
Perception & Psychophysics
1996,58 (I), 65-72

The sampling distribution of d'

JEFF MILLER
University of Otago, Dunedin, New Zealand

The distribution of sample d's, although mathematically intractable, can be tabulated readily by
computer. Such tabulations reveal a number of interesting properties of this distribution, including:
(1) sample d's are biased, with an expected value that can be higher or lower than the true value, de
pending on the sample size, the true value itself, and the convention adopted for handling cases in
which the sample d' is undefined; (2) the variance of d' also depends on the convention adopted for
handling cases in which the sample d' is undefined and is in some cases poorly approximated by the
standard approximation formula, (3) the standard formula for a confidence interval for d' is quite
accurate with at least 50-100 trials per condition, but more accurate intervals can be obtained by di
rect computation with smaller samples.

The theory of signal detection (TSD; e.g., Green &
Swets, 1966) provides a measure of discriminative sen
sitivity, d', that has been used to study a wide range of
discriminative abilities, including those underlying sen
sation and perception, recognition memory, and social
comparison. Unfortunately, values of d' are theoretical
quantities that cannot be measured directly. Researchers
must approximate them with estimates, d'; computed
from observed discrimination responses.' Because of the
randomness inherent in discrimination responses, anyes
timated value, r, is likely to be somewhat different from
the true value, d',

The statistical properties of the random variable, d',
are not well understood for two reasons. First, as is elab
orated in the next section, d' is ill defined; that is, there
is always some non-zero probability that an experiment
will result in data for which d' cannot be computed. Sec
ond, even in the cases for which it is defined, the sam
pling distribution of d' is mathematically intractable,
and there are no simple equations for its mean, variance,
and so on. As a result, the properties of d' have generally
been examined either by developing approximation for
mulas (e.g., Gourevitch & Galanter, 1967) or by Monte
Carlo simulation (e.g., Hautus, 1995).

This article shows how the statistical properties of d'
can be ascertained by direct computation and presents
some representative results concerning the sampling dis
tribution of d' in the yes/no task. First, I describe how the
exact sampling distribution of d' can be tabulated by
computer after one adopts some convention to deal with
the problematic cases in which d' is undefined. Second,
the mean and variance of d' are computed directly from
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such tabulations, and the results indicate that they de
pend in a complex fashion on the true value of d', the
number of trials in the experiment, and the convention
adopted for handling problematic cases. The form of this
dependence has several implications for the design of
experiments in which d' will be measured. Third, the
standard procedures for computing approximate confi
dence intervals for d' are evaluated numerically.

THE SAMPLING DISTRIBUTION OF J'

In the yes/no task, d' is computed by using an inverse
normal transformation of two observed response proba
bilities, H = Nc/N, and F = Nfa/Nn, where Ns' Nn, Nh,

and Nfa are the numbers of signal trials, noise trials, hits,
and false alarms, respectively:

d'=Z(Jl)-z(F), (1)

where z(p) is the value of the standard normal distribu
tion having cumulative probability p.

The only random variables entering into this formula
are the observed response counts, Nh and Nfa, each of
which follows a binomial distribution, given the standard
assumption of independent trials. In an experiment with
Ns signal trials, for example, the distribution ofNh is

where Ph is the true probability of a hit on a signal trial.
Because z(H) is obtained by a direct transformation of
Nh, it follows that the distribution of z(H) is simply

Pr [Z(H) = z( ~J] = (:s)p~ (1 - pJJ,-k, k = 0,1, ... , s,

(3)

The distribution of z(F) is related analogously to the
binomial distribution of Nfa, which depends on the true
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probability of a false alarm Pfa' Furthermore, the values
ofPhand Pea can be computed directly from assumptions
about the underlying signal detection model. Assuming
equal variance signal and noise distributions and an un
biased response criterion, for example, these probabili
ties can be determined directly from tables of the cumu
lative normal (z) distribution:

Ph = Pr(z < d/'2), (4)

Pra = 1 - Pr(z < d/'2). (5)

Thus, the exact probability distributions ofz(H) and z(F)
can be computed by using Equation 3 and its false alarm
counterpart, under any set ofassumptions about the under
lying signal and noise distributions and criterion location.

