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Abstract

The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be
evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs),
we find that g− i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than
with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs
with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to
correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower
residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for
trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the
strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in
order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and
interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP
than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global
stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two
mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of
compactness-driven quenching mechanisms; and/or (b) as fossil records of the SFR gasS µ S relation in their
disk-dominated progenitors.

Key words: galaxies: evolution – galaxies: fundamental parameters – galaxies: kinematics and dynamics

1. Introduction

Studying the stellar population (SP) of a galaxy is key to

understanding its formation and evolution. By using different

parameters, we can piece together various aspects of the

galaxy’s history. Photometric colors provide a robust, directly

observable parameter for analyzing SPs (e.g., Tinsley 1980).

However, many SP parameters appear to be degenerate in

optical photometry; for example, age, metallicity, and red-

dening due to dust extinction. This restricts the accuracy of SP

analyses using colors. Early spectroscopic observations

identified spectral features that have varying dependencies on

these parameters, allowing us to break the apparent degeneracy

and obtain well constrained SP parameters (Worthey 1994).

One popular method is the Lick indices system, which uses the

strength of specific optical absorption lines to quantify galaxy

SPs (Worthey et al. 1994). SP properties such as age, [Z/H],

and [α/Fe] are then obtained by comparing values of specific

Lick indices with SP models.

The well known SP–stellar mass correlation is often
considered evidence of stellar mass driving SP evolution
(e.g., Gallazzi et al. 2005; Peng et al. 2010; Davé et al. 2011).
Even so, SP parameters correlate with several other galaxy
properties including velocity dispersion, large-scale environ-
ment, and surface brightness, making it unclear which
correlations are causal and which are the result of another
underlying trend (Nelan et al. 2005; Thomas et al. 2005;
Sánchez-Blázquez et al. 2006, Smith et al. 2007; Franx
et al. 2008; Graves et al. 2009a, 2009b; Wake et al. 2012;
McDermid et al. 2015). Without understanding the observa-
tional uncertainty on these parameters, we cannot know the
intrinsic scatter, and hence which relations are fundamentally
tighter. Additionally, many SP analyses have relied on single-
fiber spectroscopy, which is subject to aperture bias (e.g.,
6dFGS; Jones et al. 2004, SDSS; York et al. 2000, GAMA;
Driver et al. 2011). Radial trends within galaxies combined
with aperture bias can produce spurious global trends; for
example, the radial metallicity trend within early-type
galaxies (ETGs) can appear as a trend between global
[Z/H] and size.
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More recent surveys instead use integral-field spectroscopy,
sampling the light across most of the galaxy and so mitigating
aperture effects (e.g., SAURON: de Zeeuw et al. 2002;
ATLAS3D: Cappellari et al. 2011; CALIFA: Sánchez et al.
2012; MaNGA: Bundy et al. 2015). We use data from the
Sydney-AAO Multi-object Integral-field (SAMI) Galaxy Survey
(Bryant et al. 2015), an integral-field survey using the SAMI
instrument (Croom et al. 2012). This paper is followed by a
companion paper by F. D’Eugenio et al. (2018 in preparation,
hereafter Paper II). Here, our analysis focuses on the SPs of
morphologically selected ETGs from SAMI; Paper II focuses on
constraining color relations using color-selected samples from the
Galaxy And Mass Assembly survey (GAMA; Driver et al. 2011)
as well as SAMI. Our aim is to build on recent studies examining
SP trends with aperture velocity dispersion σ (Graves et al. 2009a;
Thomas et al. 2010; Wake et al. 2012) and surface densityΣ (Scott
et al. 2017). We want to understand which relations have the
lowest intrinsic scatter, in order to distinguish between funda-
mental correlations, and what is the result of some other underlying
trend. However, the absolute intrinsic scatter is difficult to measure
because it depends strongly on the assumed measurement
uncertainties. Instead, we can use the necessary condition that,
due to the nonzero uncertainty on radius R, MR x must have a
higher observational uncertainty than M alone (for x 0¹ ). Using
this principle and comparing the observed scatter about the fits, we
can rank the relations based on their relative intrinsic scatter. With
this approach, we study the correlations between SP and galaxy
structural parameters, specifically mass M, gravitational potential
Φ∝M/R, and surface density Σ∝M/R2. For each structural
parameter, we define two estimators, one based on spectroscopic
velocity dispersion (henceforth, called the spectroscopic estima-
tors), the other based on photometric stellar masses (the
photometric estimators). Within each set of estimators (i.e., the
spectroscopic or photometric), the three structural parameters differ
only by factors of the effective radius, allowing us to directly
compare the observational uncertainty and hence infer the relative
intrinsic scatter in the relations. We also look at the residuals of
each trend with galaxy size. With this robust analysis, we aim to
determine the primary physical factors determining galaxy SPs,
and the mechanisms which drive their evolution. Throughout this
paper, we assume a ΛCDM universe with Ωm=0.3, Ωλ=0.7,
and H0=70 km s−1Mpc−1.

