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We study the sample ACVF and ACF of a general stationary sequence
under a weak mixing condition and in the case that the marginal distribu-
tions are regularly varying. This includes linear and bilinear processes
with regularly varying noise and ARCH processes, their squares and
absolute values. We show that the distributional limits of the sample ACF
can be random, provided that the variance of the marginal distribution is
infinite and the process is nonlinear. This is in contrast to infinite vari-
ance linear processes. If the process has a finite second but infinite fourth
moment, then the sample ACF is consistent with scaling rates that grow

'at a slower rate than the standard n . Consequently, asymptotic confi-
dence bands are wider than those constructed in the classical theory. We

Ž .demonstrate the theory in full detail for an ARCH 1 process.

1. Introduction. The motivation for this paper comes from an empirical
observation which has been made in the econometrics and applied financial
time series literature for a long time: log-returns of various series of share
prices, stock indices, exchange rates and interest rates are believed to be
heavy-tailed in the sense that their fourth moments can be infinite. A second
observation is that such time series appear to have a complicated dependence
structure that cannot be adequately modeled with a linear process. Depar-
tures from linearity can often be detected by examination of the sample

Ž .autocorrelation function, ACFs of a time series, their absolute values and
squares. For log-returns, the sample ACF of the original series vanishes at

Ž .almost all lags with possible significant values at the first two or three lags
while the sample ACF of the absolute values and squares are usually
nonzero, and decay to zero slowly. Since this behavior is not consistent with
that expected from a linear process, a variety of nonlinear models has been

Žproposed for such data. The ARCH autoregressive conditionally het-
.eroscedastic process and its extensions and generalizations form one of the

more popular and extensively studied classes of nonlinear time series models,
which exhibit many of the properties described above. In this paper, we will
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Ž .use the ARCH 1 process to illustrate our limit results for the sample ACF
Ž .and sample autocovariance function ACVF of a stationary time series.

It is the aim of this paper to give a general theory for the sample ACF and
Ž .sample ACVF of a stationary sequence X . Two assumptions are made:t t � �

there exist a mixing condition weaker than strong mixing and a regular
variation condition on the finite-dimensional distributions of the process.

� �Under these assumptions, the point process theory in Davis and Hsing 8 is
Ž .extended to the case of multivariate stationary processes X . In particular,t

the weak convergence of the point processes N � Ýn � �1 for appropriaten t�1 a Xn t

normalizing constants a is established. This result is then applied to then
�1Ž .stationary process constituted by the random vectors a X , . . . , X . As an t t�m

Ž .next step, weak convergence of N is used to obtain the weak convergence ofn
�2 Ž 2 .the point processes based on the products a X , X X , . . . , X X .n t t t�1 t t�m

Finally, the points a�2 X X of the lagged process are summed up, and son t t�h
the joint convergence of the sample autocovariances and autocorrelations at
different lags is established.

Our main results on the asymptotic behavior of the sample ACVF and ACF
in the infinite second and fourth moment cases are contained in Theorem 3.5.
The limits of the suitably normalized sample ACVF and ACF are expressed
in terms of the limiting point processes. Limit distributions are ratios of
infinite variance stable vectors or functions of such vectors. Hence tabulation
of the quantiles from the limit distributions is difficult. In the case of infinite
variance X , the limits of the sample ACF are in general random. This is int
contrast to the asymptotic theory for the sample autocorrelations of a linear

� � � � Ž � � .process as treated in 11 and 12 see 4 , Section 13.3 . In this case, the
'sample ACF estimates the ‘‘model ACF’’ with scaling that is larger than n .

Even though the model ACF does not exist in the infinite variance case, it can
be defined, at least for linear processes, through the filter coefficients. Specif-
ically, the model ACF is defined as the ACF of a Gaussian linear process with

Ž .the same coefficients as X .t
The phenomenon of random limits of the ACF was observed earlier in the

Ž � � � �.context of infinite variance bilinear processes see 13 and 30 , and our
Theorem 3.5 confirms that deterministic limits are more the exception than
the rule for the sample ACF of a nonlinear stationary sequence. Theorem 3.5
also treats the finite variance but infinite fourth moment case. In this
situation and providing the process is ergodic, the sample ACF estimates the
ACF consistently, but the limit results show that the asymptotic rate is

' Žslower than n . For a linear process with finite variance and infinite fourth
1�2 .moment, the sample ACF is still asymptotically normal with scaling n .

Therefore the values of the sample ACF of an infinite fourth moment station-
ary process have to be treated with enormous care; the confidence bands in

'this case are wider than the classical plus or minus 2�� n -bounds. This is,
on the one hand, caused by the infinite variance limit distribution and, on the
other hand, by the slow rate of convergence, which is slower the closer one
comes to an infinite second moment.

Bearing these facts in mind, we apply the general theory to the simple
Ž .model of a stationary ARCH 1 for illustrative purposes. This process is
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Ž � � � �.known to have regularly varying marginals see 23 and 18 . The impor-
tance of ARCH processes for financial modelling has been mentioned before
and will be explained in more detail in Section 4 where we also give the

Ž .general theory for the sample ACVF and ACF of an ARCH 1 process, its
absolute values and squares.

The principal objective of this paper is to develop general methodology for
deriving distributional convergence of the sample ACF and ACVF for heavy-
tailed stationary sequences. We restrict ourselves to qualitative results. In
future work we intend to identify the limit distributions, thus making the
results directly applicable for estimation and testing purposes. From the
method of proof it will become more transparent that the proposed technique
allows for very general classes of stationary processes. This includes linear
and multilinear processes, as well as multivariate processes, which can be
written as the solution to certain stochastic recurrence equations. This will be
the content of a forthcoming paper.

It is worth remarking that the asymptotic behavior of the sample ACF for
some linear processes, such as multivariate and periodic moving averages,
may be similar to that obtained for nonlinear processes. For example, in a
multivariate moving average process driven by noise that is regularly vary-
ing, the sample cross-correlation function has a random limit if the process

� �has an infinite variance 10 . On the other hand, if the variance is finite but
the fourth moment is infinite, then the asymptotic scaling of the sample
cross-correlation function has the same form as specified in the Theorem 3.5
� �9 . Analogous behavior for the sample ACF of periodic moving averages was

� �established in 1 .
The paper is organized as follows. In Section 2 we sketch the necessary

point process theory. In most parts it is analogous to the corresponding
� �results in 8 ; we only indicate the changes required for the results to go

through in the multivariate setting. In Section 3 we give the limit theory for
the sample ACVF and ACF of a stationary sequence. Section 4 is entirely
devoted to the ARCH model, where the theory of the previous sections is

Ždemonstrated. In the Appendix we prove some useful facts e.g., strong
. Ž .mixing and joint regular variation about the ARCH 1 process.

2. Some point process theory. We consider a strictly stationary se-
Ž . mquence X of random row vectors with values in � . For simplicity, wet t � �

Ž .write X � X � X , . . . , X .0 1 m

The regular variation condition. Assume that the distribution of X is
jointly regularly varying with index � � 0. This means that there exists a
sequence of constants x and a random vector � � �m� 1 a.s., where �m� 1

n
m � �denotes the unit sphere in � with respect to the norm � , such that

� � � � ��2.1 nP X � tx , X� X � � � t P � � � , t � 0Ž . Ž .Ž .n v

where � denotes vague convergence on �m� 1.v
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This is the same as

� � � �P X � tx , X� X � �Ž . ��� t P � � � , t � 0Ž .v� �P X � xŽ .
Ž � � � �. � �as x � � cf. 32 and 14 . For our application, it is natural to take � to be

the max-norm in � m, that is,

� � � �x � x , . . . , x � max x .Ž .1 m i
i�1, . . . , m

m � �Note that regular variation of X in � implies regular variation of X . For
� �further information on multivariate regular variation we refer to 2 . Vague

� �convergence of measures is treated in detail in 22 .

