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THE SAMPLE AVERAGE APPROXIMATION METHOD FOR

STOCHASTIC DISCRETE OPTIMIZATION

ANTON J. KLEYWEGT†‡ AND ALEXANDER SHAPIRO†§

Abstract. In this paper we study a Monte Carlo simulation based approach to stochastic
discrete optimization problems. The basic idea of such methods is that a random sample is generated
and consequently the expected value function is approximated by the corresponding sample average
function. The obtained sample average optimization problem is solved, and the procedure is repeated
several times until a stopping criterion is satisfied. We discuss convergence rates and stopping rules
of this procedure and present a numerical example of the stochastic knapsack problem.

Key words. Stochastic programming, discrete optimization, Monte Carlo sampling, Law of
Large Numbers, Large Deviations theory, sample average approximation, stopping rules, stochastic
knapsack problem

AMS subject classifications. 90C10, 90C15

1. Introduction. In this paper we consider optimization problems of the form

min
x∈S

{g(x) ≡ IEP G(x, W )} .(1.1)

Here W is a random vector having probability distribution P , G(x, w) is a real valued
function, and S is a finite set, for example S can be a finite subset of IRk with
integer coordinates. We assume that the expected value function g(x) is well defined,
i.e. for every x ∈ S the function G(x, ·) is P -measurable and IEP {|G(x, W )|} < ∞.
We are particularly interested in problems for which the expected value function
g(x) ≡ IEP G(x, W ) cannot be written in a closed form and/or its values cannot be
easily calculated, while G(x, w) is easily computable for given x and w.

It is well known that many discrete optimization problems are hard to solve. Here
on top of this we have additional difficulties since the objective function g(x) can be
complicated and/or difficult to compute even approximately. Therefore stochastic
discrete optimization problems are difficult indeed and little progress in solving such
problems numerically has been reported so far. A discussion of two stage stochastic
integer programming problems with recourse can be found in Birge and Louveaux [2].
A branch and bound approach to solving stochastic integer programming problems
was suggested by Norkin, Pflug and Ruszczynski [9]. Schultz, Stougie, and Van der
Vlerk [10] suggested an algebraic approach to solving stochastic programs with integer
recourse by using a framework of Gröbner basis reductions.

In this paper we study a Monte Carlo simulation based approach to stochastic
discrete optimization problems. The basic idea is simple indeed—a random sample
of W is generated and consequently the expected value function is approximated by
the corresponding sample average function. The obtained sample average optimiza-
tion problem is solved, and the procedure is repeated several times until a stopping
criterion is satisfied. The idea of using sample average approximations for solving
stochastic programs is a natural one and was used by various authors over the years.
Such an approach was used in the context of a stochastic knapsack problem in a recent
paper of Morton and Wood [7].
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The organization of this paper is as follows. In the next section we discuss a sta-
tistical inference of the sample average approximation method. In particular we show
that with probability approaching one exponentially fast with increase of the sample
size, an optimal solution of the sample average approximation problem provides an
exact optimal solution of the “true” problem (1.1). In section 3 we outline an algo-
rithm design for the sample average approximation approach to solving (1.1), and in
particular we discuss various stopping rules. In section 4 we present a numerical ex-
ample of the sample average approximation method applied to a stochastic knapsack
problem, and section 5 gives conclusions.

2. Convergence Results. As mentioned in the introduction, we are interested
in solving stochastic discrete optimization problems of the form (1.1). Let W 1, ..., WN

be an i.i.d. random sample of N realizations of the random vector W . Consider the
sample average function

ĝ
N

(x) ≡ 1

N

N∑

n=1

G(x, Wn)

and the associated problem

min
x∈S

ĝ
N

(x).(2.1)

We refer to (1.1) and (2.1) as the “true” (or expected value) and sample average
approximation (SAA) problems, respectively. Note that IE[ĝ

N
(x)] = g(x).

Since the feasible set S is finite, problems (1.1) and (2.1) have nonempty sets of
optimal solutions, denoted S∗ and Ŝ

N
, respectively. Let v∗ and v̂

N
denote the optimal

values,

v∗ ≡ min
x∈S

g(x) and v̂
N

≡ min
x∈S

ĝ
N

(x)

of the respective problems. We also consider sets of ε-optimal solutions. That is, for
ε ≥ 0, we say that x̄ is an ε-optimal solution of (1.1) if x̄ ∈ S and g(x̄) ≤ v∗ + ε. The
sets of all ε-optimal solutions of (1.1) and (2.1) are denoted by Sε and Ŝε

N
, respectively.

Clearly for ε = 0, set Sε coincides with S∗, and Ŝε
N

coincides with Ŝ
N

.

2.1. Convergence of Objective Values and Solutions. In the following
proposition we show convergence with probability one (w.p.1) of the above statis-
tical estimators. By the statement “an event happens w.p.1 for N large enough” we
mean that for P -almost every realization ω = {W 1, W 2, . . .} of the random sequence,
there exists an integer N(ω) such that the considered event happens for all samples
{W 1, . . . , Wn} from ω with n ≥ N(ω). Note that in such a statement the integer
N(ω) depends on the sequence ω of realizations and therefore is random.

Proposition 2.1. The following two properties hold: (i) v̂
N

→ v∗ w.p.1 as

N → ∞, and (ii) for any ε ≥ 0, the event {Ŝε
N

⊂ Sε} happens w.p.1 for N large

enough.

Proof. By the strong Law of Large Numbers we have that for any x ∈ S, ĝ
N

(x)
converges to g(x) w.p.1 as N → ∞. Since the set S is finite, and the union of a finite
number of sets each of measure zero also has measure zero, it follows that w.p.1, ĝ

N
(x)

converges to g(x) uniformly in x ∈ S. That is, w.p.1,

δ
N

≡ max
x∈S

|ĝ
N

(x) − g(x)| → 0 as N → ∞.(2.2)



SAMPLE AVERAGE APPROXIMATION 3

Since |v̂
N
− v∗| ≤ δ

N
, it follows that w.p.1, v̂

N
→ v∗ as N → ∞.

