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ABSTRACT

The Mussafah Channel is a man-made canal cut perpendicular to the coastline, located to the 
southwest of the city of Abu Dhabi, United Arab Emirates, and is ideal for studying coastal 
depositional processes in an arid environment. The channel walls reveal a few meters of 
Pleistocene reworked dune deposits, unconformably overlain by Holocene carbonates and 
sabkha evaporites. The Holocene succession consists of intertidal to shallow subtidal sediments 
that vary significantly along depositional strike direction. Bladed gypsum crystals, gypsum 
rosettes, and nodular to highly contorted, discontinuous bands of classic sabkha anhydrite 
are present along the channel walls. Sedimentology, petrography, SEM, X-ray diffraction, and 
radiocarbon age-dating analyses of the sabkha sequence show the following profile from base 
to top: (1) non-bedded carbonate-rich sand: reworked aeolianite with an approximate (ca.) 
radiocarbon age in years (yrs) before present (BP) ca. 26,800 14C yrs BP; (2) cross-bedded to non-
bedded carbonate-rich sand: aeolianite/reworked aeolianite (ca. 24,000–23,500 14C yrs BP); (3) 
crinkly-laminated stromatolitic bindstone: intertidal, low-energy microbial mat (ca. 6,600–6,200 
14C yrs BP); (4) lower, discontinuous and in places reworked hardground: cemented channel-lag 
deposits (ca. 6,400 14C yrs BP); (5) peloid-skeletal packstone with rootlets or microbial-laminated 
peloid-skeletal packstone, laterally grading into fine- to coarse-grained, cross-bedded, cerithid-
rich, bioclastic packstone, grainstone, and rudstone: lowermost intertidal to shallow subtidal, 
low-energy, mud-rich rooted and microbial-laminated lagoonal deposits and moderate- to 
high-energy, intertidal to shallow subtidal tidal-channel, tidal-delta, and tidal-bar deposits (ca. 
6,200–5,200 14C yrs BP); (6) upper discontinuous and shingled hardground: cemented beach rock 
(ca. 5,700 14C yrs BP); (7) cross-bedded, bioclastic rudstone/grainstone, grading laterally into 
intervals displaying bladed gypsum crystals and nodular to enterolithic anhydrite: intertidal 
to shallow subtidal, high-energy longshore beach bar and beach spit deposits; overprinted by 
sabkha gypsum and anhydrite (ca. 5,000 14C yrs BP).

Significant amounts of dolomite were found within the rooted and microbial-laminated mud-rich 
lagoonal carbonates, some of the tidal-channel/lagoonal deposits, the buried crinkly-laminated 
microbial mats, and within some of the Pleistocene carbonate-rich sands. The dolomite is very 
fine-crystalline and displays spherical morphologies as well as subhedral to euhedral dolomite 
rhombohedra. The formation of dolomite is interpreted to be related to dolomite-mediating 
microbial organisms which form the widespread microbial mat along the Abu Dhabi coastline. 
Microbial organisms are also present within the rooted and microbial-laminated lagoonal 
carbonates and, most probably, within all the other studied carbonates and the Pleistocene 
carbonate-rich sands. Biopolymers of microbial origin, referred to as Extracellular Polymeric 
Substances (EPS), are interpreted to play a key role in primary dolomite formation. 

The sabkha sequence at Mussafah Channel formed during the post-glacial Flandrian 
transgression, resulting in the reworking of the Pleistocene aeolian dunes and the deposition 
of intertidal to shallow subtidal carbonates. Recent find of whale bones within tidal-channel 
deposits overlying the microbial mat further document the initial Holocene transgression. 
During a subsequent slight sea-level fall (regression), these carbonates were overprinted by 
gypsum and anhydrite.

The observed lateral and vertical facies variations reflect primary reservoir quality variations, 
an important aspect to be considered for geological facies and reservoir quality modeling.
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INTRODUCTION

Studies of recent sediments are a fundamental tool in interpretation of features observed in ancient 
cores and outcrops. The modern arid carbonate-evaporite depositional environments along the Abu 
Dhabi coastline and offshore Abu Dhabi, United Arab Emirates, are among the few areas of the 
world where geoscientists can observe the interplay between carbonate and evaporite sedimentation. 
Geoscientists from all over the world have studied the famous Abu Dhabi sabkha since the early 1960s 
(Wells, 1962; Curtis et al., 1963; Kendall and Skipwith, 1968, 1969; Evans et al., 1969; Kinsman, 1969; 
Butler, 1969, 1970; Purser, 1973; Schneider, 1975; Kinsman and Park, 1976; Leeder and Zeidan, 1977; 
Park, 1977; Patterson and Kinsman, 1977, 1981, 1982; McKenzie et al., 1980; McKenzie, 1981; Butler et 
al., 1982; Shearman, 1983; Shinn, 1983; Warren and Kendall, 1985; Kendall and Warren, 1988; Kenig 
et al., 1990; Müller et al., 1990; Kenig, 1991; Wenk et al., 1993; Alsharhan and Kendall, 1994; Baltzer et 
al., 1994; Kendall et al., 1994, 2002; Evans, 1995; Peebles et al., 1995; Kirkham, 1997, 1998; Alsharhan 
et al., 1998; Sanford and Wood, 2001; Alsharhan and Kendall, 2002; Wood and Sanford, 2002; Wood 
et al., 2002, 2005; Evans and Kirkham, 2002; Strohmenger et al., 2004, 2007, 2008a, 2008b, 2008c, 2010; 
Bontognali, 2008; Jameson et al., 2008; Kening, 2010; Bontognali et al., 2010). 

One much-visited locality is the Mussafah Channel, a man-made canal, dredged into the sabkha near 
the Mussafah Industrial Area to the southwest of the city of Abu Dhabi (N24o18’43.62”; E54o31’27.88”; 
Figures 1a, 1b, and 1c). At Mussafah Channel, vertical sections displaying c. 2 m of Holocene sabkha-
overprinted intertidal to shallow subtidal lagoonal sediments are well exposed (Kirkham, 1997). The 
channel was dredged in 1985 and 1986 and runs west-east perpendicular to the coastline. The studied 
eastern and southern walls of the channel are over 7 km inland from the landward reach of the 
restricted lagoon and c. 25 km from the open Arabian Gulf waters (Figures 1a and 1b). The Mussafah 
Channel crosses the so-called “Evans line” (Figure 1b), a transect where modern sabkha attributes 
were studied initially (Evans et al., 1969).

Starting at the base, the channel walls show cross-bedded and reworked Pleistocene carbonate-rich 
aeolian sands being unconformably overlain by a well developed Holocene microbial mat. The latter 
is overlain by rooted and microbial-laminated lagoonal, tidal-channel, tidal-delta, tidal-bar, and 
longshore beach-bar and beach spit deposits that are partly to completely overprinted by gypsum and 
anhydrite. As a good example of Walther’s law (Walter 1893-1894), the exposed sabkha sequence at 
Mussafah Channel represents vertically stacked facies successions that reflect the modern day lateral 
facies variability along the arid Abu Dhabi coastline (Strohmenger et al., 2004, 2007, 2008a, 2008b, 
2008c, 2010; Figure 1b). The stacking patterns of the carbonates and evaporites at Mussafah Channel 
record the post-glacial Flandrian Holocene sea-level rise (transgression: microbial mat and carbonate 
deposition) and subsequent sea-level fall (regression: evaporitic overprint).

The sabkha sequence at Mussafah Channel was studied along the eastern and adjacent southern 
margin of the channel over a lateral distance of c. 700 m. Five vertical sections were studied in greater 
detail (location 1: MC-1, location 2: MC-2, location 3: MC-3A and MC-3B, and location 4: MC-4; Figures 
1c and 2). In addition, lateral changes in facies (location 1a) and evaporitic overprint (location 3a), as 
well as the site where large bones of a whale have recently been found (location 4a; Figures 1c and 2) 
were closely examined.

Our detailed studies show that the “classical” sabkha sequence at Mussafah Channel represents a 
stranded Holocene sea-level highstand of marine deposits, altered by evaporites that most likely 
precipitated around paleo-groundwater tables during a subsequent 2–3 meter slight sea-level fall.

Methods

A total of 50 samples have been collected for thin section and 44 samples for whole rock and clay 
fraction X-ray diffraction (XRD) analyses. Fourteen samples were sampled for radiocarbon age-
dating.

Thin sections and outcrop sections were described using Dunham classification/sedimentary texture 
(Dunham, 1962) with supplements by Embry and Klovan (1971). For each sample the facies type 
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Figure 1: (a) Location map showing the Arabian Peninsula and the United Arab Emirates (inset) 
the city of Abu Dhabi and the location of the Mussafah Channel. 

(b) Satellite image showing the Mussafah Channel southwest of the city of Abu Dhabi (red box) 
and modern day carbonate depositional environments along the Abu Dhabi coastline. The 
modern day carbonate depositional environments are marked by arrows and compared with 
the vertically stacked sediments at the southern and eastern walls of the Mussafah Channel 
(Figure 1c). Digitalglobe Quickbird satellite imagery, vintage 2006. Image processing by maps 
geosystems. 

(c) Close-up of the Mussafah Channel (red box, Figure 1b) showing the locations of the four 
measured vertical sections MC-1 to MC-4 (location 1: MC-1, location 2: MC-2, location 3: MC-3, 
and location 4: MC-4). Facies transitions along the southern wall (location 1a), and diagenetic 
(evaporite) features along the eastern wall of the channel (location 3a), as well as the location 
of the whale excavation site (location 4a) are also shown. Digitalglobe Quickbird satellite 
imagery, vintage 2006. Image processing by maps geosystems.
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and its depositional environment was interpreted using microscopic (sedimentary textures and grain 
types) and macroscopic (sedimentary structures) criteria. Facies and depositional environment of the 
samples correspond to the modern day facies associations, forming under arid conditions along the 
Abu Dhabi coastline (Figure 1b).

The cumulative weight percentages of non-clay minerals are shown along each photograph of the 
vertical sections MC-1 to MC-4. The mineralogical data given for each of the 44 analyzed samples 
are relative, not absolute. The weight percentage of a mineral within a given sample may vary 
considerably depending on the location of the sample. The presence/absence of minerals and 
their relative proportions are better guides than the absolute concentration. The XRD results were 
compared to petrographic thin section analyses and adjusted where needed. The seven analyzed 
carbonate-rich sand samples (MC1-1, MC-1-2, MC-1-3, MC-2-1, MC-3A-1, MC-3B-1, and MC4-1) 
showed c. 30–50% siliciclastic grains (quartz, plagioclase, and feldspar) with c. 50–70% carbonate 
material (predominantly foraminifera and red algal clasts). It should be noted that grain frequency and 
XRD derived weight percentages may differ in poly-mineralic sediment samples due to differences 
in grain density between solid clastic grains and porous carbonate grains. Carbonate grains that are 
hydraulically equivalent to clastic grains are significantly larger (Wanless et al., 1981). The slightly 
larger grain size of the carbonate material (foraminifera and red algal clasts: very fine upper to fine 
upper, vfU-fU) compared to the clastic material (quartz, plagioclase, and feldspar: very fine lower 
to fine lower, vfL-fL) may have contributed to a slight overrepresentation of carbonate grain weight 
percentages of the carbonate-rich sand samples. The bimodal grain size distribution within the aeolian 
deposits can be explained by the relatively lower density of the carbonate material (foraminifera and 
red algal clasts), compared to the siliciclastic grains. Abundant microporosity within the foraminifera 
and the red algal clasts (micro-intraparticle porosity) is interpreted to allow bigger (but lighter) 
carbonate grains to be transported together with smaller (but heavier) siliciclastic grains. In any case, 
the high amount of carbonate material indicates that the Pleistocene aeolian dunes formed relatively 
close to the shoreline. With the “Shamal” winds blowing mainly from the north-northwest, carbonate 
material was constantly wind-transported landward and incorporated into the aeolian dunes; similar 
processes happen today along the Abu Dhabi coastline. XRD results also showed that the clay fraction 
of the samples was very low, below measurement in 21 samples and less than 10% in 23 samples.