Preliminaries on point processes. We follow the point process theory in
m� � � 422 . The state space of the point processes considered is � � 0 , where

� 4 � 4� � � � � � �� . Write BB for the collection of bounded Borel sets in
m � 4 Ž .� � 0 . ‘‘Bounded’’ here means bounded away from the origin. Let FF be

m � 4the collection of bounded nonnegative continuous functions on � � 0 with
bounded support and let FF be the collection of bounded nonnegative steps

m � 4functions on � � 0 with bounded support.
m � 4Write MM for the collection of Radon counting measures on � � 0 with

� 4null measure o. This means � � MM � o if and only if � is of the form
� � 4 � � �Ý n � , where n � 1, 2, . . . , the points x are distinct and � x � �.i�1 i x i i i�1 ii

Ž� � � 4.Let MM 	 MM be the collection of measures � such that � x: x � y � 0.y
� 4Note that MM � MM � o .0

Ž .The mixing condition. Let a be a sequence of positive numbers suchn
that

� �2.2 nP X � a � 1, n � �.Ž . Ž .n

Ž �1 . � � � �In particular, one can choose a as the 1 � n -quantile of X . Since X isn
1� � Ž . Ž .regularly varying, a � n L n for some slowly varying function L x .n

Ž . Ž .We say that the condition AA a holds for X if there exists a sequence ofn t
Ž . � �positive integers r such that r � �, k � n�r � � as n � � andn n n n

k nrn n

E exp � f X �a � E exp � f X �a � 0,Ž . Ž .Ý Ýt n t n½ 5 ½ 5ž /2.3Ž . t�1 t�1

n � �, � f � FF .s

Ž .The convergence in 2.3 is not required to be uniform in f. This is indeed a
very weak condition and is implied by many known mixing conditions, in

Ž .particular the strong mixing condition. The condition AA a is similar inn
� �spirit to condition 	 used in extreme value theory; see, for example, 25 .

However, these conditions are not directly comparable since 	 is defined in
terms of probabilities of events in restricted classes of �-fields, whereas
Ž .AA a is specified in terms of Laplace transforms of point processes. Lemman



ACF OF HEAVY-TAILED PROCESSES 2053

� � Ž . Ž .2.4.2 in 25 shows that 	 and AA a are close indeed. Condition AA a isn n
Ž . Ž . Ž � . Ž .independent of the particular choice of a : if both a and a obey 2.2 ,n n n

Ž . Ž � . Ž .then AA a holds if and only if AA a does. The mixing condition AA a wasn n n
� �introduced in 8 for the case of real-valued stationary sequences.

A corresponding statement can be made for the weak convergence of the
sequence of point processes

n

N � � , n � 1, 2, . . . .Ýn X � at n
t�1

Define

kn

˜ ˜N � N ,Ýn r , in
i�1

˜ ˜ rnwith N , i � 1, . . . , k , iid distributed as N � Ý � . By virtue ofr , i n r , 0 t�1 X � an n t n
Ž . Ž .2.3 , a Laplace transform argument shows that condition AA a implies thatn

˜Ž . Ž .N converges weakly if and only if N does, and they have the same limit.n n
This is an important ingredient in the proof of Lemma 2.1.

Main results on point process convergence. In what follows, we give a
� �series of results which were proved in 8 in the particular case m � 1. We

formulate them here since they are the theoretical basis for the following
sections; their proofs are analogous to the one-dimensional case and are
omitted except when essential modifications due to the multivariate nature of
the process are required. We commence with the analogues to Lemmas 2.1

� �and 2.2 in 8 .

Ž . Ž . Ž .LEMMA 2.1. Suppose that X obeys conditions AA a and 2.1 . Thet n
relation N � N � o holds if and only if there exists a nonnull measure 
 onn d

Ž � Ž .4. Ž .MM with H 1 � exp �� B 
 d� � � for all B � BB, such that0

1 � e�� f 
 d� � 1 � e�� f 
 d� , f � FF ,Ž . Ž . Ž . Ž .H Hn

˜�1Ž .where 
 � k P � N and � f � H f d�. The point process N is infinitelyn n r , 0n
� Ž � 4. Ž .4divisible with Laplace transform exp �H 1 � exp �� f 
 d� , N has no

fixed atoms and the support of P � N�1 and that of 
 are both contained in
Ž .MM . Moreover, the canonical measure 
 of N has the scaling property 
 � �0

� Ž �1 .� 
 � � , � � 0.

Define

˜ m� 1� �� 4 � 42.4 MM � � � MM : � x: x � 1 � 0 and � x: x � � � 0 ,Ž . Ž .� 4Ž .
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˜ ˜ �Ž .and let BB MM be the Borel �-field of MM. For � � Ý n � � MM , let x �i�1 i x 0 �i
� � Ž Ž ..max x . Define a mapping on MM by T : � � x , � x � , that is,i i 0 1 � �

� �

� �2.5 T n � � max x , n � .Ž . Ý Ý1 i x i i x � max � x �i i j jž / ž /ii�1 i�1

˜ Ž .It is a bicontinuous bijection with range � � MM, where � � 0, � .� �
� �The following result is the multivariate analogue of Theorem 2.3 in 8 .

Ž . Ž .THEOREM 2.2. Assume that X obeys the mixing condition AA a and thet n
Ž .regular variation condition 2.1 . If N � N � o, then N is infinitely divisi-n d

Ž . Ž .ble with canonical measure 
 on MM and T N � T N . The limiting0 1 n d 1
Ž . �1process T N has canonical measure 
�T � � � Q, where Q is a probabil-1 1

˜ ˜Ž Ž ..ity measure on MM, BB MM ,

� dy � �� y���1I y dy andŽ . Ž .��

� � �� 4� � 
 � : � x: x � 1 � 0 � 0, 1 .� 4 ŽŽ .Ž .
In this case, the Laplace transform of N is

�

2.6 exp � 1 � exp � f yz � dz Q d� � dy , f � FF.Ž . Ž . Ž . Ž . Ž .H H H½ 5ž /ž /˜0 MM

REMARK 2.3. Notice that

� � � �� 4 � 4� � 
 � : � x: x � 1 � 0 � �ln P N x: x � 1 � 0� 4Ž . Ž .Ž .Ž .
Ž � �. � �is the extremal index of X ; see 24 .t

� �The following result is the analogue to Corollary 2.4 in 8 . It follows from a
comparison of the Laplace transforms of the two point processes involved.

Ž .COROLLARY 2.4 Cluster representation . Let N be the limiting point pro-
cess in Theorem 2.2. Then N is identical in law to the point process

� �

2.7 � ,Ž . Ý Ý P Qi i j
i�1 j�1

where Ý� � is a Poisson process on � with intensity measure � , indepen-i�1 P �i

dent of the sequence of iid point processes Ý� � , i 
 1, with joint distribu-j�1 Q i j˜ ˜Ž Ž ..tion Q on MM, BB MM .

Ž .REMARK 2.5. Representation 2.7 shows nicely the structure of the points
of the limiting point process: P describes the radial part of the points and Qi i j
the spherical part. Their independence is a consequence of the factorization of

Ž .the limiting measure in the multivariate regular variation condition 2.1 .

Now we provide a useful sufficient condition for the weak convergence of
the point processes N toward N. It is needed later in the proof of Theo-n
rem 2.8.
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Ž . Ž . Ž .THEOREM 2.6. Assume that X obeys AA a and 2.1 , and the followingt n
two conditions hold for every y � 0:

rn
��� �2.8 k P X � a y � � y � � y , � ,Ž . Ž .�n t nž /

t�1

r rn n

� �r2.9 P � � � X � ya � Q,Ž . nÝ �X � � �X � t n wt j�1 jž /t�1 t�1

where � denotes weak convergence and � is given in Theorem 2.2. Thenw
N � N.n d

Ž . Ž .REMARK 2.7. In the case m � 1, conditions 2.8 and 2.9 are known to be
� �necessary and sufficient for N � N; see 8 , Theorem 2.5.n d

PROOF. Recall the definition of the measures 
 from Lemma 2.1 and ofn
Ž .MM from the beginning of this section. For y � 0 fixed, define the conditionaly

probability measures P on MM ,n, y 0


 �� MMŽ .n y
P � �Ž .n , y 
 MMŽ .n y

rn rn � �P Ý � � �, � X � a yŽ .t�1 X � a t�1 t nt n� rn � �P � X � a yŽ .t�1 t n

r rn n

� �� P � � � X � a y .Ý �X � a t nt nž /t�1 t�1

� � � 4Fix f � FF and suppose that its support is contained in x: x � y for some
Ž .y � y � 0. Recall the definition of the mapping T from 2.5 . Then for anyf 1

z � 0,

rn r rn � �nP Ý � � �, � X � a y � zŽ .Ž .t�1 X � � � X � t�1 t nt j�1 j�1P �T z , � � � � .Ž .Ž .Ž .n , y 1 rn � �P � X � a yŽ .t�1 t n

Ž . Ž .By 2.8 and 2.9 , the right-hand side converges weakly to

Q � � y � z , � �� y , � .Ž . Ž . Ž .Ž .
It follows that

� �� y , � � QŽ .Ž .�1 ˜P �T � on � � MM ,n , y 1 w �� y , �Ž .

and since T�1 is continuous, we have1

� � Q �T �� MMŽ .Ž . Ž .1 y
P � � .Ž .n , y w � y , �Ž .
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Ž .Defining 
 � � � Q �T , the latter relation can be rewritten as1


 �� MMŽ .y
P � � � P � .Ž . Ž .n , y w y
 MMŽ .y

Since f � FF,

e�� fP d� � e�� fP d� .Ž . Ž .H Hn , y y
MM MMy y

� � � 4Since the support of f is contained in x: x � y , we have

1 � e�� f 
 d� � 1 � e�� f 
 d� ,Ž . Ž . Ž . Ž .H Hn

and the result now follows from Lemma 2.1. �

� �The following result is the analogue to Theorem 2.7 in 8 .