Assuming independence of Nh and Nfa, the sampling
distribution of d' is the convolution of the distributions
of z(H) and z(F). That is, the possible values of d' can
be enumerated by subtracting each ofthe possible values
ofz(F) from each of the possible values of z(H), and the
probability that d' is equal to a given difference is the
product of the probabilities associated with the individ
ual z(H) and z(F) values yielding that difference.I Thus,
the distribution of d' is discrete and can be tabulated.
Figure 1 shows two examples of these sampling distrib
utions, computed with d' = 0.5 (upper panel) and d' =

2.5 (lower panel), assuming samples ofeight signal trials
and eight noise trials and using the 0.000 I convention
discussed next. It is clear that the sampling distribution
is not well approximated by the normal distribution with
such small sample sizes.

A conceptual difficulty with the preceding character
ization of the distribution of d' is that there is some
probability that d' will be undefined (cf. Hautus, 1995).
Specifically, this happens when the subject makes the
same response in all trials within a condition, resulting
in 100% hits or 100% misses on signal trials or in 100%
false alarms or 100% correct rejections on noise trials.
In these problematic cases, application of Equation 1
would require computation of the z scores corresponding
to cumulative normal probabilities of 0 or I, which are
undefined. To examine the statistical properties of s:
then, it is necessary to adopt some convention for deal
ing with these undefined cases. Intuitively, it seems clear
that the convention will not be very important when
there are many signal and noise trials, because the sub
ject will then be very unlikely to give the same response
on all of them. As will be seen, direct computation is
helpful in determining how many trials are needed be
fore the difficulty can be ignored.

In computations reported in this article, three different
conventions for handling problematic cases were exam-
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Figure 1. Sampling distributions of d'computed with samples of eight signal trials and eight noise trials. Each bar rep
resents one possible discrete value of d~ and the height of the bar represents the probability of that value under the as
sumption that the trued' equals O.S (upper panel) or 2.5 (lower panel). Values of J'less than -2 are also possible, but
they are not shown because their probabilities are aUless than 0.001. The 0.0001 convention was used to correct obser
vations of zero or eight hits or false alarms (see text).



ined. The first was to replace observed values of 0 or N,
hits with 0.5 or Ns - 0.5, respectively, as recommended
by Murdock and Ogilvie (1968), and to make the analo
gous correction with observed values of a or Nn false
alarms. Unfortunately, the number 0.5 is an arbitrary
constant in this procedure. To examine the effect of this
arbitrary choice, the second convention was to replace
observed values of 0, Ns' or Nn with 0.0001, N; 
0.0001, or Nn - 0.0001, respectively, producing much
more extreme z scores than those obtained using 0.5.
The third convention was to eliminate the problematic
cases rather than adjusting them, as would correspond to
the experimental practice of rerunning any condition in
which problematic results were obtained. In statistical
terms, this involved computing the conditional distribu
tions of z(H) and z(F), conditional on observing num
bers of hits and false alarms between I and N - I. Com
putation of the conditional distribution by enumeration
is quite easy to do: The cases with 0 and N hits or false
alarms are simply omitted, and the probabilities of the
remaining cases are normalized to sum to one.

THE MEAN OF ti'

The mean or "expected value" of d', E[d'], can be ob
tained from E [z(H)] and E [z(F)], without constructing
the full distribution of d', Specifically, the mean is
E[d'] = E[z(H)] - E[z(F)] in the yes/no task. The ex
pected values of z(H) and z(F) can be computed numer-
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ically, given a sample size N and a hit or false-alarm
probability P, using

E[z(JJ)] = fz(~)(N)l(l_p)N-k, k=O,l, ... ,N. (6)
k~O N k

Table I shows the mean of yes/no task d' values as a
function of the true d' in the experiment, sample size
(N; = Nn ) , and convention for handling problematic
cases (i.e., k = 0 and k = N), computed assuming unbi
ased responding (i.e., Ph = 1- Pfa)' Three important
points are apparent from these values.