Radiocarbon age-dating was carried out on bulk samples of four carbonate-rich sand samples (MC1-1, 
MC-1-2, MC-2-1, and MC-3A-1), four microbial mat samples (MC-1-4, MC-2-2, MC-3A-2, and MC-4-2) 
and two hardground samples (MC-3A-7 and MC-3B-2). In addition, radiocarbon age-dating has been 
carried out on selected shells from three cross-bedded, cerithid-rich, bioclastic grainstone, grainstone/
rudstone, and rudstone/grainstone samples (MC-3A-5, MC-3B-6, and MC-3B-11), and one fine-
grained/coarse-grained, bioclastic grainstone sample (MC-4-4). Standard radiometric analysis was 
used for the six carbonate samples (MC-3A-5, MC-3A-7, MC-3B-2, MC-3B-6, MC-3B-11, and MC-4-4). 
The 14C ages of the four carbonate-rich sand samples (MC1-1, MC-1-2, MC-2-1, and MC-3A-1) and 
the four microbial mat samples (MC-1-4, MC-2-2, MC-3A-2, and MC-4-2) were determined using 
the accelerator-mass-spectrometer (AMS) technique, where only the organic matter is used for age-
dating after removal of the carbonate fraction. The radiocarbon age-dating results are given as the 
delta 13C-corrected, un-calibrated conventional 14C age in years before present (14C yrs BP). Carbon-
isotopic values are reported in delta (δ) ‰ PDB (international standard: Pee Dee Belemnite). The 
radiocarbon age-dating was carried out by Beta Analytic Inc., Miami. The samples show a range 
from ca. 26,800 14C yrs BP (Pleistocene: carbonate-rich sand, sample MC-1-1) to ca. 5,000 14C yrs BP 
(Holocene: gypsum-rich, cross-bedded, bioclastic rudstone/grainstone, sample MC-3B-11).

Scanning electron microcopy (SEM) together with energy-dispersive X-ray spectrometer (EDX) 
analysis on dolomite samples were performed by Tomaso Bontognali (ETH Zurich, Switzerland). 
Images and EDX analyses were obtained with a backscatter detector, an accelerating voltage of 12 kV, 
and a working distance of 10 mm.

THE SABKHA SEQUENCE AT MUSSAFAH CHANNEL

The following is a detailed description of the six studied locations along the southern (locations 1, 1a, 
and 2) and eastern (locations 3, 3a, 4, and 4a) channel walls (Figures 1c and 2).
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Location 1: Vertical Section MC-1

Approximately 1.80 m of vertical section of Pleistocene carbonate-rich sand and unconformably 
overlying Holocene carbonates and sabkha evaporites are described at location 1 (vertical section MC-
1) along the southern channel wall (Figures 1c, 2, and 3a). In the following account, the encountered 
facies types, their key sedimentary structures and evaporitic overprint, as well as their interpreted 
depositional environments are listed from base to top:

Fine-grained, carbonate-rich sand (sample MC-1-1)
• sedimentary structure: un-bedded to wavy-bedded
• siliciclastic grain size: very fine lower to very fine upper (vfL-vfU: 60–100 µ)
• carbonate grain size: very fine lower to very fine upper (vfL-vfU: 60–120 µ)
• depositional environment: reworked aeolian dunes (aeolianite; Figures 3a and 3b)

Fine-grained, high-angle cross-bedded, carbonate-rich sand (sample MC-1-2)
• sedimentary structure: high-angle cross-bedded
• siliciclastic grain size: very fine upper to fine lower (vfU-fL: 100–150 µ)
• carbonate grain size: very fine upper to fine upper (vfU-fU: 100–220 µ)
• depositional environment: aeolian dunes (aeolianite; Figures 3a and 3c)
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Figure 2: Sketch showing the observed lateral and vertical variations in texture, facies, depositional 
environment, and diagenetic overprint (hardgrounds, gypsum, and anhydrite) along the studied 
Mussafah Channel exposures. Also shown are the six studied locations 1: vertical section MC-1, 
1a: tidal-delta and tidal-bar deposits, 2: vertical section MC-2, 3: vertical section MC-3, 3a: lateral 
replacement of gypsum by anhydrite, 4: vertical section MC-4, and 4a: site of whale bone exposure. 
Locations 1a, 1, and 2, studied at the southern wall of the channel cut (see Figure 1c) are schematically 
projected onto the eastern wall (locations 3, 3a, 4, and 4a).
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Fine-grained, carbonate-rich sand (sample MC-1-3)
• sedimentary structure: un-bedded to wavy-bedded
• siliciclastic grain size: very fine upper (vfU: 100)
• carbonate grain size: very fine upper to fine upper (vfU-fU: 100–220 µ)
• depositional environment: reworked aeolian dunes (aeolianite; Figures 3a and 3d)

Crinkly-laminated stromatolitic bindstone (sample MC-1-4)
• sedimentary texture: boundstone/bindstone
• sedimentary structure: dark organic, crinkly laminated
• depositional environment: intertidal, low-energy microbial mat (Figure 3a)

Cerithid-rich, bioclastic packstone (sample MC-1-5)
• sedimentary texture: mud-lean to mud-rich packstone
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, moderate- to low-energy tidal-channel grading into 

lowermost intertidal to shallow subtidal, low-energy, mud-rich lagoonal deposits (Figure 3a)

Fine-grained, bioclastic packstone (sample MC-1-6)
• sedimentary texture: mud-lean to mud-rich packstone
• sedimentary structure: low-angle cross-bedded to un-bedded
• depositional environment: shallow subtidal, moderate- to low-energy tidal-channel grading into 

lowermost intertidal to shallow subtidal, low-energy, mud-rich lagoonal deposits (Figure 3a)

Peloid-skeletal packstone with rootlets (sample MC-1-7)
• sedimentary texture: mud-rich packstone
• sedimentary structure: rootlets
• depositional environment: lowermost intertidal to shallow subtidal, low-energy, mud-rich, rooted 

lagoonal deposits (Figure 3a)

Anhydrite-rich, peloid-skeletal packstone (sample MC-1-8)
• sedimentary texture: mud-rich packstone
• sedimentary structure: altered by replacive/displacive growth of anhydrite
• depositional environment: lowermost intertidal to shallow subtidal, low-energy, mud-rich, 

lagoonal deposits; overprinted by sabkha anhydrite (Figures 3a and 3e)

The facies succession observed at Mussafah vertical section MC-1 corresponds to some of the lateral 
facies variations along the Abu Dhabi coastline, as illustrated by arrows on Figure 1b.

The peloid-skeletal packstone with rootlets (sample MC-1-7: 49%), but also the fine-grained, bioclastic 
packstone (sample MC-1-6: 24%), the cerithid-rich, bioclastic packstone (sample MC-1-5: 15%), and 
the microbial mat (sample MC-1-4: 12%), as well as the reworked Pleistocene carbonate-rich sand 
(sample MC-1-3: 19%) are rich in dolomite (Figure 3a).

Eight samples (MC-1-1 to MC-1-8) were selected for thin section and XRD analyses (Figure 3a). 
Radiocarbon age-dating carried out on two carbonate-rich sand samples (14C accelerator-mass-
spectrometer technique, bulk samples) and one microbial mat sample (14C accelerator-mass-
spectrometer technique, bulk sample) showed an age of 26,760 ± 180 14C yrs BP for the lower, reworked 
carbonate-rich sand sample (MC-1-1), 23,490 ± 130 14C yrs BP for the middle, cross-bedded carbonate-
rich sand sample (MC-1-2), and 6,180 ± 50 14C yrs BP for the microbial mat sample (MC-1-4). The 
microbial mat sample showed a distinctively more negative delta 13C value (-10.1‰ PDB; Figure 3a), 
due to its high organic content.

The lowermost fine-grained, carbonate-rich sand is slightly finer-grained (sample MC-1-1: 60–100 
µ/60–120 µ, vfL-vfU) than the overlying high-angle cross-bedded (sample MC-1-2: 100–150 µ/100–
220 µ, vfU-fL/vfU-fU) and the reworked fine-grained, carbonate-rich sands (sample MC-1-3: 100 
µ/100–220 µ, vfU/ vfU-fU; Figures 3a to 3d, and 4a). The high-angle cross-bedded, carbonate-rich 
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Figure 3: (a) Vertical section MC-1 (location 1; Figures 1c and 2) 
showing Holocene sediments (transgressive microbial mat: 
green arrow) overlying Pleistocene fine-grained, carbonate-
rich sand (younger reworked aeolian dune deposits: orange 
arrow with solid line, cross-bedded aeolian dune deposits: 
orange arrow with dashed line, and older reworked 
aeolian dune deposits: orange arrow with dotted line). 
Mineralogical composition from XRD (cumulative weight 
%). Radiocarbon and carbon-isotope results are for two 
carbonate-rich sands (MC-1-1 and MC-1-2) and microbial 
mat (MC-1-4). 

(b-e) Thin section photomicrographs. 
(b-e) Plane polarized light.
(b and c) Stained with Alizarin red-S. 
(b) Reworked, carbonate-rich sand (MC-1-1). The siliciclastic 

(60 to 100 µ) and the carbonate material (60 to 120 µ) are both very fine lower to very fine upper 
(vfL-vfU). 

(c) Cross-bedded, carbonate-rich sand (MC-1-2) showing abundant rotalid foraminifera (Ammonia 
sp.: yellow arrows) and red algal clasts (white arrows). The siliciclastic material (100 to 150 µ) 
is very fine upper to fine lower (vfU-fL), whereas the carbonate material (100 to 220 µ) is very 
fine upper to fine upper (vfU-fU). 

(d) Reworked, carbonate-rich sand (MC-1-3). The siliciclastic material (100 µ) is very fine 
upper (vfU), whereas the carbonate material (100 to 220 µ) is very fine upper to fine upper  
(vfU-fU). 

(e) Anhydrite-rich, peloid- skeletal packstone (MC-1-8) showing miliolid foramninifera (Triloculina 
sp.: red arrow).
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sand (sample MC-1-2; Figures 3c and 4a) is rich in rounded red algal clasts and rotalid foraminifera 
(Ammonia sp.). Miliolid foramninifera (Triloculina sp.) are found in the anhydrite-rich, peloid-skeletal 
packstone (sample MC-1-8; Figure 3e).

The transgressive microbial mat, overlying the reworked Pleistocene aeolian dune deposits, shows 
burrowing and/or erosion on top (Figures 4a and 4b).

The dark grey-greenish, peloid-skeletal packstone with rootlets (sample MC-1-7) shows oxidized 
vertical seaweed rootlets (Halodule uninervis) as well as large bladed gypsum crystals (Figure 4b).

Shell samples derived from the cerithid-rich, bioclastic packstone (sample MC-1-5: tidal-channel/
lagoonal deposits), directly overlying the transgressive microbial mat, are rich in gastropods: Cerithidea 

ba

Figure 4: Close-ups of the MC-1 section shown on Figure 3a. Length of pencil is 12 cm. 
(a) Displayed are, from base to top: un-bedded to wavy-bedded, Pleistocene fine-grained, 

carbonate-rich sand (older reworked aeolian dune deposits: orange arrow with dotted line), 
followed by high-angle cross-bedded, Pleistocene fine-grained, carbonate-rich sand (aeolian 
dune deposits: orange arrow with dashed line), un-bedded to wavy-bedded, Pleistocene fine-
grained, carbonate-rich sand (younger reworked aeolian dune deposits: orange arrow with 
solid line), and microbial mat (transgressive microbial mat: green arrow). Sharp to erosive 
contacts are present between the lower, reworked aeolian dune deposits and the high-angle 
cross-bedded dune deposits (red arrow), as well as between the high-angle cross-bedded dune 
deposits and the upper reworked aeolian dune deposits (black arrow).

(b) Microbial mat showing burrowing and erosion (green arrow) overlies reworked aeolian dune 
deposits (orange arrow), indicating the transgression of the Holocene sea between 6,600–6,200 
14C yrs BP. Above the microbial mat the sediments show a fining-upward trend towards fine-
grained, grey-greenish colored, rooted lagoonal carbonates. The latter are rich in oxidized root 
marks, probably corresponding to seaweed Halodule uninervis (blue arrows) and large bladed 
gypsum crystals (black arrows).
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cingulata (Gmelin; Figure 5a), Cerithium rueppeli (Phillipi; Figure 5b), Potamides conicus (Blainville; 
Figure 5c), and Priotrochus obscurus (Wood; Figure 5d), as well as pelecypods: Mysia cf. elegans (H. 
Adams; Figure 5e). The biota suggests that elevated seawater salinity probably characterizes the 
initial Holocene transgression. This can be inferred from the occurrence of the transgressive, intertidal 
microbial mat, but also from the occurrence of Potamides gastropods (tolerating high water salinity; 
Kenig, 2009); found within the cerithid-rich, bioclastic packstone (tidal-channel/lagoonal deposits) 
directly overlying the microbial mat.

