
5

The same-source parallel MM5∗

John Michalakes
Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, IL 60439,

USA

Tel.: +1 303 497 8199; Fax: +1 303 497 8181;

E-mail: michalak@ucar.edu

Beginning with the March 1998 release of the Penn State

University/NCAR Mesoscale Model (MM5), and continuing

through eight subsequent releases up to the present, the of-

ficial version has run on distributed -memory (DM) parallel

computers. Source translation and runtime library support

minimize the impact of parallelization on the original model

source code, with the result that the majority of code is line-

for-line identical with the original version. Parallel perfor-

mance and scaling are equivalent to earlier, hand-parallelized

versions; the modifications have no effect when the code is

compiled and run without the DM option. Supported comput-

ers include the IBM SP, Cray T3E, Fujitsu VPP, Compaq Al-

pha clusters, and clusters of PCs (so-called Beowulf clusters).

The approach also is compatible with shared-memory paral-

lel directives, allowing distributed-memory/shared-memory

hybrid parallelization on distributed-memory clusters of sym-

metric multiprocessors.

1. Introduction

The Pennsylvania State/National Center for Atmo-

spheric Research Mesoscale Model is a limited-area

model of atmospheric systems, now in its fifth genera-

tion, MM5 [6]. It was designed for vector and shared-

memory parallel architectures. Two earlier distributed-

memory (DM) parallel versions of the model code were

developed at Argonne National Laboratory – the Mas-

sively Parallel Mesoscale Model (MPMM) and a subse-

quent Fortran90 implementation, MM90. These were

efficient, scalable, and more modular and dynamical-

ly configurable [3,10] than the source model. Never-
theless, extensive modification for parallelization pre-

∗This work was supported by the Mathematical, Information, and

Computational Sciences Division subprogram of the Office of Ad-

vanced Scientific Computing Research, U.S. Department of Energy,

under Contract W-31-109-Eng-38.

vented integration with the official version of MM5.

The challenge was to produce a DM-parallel version of

the model sufficiently close to the original source code

that it could be officially adopted, supported, and main-

tained. This was accomplished in March 1998 with the

release of MM5 Version 2 Release 8, the first official

version of the model to support distributed-memory

parallelism.

Single-source implementation of parallelism has ob-

vious benefits for maintainability, avoiding the effort

needed to keep multiple, architecture-specific versions

up to date with respect to each other. The “same-

source” approach to parallelization, an additional con-

straint on single-source implementation, also empha-

sizes avoiding changes to the original source code, a

critical factor in NCAR’s acceptance of this option.

The approach employs an application-specific parallel

library and a compile-time source translator to auto-

mate and hide parallel mechanisms in the code. The

Runtime System Library, RSL [11], provides domain

decomposition, local address space computation, dis-

tributed I/O, and interprocessor communication sup-

porting parallelization of both the solver and the mesh

refinement code. The Fortran Loop and Index Convert-

er, FLIC [9], translates at compile-time to generate a

parallelized code (that only the compiler sees) from a

single version of the source model. The approach is

essentially directiveless, requiring only a small amount

of information – sufficiently general and concise to fit

on the tool’s command line – to direct the translation.

Because MM5 already contained multithreading direc-

tives (OpenMP) for shared-memory parallelism, the

model runs in combined distributed-memory/shared-

memory parallel modes on distributed-memoryclusters

of symmetric multiprocessor (SMP) nodes.

The DM-parallel option to MM5 was released as part

of the official model in March 1998. Since that time,

MM5 has progressed through eight releases, including

a new version, MM5 Version 3, with the distributed

memory option intact and functioning as part of the

main release of the model. The code is running op-

erationally in real-time forecast mode on an IBM SP

at the United States Air Force Weather Agency, Offutt

Air Force Base, Nebraska. The model is also in use by

Scientific Programming 8 (2000) 5–12

ISSN 1058-9244 / $8.00 2000, IOS Press. All rights reserved

6 J. Michalakes / The same-source parallel MM5

the U.S. EPA, the California Air Resources Board, and

a number of other research, university, and government

users in the United States, Europe, and Asia. Support-

ed platforms in active community use include the IBM

SP, Cray T3E, Fujitsu VPP300 and VPP5000, Compaq

Alpha SMP-clusters, Beowulf-type PC and Alpha clus-

ters, workstation networks, and the SGI Origin2000.