2. The SAMI Galaxy Survey

The SAMI Galaxy Survey is a presently ongoing, integral-
field survey aiming to observe up to 3400 galaxies by the end
of 2018. The survey uses the SAMI instrument installed on the
3.9 m Anglo-Australian Telescope, connected to the AAOmega
spectrograph (Sharp et al. 2006; see Sharp et al. 2015 for data
reduction). The sample is mass selected; however, the mass
limit varies depending upon the redshift range. Details of the
target selection and input catalogs are described in Bryant et al.
(2015), with the cluster galaxies further described in Owers
et al. (2017). The SAMI spectrograph uses 13 fused-fiber
hexabundles (Bland-Hawthorn et al. 2011; Bryant et al. 2014),
each composed of 61 individual fibers, tightly packed to form
an approximately circular grid 15 arcsec in diameter. We use
data from internal release v0.9.1, comprising 1380 galaxies
with low redshifts (z<0.1) and a broad range of stellar masses
107<M*<1012 (Allen et al. 2015; see Green et al. 2018 for
data release 1). We define a subsample of 625 ETGs having a
visual morphological classification of elliptical, lenticular, or

early spiral (Cortese et al. 2016). Excluding early spirals from
our sample does not change our conclusions.
We experimented with different samples, including a mass-

function weighted sample using weights based on the stellar
mass function of Kelvin et al. (2014), which gives the effective
number of galaxies per unit volume in a stellar mass interval.
The weights were calculated by taking the ratio between the
stellar mass function, and the actual number of observed SAMI
galaxies in each stellar mass interval. The results of this
analysis are summarized in Table 1, alongside the results of the

analysis without weights. We find consistent results between
the original SAMI sample (which is mass-limited in redshift
bins) and the mass-function weighted sample (which approx-
imates a sample with a single mass limit). Since the two
analyses are consistent, to avoid overdependence on this
theoretical model, we focus our analysis on the results without
weights.
We use g− i color as a simple, directly observable parameter

for comparing SPs; we use the dust-uncorrected values to
remain model-independent. For the ETG subsample, we use the
single-burst equivalent, luminosity-weighted SP parameters
age, metallicity [Z/H], and α-element abundance [α/Fe] from
Scott et al. (2017). Stellar masses, M*, were obtained from

g− i color by Bryant et al. (2015) and Owers et al. (2017)
following the method of Taylor et al. (2011):

M

M
g i Mlog 1.15 0.70 0.4 , 1i10 rest* = + - -


( ) ( )

where Mi is the rest frame i-band absolute AB magnitude and

M* has solar mass units.
Effective radii (Re) were measured using Multi-Gaussian

Expansion modeling (Cappellari 2002) from r-band images
(Paper II); Re is the projected, circularized radius enclosing half
the total light. The luminosity-weighted, line-of-sight velocity
dispersion (σ) within 1Re was then measured as in van de
Sande et al. (2017).
We define spectroscopic estimators for the gravitational

potential Φ∝σ2 and surface density Σ∝σ2/Re by assuming
galaxies are structurally homologous and in virial equilibrium.
We use the virial theorem to also define the spectroscopic
(dynamical) mass proxy MD≡σ

2Re/(3G) (the arbitrary one-
third scaling factor conveniently makes MD span the same
range as M*). Further assuming a uniform dark matter fraction
within 1Re, we define the photometric estimators Φ∝M*/Re

and Σ∝M*/Re
2. Hence we have two independent methods for

estimating mass, gravitational potential, and surface density:
M*, M*/Re, and M*/Re