First, none of the conventions works very well with
small samples. For reasons discussed in the next two
paragraphs, each yields biased estimates for virtually all
of the different possible values of d'. That is, for any
convention, the average of many small-sample d's will
generally be a biased estimate of the true d', It is note
worthy that the convention of excluding problematic
cases introduces bias just like the other two conventions,
although it may seem intuitively less arbitrary.

Second, the arbitrary choice of a convention for han
dling problematic cases makes a big difference with
small samples. The different conventions yield different
means, because at each sample size the maximum at
tainable d' depends on the convention. With eight trials
per condition, for example, the maximum attainable d's
are 3.1, 8.4, and 2.3 for the 0.5 adjustment, 0.0001 ad
justment, and conditional distributions, respectively. In

Table I
Mean of d'in the Yes/No Task as a Function of d'; Number of Trials,

and Convention for Handling Problematic Cases

True Number of Signal and Noise Trials

Convention d' 8 16 32 64 128 256 512 1,024

0.5 0.5 0.555 0.530 0.514 0.507 0.503 0.502 0.501 0.500
1.0 1.096 1.064 1.029 1.014 1.007 1.003 1.002 1.001
1.5 1.599 1.604 1.551 1.524 1.512 1.506 1.503 1.501
2.0 2.036 2.133 2.084 2.039 2.019 2.009 2.004 2.002
2.5 2.385 2.615 2.622 2.563 2.529 2.514 2.507 2.503
3.0 2.641 3.008 3.135 3.101 3.048 3.023 3.011 3.006
4.0 2.926 3.481 3.879 4.091 4.122 4.069 4.032 4.015
5.0 3.030 3.660 4.191 4.624 4.936 5.096 5.106 5.057

0.0001 0.5 0.640 0.531 0.514 0.507 0.503 0.502 0.501 0.500
1.0 1.376 1.078 1.030 1.014 1.007 1.003 1.002 1.001
1.5 2.286 1.686 1.553 1.524 1.512 1.506 1.503 1.501
2.0 3.383 2.449 2.102 2.039 2.019 2.009 2.004 2.002
2.5 4.580 3.454 2.755 2.567 2.529 2.514 2.507 2.503
3.0 5.725 4.666 3.653 3.155 3.049 3.023 3.011 3.006
4.0 7.386 6.950 6.142 5.121 4.347 4.081 4.032 4.015
5.0 8.131 8.196 8.064 7.637 6.867 5.930 5.268 5.063

Conditional 0.5 0.515 0.529 0.514 0.507 0.503 0.502 0.501 0.500
1.0 0.988 1.057 1.029 1.014 1.007 1.003 1.002 1.001
1.5 1.384 1.569 1.551 1.524 1.512 1.506 1.503 1.501
2.0 1.691 2.026 2.075 2.039 2.019 2.009 2.004 2.002
2.5 1.912 2.391 2.574 2.561 2.529 2.514 2.507 2.503
3.0 2.063 2.653 2.991 3.080 3.048 3.023 3.011 3.006
4.0 2.223 2.933 3.484 3.870 4.056 4.065 4.032 4.015
5.0 2.280 3.032 3.661 4.192 4.621 4.923 5.059 5.054

Note-Convention 0.5 is to replace 0 and N with 0.5 and N - 0.5, respectively, and
convention 0.0001 is to replace them with 0.0001 and N - 0.0001. The conditional
convention is to excJude observations of 0 and N.
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any case, since the choice of convention is arbitrary, in
vestigators wishing to estimate d' values must endeavor
to collect enough trials so that the arbitrary choice will
have no effect. As is apparent from Table I, the required
sample size depends somewhat on the true value of d';
samples of 50-1 00 trials are probably large enough for
d'< 3, but samples of up to 1,000 are needed as d' val
ues approach five.