This paper summarizes issues that arise in paralleliza-

tion of a weather model and describes the tools-based

approach used to parallelize MM5. Results are evalu-

ated in terms of impact on model source code as well

as model performance and scaling.

2. Same source

Architecture-specific coding affects understandabil-

ity, maintainability, extensibility, reusability, and porta-

bility to other, dissimilar architectures. Such coding

may manifest itself in how arrays are dimensioned,

aligned, and allocated in memory; how loops are nested

or otherwise structured (blocked, unrolled, fused); at

what level loops are positioned in the subroutine call

hierarchy; how iteration is expressed (loops or array

syntax); how information is exchanged between sub-

routines; and, with distributed memory, how communi-

cation is implemented. Maintaining separate codes is

difficult and time consuming; and because changes and

enhancements must be made by hand and tested over

all versions, some versions inevitably fall behind. The

ability to exploit a range of computer architectures with

a single source code provides obvious benefits. If in

addition to a “single source” one wishes to preserve the

pre-existing sequential source, the constraint of “same

source” is imposed. In other words, the parallelized

model is as close as possible to being line-for-line iden-

tical with the original, preparallelized version.

Distributed-memory programming provides the most

general programming model for both portability and

scalability, since distributed-memory programs adapt

trivially to shared memory (while the reverse is not

true). Portability through distributed memory program-

ming will best position programs to exploit successive

advances in high-performance computer architecture,

including low-cost high-speed networked “Beowulf”

configurations of personal computers, a computational

option unavailable to shared-memory programs. Pro-

gramming for distributed memory provides both porta-

bility and scalability. Another emerging architecture

is distributed-memory configurations of SMP nodes;

distributed-memory programming is an essential com-

ponent of an overall strategy to exploit these machines.

Finally, on distributed/shared memory architectures

– distributed-memory machines with additional hard-

ware and software to support shared-memory program-

ming (e.g., the SGI Origin2000) – distributed-memory

programming may still provide better scaling because

locality is explicitly enforced.

Much of the painful low-level detail originally as-

sociated with message-passing programming – domain

decomposition, message passing, distributed I/O, and

load balancing-has been efficiently encapsulated in

application-specific libraries [7,8,11,13,14]. These ap-

proaches still require modification to the code for itera-

tion over local data, global and local index translation,

and distributed I/O. If one is able to design a new model

or undertake a major redesign, these issues may be ad-

dressed directly in the code, as a number of groups have

demonstrated (e.g., ECMWF’s IFS and Environment

Canada’s MC2 models). The MM5-successor model,

WRF, is being designed in this way [12]. However, if

a same-source and not only a single-source implemen-

tation is required, additional help is needed.

Source translation removes the remaining difficulties

associated with implementing the model efficiently for

distributed memory. Further, source translation is ap-

plicable to a broader range of performance portability

concerns. Loop restructuring, data-in-memory restruc-

turing and realignment, and other manipulations are all

effective code transformations for addressing single-

processor cache performance, data locality, and com-

munication cost. Source translation and analysis tools

also uncover data dependencies in parallel routines [2,

4,15]. Finally, source translators may be used for code

transformations unrelated to performance, such as ad-

joint generation for sensitivities and four-dimensional

variational assimilation [5]. Thus, source translation is

a key enabling technology for the single-source devel-

opment of fully integrated, fully portable models.

3. Approach

Parallelizing a weather model for distributed memo-

ry parallel computers involves dividing the horizontal

dimensions of the domain and assigning the resulting

patches to processors. The code is then restructured to

compute only the cells stored locally on each processor

(by modifying DO loops and index expressions). Com-

munication is added to exchange data between proces-

sors. In an explicit model such as MM5, the commu-

nication between processors is nearest neighbor and is

J. Michalakes / The same-source parallel MM5 7

used to update extra memory regions around the lo-

cal partition. Scatter-gather communication is also re-

quired to support the exchange of forcing and feedback

data between nested domains.

Adapting the model to compute over multiple ad-

dress spaces requires modifying the code to execute

only over the local partition on each processor. This

involves modification of loops and indices. There are

two approaches: an index expression represents the in-

dex of a cell either in the global, undecomposed do-

main (global view) or in local memory (local view). In

either case, the actual indexing of model arrays within

the bodies of parallel loops is unaffected; what differs

is the expression of the loop ranges themselves, the

declaration and storage classes of the decomposed ar-

rays, and the subroutine interfaces. The global view

has advantages for new codes, while the local view

has advantages for a same-source parallelization of a

pre-existing code.