Ž .THEOREM 2.8. Assume that X is a stationary sequence of randomt
vectors for which all finite-dimensional distributions are jointly regularly

Ž . Ž .varying with index � � 0. To be specific, let � , . . . , � be the 2k � 1 m-�k k
dimensional random row vector with values in the unit sphere �Ž2 k�1.m�1 that

Ž .appears in the definition of joint regular variation of X , . . . , X , k 
 0.�k k
� Ž . Ž .Note: the defining property 2.1 has to be applied to this 2k � 1 m-

� �dimensional setting. In particular, � has to be interpreted as the max-norm
Ž2 k�1.m � Ž . Ž .in � . Assume that condition AA a holds for X and thatn t

� � � �2.10 lim lim sup P X � a y X � a y � 0, y � 0.Ž . � t n 0 nž /k�� n�� � �k t rn

Then the limit

k
� � �Žk . Žk . Žk .� � � � � �2.11 � � lim E � � � E �Ž . �0 j 0ž /k�� j�1 �

exists. If � � 0, then N � o; if � � 0, then N � N � o, where, usingn d n d
�1 Ž .the representation 
�T � � � Q described in Theorem 2.2, � dy �

�� y���1 dy, and Q is the weak limit of

k k
� � � �Žk . Žk . Žk . Žk .� � � � � � � �Žk .E � � � I � E � � �� Ý �0 j � � 0 jtž /ž / ž /j�1 � � j�1t k� �

as k � � which exists.

� �For the proof of Theorem 2.8, the analogues of Lemmas 2.8 and 2.9 in 8
have to be modified for the multivariate setting. This is a consequence of the
fact that these results only make use of the absolute values of the quantities
X . Applying these two lemmas, one can follow the lines of the proof oft

� �Theorem 2.7 in 8 to derive Theorem 2.8. The crucial difference to the
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� �one-dimensional case as treated in 8 is the definition of the sets A in
Lemma 2.8:

˜ � � � �A � � � MM : � x: b � x  1, x� x � B 
 t , i � 1, . . . , l ,� 4� 4Ž .i i i

for some l 
 1, t 
 1, 0 � b � 1, Borel sets B � �m� 1, i � 1, . . . , l. In thei i i
multivariate setting, the collection of sets A determines the measure Q

˜on MM.

� �REMARK 2.9. In the above theory, � was the max-norm in finite-dimen-
sional Euclidean space. It is the natural norm to consider for our applications.
However, the choice of the norm is not essential for the above theory. Indeed,

� �the max-norm � can be replaced by any other norm in the regular variation
and mixing conditions. Then Theorems 2.2 and 2.6 remain valid without any
changes, and in Theorem 2.8 the regular variation condition on Y �k
Ž . Ž2 k�1.mX , . . . , X , k 
 0, has to be in terms of the norm in � which is�k k

Ž .consistent with the norm used in the definition 2.1 of regular variation for
the marginal distribution X.

The point process theory of this section can also be extended to an
Ž .infinite-dimensional setting. For example, if X is a stationary sequence oft

random elements assuming values in a separable locally compact Banach
Ž � �. � �space B, � , then the point process theory in 22 is still applicable. In this

� 4case, B � 0 is the state space and is a subset of a Polish space. The mixing
Ž . � �and regular variation conditions on X remain the same if one interprets �t

as the norm in B, and �m� 1 has to be replaced by the unit sphere � in B.B
Again, Theorems 2.2 and 2.6 remain valid without any changes. However, the
definition of regular variation of Y in Theorem 2.8 needs to be modified:k

2 k�1 � � k � �interpret Y as an element of B endowed with the norm x � � x .k i��k i
With this norm, one can define regular variation in B2 k�1 in the same way as

Ž .in 2.1 , and all the steps in the proof of Theorem 2.8 remain valid without
� �any changes. As a consequence, a great part of the results in 8 , Sections 3

and 4, on partial sum convergence and large deviation probabilities remains
Ž .valid for stationary B-valued sequences X with marginal distribution int

the domain of attraction of an �-stable law in B, � � 2. Clearly, every step in
� �the proof of those results has to be checked carefully; for example, � has to

be interpreted as the norm in B, characteristic functions are characteristic
functionals, expectations have to be interpreted in the Bochner sense, care
has to be taken when moment inequalities are applied, and so on. We omit
further details.

3. Limit theory for the sample ACF of a stationary process. We
start this section with an elementary but powerful result on point process
convergence, where the points of the processes are products of random
variables. It will turn out to be the basis for the results on weak convergence
of sample autocovariances for various stationary processes.
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Ž .PROPOSITION 3.1. Let X be a strictly stationary sequence such thatt
Ž . ŽŽ .. Ž .X � X , . . . , X satisfies 2.1 for some m 
 0 andt t t�m

n � �

N � � � N � � ,Ý Ý Ýn X � a d P Qt n i i j
t�1 i�1 j�1

Ž Ž0. Žm..where the points Q � Q , . . . , Q and P are defined in Corollary 2.4i j i j i j i
Ž .with m � 1 . Then

n
ˆ ˆ �2N � N � �Ž . Ýn n , h a X Xh�0, . . . , m n t t�hž /

t�1 h�0, . . . , m

� �

ˆ ˆ 2 Ž0. Žh.� N � N � � .Ž . Ý Ýd h P Q Qh�0, . . . , m i i j i jž /
i�1 j�1 h�0, . . . , m

3.1Ž .

ˆ ˆ � 4The components of N and N are considered as point processes on � � 0 .n
This means that points are not included in the point processes if X X � 0t t�h
or QŽ0.QŽh. � 0.i j i j

REMARK 3.2. From the proof below it is immediate that Proposition 3.1
can be extended to point processes of cross products of two different station-

Ž . Ž .ary sequences X and Y , say. For example, if the sequence of randomt t
Ž . Ž . Ž .vectors X , . . . , X , Y , . . . , Y satisfies AA a and 2.1 , then the vectort t�m t t�m n

of point processes
n

�2�Ý a X Yn t t�hž /
t�1 h�0, . . . , m

converges in distribution, and the structure of the limit is similar to the one
Ž .in 3.1 . This limit result can be exploited to obtain joint convergence of the

sample cross-covariances and sample cross-correlations of the X- and Y-
processes. One can follow the pattern of proof given below in the case of

Ž .sample autocovariances and autocorrelations of the process X . In the samet
way, one can also derive the limit theory for the sample cross-covariances and
cross-correlations for an arbitrary number of stationary sequences.

ˆ ˆPROOF. We show marginal convergence of N to N , the joint conver-n, h h
gence being a straightforward extension of the argument. For h � 0, . . . , m,
define

m� 1ˆ � 4T : x � x , . . . , x � � � 0 � x x .Ž .h 0 m 0 h

ˆ �̂1 ˆ �̂1Then N � N �T and N � N�T with the null points excluded fromn, h n h h h
ˆ ˆN and N , as mentioned in the formulation of the proposition. Let I , . . . , In, h h 1 k

� 4 Ž .be bounded intervals in � � 0 i.e., bounded away from the origin . As such,
� �they are elements of a DC-ring in the sense of 22 , page 11. By Theorem 4.2

in the same reference, it suffices to show convergence of the finite-dimen-
sional distributions, that is,

ˆ ˆ ˆ ˆ3.2 N I , . . . , N I � N I , . . . , N I .Ž . Ž . Ž . Ž . Ž .Ž . Ž .n , h 1 n , h k d h 1 h k
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�1 m�1ˆ Ž . � 4However, the sets T I are also bounded away from zero in � � 0 ,h j
�̂1Ž Ž ..and they are N-continuity sets, that is, N  T I � 0 a.s. This followsh j

from the fact that N does not have fixed atoms; compare Lemma 2.1 in
Ž .combination with Theorem 2.2 and Corollary 2.4. Now 3.2 follows from

� �Lemma 4.4 in 22 . This completes the proof. �

The convergence of the sample autocorrelations can be derived from the
� �following result, which is a generalization of Theorem 3.1 in 8 to the

multivariate case.

