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Abstract. Asteroseismology has the capability of delivering stellar properties which

would otherwise be inaccessible, such as radii, masses and thus ages of stars. When this

information is coupled with classical determinations of stellar parameters, such as metal-

licities, effective temperatures and angular diameters, powerful new diagnostics for stellar

and Galactic studies can be obtained. The ongoing Strömgren survey for Asteroseismol-

ogy and Galactic Archaeology (SAGA) is pursuing such a goal, by determining photomet-

ric stellar parameters for stars with seismic oscillations measured by the Kepler satellite.

As the survey continues and expands in sample size, SAGA will provide an unprecedented

opportunity to constrain theories of the evolution of the Milky Way disc.

1 Introduction

The study of the formation and evolution of our Galaxy is entering its golden age, with a number of
spectroscopic and photometric surveys targeting one of its main (baryonic) components: stars. Among
the latter, red giants are the ideal targets to decipher the formation history of the Milky Way: on
the HR diagram they span a vastly different range of gravities and luminosities, thus probing a large
range of distances. Their ages essentially cover the entire history of the Universe, thus making them
fossil remnants from different epochs of the formation of the Galaxy. The cold surface temperatures
encountered in red giants are the realm of interesting atomic and molecular physics shaping their
emergent spectra. This temperature regime is also dominated by convection, which is the main driver
of the oscillation modes that we are now able to detect in several thousands of stars thanks to space
borne asteroseismic missions such as CoRoT and Kepler (e.g., Chaplin & Miglio, 2013, for a review).
By measuring oscillation frequencies in stars, asteroseismology allows us to measure fundamental
physical quantities, masses and radii in particular, which otherwise would be inaccessible in single
field stars, and which can be used to obtain information on stellar distances and ages (e.g., Silva
Aguirre et al., 2011, 2012; Miglio et al., 2013). In particular, global oscillation frequencies not only
are the easiest ones to detect and analyze, but are also able to provide the aforementioned parameters
for a large number of stars with an accuracy that is generally much better than achievable by isochrone
fitting in the traditional sense (see e.g., Silva Aguirre et al., 2013; Lebreton et al., 2014a,b).

Asteroseismology thus provides a powerful and new complementary tool for all past and current
photometric and spectroscopic stellar surveys. In fact, while it is relatively straightforward to derive
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some sort of information on stellar surface temperature and chemical composition simply from colours
and/or spectra (and in many cases even detailed abundances), that is usually not the case when it
comes to masses, radii, distances and, in particular, ages. Even when accurate astrometric distances
are available to allow comparison of stars with isochrones, the derived ages are still highly uncertain,
and statistical techniques are required to avoid biases (e.g., Pont & Eyer, 2004; Jørgensen & Lindegren,
2005; Serenelli et al., 2013). Furthermore, isochrone dating is meaningful only for stars in the turnoff
and subgiant phase (e.g., Nordström et al., 2004; Casagrande et al., 2011), where stars of different
ages are clearly separated in the HR diagram. This is in contrast, for example, to stars on the red giant
branch, where isochrones with vastly different ages can fit equally well observational constraints such
as effective temperatures, metallicities and surface gravities within their errors (e.g., Soderblom, 2010,
for a review).

2 SAGA

The purpose of the Strömgren survey for Asteroseismology and Galactic Archaeology (SAGA) is to
uniformly and homogeneously observe stars in the Strömgren uvby system across the Kepler field, to
derive their classical stellar parameters and thus provide a new benchmark for Galactic studies, similar
to the solar neighbourhood. Details on survey rationale, strategy, observations and data reduction are
provided in the first SAGA data release (Casagrande et al., 2014a).

Without going into in the gory details of the Strömgren uvby system, here it suffices to say that it
was designed for the determination of basic stellar parameters with the ultimate purpose of study-
ing Galactic stellar populations (Strömgren, 1963, 1987), as nicely demonstrated by the Geneva-
Copenhagen Survey (GCS, Nordström et al., 2004; Casagrande et al., 2011). Indeed, SAGA builds
on the legacy of the GCS, representing its natural extension. Similar to the latest revision of the GCS
(Casagrande et al., 2011), we combine Strömgren metallicities with broad-band photometry to obtain
effective temperatures and metallicities for all targets via the Infrared Flux Method (Casagrande et
al., 2006, 2010, 2014b). This facilitates the task of placing SAGA and the GCS on the same scale.
However, there are also marked differences between the two surveys: the GCS is an all-sky, shallow
survey limited to main-sequence and subgiant stars closer than � 100 pc (40 pc volume limited). The
Kepler targets observed by SAGA are primarily giants located between � 1 and � 6 kpc in a specific
region of the Galactic disk, across the Orion arm and edging toward the Perseus arm. The use of giants
as probes of Galactic Archaeology is possible since it is relatively straightforward to derive ages for
these stars once classical stellar parameters are coupled with asteroseismology. This was not the case
for the GCS, where isochrone fitting was used, and thus limited to main-sequence and subgiant stars
with known astrometric distances. On the other hand, stars in the GCS have kinematic information,
which is not available for the SAGA targets. The different distance ranges sampled by the GCS and
SAGA makes them complementary: the stellar properties measured within the solar neighborhood in
the former survey can be dynamically stretched across several kpc using kinematics. In contrast, the
larger distance range sampled by the giants in SAGA provides in situ measurements of various stellar
properties over � 5 kpc.