In the global view, ranges of parallel loops in a sub-

routine are modified to begin and end at the global in-

dices of the first and last cells on the processor. For-

tran subrange expressions are used to declare locally

sized model arrays whose elements are, nevertheless,

globally indexable. The global view allows all index

expressions within the subroutine – array indices, tests

for boundary conditions, and instances where the val-

ue of an index feeds into the computation – to remain

as-is. However, since each processor’s arrays must be

declared using a different subrange (that is, each pro-

cessor’s set of cells starts and ends at different glob-

al indices), the mapping of arrays to storage must be

dynamic: model arrays must be passed through argu-

ment lists or dynamically allocated. Furthermore, local

decomposed arrays in the subroutine must also be au-

tomatically allocated using subranges, either explicitly

or as stack variables. Automatic storage is allowed in

Fortran-90 but not in Fortran-77.

In the local view, as in the global view, loop ranges

over decomposed dimensions must be modified, but

here they begin and end at local indices of the first

and last cell stored on the processor regardless of their

position within the global domain. This allows array

dimensions to be uniform over processors and avoids

the need to overhaul existing static data structures. It

becomes necessary, however, to translate between lo-

cal and global meaning under certain circumstances:

loop-invariant index expressions (a constant appears as

an index into a decomposed array dimension, for ex-

ample) must be converted from global to local. Index

expressions that appear in tests for position in the do-

main (boundary tests, for example) must be converted

from local to global. Index expressions whose values

feed into the model computation in some way (com-

puting distances between two points based on their grid

indices, for example) must be converted from local to

global.

The global view avoids the need to convert between

global and local indexing, but it requires greater flex-

ibility in declaring and allocating model storage, and

data must be passed between subroutines through ar-

gument lists. The global view should be considered for

new codes or codes undergoing major redesign. The

local view, on the other hand, requires that indices be

treated carefully depending on whether they refer to a

global or local index, but the local view can be used

without overhauling existing static data structures. Be-

cause of this latter feature, the local view was adopted

for the MM5 parallelization.

3.1. Parallel library: RSL

RSL is a Fortran-callable parallel runtime system li-

brary for implementing regular-grid models with nest-

ing on distributed-memory parallel computers. It is

used to encapsulate many of the lower-level parallel

mechanisms that, otherwise, would require extensive

addition and modification to the model source code:

– domain specification, decomposition over proces-

sors, and remapping,

– intradomain communication (stencil exchanges),

– interdomain communication (nest forcing and

feedback),

– local computation on each processor subdomain,

and

– distributed I/O.

RSL is implemented atop lower-level MPI message

passing and is therefore portable to any platform that

supports MPI. RSL and its use in parallelizing MM5

have been described previously [10,11]. Although the

library eliminates a large amount of explicit parallel

mechanism in the code, its use still requires that the

code be modified to compute over local processor sub-

domains (using either the local or the global view de-

scribed above). Therefore, additional encapsulation

and automation are required for a fully same-source

approach.

8 J. Michalakes / The same-source parallel MM5

3.2. Source translator: FLIC

The Fortran Loop and Index Converter, FLIC [9], is

a Fortran compiler with a special-purpose back end for

generating the modified code. It is called as a precom-

piler prior to invocation of the Fortran compiler when

the model is built for distributed memory. Because it

employs full lexical, syntactic, and semantic analysis

of the input Fortran, FLIC is able to transform the code

with minimal direction specified from the command

line or from a small file of FLIC directives. Directives

are not placed in the code itself.

FLIC examines array references within loops and in-

fers which loops are over decomposed dimensions. It

uncovers instances where decomposed dimensions are

indexed by loop-invariant expressions and generates

global to local index translations. FLIC uncovers in-

stances where expressions of parallel loop variables are

used in conditional expressions and generates local-to-

global index translations. FLIC does not do automatic

dependency or interprocedural analysis, which would

be an aid to designing interprocessor communication

within a code to be parallelized. This is not a serious

shortcoming, however, since the data dependencies are

already known and since the primary aim is to mini-

mize the impact of other changes for parallelism on the

model source code.