Ž .PROPOSITION 3.3. Let Z be a strictly stationary sequence of randomt
m � 4 Ž .vectors in � � 0 and b be a sequence of positive numbers such thatn

n � �

Žh. Žh.� � � ,Ý Ý ÝZ � b d P Qt n i i jž / ž /
t�1 i�1 j�1h�1, . . . , m h�1, . . . , m

Ž .where P are the points of a Poisson process on � , independent of the iidi �
� m � 4 Ž .point processes Ý � , i 
 1, on � � 0 . Also assume that nP Z�b � �j�1 Q ni j mŽ . � 4� � � for some measure � on � � 0 which is the Levy measure of an´v

Ž . m�-stable random vector, � � 0, 2 , with values in � . Let

S � 0, S � Z � ��� �Z , n 
 1,0 n 1 n

and for any Borel set B in �, set

S B � SŽh. B ,Ž .Ž .n n h�1, . . . , m

where
n

Žh. �1 Žh. Žh.� �S B � b Z I Z �b , n 
 1.Ž . Ž .Ýn n t B t n
t�1

Ž . Ž .i If � � 0, 1 , then
� �

�1b S � S � P Q ,Ý Ýn n d i i j
i�1 j�1

and S has an �-stable distribution.
Ž . � .ii If � � 1, 2 and for all � � 0,

� Žh. Žh. �� �3.3 lim lim sup P S 0, y � ES 0, y � b � � 0,Ž . Ž ŽŽ .n n n
y�0 n��

h � 1, . . . , m, then
�1b S � ES 0, 1 � S,ŽŽ .n n n d

where S is the distributional limit of
� �

Žh. Žh.� �P Q I P Q � x � dxŽ .Ž .Ý Ý Hi i j Ž y , �� i i j hž /� �x : y� x 1hi�1 j�1 h�1, . . . , m

as y � 0, which exists and has an �-stable distribution.
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REMARK 3.4. As in the univariate case, S can be centered by ESn n
Ž � �.provided that � � 1 see Remark 3.1 in 8 . In this case, it follows from the

�1Ž Ž �. Ž Ž ..vague convergence that b ES � ES 0, 1 � H x � dx .n n n x: 1� � x � h h�1, . . . , mh

PROOF. The proposition is the multivariate analogue to Theorem 3.1 in
� � Ž . � .8 . If � � 0, 1 , one can follow the lines of its proof. If � � 1, 2 , a multivari-
ate characteristic function argument replaces the argument on pages 897 and

Ž Ž �.898 to show that S � ES 0, 1 converges in distribution. To characterizen n
the limit as �-stable, it suffices to show that every linear combination is

Ž � � Ž ..�-stable cf. 31 , Theorem 2.1.5 c . This follows by the argument on page 898
� �in 8 . �

Combining Propositions 3.1 and 3.3, we can derive the asymptotic limit
behavior of the sample autocovariances and autocorrelations of a stationary

Ž .sequence X . Construct from this process the strictly stationary m-dimen-t
Ž Ž .. ŽŽ ..sional processes X m � X , . . . , X , m 
 0. Define the sample auto-t t t�m

covariance function

n�h
�1� h � n X X , h 
 0,Ž . Ýn , X t t�h

t�1

and the corresponding sample autocorrelation function

� h � � h �� 0 , h 
 1.Ž . Ž . Ž .n , X n , X n , X

We also write

� h � EX X and � h � � h �� 0 , h 
 0,Ž . Ž . Ž . Ž .X 0 h X X

for the autocovariances and autocorrelations, respectively, of the sequence
Ž .X if these quantities exist. Mean-corrected versions of both the sample andt

Ž .model ACVF can also be considered see Remark 3.6 .

Ž .THEOREM 3.5. Assume that X is a strictly stationary sequence of ran-t
Ž Ž ..dom variables and that for some fixed m 
 0, X m satisfies the regulart

Ž . Ž . nvariation condition 2.1 with m � 1 and N � Ý � � N �n t�1 X � a dt n
� � Ž Ž0. Žm..Ý Ý � , where the points Q � Q , . . . , Q and P are as definedi�1 j�1 P Q i j i j i j ii i j

in Corollary 2.4.

Ž . Ž .i If � � 0, 2 , then

na�2� h � V ,Ž . Ž .Ž .n n , X d h h�0, . . . , mh�0, . . . , m

� h � V �V ,Ž . Ž .Ž .n , X d h 0h�1, . . . , m h�1, . . . , m

where
� �

2 Ž0. Žh.V � P Q Q , h � 0, . . . , m.Ý Ýh i i j i j
i�1 j�1
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Ž . m� 1The vector V , . . . , V is jointly ��2-stable in � .0 m
Ž . Ž .ii If � � 2, 4 and for h � 0, . . . , m,

n�h
�2

23.4 lim lim sup var a X X I � 0,Ž . Ýn t t�h � � X X �  a � 4t t�h nž /��0 n�� t�1

then

3.5 na�2 � h � � h � V ,Ž . Ž . Ž . Ž .Ž .Ž .n n , X X d h h�0, . . . , mh�0, . . . , m

Ž .where V , . . . , V is the distributional limit of0 m

� �
2 Ž0. Žh. 2 Ž0. Žh.� �P Q Q I P Q Q � x x � dx ,Ž .Ž .Ý Ý Hi i j i j Ž� , �� i i j i j 0 hž /B� , hi�1 j�1 h�0, . . . , m

where
m� 1 � �B � x � � : � � x x ,� 4� , h 0 h

Ž .and � is the measure as defined in Proposition 3.3 for Z � X , . . . , X .t t t�m
Moreover,

3.6 na�2 � h � � h � ��1 0 V � � h V .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž n n , X X d X h X 0 h�1, . . . , mh�1, . . . , m

Ž . Ž .PROOF. Part i is immediate from Propositions 3.1 and 3.3 i and the
Ž .continuous mapping theorem. The convergence of � in part ii is a directn, X

Ž . Ž .consequence of Proposition 3.3 ii and Remark 3.4. To prove 3.6 , note that
Ž .from 3.5 ,

� h � � h � O n�1a2 .Ž . Ž . Ž .n , X X P n

Since n�1a2 � 0, we obtain, after applying a Taylor series expansion to then
Ž .function f x, y � x�y,

� h � � h � � h � � h �� 0Ž . Ž . Ž . Ž . Ž .Ž .n , X X n , X X X

� � 0 � � 0 � h �� 2 0 � o n�1a2 .Ž . Ž . Ž . Ž .Ž . Ž .n , X X X X P n

Ž . Ž .The conclusion 3.6 is now immediate from 3.5 , the continuous mapping
theorem and an application of Slutsky’s theorem. �

Ž . Ž . Ž .REMARK 3.6. The limit distributions of both � h and � h in 3.5n, X n, X
Ž .and 3.6 of Theorem 3.5 are ��2-stable. The case � � 2 can also be included

but it leads to some tedious considerations of the centering constants and is
therefore omitted. One can also consider the mean-corrected versions of the
sample ACVF and ACF; the same arguments as above show that the limit
theory does not change.