The Holocene vertical section MC-1 represents a transgressive (deepening-upward) facies succession 
from intertidal (microbial mat) to lowermost intertidal to shallow subtidal (rooted lagoonal-
dominated) deposits, with a marine flooding surface on top of the Pleistocene carbonate-rich sands 
(reworked aeolian dune deposits). The regressive phase of the sea level is represented by the diagenetic 
(evaporitic) sabkha-overprint, resulting in the growths of gypsum and anhydrite (Figure 2).

e

ca

b
5 mm

5 mm5 mm

5 mm

d

10 mm

Figure 5: Gastropods (a to d) and pelecypods (e) collected at vertical 
section MC-1 (identified and photographed by Genjie Liu). Samples 
are from interval represented by sample MC-1-5. 
(a) Cerithidea cingulata (Gmelin). 
(b) Cerithium rueppeli (Phillipi). 
(c) Potamides conicus (Blainville). 
(d) Priotrochus obscurus (Wood). 
(e) Mysia cf. elegans (H. Adams).
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Location 1a: Tidal-Delta and Tidal-Bar Deposits

A couple of meters to the west, the low-energy, mud-rich, lagoonal-dominated carbonates of section MC-
1 grade into high-energy, cross-bedded, coarse-grained, bioclastic rudstones and grainstones (Figures 
1c, 2 and 6a). Relatively steep forset beds are clear to see (clinoforms or accretion wedges), showing 
iron staining along the inclined bedding planes (Figures 6a and 6b) and inclined to sigmoid bedding 
(foreset beds: tidal bundles) towards the top (Figure 6c) of the section. The described sedimentary 
textures and structures allow to interpret the cross-bedded, bioclastic rudstones and grainstones as 
corresponding to high-energy intertidal to shallow subtidal, tidal-delta and tidal-bar deposits, similar 

a

b c d

Figure 6: View of channel wall west to the measured vertical section MC-1 (location 1a; Figures 1c 
and 2). Length of hammer is 27.7 cm. Length of permanent marker is 13 cm. 
(a) Tidal-delta and tidal-bar deposits (cerithid-rich, bioclastic rudstone/grainstone) showing 

festoon cross-bedding and iron-staining along inclined bedding-planes. Horizontal reddish 
band (below hammer) corresponds to oxidized horizon interpreted as paleo-groundwater table 
(see text for further explanation). 

(b) Close-up of tidal-delta deposits, displaying iron-staining along inclined bedding-planes 
(clinoforms or accretion wedges). Also shown are bladed gypsum crystals (black arrows) 
within overlying fine-grained, rooted lagoonal carbonates. Horizontal reddish band (above 
black arrows) corresponds to oxidized horizon marking paleo-groundwater table. 

(c) Close-up of tidal-bar showing inclined to sigmoid cross-bedding (foreset beds: tidal bundles), 
typical for high-energy tidal-bar deposits, as well as iron-staining along bedding planes. 
Some dark coloration is due to black pebbles within overlying, microbial-laminated lagoonal 
deposits (yellow arrows). Horizontal reddish bands (above yellow arrows) correspond to 
oxidized horizons interpreted as paleo-groundwater tables. 

(d) Close-up of tidal-delta deposits cutting into underlying Holocene microbial mat (green arrow) 
and Pleistocene fine-grained, carbonate-rich sand (reworked aeolian dune deposits: orange 
arrow). The tidal-delta deposits grade upwards into fine-grained, rooted lagoonal carbonates 
(peloid-skeletal packstone with rootlets; blue arrow). Horizontal reddish bands (below blue 
arrow) correspond to oxidized horizons interpreted as paleo-groundwater tables.
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to those that dominate the lagoonal environment behind the barrier islands along the present-day 
Abu Dhabi coastline (as illustrated by arrows on Figure 1b). Tidal-bars characterize the top of the 
tidal-channel/tidal-bar system and are overlain by microbial-laminated lagoonal carbonates, rich in 
black pebbles (Figure 6c). At location 1a (Figure 2), the tidal-delta deposits cut through the microbial 
mat into the Pleistocene, carbonate-rich sands (reworked aeolian dune deposits), and are overlain by 
mud-rich, rooted lagoonal deposits (Figure 6d).

Location 2: Vertical Section MC-2

Approximately 1.30 m of vertical section of Pleistocene carbonate-rich sands and unconformably 
overlying Holocene carbonates and sabkha evaporites are described at location 2 (vertical section MC-
2) along the southern channel wall (Figures 1c, 2 and 7a). In the following account, the encountered 
facies types, their key sedimentary structures and evaporitic overprint, as well as their interpreted 
depositional environments are listed from base to top:

Fine-grained, carbonate-rich sand (sample MC-2-1)
• sedimentary structure: un-bedded to wavy-bedded
• siliciclastic grain size: very fine upper (vfU: 100 µ)
• carbonate grain size: very fine upper to fine upper (vfU-fU: 100–220 µ)
• depositional environment: reworked aeolian dunes (aeolianite; Figures 7a and 7b)

Crinkly-laminated stromatolitic bindstone (sample MC-2-2)
• sedimentary texture: boundstone/bindstone
• sedimentary structure: dark organic, crinkly laminated
• depositional environment: intertidal, low-energy microbial mat (Figures 7a, 7c and 8a)

Cerithid-rich, bioclastic grainstone/packstone (sample MC-2-3)
• sedimentary texture: grainstone to mud-lean packstone
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, high- to moderate-energy tidal-channel deposits 

(Figures 7a and 7d)

Peloid-skeletal packstone with rootlets (samples MC-2-4 and MC-2-5)
• sedimentary texture: mud-rich packstone
• sedimentary structure: rootlets
• depositional environment: lowermost intertidal to shallow subtidal, low-energy, mud-rich, rooted 

lagoonal deposits (Figures 7a, 7e and 8b)

Microbial-laminated peloid-skeletal packstone (sample MC-2-6)
• sedimentary texture: mud-rich packstone
• sedimentary structure: irregular, diffuse, dark organic, crinkly-laminated
• depositional environment: lowermost intertidal to shallow subtidal, low-energy, mud-rich 

microbial-laminated lagoonal deposits (Figures 7a, 8c, and 8d)

Anhydrite-rich, peloid-skeletal packstone (sample MC-2-7)
• sedimentary texture: mud-rich packstone
• sedimentary structure: destroyed by replacive/displacive growth of anhydrite and halite
• depositional environment: lowermost intertidal to shallow subtidal, low-energy, mud-rich 

lagoonal deposits; overprinted by sabkha anhydrite and halite (Figures 7a, 7d and 8c)

The facies succession observed at Mussafah vertical section MC-2 corresponds to some of the lateral 
facies variations along the Abu Dhabi coastline, as illustrated by arrows on Figure 1b.

The microbial-laminated peloid-skeletal packstone (sample MC-2-6: 42%), the peloid-skeletal 
packstone with rootlets (MC-2-5 and MC-2-4: 41% – 33%), and the microbial mat (MC-2-2: 12%) are 
very rich in dolomite (Figure 7a).
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Figure 7: (a) Vertical section MC-
2 (location 2; Figures 1c and 
2) showing transgressive 
Holocene microbial mat (green 
arrow) overlying Pleistocene 
fine-grained, carbonate-rich 
sand (reworked aeolian dune 
deposits: orange arrow). 
Mineralogical composition 
from XRD (cumulative weight 
%). Radiocarbon and carbon-
isotope results are for carbonate-rich sand (MC-2-1) and microbial mat (MC-2-2). Horizontal reddish 
bands correspond to oxidized horizons interpreted as paleo-groundwater tables. 

(b-f) Thin section photomicrographs.
(b-e) Plane polarized light.
(f)  Crossed polarized light. 
(c)  Stained with Alizarin red-S. 
(b) Reworked, carbonate-rich sand (MC-2-1). The siliciclastic material (100 µ) is very fine upper (vfU), 

whereas the carbonate material (100 to 220 µ) is very fine upper to fine upper (vfU-fU). Carbonate grains 
are commonly red algal grains (white arrows). (c) Microbial mat (MC-2-2). (d) Cerithid-rich, bioclastic 
grainstone/packstone (MC-2-3). (e) Peloid-skeletal packstone (MC-2-4). (f) Anhydrite-rich peloid-skeletal 
packstone (MC-2-7) showing replacive, lath shaped anhydrite crystals exhibiting felted texture, as well as 
lenticular gypsum crystals (yellow arrows) and halite crystals (white arrows).
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Seven samples (MC-2-1 to MC-2-7) were selected for thin section and XRD analyses (Figure 7a). 
Radiocarbon age-dating carried out on one carbonate-rich sand sample (14C accelerator-mass-
spectrometer technique, bulk sample) and one microbial mat sample (14C accelerator-mass-
spectrometer technique, bulk sample) showed an age of 23,530 ± 140 14C yrs BP for the reworked 
carbonate-rich sand sample (MC-2-1) and 6,600 ± 40 14C yrs BP for the microbial mat sample (MC-2-2). 
The microbial mat sample showed a distinctively more negative delta 13C value (-10.6‰ PDB; Figure 
7a), due to its high organic content.

Like the high-angle cross-bedded, carbonate-rich sand present at vertical section MC-1 (sample MC-
1-2; Figures 4a and 4c) the upper reworked carbonate-rich sand of vertical section MC-2 (sample MC-
2-1) is rich in rounded red algal fragments (red algal intraclasts; Figure 7b).

The transgressive microbial mat, overlying the reworked Pleistocene aeolian dune deposits shows 
burrowing and/or erosion on top (Figure 8a).

The dark grey-greenish peloid-skeletal packstone with rootlets shows vertical oxidized seaweed 
rootlets (Halodule uninervis) and possible molds of mangrove roots (Avicennia marina), as well as large 
bladed gypsum crystals (Figure 8b). The dark grey-greenish, microbial-laminated peloid-skeletal 
packstone displays diffuse, irregular, dark organic, crinkly laminations (Figures 8c and 8d) as well as 
secondary reddish horizontal bands, the latter corresponding to paleo-groundwater tables.

The microbial-laminated peloid-skeletal packstone was described as a regressive microbial mat by 
Kening et al. (1990) and Kening (1991, 2010), interpreted to represent a falling sea level. However, 
the microbial-laminated peloid-skeletal packstone grades laterally (location 1: vertical section MC-
1; Figures 2 and 3a) and vertically (location 1a and location 2: vertical section MC-2; Figures 2, 6 
and 7a) into a peloid-skeletal packstone with rootlets. This favors the interpretation of lateral facies 
variations or short term sea-level/seasonal fluctuations. In addition, bioclastic rudstone/grainstone 
(high-energy longshore beach bar and beach spit deposits, see vertical sections MC-3 and MC-4) 
are interpreted to have originally been deposited on top of the low-energy lagoonal sediments at 
vertical sections MC-1 and MC-2 (Figure 2). The observed vertical change from low-energy (lagoonal 
deposits) to high-energy (longshore beach bar and beach spit deposits) conditions requires the barrier 
islands offshore the Abu Dhabi coastline to be flooded (Figure 1a); thus indicating a still rising sea 
level above the rooted lagoonal and microbial-laminated lagoonal deposits.

Vertical section MC-2 is interpreted as having formed during the Holocene transgression, showing a 
deepening-upward facies succession from intertidal (microbial mat) to lowermost intertidal to shallow 
subtidal (rooted and microbial-laminated lagoonal-dominated) deposits, as previously described 
from vertical section MC-1 (location 1; Figures 1c and 2). Like at vertical section MC-1, the regressive 
phase of the sea level is represented by the diagenetic (evaporitic) sabkha-overprint, resulting in the 
growths of gypsum and anhydrite.

Location 3: Vertical Section MC-3

Approximately 2.20 m of vertical section of Pleistocene carbonate-rich sands and overlying Holocene 
carbonates are exposed at location 3 (vertical section MC-3) along the eastern channel wall (Figures 1c, 
2, and 9). Vertical section MC-3 displays a compound tidal-channel cutting into Holocene carbonates 
and Pleistocene fine-grained, carbonate-rich sands (Figure 9). Stratigraphic truncation and shingled 
hardgrounds along the channel-fill, similar to those described by Shinn (1973) from northeast Qatar, 
can be observed (Figure 9). Radiocarbon age-dating results confirm that the channel-fill deposits are 
slightly younger than the incised carbonate sediments (Figure 9).