For a given ε ≥ 0 consider the number

α(ε) ≡ min
x∈S\Sε

g(x) − v∗ − ε.(2.3)

Since for any x ∈ S \ Sε it holds that g(x) > v∗ + ε and the set S is finite, it follows
that α(ε) > 0.

Let N be large enough such that δ
N

< α(ε)/2. Then v̂
N

< v∗ + α(ε)/2, and for
any x ∈ S \Sε it holds that ĝ

N
(x) > v∗ +ε+α(ε)/2. It follows that if x ∈ S \Sε, then

ĝ
N

(x) > v̂
N

+ ε and hence x does not belong to the set Ŝε
N

. The inclusion Ŝε
N

⊂ Sε

follows, which completes the proof.
It follows that if, for some ε ≥ 0, Sε = {x∗} is a singleton, then w.p.1, Ŝε

N
= {x∗}

for N large enough. In particular, if the true problem (1.1) has a unique optimal
solution x∗, then w.p.1, for sufficiently large N the approximating problem (2.1) has
a unique optimal solution x̂

N
and x̂

N
= x∗.

In the next section, and in section 4, it is demonstrated that α(ε), defined in (2.3),
is an important measure of the well-conditioning of a stochastic discrete optimization
problem.

2.2. Convergence Rates. The above results do not say anything about the
rates of convergence of v̂

N
and Ŝε

N
to their true counterparts. In this section we

investigate such rates of convergence. By using the theory of Large Deviations (LD)
we show that, under mild regularity conditions, the probability of the event {Ŝε

N
⊂

Sε} approaches one exponentially fast as N → ∞. Next we briefly outline some
background of the LD theory.

Consider an i.i.d. sequence X1, . . . , XN of replications of a random variable X ,
and let ZN ≡ N−1

∑N
i=1 Xi be the corresponding sample average. Then for any real

numbers a and t ≥ 0 we have that P (ZN ≥ a) = P (etZN ≥ eta), and hence, by
Chebyshev’s inequality

P (ZN ≥ a) ≤ e−taIE
{
etZN

}
= e−ta[M(t/N)]N

where M(t) ≡ IE{etX} is the moment generating function of X . By taking the
logarithm of both sides of the above inequality, changing variables t′ ≡ t/N and
minimizing over t′ > 0, we obtain

1

N
log [P (ZN ≥ a)] ≤ −I(a),(2.4)

where

I(z) ≡ sup
t≥0

{tz − Λ(t)}

is the conjugate of the logarithmic moment generating function Λ(t) ≡ log M(t). In
LD theory, I(z) is called the large deviations rate function, and the inequality (2.4)
corresponds to the upper bound of Cramér’s LD theorem.

Although we do not need this in the subsequent analysis, it could be mentioned
that the constant I(a) in (2.4) gives, in a sense, the best possible exponential rate
at which the probability P (ZN ≥ a) converges to zero. This follows from the corre-
sponding lower bound of Cramér’s LD theorem. For a thorough discussion of the LD
theory, an interested reader is referred to Dembo and Zeitouni [4].
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The rate function I(z) has the following properties. Suppose that the random
variable X has mean µ. Then the function I(z) is convex, attains its minimum at
z = µ, and I(µ) = 0. Moreover, suppose that the moment generating function
M(t), of X , is finite valued for all t in a neighborhood of t = 0. Then it follows
by the dominated convergence theorem that M(t), and hence the function Λ(t), are
infinitely differentiable at t = 0, and Λ′(0) = µ. Consequently for a > µ the derivative
of ψ(t) ≡ ta − Λ(t) at t = 0 is greater than zero, and hence ψ(t) > 0 for t > 0 small
enough. It follows that in that case I(a) > 0.

Now we return to the problems (1.1) and (2.1). Consider ε ≥ 0 and the numbers
δ
N

and α(ε) defined in (2.2) and (2.3), respectively. Then it holds that if δ
N

< α(ε)/2,
then {Ŝε

N
⊂ Sε}. Since the complement of the event {δ

N
< α(ε)/2} is given by the

union of the events |ĝ
N

(x)− g(x)| ≥ α(ε)/2 over all x ∈ S, and the probability of that
union is less than or equal to the sum of the corresponding probabilities, it follows
that

1 − P
(
Ŝε

N
⊂ Sε

)
≤

∑

x∈S

P {|ĝ
N

(x) − g(x)| ≥ α(ε)/2} .

We make the following assumption.

Assumption A For any x ∈ S, the moment generating function M(t) of the random
variable G(x, W ) is finite valued in a neighborhood of t = 0.

Under Assumption A, it follows from the LD upper bound (2.4) that for any
x ∈ S there are constants γx > 0 and γ′

x > 0 such that

P {|ĝ
N

(x) − g(x)| ≥ α(ε)/2} ≤ e−Nγx + e−Nγ′

x .

Namely, the constants γx and γ′
x are given by values of the rate functions of G(x, W )

and −G(x, W ) at g(x) + α(ε)/2 and −g(x) + α(ε)/2, respectively. Since the set S is
finite, by taking γ ≡ minx∈S{γx, γ′

x}, the following result is obtained (it is similar to
an asymptotic result for piecewise linear continuous problems derived in [12]).

Proposition 2.2. Suppose that Assumption A holds. Then there exists a con-

stant γ > 0 such that the following inequality holds:

lim sup
N→∞

1

N
log

[
1 − P (Ŝε

N
⊂ Sε)

]
≤ −γ.(2.5)

The inequality (2.5) means that the probability of the event {Ŝε
N
⊂ Sε} approaches

one exponentially fast as N → ∞. Unfortunately it appears that the corresponding
constant γ, giving the exponential rate of convergence, cannot be calculated (or even
estimated) a priori, i.e., before the problem is solved. Therefore the above result is
more of theoretical value. Let us mention at this point that the above constant γ
depends, through the corresponding rate functions, on the number α(ε). Clearly, if
α(ε) is “small”, then an accurate approximation would be required in order to find
an ε-optimal solution of the true problem. Therefore, in a sense, α(ε) characterizes a
well conditioning of the set Sε.