Parallelizing a large code such as MM5 involves (1)

uncovering and handling data dependencies with com-

munication and (2) modifying the source code to com-

pute over a local processor subdomain rather than the

entire domain. Uncovering data dependencies and de-

signing communication are conceptually difficult but

need doing, essentially, only once. Further, the actu-

al impact on the source code is negligible. The result

of several person-months of effort to analyze depen-

dencies and design communication is six calls to RSL

message-passing subroutines in 2800 lines of the MM5

nonhydrostatic solver. On the other hand, modifying

the code to execute on a local subdomain involves ex-

amining 242 files containing more than 50,000 lines

of Fortran and, within this, identifying and modifying

560 loops over decomposed dimensions, 158 global-

to-local index conversions, and 62 local-to-global in-

dex conversions. Yet the rules for identifying and

implementing these modifications are straightforward,

mechanical, and automatable at model compile time.

Thus, there is a significant role for automation, and even

a relatively simple mechanism such as FLIC provides

enormous benefit.

When the user specifies the distributed-memory par-

allel option to MM5, the build mechanism (UNIX make

utility) automatically invokes FLIC on each source file

before passing it to the Fortran compiler. Input to FLIC

is the subroutine itself and a short specification that in-

cludes the names of key identifiers that are used in the

code to declare north/south and east/west decomposed

dimensions of multidimensional arrays and the names

of subroutines that are called within a loop over a de-

composed dimension. In MM5, as with most large sim-

ulation codes, the identifiers used to dimension phys-

ical dimensions of state arrays are used consistently

over the entire code so that a very small amount of in-

formation may direct the translation across the whole

program.

FLIC examines the array references within the body

of each loop in the subroutine. If it finds that an ex-

pression containing a loop variable is used to index

a decomposed array dimension, the loop statement is

considered to be over that decomposed dimension and

is transformed. FLIC is able to determine which ar-

ray dimensions are decomposed by whether they are

declared using an identifier that was specified as a key

identifier. In case the range of the loop statement also

includes an expression with the key identifier, FLIC

assumes that loop is already intended to iterate over the

local memory rather than the logical domain and does

not transform it. One finds instances of this in MM5

where the program is setting arrays to zero or some

other initial value. As an example, FLIC is told that

MIX is a key identifier that declares the north/south

dimension of the domain and MJX is a key identifier

that declares the east/west dimension and then invoked

on the following (fictitious) code fragment:

SUBROUTINE HADV (FTEN, UA, ...)

PARAMETER (MIX = ..., MJX = ...,

MKX = ...)

REAL FTEN (MIX, MKX), UA (MIX,

MJX, MKX)

DO K = 2, KL-1

DO I = 1, MIX

FTEN(I,K)=0. ! (1)

END DO

DO J = 2, JL-1

DO I = 2, IL-1

FTEN(I,K)=FTEN(I,K)-UA(I+1,J+1,K)

+UA(I,J+1,K)) ! (2)

END DO

END DO

END DO

J. Michalakes / The same-source parallel MM5 9

On inspection of the triply nested loop body (2),

FLIC finds that loop variable I indexes the first dimen-

sion of the array FTEN and infers that the I-loop is

over the decomposed north/south dimension because

the first dimension of FTEN was declared using MIX.

The second dimension of FTEN is dimensioned with

MKX, which FLIC knows nothing about, so the K-loop

is left alone. The J loop is recognized as an east/west

decomposed dimension when FLIC encounters the sec-

ond index of the array UA. The index expression in-

volves a loop variable, J, and FLIC knows that this di-

mension is east/west decomposed because it is dimen-

sioned using MJX. FLIC also recognizes that the first

I-loop (1) is over a decomposed dimension, but this

loop is not translated because it runs from 1 to MIX,

one of the key identifiers.

FLIC replaces DO statements for decomposed di-

mensions with macros that are expanded to what the

Fortran compiler sees (transformations underlined):

SUBROUTINE HADV (FTEN, UA, ...)

PARAMETER (MIX = ..., MJX = ...,

MKX = ...)

REAL FTEN (MIX, MKX), UA (MIX,

MJX, MKX)

DO K = 1, KL-1

DO I = 1, MIX

FTEN (I,K) = 0.

END DO

do j = js(2), je(JL-1)

do i = is(2), ie(IL-1)

FTEN(I,K)=FTEN(I,K)-UA(I+1,J+1,K)

+UA(I,J+1,K))

enddo

enddo

END DO

The starting and ending indices for the local proces-

sor subdomain are computed at run time by the RSL

library and stored in the integer arrays js, je, is, and ie.

FLIC generates macros rather than the transformation

itself to allow targeting other libraries than RSL.