Ž .REMARK 3.7. If � � 0, 2 , the sample autocorrelations have a constant
limit if and only if V � � V for some constants � . The quantities � play ah h 0 h h
role similar to the autocorrelations, as a measure of dependence in the

Ž . Ž . Ž .sequence X . If � � 2, 4 , the sample autocorrelations � h are clearlyt n, X
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Ž . �2consistent estimates of the autocorrelations � h , but with rate na �X n
1�2�� Ž .n L n for some slowly varying L. This implies that the asymptotic

confidence bands are wider than in the case EX 4 � �, where n1�2 is the rate
implied by the CLT. An improvement of this rate is possible only if V �h

Ž .� h V .X 0

( )4. The sample ACVF and ACF of an ARCH 1 process. In this
Ž .section we consider the ARCH 1 process defined through the recursions,

1�224.1 X � � � 
 X Z , t � �, Z iid N 0, 1 ,Ž . Ž . Ž .Ž .t t�1 t t

� �where � and 
 are positive parameters. We follow the theory in 17 , Section
Ž E . E8.4. If 
 � 0, 2 e , where E � 0.5772 . . . is Euler’s constant, then 2 e �

Ž . Ž .3.5620 . . . , and there exists a stationary solution X to 4.1 with marginalt
distribution satisfying

� t�d2 24.2 X � 
Z .Ž . Ž .Ý Ł0 j
 j�1t�1

� � � �It follows from work by Kesten 23 and Goldie 18 that

4.3 P X � x 	 c x�� , x � �,Ž . Ž . �

Ž . Ž 2 .Žu �2.where � � � 
 is the unique solution to the equation E 
Z � 1. In
� �18 the exact value of c is determined.�

We observe in particular that EX 4 � � if 
2 � 1�3 and EX 2 � � if 
 � 1.
ARCH processes and their various generalizations are examples of stochastic
volatility models. As such they are often considered as models for financial
log-returns and for exchange rates. There is empirical evidence that log-re-

� � � � � �turns may have infinite fourth moments; see, for example, 17 , 19 and 26 .
See Figure 2 for an illustration with exchange rate data. This is also
confirmed by empirical work performed by the Olsen and Associates Research

Ž .Group Zurich for the foreign exchange rate and interbank market of cash¨
� � � � � � 2interest rates; see, for example, 7 , 20 , 28 . Moreover, in the case EX � �,

Ž .the ARCH 1 process has vanishing autocorrelations at all nonzero lags. This
is in accordance with many log-differenced return series whose sample auto-

TABLE 1
EŽ . Ž .Values of � � � 
 for 
 � 0, 2 e


 0.1 0.3 0.3125 0.4 0.5 0.5773 0.6 0.7 0.8 0.9 1.0

� 26.48 8.36 8.00 6.09 4.74 4.00 3.82 3.17 2.68 2.30 2.00


 1.5700 2.0 2.5 3.0 3.5

� 1.00 0.62 0.34 0.15 0.014
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correlations vanish at almost all lags, with the possible exception of the first
� �lag, but this one is also rather small. See 33 for an empirical study of this

phenomenon, which is based on a large variety of financial time series. A
further claim is that log-returns have the property of long memory or

� � � �long-range dependence; see, for example, 5 and 6 . This is partly based on
the empirical fact that the absolute values and the squares of those time
series may have sample autocorrelations different from zero, even at large
lags, and that the ACF decays to zero quite slowly. See Figures 1 and 3�5 for
an illustration with real-life and simulated data.

�For these reasons infinite fourth moment of X , sample ACF of the X nott t
Ž � �. Ž 2 .significantly different from 0, and the sample ACF’s of X and X decayt t

�slowly , it is of interest to study the sample autocovariances and autocorrela-
tions of those processes in order to identify what, if anything, these quantities
estimate. For example, if EX 4 � �, the ergodic theorem does not apply for
the partial sums of the X 4 and X 2 X 2 , and therefore it is not a priori cleart t t�h
what the sample ACF of the X 2 estimates. Similar remarks apply if EX 2 � �t

Ž . Ž � �.and one considers the sample ACF of X or X . There is empiricalt t
evidence from simulated squared ARCH data showing that the sample auto-

Ž .correlations do not converge in probability or a.s. to a constant, that is,
different simulated sample paths from the same model yield completely
different values of the sample autocorrelations, even if the sample size is
huge. See Figure 4 for an illustration. In what follows we give a rigorous
asymptotic theory for the sample autocovariances and autocorrelations of an

Ž .ARCH 1 process, which explains this phenomenon.
Before embarking on a derivation of the asymptotic theory of the sample

ACF of an ARCH process, we first establish the fundamental convergence
result for the point processes based on the lagged process.

Ž . Ž . Ž .THEOREM 4.1. Let X be the ARCH 1 process defined by 4.1 , and fort
Ž . Ž .fixed m 
 0 set X � X , . . . , X . Let a be a sequence of constants sucht t t�m n

Ž .that 2.2 holds. Then the conditions of Theorem 2.8 are met, and hence

n � �

N � � � N � � ,Ý Ý Ýn X � a d P Qt n i i j
t�1 i�1 j�1

Ž . Ž .where P and Q are defined in the statement of the theorem.i i j

PROOF. The joint regular variation of all finite-dimensional distributions
Žfollows from Lemma A.1. In addition, the process is strongly mixing see

. Ž .Lemma A.3 so that the mixing condition AA a is also met. Next, we verifyn
Ž . Ž .that 2.10 holds and that � as defined in 2.11 is positive. The latter follows

an argument along the lines given for Lemma A.1. For t � 0, we have

t t t
2 2 2 2 2X � X 
Z � ��
 
Z � X I � I ,Ž . Ž .Ž .Ł Ý Łt 0 j m 0 t , 1 t , 2

j�1 m�jj�1
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Ž . Ž .FIG. 1. Top: 500 daily log-returns of the NZ�US $ exchange rate left and the sample ACF of the data right .
Ž . Ž .Bottom: the sample ACF of the absolute values of the data left and the sample ACF of the squared data right .
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FIG. 2. Empirical evidence that the exchange rate log-returns do not come from a distribution
Ž . Ž .with finite fourth moment. Left: the ratio of maximum M 4 and sum S 4 for the fourth powern n

4 Ž . Ž .of the data. If EX � �, M 4 �S 4 � 0 a.s. Right: the Hill plot of the tail index � based onn n
Ž . �� Ž .the assumption that P X � x � x L x for some slowly varying L and asymptotic confidence

Ž .bands. The estimate is based on m horizontal axis upper order statistics of a sample of 1,082
� �data. See 17 , Chapter 6, for more background information on tail estimation.

and hence
2 2 � 2 2P X � a y X � a yŽ .t n 0 n

4.4Ž . 2 2 2 2 2 2 2� � P X I � a y�2 X � a y � P I � a y�2 X � a y .Ž . Ž .0 t , 1 n 0 n t , 2 n 0 n

Ž .Choose � � 0, ��2 . Then, using Markov’s inequality and Karamata’s theo-
Ž .rem, the lim sup of the first term on the right of 4.4 is bounded above byn��

� 2 �� �2 � 2 2 t� � 2 2lim sup EI 2�y a E X I �P X � a y  Cb ,Ž . Ž .ž /t , 1 n 0 �X � a y4 0 n0 n
n��

Ž 2 .�where, by the choice of � , b � E 
Z � 1 and C is a constant independent
Ž .of t. As for the second term in 4.4 , we have

jt
2I � ��
 
Z �Y a.s.,Ž . Ž .Ý Łt , 2 d m

m�1j�1
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Ž . Ž .1�2 Ž .FIG. 3. Top: 500 realizations of the ARCH 1 process X � 0.001 � 0.6 X Z left and the sample ACF oft t�1 t
Ž . Ž .the data right . Bottom: the sample ACF of the absolute values of the data left and the sample ACF of the

Ž .squared data right .
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2 � Ž .�Y � X see 4.2 and since I is independent of X ,d 0 t, 2 0

2 � 2 2 2 �1P I � a y�2 X � a y  P Y � a y�2 � O n .Ž .Ž . Ž .t , 2 n 0 n n

Ž .Combining these two bounds for the terms in 4.4 , it follows that

� � � �lim lim sup P X �a y X �a y� t n 0 nž /k�� n�� � �k t rn

r �mn
2 2 2 2 2 2� lim lim sup 2 m � 1 P X � a y X � a yŽ . Ž .Ý t n 0 n

k�� n�� t�k

2 2 2 � ��P X � a y �P X � a yŽ .Ž .0 n 0 n

�
t lim const bŽ . Ý

k�� t�k

� 0.