Next we discuss the asymptotics of the SAA optimal objective value v̂
N

. For
any subset S′ of S the inequality v̂

N
≤ minx∈S′ ĝ

N
(x) holds. In particular, by taking

S′ = S∗ we obtain that v̂
N
≤ minx∈S∗ ĝ

N
(x), and hence

IE[v̂
N

] ≤ IE

{
min
x∈S∗

ĝ
N

(x)

}
≤ min

x∈S∗

IE[ĝ
N

(x)] = v∗.
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That is, the estimator v̂
N

has a negative bias (cf. Mak, Morton, and Wood [6]).
It follows from Proposition 2.1 that w.p.1, for N sufficiently large, the set Ŝ

N
of

optimal solutions of the SAA problem is included in S∗. In that case we have that

v̂
N

= min
x∈Ŝ

N

ĝ
N

(x) ≥ min
x∈S∗

ĝ
N

(x).

Since the opposite inequality always holds, it follows that w.p.1, v̂
N
−minx∈S∗ ĝ

N
(x) =

0 for N large enough. Multiplying both sides of this equation by
√

N we obtain that
w.p.1,

√
N [v̂

N
− minx∈S∗ ĝ

N
(x)] = 0 for N large enough, and hence

lim
N→∞

√
N

[
v̂

N
− min

x∈S∗

ĝ
N

(x)

]
= 0 w.p.1.(2.6)

Since convergence w.p.1 implies convergence in probability, it follows from (2.6) that√
N [v̂

N
− minx∈S∗ ĝ

N
(x)] converges in probability to zero, i.e.,

v̂
N

= min
x∈S∗

ĝ
N

(x) + op(N
−1/2).

Furthermore, since v∗ = g(x) for any x ∈ S∗, it follows that

√
N

[
min
x∈S∗

ĝ
N

(x) − v∗
]

=
√

N min
x∈S∗

[ĝ
N

(x) − v∗] = min
x∈S∗

{√
N [ĝ

N
(x) − g(x)]

}
.

Suppose that for every x ∈ S, the variance

σ2(x) ≡ Var{G(x, W )}(2.7)

exists. Then it follows by the Central Limit Theorem (CLT) that, for any x ∈ S,√
N [ĝ

N
(x) − g(x)] converges in distribution to a normally distributed variable Y (x)

with zero mean and variance σ2(x). Moreover, again by the CLT, random variables
Y (x) have the same autocovariance function as G(x, W ), i.e., the covariance between
Y (x) and Y (x′) is equal to the covariance between G(x, W ) and G(x′, W ) for any
x, x′ ∈ S. Hence the following result is obtained (it is similar to an asymptotic result
for stochastic programs with continuous decision variables which was derived in [11]).
We use “⇒” to denote convergence in distribution.

Proposition 2.3. Suppose that variances σ2(x), defined in (2.7), exist for every

x ∈ S∗. Then
√

N(v̂
N
− v∗) ⇒ min

x∈S∗

Y (x),(2.8)

where Y (x) are normally distributed random variables with zero mean and the auto-

covariance function given by the corresponding autocovariance function of G(x, W ).
In particular, if S∗ = {x∗} is a singleton, then

√
N(v̂

N
− v∗) ⇒ N(0, σ2(x∗)).(2.9)

3. Algorithm Design. In the previous section we established a number of con-
vergence results for the sample average approximation method. The results describe
how the optimal value v̂

N
and the ε-optimal solutions set Ŝε

N
of the SAA problem

converge to their true counterparts v∗ and Sε respectively, as the sample size N in-
creases. These results provide some theoretical justification for the proposed method.
When designing an algorithm for solving stochastic discrete optimization problems,
many additional issues have to be addressed. Some of these issues are discussed in
this section.
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3.1. Selection of the Sample Size. Of course, in a real application the sample
size N cannot go to infinity. A finite sample size N has to be chosen, and the algorithm
has to stop after a finite amount of time. An important question is how these choices
should be made. To choose N , several trade-offs should be taken into account. We
have that the objective value and an optimal solution of the SAA problem tend to be
better for larger N , and the corresponding bounds on the optimality gap, discussed
later, tend to be tighter. However, depending on the SAA problem (2.1) and the
method used for solving the SAA problem, the computational complexity for solving
the SAA problem increases at least linearly, and often exponentially, in the sample
size N . Thus, in the choice of sample size N , the trade-off between the quality of an
optimal solution of the SAA problem, and the bounds on the optimality gap on the
one hand, and computational effort on the other hand, should be taken into account.
Also, the choice of sample size N may be adjusted dynamically, depending on the
results of preliminary computations. This issue is addressed in more detail later.

Typically, estimating the objective value g(x) of a feasible solution x ∈ S by the
sample average ĝ

N
(x) requires much less computational effort than solving the SAA

problem (for the same sample size N). Thus, although computational complexity
considerations motivates one to choose a relatively small sample size N for the SAA
problem, it makes sense to choose a larger sample size N ′ to obtain an accurate
estimate ĝ

N′
(x̂

N
) of the objective value g(x̂

N
) of an optimal solution x̂

N
of the SAA

problem. A measure of the accuracy of a sample average estimate ĝ
N′

(x̂
N

) of g(x̂
N

)
is given by the corresponding sample variance S2

N′
(x̂

N
)/N ′, which can be calculated

from the same sample of size N ′. Again the choice of N ′ involves a trade-off between
computational effort and accuracy, measured by S2

N′
(x̂

N
)/N ′.

3.2. Replication. If the computational complexity of solving the SAA problem
increases faster than linearly in the sample size N , it may be more efficient to choose
a smaller sample size N and to generate and solve several SAA problems with i.i.d.
samples, that is, to replicate generating and solving SAA problems.

With such an approach, several issues have to be addressed. One question is
whether there is a guarantee that an optimal (or ε-optimal) solution for the true
problem will be produced if a sufficient number of SAA problems, based on indepen-
dent samples of size N , are solved. We can view such a procedure as Bernoulli trials
with probability of success p = p(N). Here “success” means that a calculated optimal
solution x̂

N
of the SAA problem is an optimal solution of the true problem. It follows

from Proposition 2.1 that this probability p tends to one as N → ∞, and moreover
by Proposition 2.2 it tends to one exponentially fast if Assumption A holds. However,
for a finite N the probability p can be small or even zero. We have that after M trials
the probability of producing an exact optimal solution of the true problem at least
once is 1 − (1 − p)M , and that this probability tends to one as M → ∞ provided p is
positive. Thus a relevant question is whether there is a guarantee that p is positive
for a given sample size N . The following example shows that a required sample size
N is problem specific, does not depend in general on the number of feasible solutions,
and can be arbitrarily large.