FLIC also recognizes instances where loop invari-

ant expressions are used to index a decomposed di-

mension of an array. This results in a global-to-local

index conversion. Finally, FLIC recognizes instances

where a loop variable from a decomposed loop is used

in a conditional, for example, a boundary test or other

check for position within the global domain. This re-

sults in a local-to-global index conversion. Additional

information and examples may be found in [9].

4. Results

Two criteria are used to assess the effectiveness of
a same-source parallelization: impact on source code
and model performance.

One measure of impact is a count of the number of
source lines that are added or changed specifically for
distributed-memory parallelism. As noted earlier, the
number of source lines affected without FLIC or any
other mechanism would be enormous and would pre-
vent a same-source implementation of DM-parallelism
in a pre-existing code. As shown in Table 1, FLIC is
effective at eliminating all but a small fraction of source
lines specific to distributed memory parallelism: 3.6
percent of the more than 50,000 source lines. The dif-
ferences appear mostly in sections of the model where
the changes for parallelism fall outside the loop and in-
dex translation FLIC is designed to handle, such as I/O,
nesting, model initialization, and four-dimensional data
assimilation. Other differences stem from calls to com-
munication routines in the RSL library. The remainder
of DM-parallel specific lines of code is hidden using
conditional compilation and file-include directives of
the UNIX C-preprocessor, CPP. The last two columns
of Table 1 show the effect of using both FLIC and CPP
to automate and hide lines of code relating to distribut-
ed memory. The second and third columns of Table 1
are more relevant to developers and maintainers of the
code. The additional use of CPP to hide DM-parallel
code is to avoid bothering non-DM parallel (worksta-
tion, shared-memory, and vector supercomputer) users
with such details.

Figure 1 shows performance results in both Mflop
per second and in hours of simulation per wall-clock
compute-hour on a variety of platforms. The EV56 Be-
owulf timings were conducted on the 64-node Centuri-
on II system at the University of Virginia.1 Each node
has one 533 Mhz Alpha EV56 processor. The mod-
el was run using MPI-over-Myrinet message-passing
between single-threaded processes. The Compaq EV6
Cluster is an eight-node ES40 system at NCAR with
four 500 Mhz Alpha EV6 processors per node. MM5
was run using message-passing between MPI process-
es, each running one, two, or four OpenMP threads.
For each number of processors, only the fastest com-
bination of shared and distributed memory is shown. 2

1MM5 performance data on the Centurion cluster was provided

by Greg Lindahl, HPTi. Information on Centurion is available at

http://www.cs.virginia.edu/˜legion/centurion.
2Additional information is available at http://www.mmm.ucar.edu/

mm5/mpp/helpdesk/20000106.html.

10 J. Michalakes / The same-source parallel MM5

Table 1

Impact on MM5 source

1. 2. 3. 4. 5.

Number of Lines Differing Percent Lines Differing Percent

Lines with FLIC with FLIC and CPP

Dynamics 3367 270 8.02 17 0.50

Physics 31097 135 0.43 135 0.43

FDDA 3982 179 4.50 91 2.29
Infrastructure 15066 1359 9.02 329 2.18

Total 53512 1943 3.63 572 1.07

The SGI Origin2000 timings were obtained in dedicat-

ed (exclusive access) mode on 64- and 128-processor

configurations of MIPS R12000 300 Mhz processors

at SGI. The model was run as multiple single-threaded

MPI processes.3 The first set of IBM SP timings were

obtained on the IBM Winterhawk-I system at NCAR

which has two Power3 200 Mhz CPUs per node. The

model was run with one MPI process per node, each

running two OpenMP threads. The second set of IBM

SP timings were obtained on a Winterhawk-II system

at Air Force Weather Agency which has four 375 Mhz

Power3 CPUs per node.4 The model was run using four

MPI processes per node (no OpenMP). The Pentium-

III Beowulf timings were conducted on the Argonne

National Laboratory Chiba City cluster.5 The compute

nodes are dual Pentium-III (500 Mhz), connected via

100baseT Ethernet. The model was run straight-MPI

using only one processor per node.

The Fujitsu timings were obtained on a VPP5000

installed at the Central Weather Bureau in Taiwan. The

VPP5000 is a distributed-memory machine with vector

processors, linked by a high-speed crossbar. The mod-

el was run using Fujitsu’s implementation of MPI and

with a one-dimensional data decomposition to preserve

vector length in the I-dimension. The Cray T90 timings

were obtained on the Cray T932 at the NOAA Geo-

physical Fluid Dynamics Laboratory. All timings were

obtained in dedicated usage mode and show elapsed

time except for the one-processor time, which was col-

lected in non-dedicated mode and shows CPU time.