Observations are being conducted with the Wide Field Camera on the 2.5-m Isaac Newton Tele-
scope (INT), which in virtue of its large field of view and pixel size is ideal for wide field optical
imaging surveys. The purpose of SAGA is to obtain good photometry (i.e. few hundredths mag) for
all stars in the magnitude range where Kepler is able to measure oscillations, i.e. 10 � y � 14. This
requirement can be easily achieved with short exposures on a 2.5-m telescope and indeed all stars
for which Kepler measured oscillations are essentially detected in our survey (with a completeness
� 95%). Strömgren standard stars are chosen from the list of Schuster & Nissen (1988), which is
carefully tied to the system used by Olsen (1983) and underlying the GCS used for our previous in-
vestigation of stellar properties in the Galactic disk.

Our images are pre-processed with the Wide Field Survey Pipeline provided by the Cambridge
Astronomical Survey Unit (Irwin & Lewis, 2001). The operations applied to the images consist of
debiasing, trimming, flat fielding, and correction for non-linearity. After this pre-processing, we have
developed a fast and efficient custom pipeline for the source detection, astrometric solution and pho-
tometric calibration of standard and science targets as detailed in Casagrande et al. (2014a). SAGA is
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Fig. 1. Location of SAGA targets in the Galaxy. Stars with different seismic classification have different colours,

as labelled. Left panel: face-on view in Galactic coordinates, where the distance of each seismic target from

the Sun (D) is projected along the line of sight D cos(b) having direction l � 74◦ and Galactic latitude b. The

distance between the Galactic Centre (GC) and the location of the Sun (�) is marked by the solar circle (in gray).

Galactic longitudes (l) at four different angles are indicated. Right panel: same stars as function of Galactic height

Z = D sin(b) and projected across the l = 90◦ direction.

magnitude complete to about y � 16 mag, and stars are still detected at fainter magnitudes (y � 18),
although with increasingly larger photometric errors and incompleteness. As part of SAGA we are also
obtaining photometry on the brightest targets using the four-channel photometer at San Pedro Mártir
Observatory.

With SAGA it is thus straightforward to build a magnitude complete and unbiased photometric
catalog down to y � 16 mag, against which we can benchmark the sample of stars with measured
Kepler oscillations. This makes our photometric survey unique in terms of recovering the Kepler se-
lection function of seismic targets (Casagrande et al., 2015). In fact, the selection criteria of the Kepler
mission were designed to optimize the scientific yield of the mission with regard to the detection of
Earth-size planets in the habitable zone of stars (Batalha et al., 2010). Thus, while the selection func-
tion is known for exoplanetary studies, this is not the case when it comes seismic targets, entries in
the seismic sample of giants being based on a number of heterogeneous criteria (e.g., Huber et al.,
2010). Our approach thus complements other ground based follow up studies of asteroseismic targets
(see e.g. Casagrande & VandenBerg, 2014; Casagrande, 2014c, for the rationale behind photometric
parameters and a brief discussion of pros and cons between photometric and spectroscopic surveys). In
future observing runs we plan to extend some of our pointings also to K2 fields (Howell et al., 2014).

3 Stellar parameters and Galactic structure

The first SAGA data release combines asteroseismic and photometric stellar parameters for 989 Kepler
targets, most of which are red giants. The location of the targets in the Galaxy is shown in Figure 1.
Within SAGA a novel approach is developed to derive classical and asteroseismic stellar parameters
in a fully self-consistent way: for each target, its photometric effective temperature and metallicity,
together with the mass, radius, surface gravity, density and distance is computed. For a large fraction
of objects, evolutionary phase classification tells whether a stars is a dwarf, is evolving along red
giant branch (RGB) or is already in the clump phase (e.g. Stello et al., 2013). The latter distinction is
particularly important to derive reliable stellar ages, in particular to select only bona-fide lower RGB
stars, where the effect of mass loss is negligible (e.g. Silva Aguirre et al., 2014).
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We provide a careful assessment of random and systematic uncertainties on our parameters. Total
uncertainties are of order 82 K in effective temperature, 0.17 dex in metallicity, 0.006 dex in surface
gravity, 1.5% in stellar density, 2.4% in radius, 3.3% in distance and 6.0% in mass. Age uncertain-
ties vary depending an the availability of seismic classification or not, but are usually below 30%
(Casagrande et al., 2014a, 2015). Confidence in the achieved precision is corroborated by the detec-
tion of the first and secondary clumps in a population of field stars and by the negligible scatter in the
seismic distances and ages among NGC 6819 member stars (one of the four open clusters located in
the Kepler field).

With the stellar parameters derived so far, we are thus in the position of using Kepler targets, and
asteroseismology, to investigate some of the most important constraints on Galactic models, such as the
age-metallicity relation, and the vertical structure of the Galactic disk via age, mass and metallicity
gradients (Casagrande et al., 2015; Schlesinger et al., 2015). Furthermore, calibrating photometric
metallicities and age-dating techniques for the entire photometric sample, the continuation of our
Strömgren survey promises a leading role for Galactic studies.
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