Example. Suppose that S ≡ {−1, 0, 1}, that W can take two values w1 and w2

with respective probabilities 1 − γ and γ, and that G(−1, w1) ≡ −1, G(0, w1) ≡ 0,
G(1, w1) ≡ 2, and G(−1, w2) ≡ 2k, G(0, w2) ≡ 0, G(1, w2) ≡ −k, where k is an
arbitrary positive number. Let γ = 1/(k + 1). Then g(x) = (1 − γ)G(x, w1) +
γG(x, w2), and thus g(−1) = k/(k + 1), g(0) = 0 and g(1) = k/(k + 1). Therefore
x∗ = 0 is the unique optimal solution of the true problem. If the sample does not
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contain any observations w2, then x̂
N

= −1 
= x∗. Suppose the sample contains at
least one observation w2. Then ĝ

N
(1) ≤ [2(N − 1) − k] /N . Thus ĝ

N
(1) < 0 = ĝ

N
(0)

if N ≤ k/2, and x̂
N

= 1 
= x∗. Thus a sample of size N > k/2 at least is required, in
order for x∗ = 0 to be an optimal solution of the SAA problem. ✷

Another issue that has to be addressed, is the choice of the number M of repli-
cations. Similar to the choice of sample size N , the number M of replications may
be chosen dynamically. One approach to doing this is discussed next. For simplic-
ity of presentation, suppose each SAA replication produces one candidate solution,
which can be an optimal (ε-optimal) solution of the SAA problem. Let x̂m

N
denote

the candidate solution produced by the m-th SAA replication (trial). Some candidate
solutions are better than others. Using the larger sample with size N ′, an accurate es-
timate ĝ

N′
(x̂m

N
) of the objective value g(x̂m

N
) of each candidate solution x̂m

N
is obtained.

The estimate ĝ
N′

(x̂m
N

) can be compared with the objective value estimates ĝ
N′

(x̂m′

N
)

of previously produced candidate solutions x̂m′

N
, m′ < m, to determine if the newest

solution x̂m
N

appears to be better than all previously produced candidate solutions

x̂m′

N
. If for several successive SAA replications the candidate solutions are worse than

the best candidate solution produced so far, it indicates that another SAA replication
is not very likely to produce a better solution, using the same sample size N . At that
stage it seems that the best recourse for the algorithm is to either increase the sample
size N , or to accept the best solution found so far. This decision is discussed in more
detail later.

Thus a relevant question is how many successive SAA replications should be
performed without improvement in the best candidate solution found so far, before the
decision is made to either increase the sample size N or to stop. The following decision
rule may provide some guidelines. Suppose that m successive SAA replications have
been performed without improvement in the best candidate solution found so far. One
can compute a Bayesian estimate of the probability ρ that another SAA replication
will find a better candidate solution. Since one does not have any prior information
about ρ, it makes sense to assume that the prior distribution of ρ is uniform on the
interval [0, 1]. Let Z denote the number of SAA replications until a better candidate
solution than the best candidate solution found so far is produced. Then by Bayes’
formula we have

P (ρ ∈ dx | Z > m) =
P (Z > m | ρ ∈ dx) dx∫ 1

0
P (Z > m | ρ ∈ dx) dx

=
(1 − x)mdx∫ 1

0 (1 − x)mdx
= (m + 1)(1 − x)mdx.

That is, the posterior probability density function of ρ is π(x | m) = (m+1)(1−x)m.
For example, with m = 50 we have that ρ ≤ 0.057 with probability 0.95.

3.3. Performance Bounds. If additional replications are not likely to lead to
a better solution, a decision should be made to either increase the sample size or to
stop. To assist in making this decision, as well as for other performance evaluation
purposes, it is useful to evaluate the quality of a solution x̂ ∈ S, not only relative to
other candidate solutions, but also relative to the optimal value v∗. To do this, we
would like to compute the optimality gap g(x̂) − v∗. Unfortunately, the very reason
for the approach described in this paper is that both terms of the optimality gap are
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hard to compute. As before,

ĝ
N′

(x̂) ≡ 1

N ′

N ′∑

n=1

G(x̂, Wn)

is an unbiased estimator of g(x̂), and the variance of ĝ
N′

(x̂) is estimated by S2
N′

(x̂)/N ′,

where S2
N′

(x̂) is the sample variance of G(x̂, Wn), based on the sample of size N ′.
An estimator of v∗ is given by

v̄M

N
≡ 1

M

M∑

m=1

v̂m
N

where v̂m
N

denotes the optimal objective value of the m-th SAA replication. Note
that IE[v̄M

N
] = IE[v̂

N
], and hence the estimator v̄M

N
has the same negative bias as v̂

N
.

Proposition 2.3 indicates that this bias tends to be bigger for problems with larger
sets S∗ of optimal, or nearly optimal, solutions. Consider the corresponding estimator
ĝ

N′
(x̂) − v̄M

N
of the optimality gap g(x̂) − v∗, at the point x̂. Since

IE
[
ĝ

N′
(x̂) − v̄M

N

]
= g(x̂) − IE[v̂

N
] ≥ g(x̂) − v∗(3.1)

we have that on average the above estimator overestimates the optimality gap g(x̂)−
v∗. Norkin, Pflug, and Ruszczyński [9] and Mak, Morton, and Wood [6] showed that
the bias v∗ − IE[v̂

N
] is monotonically decreasing in the sample size N .

The variance of v̄M

N
is estimated by

S2
M

M
≡ 1

M(M − 1)

M∑

m=1

(
v̂m

N
− v̄M

N

)2
.(3.2)

If the M samples, of size N , and the evaluation sample of size N ′ are independent,
then the variance of the optimality gap estimator ĝ

N′
(x̂) − v̄M

N
can be estimated by

S2
N′

(x̂)/N ′ + S2
M

/M .
An estimator of the optimality gap g(x̂) − v∗ with possibly smaller variance is

ḡM

N
(x̂) − v̄M

N
, where

ḡM

N
(x̂) ≡ 1

M

M∑

m=1

ĝm
N

(x̂)

and ĝm
N

(x̂) is the sample average objective value at x̂ of the m-th SAA sample of size
N ,

ĝm
N

(x̂) ≡ 1

N

N∑

n=1

G(x̂, Wmn).