In contrast to vertical sections MC-1 and MC-2, which are dominated by low-energy, mud-rich, 
rooted and microbial-laminated lagoonal carbonates (Figures 3, 4, 7, and 8), vertical section MC-3 
predominantly consists of low- to high-energy tidal-channel deposits, overlain by gypsum rich, cross-
bedded bioclastic rudstone/grainstone, interpreted as longshore beach bar and beach spit deposits 
(Figures 2 and 9). Similar longshore beach bar and beach spit deposits can be observed along the 
southern coast of the Bar Al-Hikman peninsula in Oman (Homewood et al., 2007) and also resemble 
those described by Shinn (1973, 2008) from Qatar as “chenier” beaches.
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It could be argued that the longshore beach bar and beach spit deposits already represent a falling 
sea level. However, as mentioned above, to form high-energy longshore beach bar and beach spit 
deposits above low- to high-energy lagoonal and tidal-channel deposits (see vertical sections MC-
3A, MC-3B, and MC-4) requires the barrier islands offshore the Abu Dhabi coastline to be flooded. 
This favors the interpretations of the longshore beach bar and beach spit deposits representing the 
turn around point from transgression (establishing of high-energy condition) to still stand/regression 
(longshore beach bar and beach spit progradation and evaporite precipitation).

Vertical section MC-3A gives a detailed description of the older, pre-channel-cut deposits (Figures 10 
and 11) and vertical section MC-3B describes in detail the younger channel-fill deposits (Figures 12 
and 13).

2.3 cm

a b

dc

Figure 8: Close-ups of vertical section MC-2 shown on Figure 7a. Diameter of coin is 2.3 cm (scale 
on Figure 2b). 
(a) Transgressive microbial mat (green arrow) overlying Pleistocene fine-grained, carbonate-rich 

sand (reworked dune deposits: orange arrow). Microbial mat displays burrowing and/or 
erosion.

(b) Grey-greenish, fine-grained, peloid-skeletal packstone (rooted lagoonal deposits) displaying 
oxidized root marks, probably corresponding to seaweed Halodule uninervis (blue arrows). 
Also shown is oxidized possible mold of mangrove root (Avicennia marina, yellow arrow) and 
large bladed gypsum crystal (black arrow). 

(c) Microbial-laminated, fine-grained, peloid-skeletal packstone (microbial-laminated lagoonal 
deposits) overlain by anhydrite-rich (purple arrow) peloid-skeletal packstone (lagoonal 
deposits), also containing relatively high amounts of halite (18%; see Figure 8a). Horizontal 
reddish bands (red arrows) correspond to oxidized horizons interpreted as paleo-groundwater 
tables. 

(d) Close-up of microbial-laminated, fine-grained, peloid-skeletal packstone (microbial-laminated 
lagoonal deposits) displaying dark organic, diffuse to crinkly laminations. Horizontal reddish 
bands correspond to oxidized horizons interpreted as paleo-groundwater tables.
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Location 3: Vertical Section MC-3A
Approximately 1.90 m of vertical section of Pleistocene carbonate-rich sands and unconformably 
overlying Holocene carbonates and sabkha evaporites are described at vertical section MC-3A; the 
latter representing slightly older, pre-channel-cut deposits (Figures 2 and 10a). In the following 
account, the encountered facies types, their key sedimentary structures and evaporitic overprint, as 
well as their interpreted depositional environments are listed from base to top:

Fine-grained, carbonate-rich sand (sample MC-3A-1)
• sedimentary structure: un-bedded to wavy-bedded
• siliciclastic grain size: very fine upper (vfU: 100 µ)
• carbonate grain size: very fine upper to fine upper (vfU-fU: 100–220 µ)
• depositional environment: reworked aeolian dunes (aeolianite; Figure 10a)

Crinkly-laminated stromatolitic bindstone (sample MC-3A-2)
• sedimentary texture: boundstone/bindstone
• sedimentary structure: dark organic, crinkly laminated
• depositional environment: intertidal, low-energy microbial mat (Figure 10a)

Hardground (sample MC-3A-3)
• cemented cerithid-rich, bioclastic grainstone
• patchy, fibrous aragonite cement
• cemented channel-lag (Figures 10a and 10b)

Cerithid-rich, bioclastic grainstone (sample MC-3A-3)
• sedimentary texture: grainstone
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, high-energy tidal-channel deposits (Figure 10a)

Fine-grained, bioclastic packstone (sample MC-3A-4A)
• sedimentary texture: mud-lean to mud-rich packstone
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, moderate- to low-energy tidal-channel grading into 

lowermost intertidal to shallow subtidal, low-energy, mud-rich lagoonal deposits (Figure 10a).

4,950 ± 60 
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5,190 ± 50 
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6,400 ± 70
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2
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Figure 9: Vertical section MC-3 (location 3; Figures 1c and 2) showing compound Holocene channel 
cutting into Holocene carbonates and Pleistocene fine-grained, carbonate-rich sand (reworked 
aeolian dune deposits). Stratigraphic truncation (yellow arrows) and shingled hardgrounds (black 
arrows) are present on the left (north) side of the channel. Details of the measured sections MC-3A 
and MC-3B marked by red boxes are shown on Figures 10 and 12. Radiocarbon ages in 14C years 
before present (14C yrs BP). Thickness of the studied in-place deposits is 2.20 m at white double 
arrow on the left. The top of the section is erosive and overlain by construction-fill rubble.
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Fine-grained/coarse-grained, bioclastic packstone/grainstone (sample MC-3A-4B)
• sedimentary texture: mud-lean packstone (fine-grained layers) to grainstone (coarse-grained 

layers)
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, moderate- to high-energy tidal-channel deposits 

(Figure 10a)

Cross-bedded, cerithid-rich, bioclastic grainstone/rudstone (sample MC-3A-5)
• sedimentary texture: grainstone and rudstone
• sedimentary structure: high-angle cross-bedded
• depositional environment: shallow subtidal, high-energy tidal-channel deposits (Figures 10a and 

10c)

Fine-grained, bioclastic packstone (sample MC-3A-6)
• sedimentary texture: mud-lean to mud-rich packstone
• sedimentary structure: low-angle cross-bedded to un-bedded
• depositional environment: shallow subtidal, moderate- to low-energy tidal-channel grading into 

lowermost intertidal to shallow subtidal, low-energy, mud-rich lagoonal deposits (Figure 10a)

Hardground (sample MC-3A-7)
• cemented, bioclastic grainstone
• patchy, fibrous aragonite cement
• cemented beach rock (Figures 10a and 10d)

Gypsum-rich, cross-bedded, bioclastic rudstone/grainstone (samples MC-3A-8 and 
MC-3A-9)
• sedimentary texture: rudstone and grainstone.
• sedimentary structure: low-angle cross-bedded to parallel-bedded
• depositional environment: shallow subtidal to intertidal, high-energy longshore beach bar and 

beach spit deposits; overprinted by sabkha gypsum (Figures 10a and 10e).

As with previous sections, the facies succession observed at Mussafah vertical section MC-3A 
corresponds to some of the lateral facies variations along the Abu Dhabi coastline illustrated by 
arrows on Figure 1b.

The fine-grained, bioclastic packstone (sample MC-3A-4A: 20%), and the cerithid-rich, bioclastic 
grainstone (MC-3A-3: 13%), as well as the microbial mat (sample MC-3A-2: 17%) are rich in dolomite 
(Figure 10a).

Nine samples (MC-3A-1 to MC-3A-9) were selected for thin section and XRD analyses (Figure 
10a). Radiocarbon age-dating carried out on one carbonate-rich sand sample (14C accelerator-mass-
spectrometer technique, bulk sample), one microbial mat sample (14C accelerator-mass-spectrometer 
technique, bulk sample), one unconsolidated carbonate sample (selected shell sample) and one 
hardground sample (14C radiometric dating technique, bulk sample) showed an age of 24,010 ± 150 
14C yrs BP for the reworked carbonate-rich sand sample (MC-3A-1), 6,140 ± 50 14C yrs BP for the 
microbial mat sample (MC-3A-2), 6,160 ± 50 14C yrs BP for the cross-bedded, cerithid-rich, bioclastic 
grainstone/rudstone sample (MC-3A-5), and 5,660 ± 70 14C yrs BP for the upper hardground sample 
(MC-3A-7). As with previous samples, the microbial mat sample showed a distinctively more negative 
delta 13C value (-9.9‰ PDB; Figure 10a), due to its high organic content.

Shell samples derived from the cross-bedded, cerithid-rich, bioclastic grainstone/rudstone (tidal-
channel deposits, sample MC-3A-5) are rich in gastropods: Cerithium rueppeli (Phillipi; Figure 11a), 
Potamides conicus (Blainville; Figure 11b), Mitrella bland (Sowerby; Figure 11c), Lunella sp. (Figure 
11d), and Priotrochus obscurus (Wood; Figure 11e). Like at vertical MC-1, the biota indicates elevated 
seawater salinity during the initial Holocene transgression.
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Figure 10: (a) Vertical section MC-3A showing transgressive 
Holocene microbial mat (green arrow) overlying Pleistocene 
fine-grained, carbonate-rich sand (reworked aeolian dune 
deposits: orange arrow). Mineralogical composition from 
XRD (cumulative weight %). Radiocarbon and carbon-
isotope results for carbonate-rich sand (MC-3A-1), microbial 
mat (MC-3A-2), cross-bedded, cerithid-rich grainstone (MC-
3A-5), and hardground (MC-3A-7). 

(b-e) Thin section photomicrographs. 
(b-d) Plane polarized light. 
(e) Partly crossed polarized light. 
(c and e) Stained with Alizarin red-S.
(b) Patchy fibrous aragonite cemented cerithid-rich, bioclastic grainstone (older hardground, MC-

3A-3). 
(c) Cerithid-rich, bioclastic grainstone/rudstone (MC-3A-5) showing longitudinal and median 

sections of cerithid gastropods. 
(d) Younger hardground (MC-3A-7) exhibiting patchy, isopachous, fibrous aragonite cement fringes 

around carbonate grains. Aragonite rim cement is absent around quartz grains. 
(e) Gypsum-rich, cross-bedded, bioclastic rudstone/grainstone (MC-3A-9) showing lenticular 

gypsum crystals and cerithid gastropod.
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Figure 11: Gastropods collected at vertical section MC-3A. Samples are from interval represented 
by sample MC-3A-5 (identified and photographed by Genjie Liu). 
(a) Cerithium rueppeli (Phillipi). (b) Potamides conicus (Blainville). (c) Mitrella bland (Sowerby). 
(d) Lunella sp. (e) Priotrochus obscurus (Wood).

The Holocene vertical section MC-3A represents a transgressive (deepening-upward) facies succession 
from intertidal (microbial mat) to shallow subtidal to intertidal (tidal-channel and minor lagoonal) 
deposits, with a marine flooding surface on top of the Pleistocene carbonate-rich sands (reworked 
aeolian dune deposits). The slow rising/still stand and regressive phase of the sea level is represented 
by the prograding longshore beach bar and beach spit deposits and the diagenetic (evaporitic) sabkha-
overprint, resulting in the growths of gypsum crystals (Figure 2).

Location 3: Vertical Section MC-3B
Approximately 2.20 m of vertical section of incised Pleistocene carbonate-rich sands and unconformably 
overlying Holocene carbonates and sabkha evaporites are described at vertical section MC-3B; the 
latter representing slightly younger channel-fill deposits (Figures 2 and 12a). In the following account, 
the encountered facies types, their key sedimentary structures and evaporitic overprint, as well as 
their interpreted depositional environments are listed from base to top:

Fine-grained, carbonate-rich sand (sample MC-3B-1)
• sedimentary structure: un-bedded to wavy-bedded
• siliciclastic grain size: very fine upper (vfU: 100 µ)
• carbonate grain size: very fine upper to fine upper (vfU-fU: 100–220 µ)
• depositional environment: reworked aeolian dunes (aeolianite; Figure 12a)

Hardground (Sample MC-3B-2)
• cemented, bioclastic grainstone
• fibrous to botryoidal aragonite cement
• cemented channel-lag (Figures 12a and 12b)
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Reworked crinkly-laminated stromatolitic bindstone (Sample MC-3B-3)
• sedimentary texture: boundstone/bindstone
• sedimentary structure: dark organic, crinkly laminated
• depositional environment: intertidal, low-energy microbial mat (Figure 12a)

Cerithid-rich, bioclastic grainstone (sample MC-3B-4)
• sedimentary texture: grainstone
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, high-energy tidal-channel deposits (Figures 

12a and 12c)

Fine-grained/coarse-grained, bioclastic packstone/grainstone (sample MC-3B-5)
• sedimentary texture: mud-lean packstone (fine-grained layers) to grainstone (coarse grained 

layers)
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, moderate- to high-energy tidal-channel deposits 

(Figure 12a)

Cross-bedded, cerithid-rich, bioclastic grainstone (sample MC-3B-6)
• sedimentary texture: grainstone
• sedimentary structure: high- to low-angle cross-bedded
• depositional environment: shallow subtidal, high-energy tidal-channel deposits (Figures 

12a and 12d)

Cross-bedded, fine-grained, bioclastic grainstone/packstone (samples MC-3B-7 and 
MC-3B-8)
• sedimentary texture: grainstone to mud-lean packstone
• sedimentary structure: high- to low-angle cross-bedded
• depositional environment: shallow subtidal, high- to moderate-energy tidal-channel deposits 

(Figure 12a)

Cross-bedded, bioclastic grainstone (sample MC-3B-9)
• sedimentary texture: grainstone
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, high-energy tidal-channel deposits (Figures 12a 

and 12e)

Gypsum-rich, cross-bedded, bioclastic rudstone/grainstone (samples MC-3B-10, 
MC-3B-11, and MC-3B-12)
• sedimentary texture: rudstone and grainstone.
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal to intertidal, high-energy longshore beach bar and 

beach spit deposits; overprinted by sabkha gypsum (Figures 12a and 12f)

For comparison of the facies succession observed at Mussafah vertical section MC-3B with the lateral 
facies distribution along the Abu Dhabi coastline see Figure 1b.