All multi-CPU runs were shared-memory Cray micro-

tasked runs (using CMIC$ directives). The T90 was al-

so used to determine the floating-point operation count

upon which the Mflop per second estimates in Fig. 1

are based.

3Model performance data on the Origin was provided by Wesley
Jones, SGI Corp.

4Model performance data on the IBM WH2 system was provided

by Keith North, IBM Corp.
5See http://www.mcs.anl.gov/chiba.

All runs were of a 36-kilometer resolution domain

over Europe; the grid consisted of 136 cells in the

east/west dimension, 112 north/south, and 33 vertical

layers (503,000 cells). The operation count for this

scenario is 2,398 million floating point operations per

model time step (81 seconds). I/O and model initial-

ization were not included in the timings. All timings

except the T90 runs were performed at single (32-bit)

floating-point precision. Scaling was measured as the

speedup divided by the factor of increase in the number

of processors. The results were as follows:

– Futisu VPP5000, 1 to 10 CPU (1,512 to 11,951

Mflop/second) 79%

– EV56 Alpha Beowulf machine, 4 to 64 CPU (575

to 5,938 Mflop/sec), 65%

– Compaq EV6 Cluster (ES40), 1 to 32 CPU (266

to 6,244 Mflop/sec), 73%

– SGI Origin, 1 to 120 processors (158 to 15,080

Mflop/sec), 80%

– IBM SP WH1, 2 to 128 CPU (155 to 8,594

Mflop/sec), 87%

– IBM SP WH2, 4 to 48 CPU (708 to 7,252

Mflop/sec), 85%

– Pentium-III Beowulf, 1 to 64 CPU (99 to 2,858

Mflop/sec), 45%

– Pentium-III Beowulf, 1 to 32 CPU (99 to 1,988

Mflop/sec), 63%

– Cray T90, 1 to 20 CPU (569 to 8,472 Mflop/sec),

74%

A source of parallel inefficiency is communica-

tion overhead, primarily within the time-split por-

tion of the solver, which involves communication

and relatively little computation at each of a num-

ber of small time steps, compared with the main

physics/advection/diffusion time step. Another source

of inefficiency is load imbalance, stemming primari-

ly from the fact that the number of processors usually

does not evenly divide the number of grid cells in a

horizontal dimension, but also from reduced work at

domain boundaries and uneven computational load in

J. Michalakes / The same-source parallel MM5 11

Processors

0 20 40 60 80 100 120 140

16000

14000

12000

10000

8000

6000

4000

2000

0

541

473

405

338

270

203

135

68

0

Fujitsu VPP5000

IBM SP WH2

Cray T90

SGI 02000

IBM SP WH1

Pentium III Beowulf

EV56 BeowulfCompaq EV6

Fig. 1. MM5 floating-point performance on various platforms.

model physics. Performance and scaling of the same-

source parallel MM5 are consistent with earlier, hand-

parallelized implementations of the model.

5. Conclusion

The set of architectures available to users of the

Penn State/NCAR MM5 has been expanded to in-

cluded distributed-memory parallel computers, provid-
ing cost-effective scalable performance and memory

capacity for large problem sizes. The same-source

approach uses high-level parallel library and source-

translation technology for adapting MM5, simplifying
maintenance and allowing new physics modules to be

incorporated without modification. The approach facil-

itates maintenance of the DM-parallel option to MM5

as an option within the official version, rather than as
a separate stand-alone version. As a result, the DM-

parallel option to MM5 (now at Version 3.3) has been

a part of eight subsequent model releases since MM5

Version 2.8 in March 1998. The same-source approach

is applicable to other, similarly constructed codes when
there is a need or desire to develop the code for dis-

tributed memory parallel machines without impacting

the pre-existing source code. The approach is also

compatible with pre-existing loop-level multithread-
ing directives so that the code will run in distributed-

memory/shared-memory mode on SMP clusters.

The fact that MM5 is a fully explicit model is a

convenient simplification that may not be available in

other models, many of which employ implicit meth-

ods in their horizontal dynamics [1]. Future work in-

volves adapting and expanding this approach to incor-

porate other computational techniques, including spec-

tral, semi-implicit, and other methods with nonlocal da-

ta dependencies. Another focus will be on augmenting

source code analysis and translation to address cache

and other performance portability issues. Same-source

tools and techniques provide a reasonable approach to

obtaining good performance over the range of high-

performance computers from a single version of a pre-

exising model source code.