Third, regardless ofthe convention for handling prob
lematic cases, the mean of d' depends on the sample
size. Even with constant values of d' and the response
criterion (and hence constant values ofPh and Pfa)' the
results indicate that mean d' can vary dramatically and
nonmonotonically across the smaller sample sizes, al
though it does eventually converge to the true value
when sample size is large enough. Nonmonotonic ef
fects are strongest for the adjustment of0.5 and the con
ditional distribution, and they increase with the true d',
These nonmonotonicities result from the interplay of two
counteracting nonlinear effects: (I) the maximum at
tainable d' increases with sample size (e.g., values of
3.1, 3.7, and 4.3 for sample sizes of 8, 16, and 32 trials,
respectively, for the 0.5 adjustment); and (2) the proba
bility of this maximum d' decreases with sample size. In
any case, the dependence of mean d' on sample size
clearly means that experimenters wishing to compare
values of d' across conditions must either obtain equal
numbers of observations in all conditions or else ensure
that both conditions have enough observations for the
mean of d' to be quite close to its asymptote.

Simulations indicate that the differential bias as a
function of sample size is large enough to present a po
tential confound in comparisons between conditions
having different numbers of observations, especially at
more extreme values ofd', As an illustration, I simulated
5,000 yes/no experiments, each having 40 subjects di
vided equally among conditions with Ns = Nn = 20 and
with N, = Nn = 80, and the 0.5 adjustment was used for
problematic samples. Simulated sensitivity was identical
for all subjects, with d' = 2.56 (i.e., 90% correct).
Nonetheless, between-subjects t tests with a .05 signifi
cance level indicated that mean J' was significantly
larger in the condition with the smaller number of ob
servations in 8.8% of the simulated experiments. This is
far greater than the 2.5% rate of Type I errors in this di
rection ordinarily associated with such a test. Simula
tions with other levels of sensitivity and other sample
sizes in a 2: I or 4: I ratio often gave Type I error rates
that were similarly discrepant from the theoretical values.

The problem of differential bias as a function of sam
ple size would likely be worse in multisubject than in
single-subject designs, because researchers tend to com
pute values of d' from smaller Ns in between-subjects
designs, and bias is large when sample size is small. This
problem is not routinely addressed, however. For exam
ple, Reinitz (1990, Experiment 2) compared yes/no de
tection performance following valid versus invalid spa
tial cues. He computed values of d' from 64 and 32 trials
per subject in the two cuing conditions, but did not dis-

cuss the fact that differential sample-size biases would
be expected to modulate the effect ofcuing on d';his ex
perimental effects seem too large to be explainable by
such bias, however.

Unfortunately, the biases in Table I do not immedi
ately reveal how best to estimate the true d' from an ob
served value of d' obtained in an experiment. For exam
ple, mean d's observed with N = 64 tend to be a little
larger than true d's, so it seems reasonable to estimate
that a true value is slightly less than an observed one
with this sample size. Exactly how much less is not clear,
however, and further work is needed to identify the opti
mal estimator(s) of d'. In the meantime, investigators
using sample d's as estimates of true d's should at least
be aware of the bias inherent in their estimates.

THE VARIANCE OF ti'

When an experimental design yields values of d' for
a number of subjects, and statistical analyses are con
ducted across subjects (e.g., t tests across subjects, using
one or more values of J' from each subject), the random
error of any individual d' can usually be ignored, be
cause it is subsumed under intersubject variability. In
single-subject designs, however, it is often desirable to
know how much random error is associated with a given
d' (cf. Macmillan & Creelman, 1991, chapter II). In par
ticular, when fitting a model to the data of an individual
subject, one needs to know the predicted distribution of
r, or at least its variance, in order to decide whether a
given observed value of d' is discrepant enough that the
model should be rejected.