2 rely solely on photometry, whereas

MD, M RD e, and M RD e
2 also use spectroscopy. In the limit

that galaxies are virialized and have the same mass-to-light
ratio, these measures would be proportional. See Paper II for a
comparison of M* and MD. We note that M* is calculated
under the assumption of a uniform Chabrier (2003) initial mass
function (IMF). However, the IMF may vary systematically
with stellar mass-to-light ratio, leading to an underestimated
M* for massive galaxies (Cappellari et al. 2012). Despite this
bias, the photometric results are remarkably consistent with the
spectroscopic results, and are included to provide an indepen-
dent measure for each structural parameter with uncorrelated
uncertainties. In addition, photometric observations are
significantly less expensive than spectroscopy.

2
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3. Methods and Results

We fit linear relations via a maximum likelihood optimization
followed by Markov Chain Monte Carlo integration (Goodman
& Weare 2010). The data is modeled as a two-dimensional
Gaussian, which avoids bias inherent to orthogonal or parallel
least-squares regressions (see, e.g., Magoulas et al. 2012). The
log-likelihood function is optimized using the method of
Differential Evolution (Storn & Price 1997). For all the relations
except for age, we perform outlier rejection by omitting points
that lie outside the 90% contour line. Due to the larger scatter, in
the age relations, we perform the outlier rejection at the 80%
contour. We calculate the root-mean-square about the Gaussian
model fit (rmsG), which is displayed at the top left on each panel.

In order to assess whether the linear fit is an accurate model,
we compute a running median using equally sized bins in log-
space. For all the correlations that we consider to be physically
motivated, the running median closely follows the log-linear
fits, supporting our choice of model. The rms about the running
median (rmsrm) is shown at the bottom left in the panels.

For each relation, we also fit the residuals about the Gaussian
model as a function of Re, using the same method as for the
main relation. These residual fits indicate which of M, Φ, or Σ
best encapsulates the SP parameter’s dependence on galaxy
size. The errors from the initial fit are incorporated into the
uncertainty on the residual values, which in turn is taken into
account when fitting the residuals.

We use rmsG and rmsrm to determine the quality of the
relation, and the Spearman coefficient (ρS) to define the
significance of the trend. We estimate the uncertainties on each

parameter by full integration of the posterior distribution. Our
results remain unchanged whether we use the median absolute
deviation or rms.
Due to the relatively small sample size, plane fits of SP

parameters as log-linear combinations of MD (or M*) and Re

were poorly constrained, and hence omitted.
We first compare how g− i color trends with the

photometric estimators M*, M Re*
, and M Re

2

*
using both

the full sample and the ETG subsample. Although M* has an
explicit dependence on g− i color, we also use M* to estimate
all three proxies, so any bias due to this explicit dependence
will not affect the comparison. For an analysis using spectral
energy distribution masses, see Paper II. We can rule out a
correlation in the uncertainties due to random errors on M* and
Re, because Re uses r-band photometry whereas M* uses g- and
i-band magnitudes. We then use the ETG subsample to fit
[Z/H], age, and [α/Fe] as functions of M, Φ, and Σ using both
the spectroscopic and photometric measures.
We perform an identical analysis on the mass-function

weighted sample, and summarize the results in Table 1. Given
that the analyses show consistent results, in this section, we
focus on the unweighted analysis.

3.1. g− i Color

Figure 1(a) shows g− i color as a function of M* for the full
sample, and exhibits the well-documented bimodal trend of
color–mass diagrams, with galaxies forming a red sequence
(RS) and blue cloud (BC). As the contour lines reveal, the RS
and BC do not align in color–M* space, and so the best-fit line

Table 1

Summary of the Results for Both the Unweighted, and the Mass-function Weighted Analyses