Ž .This completes the verification of 2.10 . �

REMARK 4.2. In the special case when m � 0 in Theorem 4.2, we obtain

n � �

� � N � � ,Ý Ý ÝX � a d P Qt n i i j
t�1 i�1 j�1

� �which is an extension of Theorem 2.1 in 15 on the convergence of the
time-normalized point process of exceedances. In this case the extremal index

Ž 2 . Žof X can be calculated as follows. For k � 0 fixed, define Y � 1,t
1�2 k�1�2Ž .. Ž .
 Z , . . . , 
 Z ��� Z . Applying Lemma A.1 ii with h � 0 and1 1 2 k�1

Žm � 2k and using the independence of Y with Y �Y , j � k � 2, . . . ,k�1 j k�1
.2k � 1 , we find that

k
� � �Žk . Žk . Žk .� � � � � �E � � � E ��0 j 0ž /j�1 �

2k�1
� � �� � � � � �� E Y 1 � Y �Y E Y�k�1 j k�1 k�1ž /ž /j�k�2 �

2k�1
�� �� E 1 � Y �Y� j k�1ž /j�k�2 �

k
�� E 1 � A ,� jž /j�1 �
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j � 1�2 �where A � Ł 
 Z . The last expectation can be rewritten asj i�1 i

k�
�1 ���1P A  y � y dy,�H jž /1 j�1

which converges to
��

�1 ���1� � P A  y � y dy,�H jž /1 j�1

as k � �. This expression agrees with the value of the extremal index of the
Ž . � �squared process given in equation 2.2 of 15 .

A. Sample ACVF and ACF of X . We derive the limiting behavior oft
Ž . Ž . Ž . Ž . Ž . Ž . Ž .� h and � h for three cases: 1 � � 0, 2 , 2 � � 2, 4 and 3n, X n, X
Ž . Ž .� � 4, � . In the first case, the variance of X is infinite and � h has an, X

Ž .random limit without any normalization. For � � 2, 4 , the process has a
finite variance but infinite fourth moment and

na�2� h � S ,Ž .n n , X d h

where S has an ��2-stable distribution. Finally, if � � 4, then the processh
1�2 Ž .has a finite fourth moment and n � h is asymptotically normal.n, X

Ž . Ž .A 1 . CASE � � 0, 2 . Since the point process result of Theorem 4.2 holds,
Ž .a direct application of Theorem 3.5 i yields

na�2 � h � VŽ . Ž .Ž .Ž .n n , X d h h�0, . . . , mh�0, . . . , m

and
� h � V �V ,Ž . Ž .Ž .n , X d h 0h�1, . . . , m h�1, . . . , m

where V is defined in the theorem.h

Ž . Ž .A 2 . CASE � � 2, 4 . First, note that by the symmetry of the distribution
of Z , the random variables for h � 0t

X X I 2 and X X I 2t t�h � � X X �  a � 4 s s�h � � X X �  a � 4t t�h n s s�h n

have mean 0 and are uncorrelated for s � t. Using this property in conjunc-
�tion with the regular variation of X X with tail index ��2; cf. Lemma0 h

Ž .�A.1 ii , we have
n�h

�2
2var a X X IÝn t t�h � � X X �  a � 4t t�h nž /

t�1

� n � h a�4 EX 2 X 2I 2Ž . n 0 h � � X X �  a � 40 h n

2�1�4 2 2� �	 na � 4 � � a � P X X � a �Ž . Ž . Ž .n n 0 h n

� const � 2�� �2 as n � �,
� 0 as � � 0,
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where the asymptotic relation follows from Karamata’s theorem. Thus, condi-
Ž . Ž .tion 3.4 of Theorem 3.5 is met for h � 1, . . . , m and since � h � 0 forX

h 
 1, we conclude

na�2 � h � V ,Ž . Ž .Ž .Ž .n n , X d h h�1, . . . , mh�1, . . . , m

where V is defined in the theorem. In addition, an application of the ergodich
Ž . Ž .theorem yields � 0 � � 0 so thatn, X P X

na�2� h � ��1 0 V .Ž . Ž . Ž .Ž .n n , X d X h h�1, . . . , mh�1, . . . , m

Ž . Ž .A 3 . CASE � � 4, � . Since the stationary multivariate time series
Ž 2 . Ž . Ž .X , X X , . . . , X X has a finite 2 � � th moment � � 0 and ist t t�1 t t�m

Ž .strongly mixing with a geometric rate Lemma A.3 , it follows from standard
Žlimit theorems for strongly mixing sequences see, for example, Theorem

� �.18.5.3 of Ibragimov and Linnik 21 that

n1�2 � h � � h � G ,Ž . Ž . Ž .Ž .Ž .n , X X d h h�0, . . . , mh�0, . . . , m

where the limit vector has a multivariate normal distribution with mean
Ž .zero. Applying the argument used to establish 3.6 , we conclude that

n1�2 � h � ��1 0 G .Ž . Ž . Ž .Ž .Ž .n , X d X h h�1, . . . , mh�1, . . . , m

Notice that the sequences of scaling constants which ensure nondegenerate
Ž .convergence of � h for the various cases are of the formn, X

�1, if � � 0, 2 ,Ž .
�1�2 ��const n , if � � 2, 4 ,Ž .� 1�2const n , if � � 4, � .Ž .

This is in contrast to the linear process case with regularly varying noise
� �variables, where the scaling increases with decreasing � ; compare 11, 12 .

B. Sample ACVF and ACF of X 2. The sample ACVF and ACF based ont
the squares of the process are defined by

n�h
�1 2 2

2� h � n X X , h 
 0,Ž . Ýn , X t t�h
t�1

and

� 2 h � � 2 h �� 2 0 , h 
 0,Ž . Ž . Ž .n , X n , X n , X

respectively. Like the situation considered above for � and � , there aren, X n, X
three intervals of � that give rise to vastly different limit behavior of � 2n, X
and � 2 . These regions are determined by the existence or nonexistence ofn, X
the second and fourth moments of X 2.t
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Ž .FIG. 4. Two paths of the sample ACF of the squares of 500 different realizations of the ARCH 1
Ž .1�2process X � 0.001 � 0.7X Z . These simulations illustrate that the sample ACF do nott t�1 t

converge to constants.

Ž . Ž .B 1 . CASE � � 0, 4 . It is easy to see that the point process convergence
in Theorem 4.2 remains valid for the squared process, that is,

n � �

�2 2 2 24.5 N � � � N � � ,Ž . ˜Ý Ý Ýn a Ž X , . . . , X . d P Qn t t�m i i j
t�1 i�1 j�1

˜Žh. Žh. 2 2 2Ž . Ž .where Q � Q , h � 0, . . . , m. Since X , . . . , X is jointly regularlyi j i j t t�m
Ž .varying with tail index ��2, it follows from Theorem 3.5 i that

na�4 � 2 h � V ,Ž . Ž .Ž .Ž .n n , X d h h�0, . . . , mh�0, . . . , m

and

� 2 h � V �V ,Ž . Ž .Ž .n , X d h 0h�1, . . . , m h�1, . . . , m

where
� �

2 24 Ž0. Žh.V � P Q Q , h � 0, . . . , m.Ž . Ž .Ý Ýh i i j i j
i�1 j�1
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Ž . Ž . Ž .B 2 . CASE � � 4, 8 . Due to the difficulty of verifying condition 3.4
directly, we establish convergence in distribution of the sample ACVF di-

Ž .rectly from the point process convergence in 4.5 . We only establish joint
Ž Ž . Ž ..2 2convergence of � 0 , � 1 , since the extension to arbitrary lags is an, X n, X

4 Žstraightforward generalization. Now using the representation X � � �t�1
2 .2 4
 X Z , writet t�1

n
�4 4 4a X � EXŽ .Ýn t�1

t�1
n

2�4 2 4� a � � 
 X Z � 3 IŽ . Ž .Ýn t t�1 � � X �  a � 4t n
t�1

n
2�4 2 4� a � � 
 X Z � 3 IŽ . Ž .Ýn t t�1 � � X � � a � 4t n

t�1

4.6Ž .

n
2 2�4 2 2� 3a � � 
 X � E � � 
 XŽ .Ž .Ý ž /n t

t�1

� I � II � III.
Since the summands comprising I are uncorrelated, we have, by Karamata’s
theorem,

2�8 2 4var I � na var � � 
 X Z � 3 IŽ . Ž . Ž .n 0 1 � � X �  a � 4ž /0 n

 const na�8EX 8In � � X �  a � 4n

8�8 � �	 const na a � P X � a �Ž . Ž .n n n

4.7Ž .

� const � 8�� as n � �

� 0 as � � 0.
Ž0. Žm. m�1Ž . � 4As for II, let x � x , . . . , x � � � 0 and define the mappingst t t

T : MM � �h , �

by
� �

2Ž0.
Ž0.T n � � n x I ,Ž .Ý Ý0, � i x i i � � x � � � 4i iž /

i�1 i�1

� �
2Ž1.

Ž0.T n � � n x I ,Ž .Ý Ý1, � i x i i � � x � � � 4i iž /
i�1 i�1

� �
Ž0. Žh�1.