The microbial mat (sample MC-3B-3: 10%) and the reworked Pleistocene carbonate-rich sand (sample 
MC-3B-1: 13%) are rich in dolomite (Figure 12a).

Twelve samples (MC-3B-1 to MC-3A-12) were selected for thin section and XRD analyses (Figure 12a). 
Radiocarbon age-dating carried out on one hardground sample (14C radiometric dating technique, 
bulk sample) and two unconsolidated carbonate samples (14C radiometric dating technique, selected 
shell samples) show an age of 6,400 ± 70 14C yrs BP for the hardground sample (MC-3B-2), 5,190 ± 
50 14C yrs BP for the cross-bedded, cerithid-rich, bioclastic grainstone sample (MC-3B-6), and 4,950 ± 
60 14C yrs BP for the gypsum-rich, cross-bedded, bioclastic rudstone/grainstone sample (MC-3B-11; 
Figure 12a).
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Figure 12: (a) Vertical section 
MC-3B showing compound 
Holocene tidal-channel cutting 
into Pleistocene fine-grained, 
carbonate-rich sand (reworked 
aeolian dune deposits: orange 
arrow). Mineralogical composition 
from XRD (cumulative weight 
%). Radiocarbon age dating and 
carbon-isotope results are for 
hardground (MC-3B-2), cross-
bedded, cerithid-rich, bioclastic grainstone (MC-3B-6), and gypsum-rich, cross-bedded, cerithid-rich, bioclastic 
rudstone/grainstone (MC-3B-11). Horizontal reddish bands correspond to oxidized horizons interpreted as 
paleo-groundwater tables. (b-f) Thin section photomicrographs. (b-e) Plane polarized light. (f) Partly crossed 
polarized light. (b) Stained with Alizarin red-S. (b) Hardground (MC-3B-2) exhibiting patchy, fibrous to 
botryoidal aragonite cement and miliolid foraminifera (Peneroplis sp.: white arrow). (c) Cerithid-rich, bioclastic 
grainstone (MC-3B-4) showing shell fragments and rotalid foraminifera (Ammonia sp.: yellow arrow). (d) 
Cross-bedded, cerithid-rich, bioclastic grainstone (MC-3B-6) showing abundant quartz grains and rotalid 
foraminifera (Ammonia sp., yellow arrow). (e) Cross-bedded, bioclastic grainstone (MC-3B-9) showing shell 
fragments and abundant rotalid foraminifera (Ammonia sp.: yellow arrows). (f) Gypsum-rich, cross-bedded, 
bioclastic rudstone/grainstone (MC-3B-10) showing lenticular gypsum crystals, shell fragments and abundant 
miliolid foraminifera (Peneroplis sp., Quinqueloculina sp., and Spirolina sp.: white, red, and green arrows, 
respectively).
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The hardground (sample MC-3B-2) exhibits patchy, fibrous to botryoidal aragonite cement and 
miliolid foraminifera (Peneroplis sp.; Figure 112b). Rotalid foraminifera (Ammonia sp) are abundant 
in the cerithid-rich, bioclastic grainstone (sample MC-3B-4, Figure 12c), the cross-bedded, cerithid-
rich, bioclastic grainstone (sample MC-3B-6; Figure 12d), and the cross-bedded, bioclastic grainstone 
(sample Mc-3B-9; Figure 12e). The gypsum-rich, cross-bedded, bioclastic rudstone/grainstone (sample 
MC-3B-10) shows bladed gypsum crystals, shell fragments, and abundant miliolid foraminifera 
(Peneroplis sp., Quinqueloculina sp., and Spirolina sp.; Figure 12f).

Shell samples derived from the cross-bedded, cerithid-rich, bioclastic grainstone (tidal-channel 
deposits, sample MC-3B-6) are rich in gastropods: Cerithidea cingulata (Gmelin; Figure 13a). Mitrella 
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Figure 13: Gastropods (a to c and e to i) and pelecypods (d, j, and k) collected at vertical section 
MC-3B (identified and photographed by Genjie Liu). Samples are from intervals represented by 
sample MC-3B-6 (a to d) and samples MC-3B-10 and MC-3B-11 (e to k). 
(a) Cerithidea cingulata (Gmelin). (b) Mitrella bland (Sowerby). (c) Priotrochus obscurus (Wood). 
(d) Mysia cf. elegans (H. Adams). (e) Cronia konkanensis (Melvill). (f) Cerithium rueppeli (Phillipi). 
(g) Cerithidea cingulata (Gmelin). (h) Clypeomorus bifasciatus persicus (Houbrick). (i) Potamides 
conicus (Blainville). (j) Pinctada radiata (Leach). (k) Barbaria setigera (Reeve).
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bland (Sowerby; Figure 13b), Priotrochus obscurus (Wood, Figure 13c), as well as in pelecypods: Mysia cf. 
elegans (H. Adams; Figure 13d). Shell samples derived from the gypsum-rich, cross-bedded, bioclastic 
rudstone/grainstone (longshore beach bar and beach spit deposits, samples MC-3B-10 and MC-3B-
11) are rich in gastropods: Cronia konkanensis (Melvill; Figure 13e), Cerithium rueppeli (Phillipi; Figure 
13f), Cerithidea cingulata (Gmelin; Figure 13g), Clypeomorus bifasciatus persicus (Houbrick; Figure 13h), 
and Potamides conicus (Blainville; Figure 13i), as well as in pelecypods: Pinctada radiata (Leach; Figure 
13j) and Barbaria setigera (Reeve; Figure 13k). The shell assemblages correspond to the ones found 
along the present-day Abu Dhabi coastline (beaches).

The Holocene vertical section MC-3B corresponds to channel-fills of multiple tidal-channels that 
incised older Holocene tidal-channels, a microbial mat (vertical section 3A), and Pleistocene reworked 
carbonate-rich sand (Figures 2 and 9). Radiocarbon age dating show that the youngest channel-fill 
carbonates at vertical section MC-3B are ca. 1,000 years younger than the tidal-channel deposits at 
vertical section MC-3A (sample MC-3B-6: ca. 5,200 14C yrs BP versus sample MC-3A-5: ca. 6,200 14C yrs 
BP), and ca. 500 years younger than the upper hardground of vertical section MC-3A (sample MC-
3B-6: ca. 5,200 14C yrs BP versus sample MC-3A-7: ca. 5,700 14C yrs BP; Figures 9, 10, and 12). While 
cutting into the Holocene carbonates of vertical section MC-3A, the tidal-channels have excavated 
and eroded the previously formed upper hardground (sample MC-3A-7: beach rock, radiocarbon 
age: ca. 5,700 14C yrs BP; Figures 9 and 10a), now lining the channel-fill wall as shingled slabs and, 
subsequently, the lower hardground (sample MC-3A-3 corresponding to sample MC-3B-2: channel-
lag, radiocarbon age: ca. 6,400 14C yrs BP; Figures 10a and 12a), now lining the base of the cannel-cut. 
The radiocarbon age of the eroded/reworked hardground (sample MC-3B-2: 6,400 14C yrs BP) which 
is interpreted to correspond to the in-place hardground of vertical section MC-3A (sample MC-3A-
3; Figure 10a) is slightly “too old” compared to the radiocarbon age of the microbial mat (sample 
MC-3A-2: 6,140 14C yrs BP; Figure 10a). Like the tidal-channel of vertical section MC-3B, the tidal-
channel of vertical section MC-3A (Figures 9 and 10a) might have cut into Pleistocene carbonate-rich 
sands elsewhere. This could have let to the incorporation of “older” carbonate material, resulting in 
the slightly “too old” radiocarbon age of the reworked hardground (sample MC-3B-2: bulk sample 
analysis). Alternatively, the radiocarbon age of the microbial mat sample of vertical section MC-3A 
(sample MC-3A-2) might be anomalously young compared with the analyzed radiocarbon ages of the 
microbial mat samples from vertical sections MC-2 and MC-4 (samples MC-2-4 and MC-4-2: both ca. 
6,600 14C yrs BP). The latter interpretation is supported by the radiocarbon age of the cross-bedded, 
cerithid-rich, bioclastic grainstone sample (sample MC-3A-5: 6,160 14C yrs BP) which shows a similar 
radiocarbon age as the underlying microbial mat sample (MC-3A-2: 6,140 14C yrs BP; Figures 9 and 
10a).

Location 3a: Lateral Replacement of Gypsum by Anhydrite

Along the eastern channel wall between studied sections MC-3 and MC-4, the longshore beach bar 
and beach spit deposits become more gypsum- and anhydrite-rich, until finally being completely 
overprinted by gypsum and anhydrite (Figures 2, 14a, 14b, and 14c).

The gypsum-rich, cross-bedded, bioclastic rudstone/grainstone (longshore beach bar and beach 
spit deposits) is rich in gastropods (cerithids) and pelecypods (Pinctada sp.; Figure 15a). In addition, 
encrusting coralline red algae (Goniolithon; Figure 15b) and, rarely, coral debris can be found.

Large gypsum crystals, showing a poikilotopic fabric are growing within cross-bedded, fine-grained, 
bioclastic grainstone/packstone (tidal-channel deposits); mimicking the cross-bedding (Figure 15c). 
Relatively small bladed gypsum crystals are nearly completely overprinting/replacing the longshore 
beach bar and beach spit deposits (Figure 15b). Further north, towards studied vertical section MC-4, 
anhydrite is growing replacive/displacive within the gypsum-overprinted, cross-bedded, bioclastic 
rudstone/grainstone (longshore beach bar and beach spit deposits; Figure 2). The anhydrite clearly 
post-dates the gypsum growths and displays a nodular to contorted (enterolithic/ptygmatic) fabric 
(Figures 14a, 14b, and 15d), in places also showing teepee-like structures (Figure 14c).
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Location 4: Vertical Section MC-4

Approximately 1.30 m of vertical section of Pleistocene carbonate-rich sands and unconformably 
overlying Holocene carbonates and sabkha evaporites are described at location 4 (vertical section 
MC-4) along the eastern channel wall (Figures 1c, 2, and 16a). In the following account, the encountered 
facies types, their key sedimentary structures and evaporitic overprint, as well as their interpreted 
depositional environments are listed from base to top:

Fine-grained, carbonate-rich sand (sample MC-4-1)
• sedimentary structure: un-bedded to wavy-bedded
• siliciclastic grain size: very fine upper (vfU: 100 µ)
• carbonate grain size: very fine upper to fine upper (vfU-fU: 100–220 µ)
• depositional environment: reworked aeolian dunes (aeolianite; Figures 16a and 16b)

b c

a

5 cm 5 cm

Figure 14: (a) East wall of channel between measured vertical sections MC-3 and MC-4 (location 3a; 
Figures 1c and 2) showing lateral increase in discontinuous nodular to contorted (enterolithic/
ptygmatic) anhydrite (purple arrows) replacing gypsum-overprinted, cross-bedded, bioclastic 
rudstone/grainstone (longshore beach bar and beach spit deposits: cyan arrow). Horizontal 
reddish bands (around hammer) correspond to oxidized horizons interpreted as paleo-
groundwater tables. Length of hammer is 27.7 cm. 

(b) Close-up of replacive/displacive, discontinuous nodular to contorted (enterolithic/ptygmatic) 
anhydrite (measured section MC-4; Figure 16). See Figures 1c and 2 for location. 