Unweighted Mass-function Weighted

Y-axis X-axis rmsG ρS
a

a

r

rD rmsrm rmsG ρS
a

a

r

rD rmsrm

g iall- M
*

0.1589±0.0004 0.78 19.7 0.1586 0.1589±0.0004 0.78 19.8 0.1586

g iall- M Re*
0.1269±0.0005 0.87 9.0 0.1277 0.1269±0.0005 0.87 7.1 0.1277

g iall- M Re
2

*
0.1438±0.0008 0.82 −13.9 0.1370 0.1438±0.0008 0.82 −16.4 0.1370

g iETG- M
*

0.0910±0.0004 0.50 7.3 0.0896 0.0962±0.0004 0.50 10.0 0.0954

g iETG- M Re*
0.0816±0.0012 0.67 2.7 0.0786 0.0839±0.0014 0.67 5.2 0.0797

g iETG- M Re
2

*
0.0929±0.0014 0.44 −11.5 0.0891 0.0961±0.0015 0.45 −9.6 0.0918

[Z/H] MD 0.1678±0.0003 0.38 4.7 0.1664 0.1866±0.0004 0.37 5.0 0.1855

[Z/H] MD/Re 0.1534±0.0002 0.47 3.6 0.1531 0.1708±0.0006 0.50 2.6 0.1719

[Z/H] M RD e
2 0.1750±0.0002 0.44 −6.2 0.1738 0.1834±0.0005 0.43 −5.3 0.1829

[Z/H] M
*

0.1647±0.0003 0.40 7.5 0.1647 0.1773±0.0003 0.41 6.7 0.1776

[Z/H] M Re*
0.1549±0.0015 0.50 3.0 0.1515 0.1652±0.0013 0.53 1.0 0.1648

[Z/H] M Re
2

*
0.1766±0.0012 0.41 −11.2 0.1736 0.1876±0.0009 0.39 −10.0 0.1855

Age MD 0.2283±0.0024 0.15 10.3 0.2275 0.2281±0.0024 0.17 8.7 0.2264

Age MD/Re 0.2183±0.0045 0.42 10.0 0.2095 0.2137±0.0046 0.47 9.0 0.2053

Age M RD e
2 0.1993±0.0041 0.57 −0.6 0.1911 0.1954±0.0044 0.60 −0.5 0.1867

Age M
*

0.2330±0.0045 0.10 14.9 0.2253 0.2370±0.0045 0.14 8.3 0.2312

Age M Re*
0.2484±0.0113 0.39 7.4 0.2045 0.2391±0.0106 0.45 5.8 0.2019

Age M Re
2

*
0.2389±0.0098 0.47 −7.1 0.2047 0.2348±0.0102 0.47 −6.0 0.2029

[α/Fe] MD 0.1049±0.0007 0.32 7.8 0.1046 0.1072±0.0006 0.27 4.9 0.1075

[α/Fe] MD/Re 0.0961±0.0007 0.49 3.6 0.0946 0.0999±0.0009 0.43 4.0 0.0982

[α/Fe] M RD e
2 0.0963±0.0007 0.51 −5.4 0.0954 0.1009±0.0010 0.45 −3.6 0.0983

[α/Fe] M* 0.1094±0.0007 0.21 2.1 0.1084 0.1110±0.0007 0.20 2.9 0.1103

[α/Fe] M Re*
0.1032±0.0015 0.39 1.0 0.1019 0.1073±0.0018 0.34 0.8 0.1056

[α/Fe] M Re
2

*
0.1076±0.0014 0.30 −6.7 0.1066 0.1099±0.0013 0.23 −5.2 0.1087

Note.rmsG and rmsrm indicate the rms values about the Gaussian model fit, and the running median respectively. ρS represents the Spearman correlation coefficient.
a

a

r

rD
Shows the σ significance of the residual trend with size, where ar is the slope of the residual trend with 1σ uncertainty Δar.
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does not accurately model the distinct distributions; it simply
provides a reference for comparison of the RS and BC
alignment for the different relations. The colorscale indicates
galaxy size and shows a strong residual trend, implying that, at
a fixed mass, size contains additional information on g− i

color. By comparison, Figure 1(b) shows that in the
color–M Re*

diagram the residual trend with size is signifi-
cantly less; furthermore, the RS and BC are better aligned in
Figure 1(b), as is apparent from the contours and demonstrated
by the lower rmsG=0.127 (see rmsG=0.159 for color–M*).
Similarly, comparing color as a function of M Re*
(Figure 1(b)) and of M Re

2

*
(Figure 1(c)), the rms values are

smaller and the residual trend with size is less significant for
color–M*/Re.