References

[1] Baillie, C., J. Michalakes and R. Skålin, Regional Weather

Modeling on Parallel Computers, in: Parallel Computing 23

(1997), 2135–2142.

[2] Evans, E.W., S.P. Johnson, P.F. Leggett and M. Cross, Auto-
matic Code Generation of Overlapped Communications in a

Parallelisation Tool, in: Parallel Computing 23 (1997), 1493–

1523.

[3] Foster, I. and J. Michalakes, MPMM: A Massively Parallel

Mesoscale Model, in: Parallel Supercomputing in Atmospher-

ic Science, G.R. Hoffmann and T. Kauranne, eds., World Sci-

entific, River Edge, New Jersey, 1993, pp. 354–363.
[4] Friedman, R., J. Levesque and G. Wagenbreth, Fortran Par-

allelization Handbook, Applied Parallel Research Inc., Sacra-

mento, 1995.

[5] Goldman, V. and G. Cats, Automatic Adjoint Modeling within

a Program Generation Framework: A Case Study for a Weath-

er Forecasting Grid-Point Model, in: Computational Differen-

tiation, M. Berz, C. Bischof, G. Corliss and A. Griewank, eds.,

12 J. Michalakes / The same-source parallel MM5

Society for Industrial and Applied Mathematics, Philadelphia,

1995, pp. 184–194.

[6] Grell, G.A., J. Dudhia and D.R. Stauffer, A Description of the

Fifth-Generation Penn State/NCAR Mesoscale Model (MM5),

Tech. Rep. NCAR/TN-398+STR, National Center for Atmo-

spheric Research, Boulder, Colorado, 1994.

[7] Hempel, R. and H. Ritzdorf, The GMD Communications Li-

brary for Grid-oriented Problems, Tech. Rep. GMD-0589,

German National Research Center for Information Technolo-

gy, 1991.

[8] Kohn, S.R. and S.B. Baden, A Parallel Software Infrastructure

for Structured Adaptive Mesh Methods, in: Proceedings of

Supercomputing ’95, IEEE Computer Society Press, 1996.

[9] Michalakes, J., FLIC: A Translator for Same-source Paral-

lel Implementation of Regular Grid Applications, Tech. Rep.
ANL/MCS-TM-223, Mathematics and Computer Science Di-

vision, Argonne National Laboratory, Argonne, Illinois, 1997.

[10] Michalakes, J., MM90: A Scalable Parallel Implementation of

the Penn State/NCAR Mesoscale Model (MM5), in: Parallel

Computing 23 (1997), 2173–2186.

[11] Michalakes, J., RSL: A Parallel Runtime System Library for

Regional Atmospheric Models with Nesting, in: Structured

Adaptive Mesh Refinement (SAMR) Grid Methods, S. Baden,

N. Chrisochoides, D. Gannon and M. Norman, eds., IMA

Volumes in Mathematics and its Applications (117), Springer,

New York, 2000, 1997, pp. 59–74.

[12] Michalakes, J., J. Dudhia, D. Gill, J. Klemp and W. Ska-

marock, Design of a Next-Generation Regional Weather Re-

search and Forecast Model, in: Towards Teracomputing, W.

Zwieflhofer and Norbert Kreitz, eds., World Scientific, River
Edge, New Jersey, 1998, pp. 117–124.

[13] Parashar, M. and J.C. Browne, Distributed Dynamic Data-

Structures for Parallel Adaptive Mesh-Refinement, Proceed-

ings of the International Conference for High Performance

Computing, 1995, pp. 22–27.

[14] Rodriguez, B., L. Hart and T. Henderson, A Library for

the Portable Parallelization of Operational Weather Forecast

Models, in Coming of Age: Proceedings of the Sixth ECMWF
Workshop on the Use of Parallel Processors in Meteorology,

World Scientific, River Edge, New Jersey, 1995, pp. 148–161.

[15] Sawdey, A. and M. O’Keefe, Program Analysis and Over-

lap Area Usage in Self-Similar Parallel Programs, in Lan-

guages and Compilers for Parallel Computing, number 1035 in

Lecture Notes in Computer Science, Springer-Verlag, Berlin,

1997.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