(c) Discontinuous nodular to contorted anhydrite showing teepee structure (close to whale 
excavation site; Figure 17). See Figures 1c and 2 for location.
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Figure 15: Sedimentary structures along the east wall of the channel, between vertical sections 
MC-3 and MC-4 (location 3a; Figures 1c and 2). 
(a) Gypsum-rich, cross-bedded, bioclastic rudstone/grainstone (longshore beach bar and beach 

spit deposits), rich in cerithid gastropods and bivalves (Pinctata sp.). 
(b) Encrusting coralline red algae (Goniolithon) within gypsum-rich (small, bladed gypsum 

crystals), cross-bedded, bioclastic rudstone/grainstone. 
(c) Gypsum crystals (gypsum rosettes) poikilotopically enclosing grains of cross-bedded, fine-

grained, bioclastic grainstone. Cross-bedding and iron staining is still visible within the 
gypsum crystals. 

(d) Replacive/displacive growth of nodular to contorted (enterolithic/ptygmatic) anhydrite within 
gypsum-overprinted, cross-bedded, bioclastic rudstone/grainstone.
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Crinkly-laminated stromatolitic bindstone (sample MC-4-2)
• sedimentary texture: boundstone/bindstone
• sedimentary structure: dark organic, crinkly laminated
• depositional environment: intertidal, low-energy microbial mat (Figure 16a)

Hardground (sample MC-4-3)
• cemented, cerithid-rich, bioclastic grainstone
• isopachous, fibrous aragonite cement
• cemented microbial mat and cemented channel-lag (Figure 16c)

Cerithid-rich, bioclastic grainstone (sample MC-4-3)
• sedimentary texture: grainstone
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, high-energy tidal-channel deposits (Figure 16a)
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Figure 16: (a) Vertical section MC-4 (location 4; Figures 1c and 
2) showing Holocene sediments (transgressive microbial mat; 
green arrow) overlying Pleistocene fine-grained, carbonate-
rich sand (reworked aeolian dune deposits: orange arrow). 
Mineralogical composition from XRD (cumulative weight 
%). Radiocarbon age dating and carbon-isotope results are for 
microbial mat (MC-4-2) and fine-grained to coarse-grained, 
bioclastic grainstone (MC-4-4). Large bladed gypsum crystals 
are present within the Pleistocene fine-grained, carbonate-rich 
sand (white arrows), the microbial mat (light green arrows), 
and the fine-grained, grey-greenish interval displaying 
oxidized horizons (black arrows). The cross-bedded, bioclastic rudstone/grainstone is overprinted 
by small, bladed gypsum crystals (cyan arrow), and is overlain by an interval showing replacive/
displacive growth of discontinuous, nodular and contorted (enterolithic/ptygmatic) anhydrite 
(purple arrows). Horizontal reddish bands correspond to oxidized horizons interpreted as 
paleo-groundwater tables. (b-e) Thin section photomicrographs. (b-d) Plane polarized light. 
(e) Partly crossed polarized light. (d) Stained with Alizarin red-S. (b) Pleistocene fine-grained, 
carbonate-rich sand (MC-4-1) showing poikilotopic gypsum cementation (whitish and greenish 
crystals) around siliciclastic and carbonate grains. The siliciclastic material (100 µ) is very fine 
upper (vfU), whereas the carbonate material (100 to 220 µ) is very fine upper to fine upper  
(vfU-fU). (c) Cemented cerithid-rich, bioclastic grainstone (hardground, MC-4-3) showing 
shell fragment with borings (black arrows) and isopachous, fibrous aragonite cement around 
carbonate grains. (d) Fine-grained, peloid-skeletal packstone/grainstone (MC-4-5) showing 
rotalid foraminifera (Ammonia sp.: yellow arrows) and miliolid foraminifera (Quinqueloculina 
sp. and Dentritina sp.: red and green arrows, respectively). Whitish patches are halite. (e) 
Anhydrite-overprinted bioclastic rudstone/grainstone showing felted anhydrite texture  
(MC-4-7).
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Fine-grained/coarse-grained, bioclastic grainstone (sample MC-4-4)
• sedimentary texture: grainstone
• sedimentary structure: low-angle cross-bedded
• depositional environment: shallow subtidal, moderate- to high-energy tidal-channel deposits 

(Figure 16a)

Peloid-skeletal packstone/grainstone (sample MC-4-5)
• sedimentary texture: packstone to grainstone
• sedimentary structure: low-angle cross-bedded to un-bedded and rootlets
• depositional environment: shallow subtidal moderate-energy tidal-channel grading into 

lowermost intertidal to shallow subtidal, low-energy, mud-rich, rooted lagoonal deposits (Figure 
16d)

Gypsum-overprinted, cross-bedded, bioclastic rudstone/grainstone (sample MC- 
4-6)
• sedimentary texture: rudstone and grainstone (destroyed by gypsum overprint).
• sedimentary structure: low-angle cross-bedded to parallel-bedded
• depositional environment: shallow subtidal to intertidal, high-energy longshore beach bar and 

beach spit deposits; overprinted by sabkha gypsum (Figure 16a)

Anhydrite-overprinted, bioclastic rudstone/grainstone (sample MC-4-7)
• sedimentary texture: rudstone and grainstone (destroyed by gypsum and anhydrite overprint)
• sedimentary structure: low-angle cross-bedded to parallel-bedded
• depositional environment: shallow subtidal to intertidal, high-energy longshore beach bar and 

beach spit deposits; overprinted by sabkha anhydrite-after-gypsum (Figures 16a and 16e)

The facies succession observed at Mussafah vertical section MC-4 corresponds to some of the lateral 
facies variations along the Abu Dhabi coastline, as illustrated by arrows on Figure 1b.

The fine-grained, peloid-skeletal packstone/grainstone (sample MC-4-5: 11%), the microbial mat 
(sample MC-4-2: 10%) and the reworked Pleistocene carbonate-rich sand (sample MC-4-1: 13%) are 
rich in dolomite (Figure 16a).

Seven samples (MC-4-1 to MC-4-7) were selected for thin section and XRD analyses (Figure 12a). 
Radiocarbon age-dating carried out on one microbial mat sample (14C accelerator-mass-spectrometer 
technique, bulk sample) and one unconsolidated carbonate sample (14C radiometric dating technique, 
selected shell samples) show an age of 6,590 ± 40 14C yrs BP for the microbial mat sample (MC-4-2) 
and 5,150 ± 60 14C yrs BP for the fine-grained/coarse-grained, bioclastic grainstone sample (MC-4-4). 
The microbial mat sample shows a distinctively more negative delta 13C value (-10.8‰ PDB; Figure 
16a), due to its high organic content.

The whole section, including the Pleistocene carbonate-rich sand and the microbial mat is rich in 
bladed gypsum crystals (Figure 16a). The reworked carbonate-rich sand (sample MC-4-1) shows 
gypsum cementation of siliciclastic and carbonate grains (Figure 16b). The hardground (sample 
MC-4-3) exhibits shell fragments with borings and isopachous, fibrous aragonite cement around 
carbonate grains (Figure 16c). Abundant rotalid foraminifera (Ammonia sp.) and miliolid foraminifera 
(Quinqueloculina sp. and Dentritina sp.) were found within the fine-grained, peloid-skeletal packstone/
grainstone (sample MC-4-5; Figure 16d). Thin sections reveal the felted micro-structure of the nodular 
to contorted (enterolithic/ptygmatic) anhydrite (sample MC-4-7; Figure 16e).

The Holocene vertical section MC-4 represents a transgressive (deepening-upward) facies succession 
from intertidal (microbial mat) to shallow subtidal to intertidal (predominantly tidal-channel and 
rooted lagoon deposits, with a marine flooding surface on top of the Pleistocene carbonate-rich sands 
(reworked aeolian dune deposits). The slow rising/still stand and regressive phase of the sea level is 
represented by the prograding longshore beach bar and beach spit deposits and the strong diagenetic 
(evaporitic) sabkha-overprint, resulting in the growths of gypsum and anhydrite (Figure 2).
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Location 4a: Site of Whale Bone Exposure

In March 2006, large bones were found weathering from the edge of the exposed eastern wall of 
the channel in close proximity (c. 20 m north) to measured vertical section MC-4 (Figures 1c and 
2), by ADNOC geologists Khalil Al-Mehsin and Bernard Pierson. These bones were later identified 
as the mandible (jaw), humerus, radius and ulna (forelimbs) and the scapula (shoulder blade) of a 
whale (Figures 17a, 17b, and 17c) by Simon Aspinall, an ecological consultant and coordinator of the 
National Cetacean Database of the United Arab Emirates; most probably belonging to a baleen whale 
(Mysticete; Pierson et al., 2006, 2008; personal communications John Stewart, 2008).

In January 2008, the excavation and conservation of the remainder of the whale skeleton started. 
This effort is supported financially by ADNOC, under the supervision of the Marine Environment 
Research Centre of the Environmental Agency - Abu Dhabi (EAD), with assistance being provided 
by the Abu Dhabi Authority for Culture and Heritage, and Simon Aspinall. The excavation was 
carried out by two experts from the UK: John Stewart (Natural History Museum, London) and Nigel 
Larkin (Norwich Castle Museum, Norwich Archaeology Service), with help from Simon Aspinal. 
Both whale bones and whale barnacles (Coronula diadema, identified by Prof. Phil Rainbow) were 
found and preserved (Figure 17d). During the excavation, it became apparent that a large part of 
the whole whale skeleton was still present, more than had originally been anticipated, and a second, 
more comprehensive phase of excavation was planned.

The positions of the bones indicate that the whale was laid down on his back. The surrounding 
cerithid-rich, fine-grained to coarse-grained, bioclastic grainstones allow the interpretation that the 
whale was transported/stranded in a shallow tidal-channel.

The scapula (shoulder plate) directly overlies a hardground which formed at the base of a tidal-
channel and also encompasses the upper part of the underlying microbial mat (Figure 17c). The 
shoulder plate is not cemented into the hardground. The upper surface of the hardground is pitted 
by burrows and borings (Lithophaga; Figure 17e). The cemented microbial mat shows an upward 
increase in cerithid gastropods towards the cemented tidal-channel deposits (cerithid-rich, bioclastic 
grainstone; Figure 17f). The hardground is cemented by isopachous, fibrous aragonite cement and is 
rich in miliolid foraminifera (Peneroplis sp. and Spirolina sp.) and worm tubes (serpulids; Figures 17g, 
17h, and 17i).

At vertical section MC-4, close to the site where the whale bones were found (Figures 1c and 2), 
radiocarbon age-dating results of the microbial mat underlying the whale bones and the fine-grained 
to coarse-grained, bioclastic grainstone (tidal-channel deposits) surrounding the whale bones were 
age-dated at ca. 6,600 and 5,200 14C yrs BP, respectively (Figure 16a). These two radiocarbon age-dates 
closely bracket the age of the whale stranding and the time it took burying the whale at the Mussafah 
Channel site.

The finding of the whale bones at the Mussafah Channel site has added a new dimension to this 
location and has made it even more important and famous.

GYPSUM CRYTALS MORPHOLOGIES IN RELATION TO THEIR HOST 
SEDIMENT AND PALEO-GROUNDWATER TABLES

Morphology (shape), size, and color of the gypsum crystals, growing within the Pleistocene carbonate-
rich, fine-grained sands, the Holocene microbial mats, and the Holocene carbonates change considerable 
depending on the host sediments. Morphology, size, and color of the gypsum crystals vary with the 
grain size and color of the host sediments. Crystal size is generally inversely related to the grain size 
of the host sediment. The finer-grained and more homogenous sediments contain bigger gypsum 
crystals. Large, 1 ft-sized, bladed gypsum crystals of dark grey color are found within the Pleistocene 
carbonate-rich sand, mimicking the dark sand color (Figure 18a). Gypsum crystals growing within 
the microbial mat are semi-translucent and lenticular, with the original microbial material still visible 
within the gypsum crystals (Figure 18b). Gypsum crystals growing within fine-grained, rooted and 
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Figure 17: Photos of excavation site of large whale bones (location 4a; Figures 1c and 2), found close 
(c. 20 m north) to measured vertical section MC-4. (a) Large mandible (jaw bone, c. 4 m in length), 
covered with plaster for preservation. (b) Close-up of mandible. (c) Scapula (shoulder blade), 
covered with plaster for preservation on top of hardground. The hardground encompasses both 
tidal-channel deposits (blue arrow) and the transgressive microbial mat (green arrow, radiocarbon 
age ca. 6,400 14C yrs BP), overlying Pleistocene reworked aeolian dune deposits (orange arrow, 
radiocarbon age ca. 24,000 14C yrs BP). (d) Close-up of a whale barnacle (Coronula diadema, identified 
by Prod. Phil Rainbow). Diameter of coin is 2.3 cm. (e) Hardground showing pitted upper surface 
due to borings (Lithophaga). (f) Slabbed surface of hardground showing cemented microbial mat 
at the base (greenish color, below yellow stippled line) passing upward into overlying cerithid-
rich, bioclastic grainstone (tidal-channel deposits showing whitish color above yellow stippled 
line). (g) Thin section photomicrograph (plane polarized light) of cemented microbial mat shown 
on Figures 17c and 17f, rich in miliolid foraminifera (Peneroplis sp.: white arrows) and worm tubes 
(serpulids: red arrows). Isopachous, fibrous aragonite cement engulfs carbonate grains. 