The bottom row of Figure 1 shows these relations for the
ETG subsample (effectively for the RS only). For ETGs,
g− i color has a stronger and tighter relation with M*/Re

compared to either M* or M Re
2

*
, and less residual trend with

size. By construction, M*/Re necessarily has a larger
observational uncertainty than M* alone, as M*/Re includes
the uncertainty on both M* and Re. Yet the color–M*/Re

relation shows less scatter than color–M*, therefore
color–M*/Re must have significantly lower intrinsic scatter.
Furthermore, color–M*/Re has a higher Spearman coefficient
of ρS=0.666, compared to ρS=0.501 and 0.444 for M*

and M Re
2

*
respectively. In Paper II, we find similar results

for the BC: color–M*/Re has less scatter and less residual
trend with size compared to color–M*. For both the total
sample and the ETG subsample, compared to trends with M*

and M Re
2

*
, the color–M*/Re relation has the lowest rms

values, least residual trend with size, and highest ρS.

3.2. Metallicity

In Figure 2, we show the relations between [Z/H] and M, Φ,
and Σ; the top row uses spectroscopic virial masses and the
bottom row photometric stellar masses. We see consistent
results between the spectroscopic and photometric mass
estimators. With increasing power of Re, the residual trend
with size goes from negative in the [Z/H]–M relations, to close
to zero for [Z/H]–Φ, and finally to positive for [Z/H]–Σ. The
[Z/H]–Φ relations also have the tightest and most significant
correlations; [Z/H]–M*/Re has an rmsG=0.155, whereas the
rmsG values for [Z/H]–M* and [Z/H]–M Re

2

*
are higher by

7σand 14σ respectively. Given the higher observational
uncertainty on M*/Re than M* alone, the lower rms for
[Z/H]–M Re implies this relation must also have a lower
intrinsic scatter than [Z/H]–M. For the spectroscopic estima-
tors, MD/Re∝σ

2 and hence has a lower observational

uncertainty than MD and M RD e
2, and so we cannot comment

on the relative intrinsic scatter about these trends. The result is,
however, consistent with the photometric estimators, with
[Z/H]–MD/Re showing the lowest rms. The two [Z/H]–Φ

relations also show the highest ρS.

3.3. Age

We show the results of our analysis for age in Figure 3.
There is more scatter in the age relations than in the other SP

Figure 1. g − i color vs.M*,M*/Re, andM Re
2

*
for the full sample (top row) and for the ETG subsample (bottom row). The solid red line is the best-fit linear relation

and the dashed red lines indicate the rms about this fit. The rms of the best-fit line (rmsG) with its 1σ uncertainty is given at the top of each panel, along with the
Spearman coefficient ρS. The black diamonds show the running median in evenly spaced bins, and the rms about this running median (rmsrm) is shown in the bottom
left of the panels. The contours enclose 60% and 80% of the data. The colorscale indicates Re in units of log(kpc). The inset panels show the best-fit residuals as a
function of log Re. The slope of the residual trend ar is displayed at the top of each inset. For both the full SAMI sample and the ETG subsample, the color–M*/Re

relations (panels b and e) have less scatter (lower rmsG and rmsrm), are more significant (higher ρS), and have less residual trend with radius (demonstrated by the inset

panels) compared to the relations with M* or M Re
2

*
.

4
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parameters, most likely because age is more sensitive to recent
bursts of star formation (Serra & Trager 2007). Despite this
larger scatter, we see statistically significant results.

Age is well-known to have a dependence on galaxy mass
(e.g., Kauffmann et al. 2003; Gallazzi et al. 2005; Thomas
et al. 2010; McDermid et al. 2015); however, age–MD (Figure 3
(d)) shows only a weak correlation, and a large residual trend
with size. Age–MD also has a lower Spearman coefficient than
MD/Re and M RD e

2. Focusing instead on Σ, we see that

age–M RD e
2 has the lowest rmsG=0.200, the highest Spearman

coefficient ρS=0.570, and a residual trend with size statistically
consistent with zero (within 1σ). M RD e

2 and MD have the same
observational uncertainty, which is by construction greater than
the uncertainty for MD/Re. The notably lower rms for

age–M RD e
2 therefore implies that the intrinsic scatter in this

trend must also be significantly lower. We find consistent results
for the photometric estimators; M Re

2

*
has the lowest intrinsic

scatter and largest ρS. However, there are large residual trends
with size for all three photometric parameters, likely due to the
large scatter in the age measurements.