The variance of d' can also be obtained without con
structing its full distribution, given the standard as
sumption that z(H) and z(F) are independent. The vari
ance, Var [d'], is Var [z(H)] + Var [z(F)] in the yes/no
task. To compute this variance, it is useful to obtain the
second raw moment:

E[z<pf] = ktJz (~ JT CJl(l- pt-k, k = 0, I, ... , N.

(7)

Then the variance ofz(p) is simply

Var [z(,o)] = E [Z(,o)2] - E [z(,o)f (8)

Table 2 shows the variance of d' in the yes/no task as
a function ofthe true d', sample size (N, = Nn), and con
vention for handling problematic cases, again computed
assuming unbiased responding. Like the mean, the vari
ance is heavily dependent on the convention when sam
ple size is small. The adjustment of 0.0001 yields the
largest variances because it produces the most extreme
values of d', and the conditional distribution yields the
smallest variances because it discards the most extreme
values. To avoid an influence of the arbitrary choice on
predicted variances, experimenters wishing to fit models
to single-subject data should include at least 60 signal
and noise trials per subject when expecting d's of0-2, at
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Table 2
Variance of d'in the Yes/No Task as a Function of d',

Sample Size, and Method of Computation

Method of True Number of Signal and Noise Trials

Computation d' 8 16 32 64 128 256 512 1,024

0.5 0.5 0.4913 0.2289 0.1065 0.0516 0.0255 0.0126 0.00630 0.00314
1.0 0.4823 0.2549 0.1167 0.0558 0.0274 0.0136 0.00675 0.00337
1.5 0.4395 02908 0.1375 0.0639 0.0310 0.0153 0.00760 0.00379
2.0 0.3583 0.3098 0.1733 0.0785 0.0372 0.0182 0.00900 0.00448
2.5 0.2590 0.2836 0.2144 0.1051 0.0477 0.0229 0.01125 0.00558
3.0 0.1682 0.2169 0.2245 0.1471 0.0671 0.0309 0.01496 0.00737
4.0 0.0560 0.0820 0.1213 0.1567 0.1409 0.0758 0.03334 0.01568
5.0 0.0149 0.0219 0.0346 0.0561 0.0873 0.1136 0.09804 0.05012

0.0001 0.5 0.9702 0.2367 0.1065 0.0516 0.0255 0.0126 0.00630 0.00314
1.0 1.7498 0.3256 0.1169 0.0558 0.0274 0.0136 0.00675 0.00337
1.5 3.0514 0.6672 0.1439 0.0639 0.0310 0.0153 0.00760 0.00379
2.0 4.4496 1.5545 0.2594 0.0788 0.0372 0.0182 0.00900 0.00448
2.5 5.2325 2.9679 0.7429 0.1211 0.0478 0.0229 O.oJI25 0.00558
3.0 4.9965 4.1871 1.9200 0.3595 0.0698 0.0309 0.01496 0.00737
4.0 2.7000 3.6052 3.8818 2.7035 0.8683 0.1184 0.03347 0.01568
5.0 0.8750 1.3986 2.1417 2.9179 3.1027 2.0427 0.58394 0.07239

Conditional 0.5 0.4416 0.2275 0.1065 0.0516 0.0255 0.0126 0.00630 0.00314
1.0 0.3950 0.2459 0.1167 0.0558 0.0274 0.0136 0.00675 0.00337
1.5 0.3224 0.2576 0.1365 0.0639 0.0310 0.0153 0.00760 0.00379
2.0 0.2401 0.2396 0.1641 0.0784 0.0372 0.0182 0.00900 0.00448
2.5 0.1648 0.1915 0.1784 0.1032 0.0477 0.0229 0.01125 0.00558
3.0 0.1055 0.1339 0.1573 0.1304 0.0667 0.0309 0.01496 0.00737
4.0 0.0361 0.0492 0.0703 0.0965 0.1067 0.0720 0.03333 0.01568
5.0 0.0098 0.0137 0.0204 0.0317 0.0489 0.0695 0.07568 0.04819