See facing page for continuation.

Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/15/1/49/5444846/strohmenger.pdf
by guest
on 16 August 2022



77

Sabkha sequence at Mussafah Channel, UAE

0.2 mm0.2 mm

h

i

g

0.2 mm

Figure 17 (continued): (h) Thin section 
photomicrograph (plane polarized light) of 
cemented microbial mat showing worm tubes 
(serpulids) surrounded and partly filled by 
isopachous, fibrous aragonite cement. (i) Thin 
section photomicrograph (plane polarized light) 
showing transition of cemented microbial mat 
(below yellow stippled line) to cerithid-rich, 
bioclastic grainstone (tidal-channel deposits, 
above yellow stippled line). Also displayed are 
worm tubes (serpulids: red arrows) and miliolid 
foraminifera (Spirolina sp.: green arrow).

microbial-laminated peloid-skeletal packstones 
(lagoonal deposits) are also quite large (1 ft-sized 
crystals) and show the same dark grey-greenish 
color as the enclosing carbonates (Figure 18c). 
In fine-grained, bioclastic carbonates (tidal-
channel and tidal-channel-influenced lagoonal 
deposits), gypsum crystals display the light grey 
color like the host carbonates, showing large 
gypsum blades (Figure 18d) or very nice gypsum 
rosettes (Figure 18e). Cross-bedded, fine-grained 
carbonates (tidal-channel deposits) show gypsum crystals and gypsum rosettes, preserving the cross-
bedding and the color of the host carbonates (Figure 18f). Gypsum crystals replacing cross-bedded, 
bioclastic rudstone/grainstone, rich in cerithid gastropods and pelecypods (longshore beach bar 
and beach spit deposits), are light colored like the host sediment and show relatively small, bladed 
crystals (Figure 18g).

Reddish horizons are conspicuous at various depth levels throughout the studied vertical sections 
(Figures 6, 7a, 8c, 8d, 9, 12a, 14a, 15c, and 16a). These oxidized horizons occur up to c. 2 m above the 
present-day sea level (c. 40 cm below the erosional top of the in-place studied deposits; Figures 9 
and 12a) and correspond to paleo-groundwater tables, reflecting seasonal and short term sea-level 
fluctuations (Kirkham, 1998). Large lensoid gypsum crystals and gypsum rosettes are interpreted 
to have formed at and below these paleo-groundwater tables in the phreatic zone (Warren 1991, 
2006; Schreiber personal communications, 2008). Smaller gypsum crystals, like the ones replacing 
the uppermost cross-bedded, bioclastic carbonates (Figure 18g), might, however, have also formed 
in the capillary zone above the paleo-groundwater table as thermalites (Wood et al., 2005). These 
observations, together with fact that the uppermost studied gypsum- and/or anhydrite-dominated 
carbonates clearly show erosion on top (overlain by construction-fill material; Figure 9), suggest that 
sea level was about 2–3 m higher than the present-day sea level about 5,000 years ago (the radiocarbon 
age of the uppermost, in-situ deposits; Figure 9). 
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Figure 18: Gypsum crystal 
morphologies from different 
sediment types. (a) Large 
(1-ft-sized) bladed gypsum 
crystals poikilotopically 
enclosing dark colored, 
fine-grained, carbonate-rich 
sand (Pleistocene reworked 
aeolian dune deposits). (b) 
Lenticular gypsum crystals 
engulfing transgressive 
microbial mat. The 
organic material of 
the microbial mat 
(greenish color) is 
still visible within 
the semi-translucent 
gypsum crystals. 
(c) Large bladed 
gypsum crystals 
poikilotopically 
engulfing grey-
greenish, fine-grained, mud-
dominated peloid-skeletal 
packstone with rootlets (rooted 
lagoonal deposits) rich in cerithid 
gastropods. (d) Bladed gypsum 
crystals replacing light grayish, 
fine-grained/coarse-grained, 
bioclastic grainstone (tidal-
channel deposits); also engulfing 
cerithid gastropods and bivalves 
(Mysia sp.). (e) Bladed gypsum 
crystals forming gypsum rosettes 
and poikilotopically enclosing 
light grayish, predominantly 
fine-grained, peloid-skeletal 
packstone/grainstone (lagoonal and 
tidal-channel deposits); also engulfing cerithid gastropods and bivalves (Mysia sp.). (f) Bladed 
gypsum crystals with tendency to rosette shape poikilotopically enclosing reddish stained, 
fine-grained, bioclastic grainstone with thin coarse-grained bands (tidal-channel deposits); also 
engulfing bivalves and gastropods (Priotrochus sp.). Cross-bedding of the fine-grained carbonate 
is still visible within the gypsum crystals. (g) Small flat gypsum crystals with tendency to rosette 
shape incorporating and replacing light colored, cross-bedded, bioclastic rudstone/grainstone 
(longshore beach bar and beach spit deposits).
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DOLOMITE FORMATION AND DISTRIBUTION

XRD results reveal that dolomite is abundant throughout all studied vertical sections (Figures 3a, 
7a, 10a, 12a, and 16a). Vertical sections MC-1 and MC-2 that are dominated by rooted lagoonal and 
microbial-laminated lagoonal deposits contain up to 50% of dolomite (Figures 3a and 7a). Dolomite 
is found in concentrations of up to 17% in the microbial mats (3a, 7a, 10a, 12a, and 16a). Up to 19% 
of dolomite is found in the tidal-channel and tidal-channel/lagoonal deposits (Figures 10a, 12a, 
16a), and up to 20% of dolomite is found in some of the Pleistocene reworked aeolian dune deposits 
(Figures 3a, 12a and 16a).
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Figure 19: SEM photomicrographs of microcrystalline dolomite morphologies. SEM 
photomicrographs provided by Tomaso Bontognali (ETH Zurich, Switzerland). (a) Dolomite 
aggregate displaying spherical morphology (microbial mat, sample MC-2-2). (b) Dolomite 
aggregate displaying subhedral to euhedral dolomite rhombohedra (microbial mat, sample MC-
2-2). (c) Dolomite aggregate displaying spherical morphology (rooted lagoon, sample MC-2-4). 
(d) Subhedral to euhedral dolomite rhombohedra (rooted lagoon, sample MC-2-4). (e) Dolomite 
aggregate displaying spherical morphology (microbial-laminated lagoon, sample MC-2-6). (f) 
Subhedral to euhedral dolomite rhombohedra (red arrows) between aragonite needles with blunt 
ends (white arrows; microbial-laminated lagoon, sample MC-2-6).
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Figure 20: EDX spectra (area measured marked in red) displaying results of elemental analyses 
of dolomite. C-peak: carbon, O-peak: oxygen, Na-peak: sodium, Mg-peak: magnesium, Al-
peak: aluminum, Si-peak: silica, Cl-peak: chlorine, and Ca-peak: calcium. Pt-peak corresponds 
to the coating applied during preparation. EDX analyses and SEM photomicrographs provided 
by Tomaso Bontognali (ETH Zurich, Switzerland). (a) EDX spectrum of dolomite aggregate 
displaying rhombohedral morphology (microbial mat, sample MC-2-2). (b) EDX spectrum of 
dolomite aggregate displaying spherical morphology (rooted lagoon, sample MC-2-4). (c) EDX 
spectrum of rhombohedral dolomite crystal (rooted lagoon, sample MC-2-4). (d) EDX spectrum 
of rhombohedral dolomite crystal within aragonite crystals (microbial-laminated lagoon, sample 
MC-2-6).

Holocene dolomite forming beneath the supratidal sabkhas of the Arabian Gulf was first reported by 
Wells (1962). The sabkha model (Kinsman, 1969) and its refinements which added further mechanisms 
to account for adequate recharge of solutes, like evaporative pumping (Hsü and Siegenthaler, 1969; 
McKenzie et al., 1980; Müller et al., 1990) and ascending brines (Wood et al., 2002) were based on 
studies of the supratidal environment along the Abu Dhabi coastline (Curtis, 1963; Wenk et al, 1993).

Microbial dolomite formation involving sulfate reducing bacteria (SRB) mediating dolomite 
precipitation is another model, applicable to explain the occurrence of the dolomite within the studied 
sediments (Vasconcelos et al., 1995, 2005; Vasconcelos and McKenzie, 1997; Warthmann et al., 2000; 
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van Lith et al., 2003a, b; Wright and Wacey, 2005; Strohmenger et al., 2010). Most recently, Bontognali 
(2008) and Bontognali et al. (2010) studying microbial dolomite formation within the recent and 
buried microbial mats of the Abu Dhabi sabkha in the vicinity of Al-Qanatir Island (Al-Dabbiya 
area), demonstrated that dolomite precipitates as a consequence of mineral nucleation and growth 
within the extracellular polymeric substances (EPS) constituting the microbial mats (Bontognali, 2008; 
Bontognali et al., 2008). Microbial communities commonly live and grow in aggregates composed of 
EPS, a broad term which groups a large variety of organic polymers (Decho, 1990).
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Figure 21: XRD spectra and SEM photomicrographs (modified after Bontognali, 2008, and Bontognali 
et al., 2010) comparing dolomite spheroids identified by SEM within the microbial mat studied at 
Mussafah Channel vertical section MC-2 (sample MC-2-2) with dolomite spheroids identified by 
SEM within two subsurface microbial mats (samples SQ-T5-6 and SQ-T7-3) and the present-day 
surface microbial mat (sample SQ-T8-6); studied in the vicinity of Al-Qanatir Island (Al-Dabbiya 
area), c. 80 km west of Abu Dhabi City (Strohmenger et al., 2010; Bontognali, 2008; Bontognali et 
al., 2010; see Figure 1b for location). All microbial mat samples show the same XRD spectra, no 
matter of the age or the amount of burial of the samples. XRD analyses and SEM photomicrographs 
provided by Tomaso Bontognali (ETH Zurich, Switzerland). For detailed description of trenches 
and cores SQ-T5, SQ-T7, and SQ-T8 see Strohmenger et al. (2010). 
(a) Subsurface microbial mat (sample MC-2-2). Radiocarbon age: ca. 6,600 14C yrs BP. Depth: c. 

75–85 cm below surface. 
(b) Subsurface microbial mat (sample SQ-T5-6). Radiocarbon age: ca. 1,700 14C yrs BP. Depth: c. 

15–30 cm below surface. 
(c) Subsurface microbial mat (sample SQ-T7-3). Radiocarbon age: ca. 900 14C yrs BP. Depth: c. 10–35 

cm below surface. 
(d) Surface microbial mat (sample SQ-T8-6). Age: Recent. Depth: c. 0–5 cm below surface. Note that 

the dolomite spheroid is slightly smaller compared to those of the buried, older microbial mats 
(Figures 21a, 21b, and 21c).
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The dolomite found within carbonates at Mussafah Channel is microcrystalline and below resolution 
by conventional petrogrographic thin section analysis (Figure 7e). Scanning electron microscope (SEM) 
and X-ray diffraction (XRD) analyses detect dolomite in samples from the microbial mat (sample MC-
2-2; Figures 19a and 19b), the rooted lagoon (sample MC-2-4; Figures 19c and 19d), and the microbial-
laminated lagoon (sample MC-2-6; Figures 19e and 19f). The dolomite displays authigenic spheroids 
composed of subhedral to euhedral dolomite rhombohedra. Dolomite mineralogy of both speroids 
and rhombohedra is proven by energy-dispersive X-ray spectrometer (EDX) analyses (Figures 20a, 
20b, 20c, and 20d). XRD analyses and SEM photomicrographs comparing dolomite spheroids from 
the microbial mat of section MC-2 (sample MC-2-2) with dolomite spheroids studied by Bontognali 
(2008) and Bontognali et al. (2010; see Figure 1b for location) within two subsurface microbial mats 
(samples SQ-T5-6 and SQ-T7-3) and the present-day surface microbial mat (SQ-T8-6) in the vicinity 
of Al-Qanatir Island (Al-Dabbiya area), show the same XRD spectra and spherical morphologies 
(Figures 21a, 21b, 21c, and 21d). Like the dolomite identified in the modern day sabkha at Al-Qanatir 
Island (Strohmenger et al., 2004, 2007, 2008b, 2008c, 2010; Bontognali, 2008; Bontognali et al., 2010; see 
Figure 1b for location), the dolomite found at Mussafah Channel is interpreted to have precipitated 
as a consequence of mineral nucleation and growth within the extracellular polymeric substances 
(EPS) constituting the microbial mats (Bontognali, 2008; Bontognali et al., 2010). A microbial origin is 
inferred for the dolomite found in the microbial mat and the lagoonal deposits, but, most probably, 
also for the dolomite occurring in tidal-channel deposits and reworked Pleistocene dune deposits.