Ž0.T n � � n x x I , h 
 2.Ý Ýh , � i x i i i � � x � � � 4i iž /
i�1 i�1

2� � 4 � � 4 Ž .Since the set x � � � 0 : x � � is bounded, the convergence in 4.50
implies

II � T N � 3
2T N � o 1Ž .1, � n 0, � n P
4.8Ž .

� T N � 3
2T N � S � , � .Ž .d 1, � 0, �
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Ž . Ž . � �Note that ES � , � � 0. Using 4.7 and the argument given in 8 , pages 897
Ž . 
and 898, S � , � � V , say, as � � 0.d 0

Turning to III, it is easy to see that
n

�4 2 4 4III � 3a 
 X � EX � o 1 ,Ž .Ž .Ýn t�1 P
t�1

Ž . Ž .so that from 4.6 � 4.8 , we have
n

�1 
�4 4 4 24.9 a X � EX � 1 � 3
 V � V .Ž . Ž .Ž .Ýn t�1 d 0 0
t�1

Ž .2As for � 1 , we proceed as above and writen, X

n
�4 2 2

2a X X � � 1Ž .Ž .Ýn t t�1 X
t�1

n
�4 2 2 2� a X � � 
 X Z � 1 IŽ . Ž .Ýn t t t�1 � � X �  a � 4t n

t�1
n

�4 2 2 2� a X � � 
 X Z � 1 IŽ . Ž .Ýn t t t�1 � � X � � a � 4t n
t�1

n
�4 2 2

2� a X � � 
 X � � 1 .Ž .Ž .Ž .Ýn t t X
t�1

Ž . 2 4 Ž .2Since � 1 � �EX � 
EX , it follows from 4.9 and the argument givenX
above that

na�4 � 2 1 � � 2 1 � V 
 � 
V � V ,Ž . Ž .Ž .n n , X X d 1 0 1

where V 
 is the distributional limit of T N � 
T N as � � 0. In general,1 2, � 1, �

na�4 � 2 h � � 2 h � V ,Ž . Ž . Ž .Ž .Ž .n n , X X d h h�0, . . . , mh�0, . . . , m

where
�1
 
2V � V 1 � 3
 , V � V � 
V , h 
 1,Ž .0 0 h h h�1

Ž 
 
 . Ž 2 Žand V , . . . , V is the distributional limit of T N � 3
 T N, T N0 m 1, � 0, � h�1, �

. .� 
T N as � � 0. Moreover, the Taylor series argument usedh, � h�1, . . . , m
earlier gives

na�4 � 2 h � � 2 h � ��1
2 0 V � � 2 h V .Ž . Ž . Ž . Ž .Ž . Ž .Ž .n n , X X d X h X 0 h�1, . . . , mh�1, . . . , m

Ž . Ž .B 3 . CASE � � 8, � . The sample ACVF and ACF are asymptotically
Ž .normal in this case. The proof is identical to that described in part A 3 above.

� �C. Sample ACVF and ACF of X . The asymptotic behavior of thet
sample ACVF and ACF based on the absolute values of the process is similar

Ž .to the situation considered in part A. The proofs of the � � 0, 2 and
Ž . Ž . Ž .� � 4, � cases are identical to those given for parts A 1 and A 3 , respec-
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FIG. 5. Two paths of the sample ACF of the absolute values of 500 different realizations of the
Ž . Ž .1�2ARCH 1 process X � 0.001 � X Z . These simulations illustrate that the sample ACF dot t�1 t

not converge to constants.

Ž .tively, while the proof in the � � 2, 4 case follows the argument given for
Ž .part B 2 . The relevant point process convergence for dealing with the abso-

lute values is now
n � �

�1 Ž0. Žm .4.10 N � � � N � � ,Ž . Ý Ý Ýn a Ž � X � , . . . , � X �. d P Ž �Q � , . . . , �Q �.n t t�m i i j i j
t�1 i�1 j�1

Ž . Ž Ž0. Žm..where P and Q � Q , . . . , Q are specified in Theorem 4.2.i i j i j i j

Ž . Ž .C 1 . CASE � � 0, 2 . We have, from a direct application of Theorem
Ž .3.5 i , that

na�4� h � VŽ . Ž .Ž .n n , � X � d h h�0, . . . , mh�0, . . . , m

and

� h � V �V ,Ž . Ž .Ž .n , � X � d h 0 h�1, . . . , mh�1, . . . , m
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where

� �
2 Ž0. Žh.� �V � P Q Q , h � 0, . . . , m.Ž .Ý Ýh i i j i j

i�1 j�1

Ž . Ž . Ž .C 2 . CASE � � 2, 4 . As in the case considered for part B 2 , we only
Ž Ž . Ž ..provide a proof of the joint convergence of � 0 , � 1 . Using then, � X � n, � X �

Ž .argument given in B 2 for the sample fourth moment, we have

n
�2 2 2a X � EXŽ .Ýn t

t�1
n n

�2 2 2 �2 2 2� a � � 
 X Z � 1 � a 
 X � EX � o 1 .Ž .Ž . Ž . Ž .Ý Ýn t t�1 n t P
t�1 t�1

It then follows that

n
�1 
�2 2 24.11 a X � EX � 1 � 
 V � V ,Ž . Ž .Ž .Ýn t d 0 0

t�1

where V 
 is the distributional limit of T N � T N as � � 0 and the0 1, � 0, �

Ž .mappings T and T are defined in part B 2 .1, � 0, �

For the lag one covariances, we begin with the decomposition,

n
�2 � � � �a X X � E X XŽ .Ýn t t�1 1 2

t�1
n n

1�2�2 2 �1 �2 �1 1�2 2 2� � � �� a X � � 
 X Z � � � a � 
 X � EXŽ . Ž . Ž .Ý Ýn t t t�1 n t
t�1 t�1

n
�2 �1 1�2� a � 
 f X � Ef XŽ . Ž .Ž .Ýn t

t�1

� I � II � III,

Ž . � �ŽŽ 2 .1�2 1�2 � �. Ž . 1�2 � �where f x � x � � 
 x � 
 x . Using the bound 0  f x  � x ,
2Ž . 2 Ž . Ž . � � � Ž .we note that f x  � x  � V x , where V x � 1 � x with � � 2, � .

Applying the result of Remark A.4, we obtain

n n
�4var III � a cov f X , f XŽ . Ž . Ž .Ž .Ý Ýn s t

s�1 t�1
n

�4 h na 2� const aŽ . Ýn
h�0

� 0,

�4 Ž 1�4�� . Ž .as n � �, since na � O n � o 1 .n
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Next we consider the term I. We first show

n
1�2�2 2 �1� � � �a X � � 
 X Z � � IŽ . Ž .Ýn t t t�1 � � X � � a � 4t n

t�1

n
�2 � �� a X X IÝn t t�1 � � X � � a � 4t n

t�1
4.12Ž .

n
�1 1�2 �2 2� � 
 a X I � o 1 ;Ž .Ýn t � � X � � a � 4 Pt n

t�1
n n

�2 �1 1�2 �2 2� �a X X I � � 
 a X IÝ Ýn t t�1 � � X � � a � 4 n t � � X � � a � 4t n t n
4.13 t�1 t�1Ž .

� S N � ��1
1�2T N ,d � 0, �

� � Ž0. Ž1.Ž . � � Ž0.where S : MM � � is the mapping S Ý n � � Ý n x x I ;� � i�1 i x i�1 i i i � � x � � � 4i i

n
1�2�2 2� �lim lim sup var a X � � 
 XŽ .Ýn t tž��0 n�� t�1

4.14Ž .
� � �1� Z � � I � 0;Ž .t�1 � � X �  a � 4t n /

and

4.15 S N � ��1
1�2T N � V 
 ,Ž . � 0, � d 1

as � � 0. The expectation of the absolute value of the difference between the
Ž .term on the left and the sum of the first two terms on the right of 4.12 is

�1 1�2 �2 � � .bounded above by � � na E X I which converges to zero byn � � X � � a � 4n
Ž . Ž .Karamata’s theorem. This proves 4.12 . The limit in 4.13 is immediate from

Ž . Ž .the point process result in 4.10 . The summands in the expression for 4.14
are uncorrelated so that the result holds by an application of Karamata’s

Ž . Ž .theorem; compare 4.7 . The convergence in 4.15 can be established using
Ž . � �4.14 and the argument given in 8 , pages 897 and 898. Combining
Ž . Ž . 
4.11 � 4.15 , we conclude that I � V . It now follows thatd 1

na�2 � 0 � � 0 , na�2 � 1 � � 1Ž . Ž . Ž . Ž .Ž . Ž .Ž .n n , � X � � X � n n , � X � � X �

� V , V 
 � ��1
1�2VŽ .d 0 1 0

and

na�2 � 1 � � 1 � ��1 0 V 
 � ��1
1�2V � � 1 V .Ž . Ž . Ž . Ž .Ž . Ž .n n , � X � � X � d � X � 1 0 � X � 0

Ž . Ž . Ž . 1�2Ž Ž . Ž ..C 3 . CASE � � 4, � . As in Case A 3 , n � h � � hn, � X � � X � h�0, . . . , m
1�2Ž Ž . Ž ..and n � h � � h are asymptotically normal.n, � X � � X � h�1, . . . , m
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APPENDIX

Ž .In what follows, we collect some of the properties of an ARCH 1 process;
Ž .see 4.1 . We use the notation introduced in the previous sections.