3.4. α-enhancement

Lastly, Figure 4 shows the results for [α/Fe]. Of the three
structural parameters investigated, the [α/Fe]–M relations are
the weakest. The [α/Fe]–M trends (Figures 4(a) and (d)) have
the lowest Spearman coefficients and highest rms values.
On the other hand, it is unclear whether [α/Fe] trends better
with Φ or Σ. Overall, the [α/Fe]–Φ relation tends to have a
lower residual trend with size compared to [α/Fe]–Σ: ar=
−0.09 and −0.03 for Figures 4(b) and (e) compared to 0.11 and
0.18 for Figures 4(c) and (f). The difference is only marginal, and

for the other measures (rmsG, rmsrm, and ρS) there is no clear
improvement of one over the other. The same is true for the
results of the mass-function weighted analysis (see Table 1); the
[α/Fe]–Φ relations have slightly lower rms values, but the
strength of ρS and the residual trends with radius are the same
within the uncertainties. It is clear that both mass and size are
important in determining [α/Fe]; however, from these results, it
is not clear whether Φ or Σ better represents this dependence.

4. Discussion

For each SP parameter, we compared the correlations with
M, Φ, and Σ in three ways. First, we use the rms values, in
conjunction with the relative observational uncertainty on the
parameters, to understand the relative intrinsic scatter. Second, we
fit the residuals of the Gaussian model as a function of galaxy
size, and use the value of the slope to determine which structural
parameter best encapsulates the SP parameter’s dependence on
size. Third, we use the Spearman correlation coefficient ρS as a
nonparametric assessment of the strength of the correlations. We
find our log-linear relations to be adequate representations of the
data, as indicated by the linearity of the running median and the
similarity of the rms values for the Gaussian model and running
median fits. Given this, we are able to compare the rms values for
different fits to determine which structural parameter is the best
predictor for the SP parameter in each case.
From our analysis, we find clear results that show that the SP

parameters g− i color and stellar metallicity [Z/H] correlate
best with the depth of the gravitational potential Φ, while SP
age trends best with surface density Σ. On the other hand, the
results for [α/Fe] are not so clear; the [α/Fe]–Φ relations are
only slightly better than [α/Fe]–Σ, although both are
appreciably better than the relations with M.

Figure 2. [Z/H] vs. M, Φ, and Σ for ETGs. The top row uses the spectroscopic estimator M RD e
2sµ , the bottom row uses the purely photometric M*. The inset

panels show the best-fit residuals as a function of log Re (other details are the same as those for Figure 1). For both the spectroscopic and photometric estimators, the
[Z/H]–Φ relations (panels b and e) have the least scatter (lowest rmsG and rmsrm), are the most significant (highest ρS), and have the least residual trend with radius
(inset panel).
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Wake et al. (2012), Thomas et al. (2010) and Graves et al.
(2009a) found that galaxy color and [Z/H] correlate better with σ
than with either M* or MD, and the age–Σ relation was recently
explored by Scott et al. (2017). Our analysis builds on these works
and others by (i) quantitatively analyzing residual trends with
galaxy size; (ii) comparing the observational uncertainty on the
parameters to deduce the relative intrinsic scatter in the relations;
and (iii) showing that trends with σ are reproduced using the
purely photometric estimator for the gravitational potential,M*/Re.

By understanding the relative intrinsic scatter, we can infer the
likelihood of parameters being causally linked. However, without
a theoretical framework of the physical processes driving these
trends, it remains uncertain whether these correlations represent
causation, or are the result of some other underlying trend. We
therefore present possible frameworks, while acknowledging that
more work is required to determine the true physical impact of
these mechanisms in relation to other galactic processes.

4.1. Sample Selection

We find very close agreement between the results for the
unweighted SAMI sample and the weighted sample representing
the galaxy mass function. For g− i color, [Z/H], and age, the
correlations that show the least scatter, least residual trend with
size, and highest correlation coefficient in the main analysis are
the same as those in the mass-function weighted analysis. The
two samples also agree in that Φ shows only a marginal
improvement compared to Σ for [α/Fe].

4.2. Color–Φ Diagram

Due to the tighter relations in both the RS and BC, we infer
that the color–Φ diagram is a more precise tool than the

traditional color–M diagram for identifying a galaxy’s evolu-
tionary type. The RS and BC are better aligned in color–Φ
space, indicating a smoother transition between the two
populations. Furthermore, the significant residual trend with
size in the color–M diagram, indicates galaxy size as well as
mass (in the form M/Re) is required to accurately determine
observed color.