RESERVOIR QUALITY DISTRIBUTION AND CONNECTIVITY

The observed variations in texture and facies found at Mussafah Channel provide a rough analogue 
for lateral and vertical variations in reservoir quality observed in subsurface settings. Assuming that 
the primary variations in porosity and permeability are preserved in the subsurface, the textural and 
facies variations observed at the Mussafah Channel are a guide to reservoir continuity and quality. 
Figure 22 schematically displays the lateral and vertical texture and facies variations without the 
evaporitic (sabkha) overprint. The inferred reservoir quality of the different facies types are shown 
using hypothetical gamma-ray (GR) and neutron porosity (NPHI) log-curves. High-energy, coarse-
grained, grain-dominated carbonate facies (grainstones and rudstones: tidal-channel, tidal-delta, 
and longshore beach bar and beach spit deposits) are interpreted to have low GR and high NPHI 
values due to low clay content and high interparticle porosity, respectively. Low energy, fine-grained, 
mud-dominated facies (packstones: rooted lagoonal and microbial-laminated lagonnal deposits) are 
interpreted to have higher GR and lower NPHI values due to higher clay/organic content and reduced 
interparticle porosity, respectively. The microbial mat deposits have high GR and high NPHI values 
due to the high organic content and bounded water, respectively. The fine-grained, carbonate-rich 
sandstones (reworked aeolian dune deposits) are interpreted to have low GR and higher NPHI values 
due to low clay content and high interparticle porosity, respectively. The hardgrounds are interpreted 
to have low GR and low NPHI values due to low clay content and cementation, respectively.

The grain-dominated facies at locations A (tidal-delta and tidal-bar deposits) and C, D, and E (tidal-
channel and longshore beach bar and beach spit deposits) is expected to have good to excellent 
primary porosity (Figure 22). At location B, mud-dominated, rooted lagoonal and microbial-laminated 
lagoonal deposits (laterally intercalated between tidal-delta and tidal-bar deposits at location A 
and tidal-channel deposits at location C) show inferred low reservoir quality (Figure 22). Lateral 
connectivity between the good to excellent reservoir facies at location A and at locations C, D, and E is 
reduced due to the intercalated mud-dominated, rooted lagoonal and microbial-laminated lagoonal  
deposits (location B; Figure 22). Lateral connectivity also might be reduced between the juxtaposed 
tidal-channel deposits at location C and location E due to the occurrence of shingled hardgrounds 
and early cementation along the channel-cut (location D; Figure 22). The channel-cut surface might 
act as a baffle between positions C and E, as indicated by the low porosity peak displayed by the 
NPHI log-curve at location D (Figure 22).

Vertical connectivity is inferred to be reduced between the fine-grained tidal-channel deposits and 
the overlaying longshore beach bar and beach spit deposits (location E) due to the occurrence of a 
hardground at the boundary between the two grain-dominated deposits (Figure 22). The microbial 
mat as well as the hardground is interpreted to act as baffles or even barriers between the underlying 
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porous carbonate-rich Pleistocene sands and the overlying porous Holocene grain-rich carbonates 
(locations D and E; Figure 19). Reduced connectivity might, however, exist between the Pleistocene 
carbonate-rich sands and the Holocene grain-rich carbonates of the tidal-channel that cuts into the 
underlying sands (location C). The connectivity would depend on the continuity/discontinuity of the 
intercalated hardground (Figure 22).

Of course, considering the evaporitic (sabkha) overprint (gypsum and anhydrite precipitation), the 
carbonate section above the microbial mat will act as a perfect seal for the underlying carbonate-rich 
sand after burial. All the gypsum will be likely transformed to anhydrite during burial (dewatering) 
when ambient temperature rises above 50–60 °C. In a hydrological open system with normal 
geothermal gradient this process is completed at a burial depth of c. 1,000 m (Warren, 1989, 1999, 
2006).

The sketch displayed on Figure 22 only represents a snapshot in time but demonstrates the spatial 
complexity of modern shallow water carbonate systems, an important aspect to be considered for 
geological facies and reservoir quality modeling.

CONCLUSIONS

The man-made Mussafah Channel, southwest of the city of Abu Dhabi (Figure 1), is often cited 
as showing classical, text book like, sabkha anhydrite and gypsum exposures (Kening et al., 1990; 
Kening, 1990, 2009; Kirkham, 1997; Evans and Kirkham, 2002; Warren, 2006). This study concludes 
that most of the sediments are marine and formed during a Holocene sea-level rise c. 2–3 m above 
present-day sea level. The sediments have been extensively modified by evaporite growth, likely 
related to paleo-groundwater tables established during falling sea level (Figure 2).
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Figure 22: Sketch showing the facies-related reservoir quality distribution along the east wall of 
the Mussafah Channel. Hypothetical gamma-ray (increasing to the right) and neutron porosity 
(increasing to the left) log-curves, derived from exposure descriptions, are also displayed at 
locations A, B, C, D, and E. Displayed is the primary depositional facies without evaporitic (sabkha) 
overprint. See Figure 2 and text for further explanations.
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Pleistocene reworked aeolian carbonate-rich sands (radiocarbon age: ca. 24,800–23,500 14C yrs BP) are 
unconformable overlain by a Holocene microbial mat (radiocarbon age: ca. 6,600–6,20014C yrs BP), 
formed during the post-glacial Flandrian transgression that started around 18,000 14C yrs BP (Kassler, 
1973; Lambeck, 1996; Lambeck et al., 2002). Above the microbial mat are sediments interpreted as 
rooted and microbial-laminated lagoonal, tidal-delta, and tidal-channel deposits, passing upward into 
longshore beach bar and beach spit deposits. The oldest Holocene sediments show a radiocarbon age 
of ca. 6,600 14C yrs BP (microbial mat deposits). The youngest Holocene sediments show a radiocarbon 
age of ca. 5,000 14C yrs BP (longshore beach bar and beach spit deposits) and are presently 2–3 m above 
mean sea level. During falling sea level, the succession was diagenetically overprinted by gypsum 
and anhydrite (sabkha-overprint; Figures 3, 6, 7, 8, 9, 10, 12, 14, 15, and 16).

The vertical facies successions, the lateral facies variations, and the diagenetic (evaporitic) overprint 
displayed at Mussafah Channel correspond to the shallow subtidal to supratidal arid depositional 
environments that can be observed along the present-day Abu Dhabi coastline (Figures 1c and 2). 
Thus, the sabkha sequence at Mussafah Channel represents a perfect training ground for teaching the 
importance of facies analysis (facies stacking patterns: “Walter’s Law”; Walter 1893-94), diagenesis 
(cementation and dolomite, gypsum, and anhydrite formation) and stratigraphy/sequence 
stratigraphy (radiocarbon age-dating analysis/chronostratigraphic correlation).

Gypsum crystals are found within the Holocene carbonates, the microbial mat, and the underlying 
Pleistocene carbonate-rich sands (Figures 4b, 14a, 15a, 15b, 15c, 16a and 18). Gypsum crystals vary 
in size, shape, and color depending on the host sediment (Figure 18). They are interpreted as having 
formed at various paleo-groundwater tables, preserved as horizontal reddish horizons. These reddish 
(oxidized) horizons occur at different levels throughout the studied sections (up to c. 2 m above the 
present-day sea level) and are interpreted as reflecting seasonal and short term sea-level fluctuations 
(Figures 6, 7a, 8c, 8d, 9, 12a, 14a, 15c, and 16a). Thus supporting the interpretation that sea level was 
2–3 m above present-day sea level ca. 5,000 years ago (radiocarbon age of the uppermost exposed 
carbonates, showing erosion on top; Figure 9).

Nodular anhydrite is present within the upper beds of the section (longshore beach bar and beach 
spit deposits), replacing previously precipitated gypsum crystals (Figure 14a). Displacive anhydrite 
forms folds (contorted or enterolithic/ptygmatic anhydrite; Figure 14b, and 15d) and teepee structures 
(Figure 14c).

Abu Dhabi sabkha evaporites were often used as analogues for ancient carbonate-evaporite dominated 
formations such as the Arab Formation (Wood and Wolfe, 1969; Leeder and Zeidan, 1977; Alsharhan 
and Kendall, 1994, 2002). However, thick bedded anhydrite deposits like those of the Upper Permian 
(Khuff and Zechstein formations) and the Upper Jurassic (Arab Formation) mostly represent salina- 
or saltern-type (Warren, 1983, 1989, 1999; Warren and Kendall, 1985; Kendall, 1992; Schreiber, 1988) 
rather than sabkha-type deposits (Al Silwadi et al., 1996; Strohmenger et al., 1996; Steinhoff and 
Strohmenger, 1999; Kirkham, 2004). Sabkha-type evaporites, like the ones described at the Mussafah 
Channel, are forming within the host rock (sediment-dominated), whereas salina-type evaporites 
represent subaqueous precipitations (evaporite-dominated), often containing vertically-oriented 
chevron-type crystals (“swallow-tail” anhydrite-after-gypsum).

High amounts of dolomite were found within rooted lagoonal and microbial-laminated lagoonal 
deposits (vertical sections MC-1 and MC-2: up to 50%; Figures 3a, 7a, 19c, 19d, 19e, and 19f). Dolomite 
is also quite abundant in all microbial mats (up to 17%; Figures 3a, 7a, 10a, 12a, 16a, 19a, and 19b), in 
most of the tidal-channel and tidal-channel/lagoonal deposits (up to 20%; Figures 10a, 12a, and 16a), 
and in some of the Pleistocene reworked carbonate-rich sands (up to 19%; Figures 3a, 12a, and 16a). 
SEM and EDX analyses (Figures 19 and 20) indicate that the dolomite occurs as authigenic spheroids 
composed of subhedral to euhedral dolomite rhombohedra (Figures 19 and 20). The dolomite 
identified within the microbial mat of studied section MC-2 (sample MC-2-2) shows the same XRD 
spectra and spherical morphologies (Figures 21a, 21b, 21c, and 21d) as the dolomite identified within 
two subsurface microbial mats (samples SQ-T5-6 and SQ-T7-3) and the present-day surface microbial 
mat (SQ-T8-6); previously studied in the vicinity of Al-Qanatir Island (Al-Dabbiya area; Strohmenger 
et al., 2010; Bontognali, 2008, Bontognali et al., 2010). Like the dolomite identified in the modern day 
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sabkha at Al-Qanatir Island (Strohmenger et al., 2004, 2007, 2008b, 2008c, 2010; Bontognali, 2008; 
Bontognali et al., 2010), the dolomite found at Mussafah Channel is interpreted to have precipitated 
as a consequence of mineral nucleation and growth within the extracellular polymeric substances 
(EPS) constituting the microbial mats (Bontognali, 2008; Bontognali et al., 2010). Furthermore, it is 
postulated that also the authigenic dolomite identified within the rooted and microbial-laminated 
lagoonal deposits, as well as the dolomite identified within the tidal-channel deposits and the 
reworked Pleistocene carbonate-rich sands is of microbial origin.

Facies-controlled reservoir quality varies considerably vertically and laterally along the studied 
channel walls (Figure 22). Excellent reservoir facies like tidal-delta and tidal-bar, as well as tidal-
channel deposits (bioclastic grainstones and rudstones) grade laterally into rooted lagoonal and 
microbial-laminated lagoonal deposits (mud-dominated packstones) of low primary reservoir 
potential (Figure 22). In addition, intercalated hardgrounds may act as baffles or barrier to vertical 
and lateral reservoir connectivity (Figure 22). The observed facies and primary reservoir quality 
heterogeneities are important factors to be considered for geological facies and reservoir quality 
modeling of subsurface shallow water carbonates.

The discovery of whale bones at the Mussafah Channel site (Pierson et al., 2006; 2008) has added a 
new dimension to this location and has made it even more important and famous than before (Figure 
17). Efforts should be taken to protect this Mussafah Channel site for future visits and studies. The 
unique geologic and palaeo-environmental importance of this site to geoscientists all over the world 
truly makes it a national treasure of the United Arab Emirates.
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