The variance of ḡM

N
(x̂) − v̄M

N
is estimated by

S̄2
M

M
≡ 1

M(M − 1)

M∑

m=1

[(
ĝm

N
(x̂) − v̂m

N

)
−
(
ḡM

N
(x̂) − v̄M

N

)]2
.

Which estimator of the optimality gap has the least variance depends on the corre-
lation between ĝm

N
(x̂) and v̂m

N
, as well as the sample sizes N , N ′, and M . For many
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applications, one would expect positive correlation between ĝm
N

(x̂) and v̂m
N

. The ad-
ditional computational effort to compute ĝm

N
(x̂) for m = 1, . . . , M , should also be

taken into account when evaluating any such variance reduction. Either way, the
Central Limit Theorem can be applied to the optimality gap estimators ĝ

N′
(x̂) − v̄M

N

and ḡM

N
(x̂) − v̄M

N
, so that the accuracy of an optimality gap estimator can be taken

into account by adding a multiple zα of its estimated standard deviation to the gap
estimator. Here zα ≡ Φ−1(1− α), where Φ(z) is the cumulative distribution function
of the standard normal distribution. For example, if x̂ ∈ S denotes the candidate
solution with the best value of ĝ

N′
(x̂) found after M replications, then an optimality

gap estimator taking accuracy into account is given by either

ĝ
N′

(x̂) − v̄M

N
+ zα

(
S2

N′
(x̂)

N ′
+

S2
M

M

)1/2

or

ḡM

N
(x̂) − v̄M

N
+ zα

S̄
M√
M

For algorithm control, it is useful to separate an optimality gap estimator into its
components. For example,

ĝ
N′

(x̂) − v̄M

N
+ zα

(
S2

N′
(x̂)

N ′
+

S2

M

M

)1/2

=
(
ĝ

N′
(x̂) − g(x̂)

)

+ (g(x̂) − v∗) +
(
v∗ − v̄M

N

)
+ zα

(
S2

N′
(x̂)

N ′
+

S2

M

M

)1/2(3.3)

In the four terms on the right hand side of the above equation, the first term has
expected value zero, the second term is the true optimality gap, the third term is the
bias term, which has positive expected value decreasing in the sample size N , and the
fourth term is the accuracy term, which is decreasing in the number M of replications
and the sample size N ′. Thus a disadvantage of these optimality gap estimators is
that the gap estimator may be large if M , N or N ′ is small, even if x̂ is an optimal
solution, i.e. g(x̂) − v∗ = 0.

3.4. Postprocessing, Screening and Selection. Suppose a decision has been
made to stop, for example when the optimality gap estimator has become small
enough. At this stage the candidate solution x̂ ∈ S with the best value of ĝ

N′
(x̂)

can be selected as the chosen solution. However, it may be worthwhile to perform a
more detailed evaluation of the candidate solutions produced during the replications.
There are several statistical screening and selection methods for selecting subsets of
solutions or a single solution, among a (reasonably small) finite set of solutions, using
samples of the objective values of the solutions. Many of these methods are described
in Bechhofer, Santner, and Goldsman [1]. In the numerical tests described in Sec-
tion 4, a combined procedure was used, as described in Nelson, Swann, Goldsman,
and Song [8]. During the first stage of the combined procedure a subset S′′ of the
candidate solutions S′ ≡

{
x̂1

N
, . . . , x̂M

N

}
are chosen (called screening) for further evalu-

ation, based on their sample average values ĝ
N′

(x̂m
N

). During the second stage, sample
sizes N ′′ ≥ N ′ are determined for more detailed evaluation, based on the sample
variances S2

N′
(x̂m

N
). Then N ′′ − N ′ additional observations are generated, and then

the candidate solution x̂ ∈ S′′ with the best value of ĝ
N′′

(x̂) is selected as the chosen
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solution. The combined procedure guarantees that the chosen solution x̂ has objec-
tive value g(x̂) within a specified tolerance δ of the best value minx̂m

N
∈S′ g(x̂m

N
) over

all candidate solutions x̂m
N

with probability at least equal to specified confidence level
1 − α.

3.5. Algorithm. Next we state a proposed algorithm for the type of stochastic
discrete optimization problem studied in this paper.

SAA Algorithm for Discrete Optimization.

1. Choose initial sample sizes N and N ′, a decision rule for determining the
number M of SAA replications (possibly involving a maximum number M ′ of
successive SAA replications without improvement, using the Bayesian guide-
line if needed), a decision rule for increasing the sample sizes N and N ′ if
needed, and tolerance ε.

2. For m = 1, . . . , M , do steps 2.1 through 2.2.
2.1 Generate a sample of size N , and solve the SAA problem (2.1), with

objective value v̂m
N

and ε-optimal solution x̂m
N

.

2.2 Compute ĝ
N′

(x̂m
N

) and compare with ĝ
N′

(x̂m′

N
), the value of the best

solution x̂m′

N
found so far, m′ < m. Let x̂ denote the solution among

x̂m′

N
and x̂m

N
with the best value of ĝ

N′
(x).

3. Estimate the optimality gap g(x̂)−v∗, and the variance of the gap estimator.
4. If the optimality gap is too large, increase the sample sizes N and/or N ′, and

return to step 2. Otherwise, choose the best solution x̂ among all candidate
solutions x̂m

N
, m = 1, . . . , M , using a screening and selection procedure. Stop.

4. Numerical Tests. In this section we describe an application of the SAA
method to some optimization problems. The purposes of these tests are to investigate
the viability of the SAA approach, as well as to study the effects of problem parame-
ters, such as the number of decision variables and the well-conditioning measure α(ε),
on the performance of the method.