Regular variation of the ARCH process.

Ž . Ž .LEMMA A.1. Let X be a stationary ARCH 1 process with tail index � ;t
Ž .see 4.3 .

Ž . Ž i, h. Ž � � i � � i.i Define for i � 1, 2, X � X , X for some h 
 0 andt t t�h

X Ž i , h. m � X Ž i , h. , . . . , X Ž i , h. , m 
 0.Ž . Ž .t t t�m

Ž i, h.Ž .Then the random vectors X m are regularly varying with index ��i; thatt
Ž .is, there exists a sequence x of positive numbers such thatn

X Ž i , h. mŽ .tŽ i , h.� �nP X m 
 sx , � �Ž .t n Ž i , h.ž /� �X mŽ .t
A.1Ž .

� Ž i , h. � �� i Ž i , h. � Ž i , h. �E Y m I Y m �Y mŽ . Ž . Ž .Ž .��� � i� s ,v � � iŽ i , h.� �E Y mŽ .
where

Y Ž i , h. mŽ .
� h 2 2 � i �2 � m 2 2 � i �2 � m� h 2 2 � i �2� 1, 
 Z ��� Z , . . . , 
 Z ��� Z , 
 Z ��� Z .Ž . Ž .ž / /1 h 1 m 1 m�h

Ž . Žh. Ž .ii Define X � X , X for some h 
 0 andt t t�h

X Žh. m � X Žh. , . . . , X Žh. , m 
 0.Ž . Ž .t t t�m

Žh.Ž .Then the random vectors X m are regularly varying with index � ; that is,t
Ž .there exists a sequence x of positive numbers such thatn

X Žh. mŽ .tŽh.� �nP X m � sx , � �Ž .t n Žh.ž /� �X mŽ .t

� Žh. � � Žh. � Žh. �E Y m I Y m �Y mŽ . Ž . Ž .Ž .���� s ,�v Žh.� �E Y mŽ .
where

Y Žh. m � 1, 
h �2Z ��� Z , . . . , 
m �2Z ��� Z , 
Žm�h.�2Z ��� Z .Ž . Ž . Ž .Ž .1 h 1 m 1 m�h

Ž .PROOF. i For notational simplicity we restrict ourselves to the case
h � 1, i � 2, that is,

X m � X Ž2, 1. m � X 2 , X 2 , . . . , X 2 , X 2 .Ž . Ž . Ž . Ž .Ž .t t t t�1 t�m t�m�1
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Ž .The case i � 1 follows in the same way. Iterating the defining equation 4.1 ,
one obtains

X m � X 2 1, 
Z 2 , . . . , 
mZ 2 ��� Z 2 , 
m� 1Z 2 ��� Z 2 � RŽ . Ž . Ž .Ž .t t t�1 t�1 t�m t�1 t�m�1 t

� X 2 Y � R ,t t t

where the remainder R has a tail which does not contribute asymptoticallyt
Ž . 2 2to the tail of X m . Hence it suffices to show that X Y � X Y is regularlyt t t

2 m�1 Ž 2 .varying. Fix a Borel set A 	 � . Choose x such that P X � x 	n n
�1 � � ��2 � � Ž � �.n �E Y . A result of 3 see also 29 says that if � is a nonnegative

random variable with a regularly varying tail of index � � 0 and if � is˜
� � �another nonnegative random variable independent of � and with E � � �

for some � � � , then˜

�̃P �� � x 	 E� P � � x , x � �.Ž . Ž .

2 � �An application of the latter result with � � X , � � ��2, � � Y I˜ �Y� � Y � � A4
Ž .yields the desired relation A.1 .

Ž .ii This part follows from the regular variation of the absolute values and
Ž . Ž � � . Ž .by the observation that X � X r where the sequence r is independentt t t t

Ž � �.of X . Alternatively, one can follow the lines of the proof above. �t

Strong mixing of the ARCH.

Ž . Ž . Ž .LEMMA A.2. Let X be a stationary ARCH 1 process; see 4.1 . Thent
Ž .X is strongly mixing with geometric rate; that is, there exist constantst

Ž .K � 0 and a � 0, 1 such that

� � ksup P A � B � P A P B  Ka .Ž . Ž . Ž .
Ž . Ž .A�� X , s0 , B�� X , s�ks s

� �PROOF. We follow the theory for Markov chains in 27 . The case 
 � 1
� � Ž .1�2can also be derived from 16 . Observe that X � � � 
 X Z is at t�1 t

Ž .Markov chain with state space � and transition probabilities P x, � . The
Ž 2 . � �latter correspond to an N 0, � � 
 x distribution. By Theorem 16.1.5 in 27 ,

it suffices to show that the chain is V-uniformly ergodic. For this one has to
Ž . � �check the geometric drift condition V4 in 27 , page 367: there exist an

� �extended real-valued function V: � � 1, � , a measurable set C, constants
�̃ � 0, b � � such that

˜A.2 V y P x , dy  1 � � V x � bI x , x � �.Ž . Ž . Ž . Ž . Ž .Ž .H C

� �First we show that for any M � 0, the set C � �M, M is petite in the sense
� �of 27 , page 121; there exists a non-trivial measure � on the Borel sets BB of
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Ž . Ž .� such that P x, B 
 � B for all x � C and B � BB. For all x � C,

�1�2 2 22 �0 .5 y �Ž ��
 x .P x , B � 2� � � 
 x e dyŽ . Ž .Ž . H
B

� 1�2


 � B � � B ,Ž . Ž .�1�22� � M 
Ž .

Ž . Ž .where � B denotes the N 0, � distribution. Hence C is petite. Now choose�

Ž . � � � Ž .V x � 1 � x for some � � 0. We check A.2 directly. We first note that
Ž . Ž 2 .u �2 Ž . Ž .since the function h u � E 
Z is convex and satisfies h 0 � h � �
 
 


� � Ž .1; see 17 , Lemma 8.4.6, we have h u � 1 for u � � . Now for � � �


� � �V y P x , dy � 1 � y P x , dyŽ . Ž . Ž .H H
�

��2 �2 � �� 1 � � � 
 x E ZŽ .
��2 � �2�1 2 2� �� 1 � �
 � x E 
Z .Ž .

˜ Ž .It follows that there exist � � 0, 1 and M large such that the right-hand
˜Ž . Ž . � � Žside is bounded above by 1 � � V x for x � M. Choosing b � 1 � � �

2 .��2 � � � � � Ž .
M E Z and C � �M, M , A.2 now follows. �

Ž .The following is a consequence of Lemma A.2, the fact that X is at
Markov chain and that strong mixing is a property of the underlying �-fields.

Ž . Ž .LEMMA A.3. For a stationary ARCH 1 process X and every m 
 0, thet
Ž .sequence of random vectors X � X , . . . , X is strongly mixing witht t t�m

geometric rate. Moreover, for every measurable function f, the stationary
Ž Ž ..sequence f X is strongly mixing with geometric rate.t

REMARK 5.4. A particular consequence of Lemma 5.3 is that

� � nsup cov f X , g X  const a ,Ž . Ž .Ž .0 n
f , g

� Ž . � � � �for some a � 1 and measurable functions f and g with f x  1 � x and
� Ž . � � � � Ž .g x  1 � x for any � � 0, ��2 . These covariances are well defined;
� �27 , page 388. The latter condition allows one to apply standard results on

� �the CLT for strongly mixing sequence; see, for example, 21 , Chapter 18.
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