amplitude.

D Large ∆ limit of the crossing equations in d = 1

We are interested in studying bounds on the dimension ∆2 of the leading scalar in the

OPE of some other scalar O1 with itself, when the dimension ∆1 of the latter is very large.

More precisely, we take all the scaling dimensions of nontrivial operators to be large. We

will show that optimal bounds require a number of derivatives that is at least as large as√
∆1. We begin by considering the large dimension limit of d = 1 conformal blocks. This

is remarkably simple:

G∆(z) =
(4ρ)∆
√

1− ρ2

[

1 +O

(

1

∆

)]

, ρ =
z

(1 +
√
1− z)2

. (D.1)
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The statement of crossing symmetry of a four point function is

∑

λ2∆F∆(z) ≡
∑

λ2∆
(

(1− z)2∆1G∆(z)− z2∆1G∆(1− z)
)

= 0 . (D.2)

As usual, we try to rule out solutions to these constraints by constructing a linear functional

with certain positivity properties. We shall take the functional to be a sum of derivatives

with respect to z at z = 1/2. Then it can be shown that

∂nz F∆(z)

∣

∣

∣

∣

z=1/2

=
(4ρ)∆
√

1− ρ2

(

− 2xn∆
4∆1−n

)

, x∆ ≡ ∆1 −
√
2

2
∆, ρ = 3− 2

√
2, (D.3)

for ∆,∆1 ≫ 1 and n odd (zero otherwise). This approximation captures only the leading

term. We also need the behaviour of the identity block, for which ∆ = 0. We have

∂nz F0(z)

∣

∣

∣

∣

z=1/2

= − 2∆n
1

4∆1−n
, for odd n (D.4)

We can now find very simple solutions to crossing symmetry independent of the number

of derivatives. The contribution of the identity can be cancelled by a vector with

x∆ = −∆1 ⇔ ∆ = 2
√
2∆1 (D.5)

Similarly, the contribution of any vector with ∆2 <
√
2∆1 may be cancelled by one with

∆ = 2
√
2∆1 −∆2. This is a special case of the approximate reflection symmetry discussed

in [47]. In particular the solution exists for any number of derivatives, as long as we take

the ∆1 → ∞ limit first. Since such solutions exist, whatever bounds one finds can never

rule it out. More precisely, for finite ∆1 we expect that the extremal solution will be given

by sets of vectors which closely cluster around the peaks determined by these equations,

and this is indeed borne out by explicit numerical checks.

In the above we approximated the n-th derivative of factors such as z∆ by ∆nz∆−n.

In reality one obtains Pochhammer symbols, which for ∆ ≫ n≫ 1 become

(∆)n ≃ ∆n

(

1 +
n2

2∆
+ . . .

)

. (D.6)

This shows that corrections to the results derived above will only kick in if n is at

least O(
√
∆).
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