It is insightful to note that the number of decision variables and the well-conditioning
measure α(ε) are related. To illustrate this relationship, consider a discrete optimiza-
tion problem with feasible set S given by the vertices of the unit hypercube in IRk,
i.e., S = {0, 1}k. Suppose the origin is the unique optimal solution of the true prob-
lem, i.e., S∗ = {0}. Let us restrict attention to linear objective functions. Thus the
optimization problem is

min
x∈{0,1}k

k∑

i=1

cixi

where ci > 0 for all i ∈ {1, . . . , k}. It is easy to see that α(0) = mini∈{1,...,k} ci.
Thus, by choosing ci arbitrarily small for some i, the well-conditioning measure α(0)
can be made arbitrarily poor. It is more interesting to investigate how good the
well-conditioning measure α(0) can be. Thus we want to choose c to

max
c∈IRk

+

{
α(0) = min

i∈{1,...,k}
ci

}

To make the result independent of scale, we restrict c to satisfy ‖c‖ = 1. For example,

using ‖ · ‖p, the constraint is
∑k

i=1 cp
i = 1, where 1 ≤ p < ∞. It is easily seen that the
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best choice of c is to make all the components equal, i.e., to take ci = 1/k1/p for all
i ∈ {1, . . . , k}. Hence the best value of the well-conditioning measure α(0) is 1/k1/p.
This indicates that the well-conditioning measure tends to be poorer if the number k
of decision variables is larger.

4.1. Resource Allocation Problem. First we apply the method to the follow-
ing resource allocation problem. A decision maker has to choose a subset of k known
alternative projects to take on. For this purpose a known quantity q of relatively low
cost resource is available to be allocated. Any additional amount of resource required
can be obtained at a known incremental cost of c per unit of resource. The amount
Wi of resource required by each project i is not known at the time the decision has
to be made, but we assume that the decision maker has an estimate of the proba-
bility distribution of W = (W1, . . . , Wk). Each project i has an expected net reward
(expected revenue minus expected resource use times the lower cost) of ri. Thus the
optimization problem can be formulated as follows:

max
x∈{0,1}k

⎧
⎨
⎩

k∑

i=1

rixi − c IE

[
k∑

i=1

Wixi − q

]+
⎫
⎬
⎭(4.1)

where [x]+ ≡ max{x, 0}. This problem can also be described as a knapsack problem,
where a subset of k items has to be chosen, given a knapsack of size q to fit the items
in. The size Wi of each item i is random, and a per unit penalty of c has to be paid
for exceeding the capacity of the knapsack. For this reason the problem is called the
Static Stochastic Knapsack Problem (SSKP).

This problem was chosen for several reasons. First, expected value terms similar
to that in the objective function of (4.1) occur in many interesting stochastic opti-
mization problems. Another such example is airline crew scheduling. An airline crew
schedule is made up of crew pairings, where each crew pairing consists of a number of
consecutive days (duties) of flying by a crew. Let {p1, . . . , pk} denote the set of pair-
ings that can be chosen from. Then a crew schedule can be denoted by the decision
vector x ∈ {0, 1}k, where xi = 1 denotes that pairing pi is flown. The cost Ci(x) of a
crew pairing pi is given by

Ci(x) = max

⎧
⎨
⎩
∑

d∈pi

bd(x), f ti(x), gni

⎫
⎬
⎭

where bd(x) denotes the cost of duty d in pairing pi, ti(x) denotes the total time
duration of pairing pi, ni denotes the number of duties in pairing pi, and f and g
are constants determined by contracts. Even ignoring airline recovery actions such as
cancellations and rerouting, bd(x) and ti(x) are random variables. The optimization
problem is then

min
x∈X⊂{0,1}k

k∑

i=1

IE[Ci(x)]xi

where X denotes the set of feasible crew schedules. Thus the objective function of
the crew pairing problem can be written in a form similar to that of the objective
function of (4.1).
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Still another example is a stochastic shortest path problem, where travel times
are random, and a penalty is incurred for arriving late at the destination. In this
case, the cost C(x) of a path x is given by

C(x) =
∑

(i,j)∈x

bij + c

⎡
⎣ ∑

(i,j)∈x

tij − q

⎤
⎦

+

where bij is the cost of traversing arc (i, j), tij is the time of traversing arc (i, j), q
is the available time to travel to the destination, and c is the penalty per unit time
late. The optimization problem is then

min
x∈X

IE[C(x)]

where X denotes the set of feasible paths in the network from the specified origin to
the specified destination.

Objective functions with terms such as IE
[∑k

i=1 Wixi − q
]+

are also interesting

for the following reason. For many stochastic optimization problems good solutions
can be obtained by replacing the random variables by their means and then solving
the resulting deterministic optimization problem, called the expected value problem
(Birge and Louveaux [2]). It is easy to see that this may not be the case if the objective
contains an expected value term as in (4.1). For a given solution x, this term may be
very large, but may become small if W1, . . . , Wk are replaced by their means. In such
a case, the obtained expected value problem may produce very bad solutions for the
corresponding stochastic optimization problem.

The SSKP is also of interest by itself. One application is the decision faced by
a contractor who can take on several contracts, such as an electricity supplier who
can supply power to several groups of customers, or a building contractor who can
bid on several construction projects. The amount of work that will be required by
each contract is unknown at the time the contracting decision has to be made. The
contractor has the capacity to do work at a certain rate at relatively low cost, for
example to generate electricity at a low cost nuclear power plant. However, if the
amount of work required exceeds the capacity, additional capacity has to be obtained
at high cost, for example additional electricity can be generated at high cost oil or
natural gas fired power plants.

4.2. Numerical Results. It was shown in section 2 that the well-conditioning
measure

α(ε) ≡ min
x∈S\Sε

g(x) − v∗ − ε

is an important factor affecting the convergence rate of the SAA method for stochastic
discrete optimization. A disadvantage of this measure is that it is too hard to compute
beforehand for the types of optimization problems that the SAA method is intended
for. Nevertheless, it is insightful to investigate the effect of α(ε) on the performance
of the SAA method, and in the examples that follow we attempt to demonstrate some
of this effect.