4.3. Metallicity–Φ Relation

We suggest the stronger correlation between [Z/H] and Φ

(rather than M) is evidence that gravitational potential is the
main regulator of global SP metallicity. The underlying
physical mechanism is that the depth of the gravitational
potential determines the escape velocity required for metal-rich
gas to be ejected from the system. This hypothesis is supported
by the tight radial trend in ETGs between local escape velocity
and line strength indices (Scott et al. 2009). Assuming star
formation occurs mostly in situ (e.g., Johansson et al. 2012),
we would predict a similar relation using the gas-phase
metallicity in star-forming galaxies (D’Eugenio et al. sub-
mitted). Even so, we know ETGs have long evolutionary
histories that include galaxy mergers, and this hypothesis does
not, on its own, explain how the relation is maintained through
mergers. However, simulations by Boylan-Kolchin & Ma
(2007) of the accretion of satellite galaxies found that low-
density satellites are easily disrupted, losing a large fraction of
their mass during early passes at large radii; high-density
satellites are more likely to survive multiple passes and
continue sinking toward the center of the host. This maintains
the existing [Z/H]–Φ relation, because diffuse, low-metallicity
satellites will lower both the potential and metallicity of the
host by adding low-metallicity material at large radii.

Figure 3. Age vs. M, Φ, and Σ for ETGs. The top row uses the spectroscopic estimator M RD e
2sµ , the bottom row uses the purely photometric M*. The inset panels

show the best-fit residuals as a function of log Re (other details are the same as those for Figure 1). Overall, for both the spectroscopic and photometric estimators, the
age–Σ relations (panels c and f) tend to have the least scatter (lowest rmsG and rmsrm), are the most significant (highest ρS), and have the least residual trend with
radius (inset panel).
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Conversely, compact, high-metallicity satellites will carry most
of their mass into the inner regions of the host, deepening the
host’s potential and increasing its [Z/H].

4.4. Age and α-enhancement

We find strong evidence for the age–Σ relation; however, it
is unclear whether [α/Fe] correlates better with Φ or Σ; the
best correlation may lie somewhere between the two quantities
(i.e., [α/Fe]∝M/R x for xä[1, 2]).

Taking [α/Fe] as a measure of star formation duration (SFD)

and assuming ETGs formed approximately coevally, it follows
naturally that a long SFD (low [α/Fe]) will correspond to a
younger “single-burst” SP; conversely, a short SFD (high
[α/Fe]) will correspond to an older “single-burst” SP. Thus, if
ETGs are coeval, we can expect age and [α/Fe] to correlate
with the same structural parameter (whichever that may be).

To explain the origin of the correlations with Σ, we propose
the following two mechanisms: (1) compactness-related
quenching; and (2) the ΣSFR∝Σgas relation. As we will argue
below, both mechanisms appear in broad agreement with
our results, although a more detailed semianalytical approach
would help resolve their relative impact on ETG SPs.

Quiescence correlates strongly with central surface density,
regardless of the measurements used: whether quiescence is
measured via specific star formation rate (sSFR; Brinchmann
et al. 2004; Franx et al. 2008; Barro et al. 2013; Woo
et al. 2015; Whitaker et al. 2017), via the fraction of red
sequence galaxies ( fq; Omand et al. 2014), or some other
measure of star formation history (e.g., the Dn4000 break;
Kauffmann et al. 2003). Woo et al. (2015) proposed two main
quenching pathways that act concurrently but on very different
timescales: central compactness-related processes are rapid,
while halo quenching is prolonged. Compactness-related

processes are those that, as a direct or indirect consequence
of building the central bulge, contribute to quenching. For
example, gaseous inflows from the disk to the bulge, triggered
by disk instability or an event such as a major merger, are
exhausted in a star burst, leading to an increased bulge
compactness. Furthermore, these inflows can trigger active
galactic nuclei, from which the feedback heats and blows away
surrounding gas, preventing further star formation. In this
scenario of compactness-related quenching, it follows that
galaxies with a high Σ (i.e., compact star formation) quenched
faster and hence earlier, resulting in an older SP and a shorter
SFD than their diffuse counterparts. This leads naturally to the
age–Σ and [α/Fe]–Σ relations in ETGs.
Alternatively, given age–Σ and [α/Fe]–Σ, we could look to

the Σgas∝ΣSFR relation (e.g., Schmidt 1959; Kennicutt 1998;
Federrath et al. 2017) for an empirical explanation. A high Σgas

in star-forming disks produces a high specific star formation
rate (SFR), and (due to the finite supply of gas) this then leads
to a short SFD, and hence an old SP age. This trend with Σgas

in the BC becomes fossilized as a trend in Σ* and ΣD in ETGs.
However, neither of these two mechanisms explain why