Another factor which may have an important effect on the performance of the
SAA method, is the number of decision variables. As discussed earlier, the well-
conditioning measure α(ε) tends to become poorer with an increase in the number of



SAMPLE AVERAGE APPROXIMATION 13

decision variables. Therefore, we present results for two sets of instances of the SSKP.
The first set of instances has 10 decision variables, and the second set has 20 decision
variables each. Each set has one instance (called instances 10D and 20D, respectively)
that was chosen “deterministically” to be hard, in the sense that its well-conditioning
measure α(ε) is poor, and five instances (called instances 10R1 through 10R5 and
20R1 through 20R5, respectively) that were generated randomly.

For all instances of the SSKP, the size variables Wi are independent normally
distributed, for ease of evaluation of the results produced by the SAA method, as
described in the next paragraph. For the randomly generated instances, the rewards
ri were generated from the uniform (10, 20) distribution, the mean sizes µi were
generated from the uniform (20, 30) distribution, and the size standard deviations σi

were generated from the uniform (5, 15) distribution. For all instances, the per unit
penalty c = 4.

If Wi ∼ N(µi, σ
2
i ), i = 1, . . . , k, are independent normally distributed random

variables, then the objective function of (4.1) can be written in closed form. That is,

we have then that the random variable Y (x) ≡∑k
i=1 Wixi − q is normally distributed

with mean µ(x) =
∑k

i=1 µixi − q and variance σ(x)2 =
∑k

i=1 σ2
i x2

i . It is also easy to
show, since Y (x) ∼ N(µ(x), σ(x)2), that

IE[Y (x)]+ = µ(x)Φ(µ(x)/σ(x)) +
σ(x)√

2π
exp(−µ(x)2/2σ(x)2)

where Φ(·) denotes the standard normal cumulative distribution function. Thus, we
obtain

g(x) =

k∑

i=1

rixi − c

[
µ(x)Φ(µ(x)/σ(x)) +

σ(x)√
2π

exp

(
− µ(x)2

2σ(x)2

)]
.(4.2)

The benefit of such a closed form expression is that the objective value g(x) can be
computed quickly and accurately, which is useful for solving small instances of the
problem by enumeration or branch and bound (Cohn and Barnhart [3]), and for eval-
uation of solutions produced by the SAA Algorithm. Good numerical approximations
are available for computing Φ(·), such as Algorithm AS66 (Hill [5]).

Figure 4.1 and Figure 4.2 show the distributions of the relative objective values
g(x)/v∗ of the best 5% of the solutions of the first set of instances, and the best
0.01% of the solutions of the second set of instances, respectively. The objective
values g(x) were computed using (4.2), and v∗ and the best solutions were identified
by enumeration. The harder instances (10D and 20D) have many more solutions with
objective values close to optimal than the random instances.

Figure 4.3 and Figure 4.4 show the well-conditioning measure α(ε) as a function
of ε, for instances 10D, 10R1, 10R5, 20D, 20R1, and 20R5. It can be seen that the
well-conditioning measure α(ε) is much worse for the harder instances (10D and 20D)
than for the randomly generated instances.

The first numerical experiment was conducted to observe how the exponential
convergence rate established in Proposition 2.2 applies in the case of the SSKP, and
to investigate how the convergence rate is affected by the number of decision variables
and the well-conditioning measure α(ε). Figure 4.5 to Figure 4.10 show the estimated
probability that a SAA optimal solution x̂

N
has objective value g(x̂

N
) within relative

tolerance d of the optimal value v∗, i.e., P̂ [v∗ − g(x̂
N

) ≤ d v∗], as a function of the
sample size N , for different values of d. The experiment was conducted by generating
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SAMPLE AVERAGE APPROXIMATION 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
ra

ct
io

n
 o

f 
S

am
p

le
 S

o
lu

ti
o

n
s 

w
it

h
in

 d
el

ta
 o

f 
O

p
ti

m
al

Sample Size N

d = 0.0, 0.01, 0.02, 0.03, 0.04, 0.05

Fig. 4.7. Probability of SAA optimal solution x̂
N

having objective value g(x̂
N

) within relative

tolerance d of the optimal value v∗, P̂ [v∗ − g(x̂
N

) ≤ d v∗], as a function of sample size N , for
different values of d, for Instance 10R5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
ra

ct
io

n
 o

f 
S

am
p

le
 S

o
lu

ti
o

n
s 

w
it

h
in

 d
el

ta
 o

f 
O

p
ti

m
al

Sample Size N

d = 0.0

d = 0.01

d = 0.02

d = 0.03

d = 0.04

d = 0.05

Fig. 4.8. Probability of SAA optimal solution x̂
N

having objective value g(x̂
N

) within relative

tolerance d of the optimal value v∗, P̂ [v∗ − g(x̂
N

) ≤ d v∗], as a function of sample size N , for
different values of d, for Instance 20D.



18 A. J. KLEYWEGT AND A. SHAPIRO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
ra

ct
io

n
 o

f 
S

am
p

le
 S

o
lu

ti
o

n
s 

w
it

h
in

 d
el

ta
 o

f 
O

p
ti

m
al

Sample Size N

d = 0.0

d = 0.01

d = 0.02d = 0.03

d = 0.04
d = 0.05

Fig. 4.9. Probability of SAA optimal solution x̂
N

having objective value g(x̂
N

) within relative

tolerance d of the optimal value v∗, P̂ [v∗ − g(x̂
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M = 1000 independent SAA replications for each sample size N , computing SAA
optimal solutions x̂m

N
, m = 1, . . . , M , and their objective values g(x̂m

N
) using (4.2), and

then counting the number Md of times that v∗ − g(x̂m
N

) ≤ d v∗. Then the probability

was estimated by P̂ [v∗ − g(x̂
N

) ≤ d v∗] = Md/M , and the variance of this estimator
was estimated by

V̂ar[P̂ ] =
Md(1 − Md/M)

M(M − 1)
.

The figures also show errorbars of length 2(V̂ar[P̂ ])1/2 on each side of the point esti-
mate Md/M .

One noticeable effect is that the probability that a SAA replication generates an
optimal solution (d = 0) increases much slower with increase in the sample size N
for the harder instances (10D and 20D) with poor well-conditioning measures α(ε)
than for the randomly generated instances with good well-conditioning measures.
However, the probability that a SAA replication generates a reasonably good solution
(eg., d = 0.05) increases quite fast with increase in the sample size N for both the
harder instances and for the randomly generated instances. Also, it seems that the
probability that a SAA replication generates an optimal solution (d = 0) increases
somewhat slower with increase in the sample size N for the instances with more
decision variables than for the instances with fewer decision variables, for both the
harder instances as well as the randomly generated instances.

The second numerical experiment demonstrates how the objective values g(x̂m
N

) of
SAA optimal solutions x̂m

N
change as the sample size N increases, and how this change

is affected by the number of decision variables and the well-conditioning measure
α(ε). In this experiment the maximum number of successive SAA replications without
improvement with the same sample size N was chosen as M ′ = 50. Besides that,
after M ′′ = 20 replications with the same sample size N , the variance S2

M′′
of v̂m

N

was computed as in (3.2), because it is an important term in the optimality gap
estimator (3.3). If S2

M′′
was too large, it indicated that the optimality gap estimate

would be too large, and that the sample size N should be increased. Otherwise, if
S2

M′′
was not too large, then SAA replications were performed with the same sample

size N until M ′ successive SAA replications without improvement had occurred. At
that stage the optimality gap estimator (3.3) was computed. If the optimality gap
estimator was greater than a specified tolerance, then the sample size N was increased
and the procedure was repeated. Otherwise, if the optimality gap estimator was less
than a specified tolerance, then a screening and selection procedure was applied to all
the candidate solutions x̂m

N
generated, and the best solution among these was chosen.

Figure 4.11 to Figure 4.16 show the objective values g(x̂m
N

) of SAA optimal so-
lutions x̂m

N
produced during the course of the algorithm. The figures show several

noticeable effects. First, for all the instances good and often optimal solutions were
produced early in the execution of the algorithm, but the sample size N had to be
increased several times thereafter before the optimality gap estimator became suffi-
ciently small for stopping, without any improvement in the quality of the generated
solutions. Second, for the randomly generated instances a larger proportion of the
SAA optimal solutions x̂m

N
were optimal or had objective values close to optimal, and

optimal solutions were produced with smaller sample sizes N , than for the harder
instances. Third, for the instances with fewer decision variables a larger proportion
of the SAA optimal solutions x̂m

N
were optimal or had objective values close to opti-

mal, and optimal solutions were produced with smaller sample sizes N , than for the
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instances with more decision variables. For example, for the harder instance with 10
decision variables (instance 10D), the optimal solution was first produced after m = 6
replications with sample size N = 120; for instance 10R1, the optimal solution was
first produced after m = 2 replications with sample size N = 20; and for instance
10R5, the optimal solution was first produced after m = 3 replications with sample
size N = 20. Also, for the harder instance with 20 decision variables (instance 20D),
the optimal solution was not produced in any of the 270 total number of replications
(but the second best solution was produced 3 times); for instance 20R1, the optimal
solution was first produced after m = 12 replications with sample size N = 150; and
for instance 20R5, the optimal solution was first produced after m = 15 replications
with sample size N = 50.

As mentioned above, in the second numerical experiment it was noticed that often
the optimality gap estimator is large, even if an optimal solution has been found, i.e.,
v∗−g(x̂) = 0, (which is also a common problem in deterministic discrete optimization).
Consider the components of the optimality gap estimator given in (3.3). The first
component g(x̂)− ĝ

N′
(x̂) can be made small with relatively little computational effort

by choosing N ′ sufficiently large. The second component, the true optimality gap
v∗ − g(x̂) is often small after only a few replications m with a small sample size
N . The fourth component zα(S2

N′
(x̂)/N ′ + S2

M
/M)1/2 can also be made small with

relatively little computational effort by choosing N ′ and M sufficiently large. The
major part of the problem seems to be caused by the third term v̄M

N
− v∗, and the

fact that IE[v̄M

N
] − v∗ ≥ 0, as identified in (3.1). It was also mentioned that the bias

decreases as the sample size N increases. However, the second numerical experiment
indicates that a significant bias can persist even if the sample size N is increased far
beyond the sample size needed for the SAA method to produce an optimal solution.

The third numerical experiment investigates the effect of the number of decision
variables and the well-conditioning measure α(ε) on the bias in the optimality gap
estimator. Figure 4.17 and Figure 4.18 show how the relative bias v̄M

N
/v∗ of the opti-

mality gap estimator changes as the sample size N increases, for different instances.
The most noticeable effect is that the bias decreases much slower for the harder in-
stances than for the randomly generated instances as the sample size N increases.
This is in accordance with the asymptotic result (2.8) of Proposition 2.3. Also, the
bias seems to decrease slower for the instances with more decision variables than for
the instances with fewer decision variables.

5. Conclusion. We proposed a sample average approximation method for solv-
ing stochastic discrete optimization problems, and we studied some theoretical as well
as practical issues important for the performance of this method. It was shown that
the probability that a replication of the SAA method produces an optimal solution
increases at an exponential rate in the sample size N . It was found that this conver-
gence rate depends on the well-conditioning of the problem, which in turn tends to
become poorer with an increase in the number of decision variables. It was also found
that for many instances the SAA method produces good and often optimal solutions
with only a few replications and a small sample size. However, the optimality gap
estimator considered here was in each case too weak to indicate that a good solu-
tion had been found. Consequently the sample size had to be increased many fold
before the optimality gap estimator indicated that the solutions were good. Thus, a
more efficient optimality gap estimator can make a substantial contribution toward
improving the performance guarantees of the SAA method during execution of the
algorithm.
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The proposed method involves solving several replications of the SAA prob-
lem (2.1), and possibly increasing the sample size several times. An important issue is
the behavior of the computational complexity of the SAA problem (2.1) as a function
of the sample size. Current research aims at investigating this behavior for particular
classes of problems.
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Programming, 83 (1998), pp. 229–252.

[11] A. Shapiro, Asymptotic analysis of stochastic programs, Annals of Operations Research, 30
(1991), pp. 169–186.

[12] A. Shapiro and T. Homem-de-Mello, On rate of convergence of Monte Carlo approximations
of stochastic programs. Preprint, available at: Stochastic Programming E-Print Series,
http://dochost.rz.hu-berlin.de/speps/, 1999.