[α/Fe] also trends strongly with Φ. A possible interpretation is
that the extent to which [α/Fe] correlates with Φ and not Σ,
indicates the extent to which these galaxies are not coeval, and
the time since formation as a function of mass and/or size. The
residuals of the Gaussian fit in Figures 4(c) and (f) show that at
fixed Σ, larger galaxies have higher [α/Fe], and hence more
prolonged star formation histories. Future analyses could focus
on analytic or semianalytic modeling to explain these trends.

5. Summary

Our analysis builds on Franx et al. (2008) and Wake et al.
(2012), arguing that the evolution of SPs is driven by physical

Figure 4. [α/Fe] vs. M, Φ, and Σ for ETGs. The top row uses the spectroscopic estimator M RD e
2sµ , the bottom row uses the purely photometric M*. The inset

panels show the best-fit residuals as a function of log Re (other details are the same as those for Figure 1). It is unclear whether [α/Fe] trends better with Φ (panels b
and e) or Σ (panels c and f), although both show significant improvement on the [α/Fe]–M relations (panels a and d).
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parameters other than galaxy mass. We find the tightest
correlations, and the least residual trend with galaxy size, for
the g− i color–Φ, [Z/H]–Φ, and age–Σ relations. We find
[α/Fe] to correlate strongly with both Σ and Φ. We show that
correlations with σ are reproduced using the purely photometric
M*/Re. From these results, our inferences and interpretations
are as follows: (1) the color–Φ diagram is a more precise tool
for determining the developmental stage of the SP than the
color–mass diagram and (2) gravitational potential is the
primary regulator for global stellar metallicity, via its relation to
the gas escape velocity. We also propose two possible
mechanisms for the age–Σ and [α/Fe]–Σ correlations: the
age–Σ and [α/Fe]–Σ correlations are results of compactness-
driven quenching mechanisms; and/or the correlations are
fossil records of the ΣSFR∝Σgas relation in their disk-
dominated progenitors. Determining which of the various
possible physical mechanisms are responsible for these
relations requires comparison to detailed simulations that take
into account of all these processes.

The SAMI Galaxy Survey is based on observations made at
the Anglo-Australian Telescope. The SAMI spectrograph was
developed jointly by the University of Sydney and the
Australian Astronomical Observatory. The SAMI input catalog
is based on data from the Sloan Digital Sky Survey, the GAMA
Survey and the VST ATLAS Survey. The SAMI Galaxy
Survey is funded by the Australian Research Council Centre of
Excellence for All-sky Astrophysics (CAASTRO; grant
CE110001020), and other participating institutions.

Parts of this research was conducted by the Australian
Research Council Centre of Excellence for All Sky Astro-
physics in 3 Dimensions (ASTRO 3D), through project number
CE170100013.

T.M.B. is supported by an Australian Government Research
Training Program Scholarship. N.S. acknowledges a University
of Sydney Postdoctoral Research Fellowship. J.v.d.S. is funded
under J.B.-H.’s ARC Laureate Fellowship (FL140100278). S.B.
and M.S.O. acknowledge Australian Research Council Future
Fellowships (FT140101166 and FT140100255). A.M.M. ackn-
owledges NASA Hubble Fellowship (HST-HF2-51377) from
the Space Telescope Science Institute, operated by Association
of Universities for Research in Astronomy, Inc., for NASA
(NAS5-26555).

We make extensive use of the Python programming
language, including packages SciPy (http://www.scipy.
org/) Astropy (Astropy Collaboration et al. 2013), matplotlib
(Hunter 2007), emcee (Foreman-Mackey et al. 2013), and
Pathos (http://trac.mystic.cacr.caltech.edu/project/pathos/
wiki.html; McKerns et al. 2011). In preliminary analyses,
we also used TOPCAT (Taylor 2005).
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