G&G 0.5 0.4017 0.2009 0.1004 0.0502 0.0251 0.0126 0.00628 0.00314
1.0 0.4303 0.2151 0.1076 0.0538 0.0269 0.0134 0.00672 0.00336
1.5 0.4832 0.2416 0.1208 0.0604 0.0302 0.0151 0.00755 0.00377
2.0 0.5700 0.2850 0.1425 0.0712 0.0356 0.0178 0.00891 0.00445
2.5 0.7081 0.3540 0.1770 0.0885 0.0443 0.0221 0.01106 0.00553
3.0 0.929\ 0.4646 0.2323 0.1161 0.0581 0.0290 0.01452 0.00726
4.0 1.9067 0.9534 0.4767 0.2383 0.1192 0.0596 0.02979 0.01490
5.0 5.0214 2.5107 1.2553 0.6277 0.3138 0.1569 0.07846 0.03923

Note-s-The first three methods of computation are the three conventions for handling problem-
atic cases, as in Table I. Method "G & G" is the approximation of Gourevitch and Galanter
(1967).

where cp(p) is the height of the normal density at z(p).
The variance of d', then, is approximately

Table 2 also shows variances estimated with Goure
vitch and Galanter 's (\ 967) approximation (Equa
tion 10). The approximation is excellent for N> 100 and

tribution must eventual1ypile up at its maximal value of
8.43, because the probability of perfect performance
tends toward 1.0 as d' increases. As this happens, the
variance of d' naturally decreases toward an asymptote
of zero, because the mass of the distribution becomes
concentrated in the maximal value.

Variances obtained by direct computation can be com
pared with those obtained from an approximation for
mula given by Gourevitch and Galanter (1967). Goure
vitch and Ga1anter noted that

(9)

(10)

var[z(Ji)] = pO - p) ,
N N¢( p)2

least 100-200 trials for d's of2-3, and correspondingly
more trials for larger d's.3

Inspection of Table 2 reveals that the variance of d'
depends on true d' and sample size in a complex fashion
for both the 0.5 and 0.000 I conventions. With the 0.000 I
convention and Ns = Nn = 16, for example, variance
starts low at d' = 0.5, increases to a maximum at d' =
3.0, and then decreases again for larger d's. The non
monotonic dependence on d' is also evident at N; =
Nn = 8 and 32, but for these two sample sizes the maxi
mal variance occurs at d' = 2.5 and 4.0, respectively. To
develop some intuition for this pattern, it is helpful to
consider how the distribution of d' would change as d'
changes. Figure 1 shows the distributions for d' = 0.5
and d' = 2.5, in the case where N, = No = 8 and the
0.0001 convention is used. Note that for the larger d', the
distribution of d' shifts to the right, because larger d'
values become more probable. The larger d' also pro
duces a distribution with more variance, because the nu
merical values of d' spread out as they depart more from
zero (because of the stretching inherent in the inverse
normal probability transformation). Although not shown
in this figure, it is clear that as d' gets very large, the dis-
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CONFIDENCE INTERVALS FOR d'

d' .,; 1.0, but may not be accurate enough for precise
quantitative work with larger values of d', Even at sam
ple sizes large enough so that the convention for han
dling problematic cases does not influence the predicted
variance, the approximation can underestimate the true
variance by 10%.

It is also worth noting that straightforward use of
Gourevitch and Galanter's (1967) approximation can
also lead to overestimations of the true variance. For ex
ample, Bonnel and Miller (1994) chose parameter values
to minimize the error score

The standard method for computing a 95% confi
dence interval for d' in the yes/no task is to use Goure
vitch and Galanter's (1967) variance approximation for
mula (cf. Macmillan & Creelman, 1991) together 'Yith
the assumption that the sampling distribution of d' is
approximately normal. With direct computation, it is
straightforward to check the accuracy of such confidence
intervals.

According to the definition of a confidence interval
(see, e.g., Kendall & Stuart, 1961), if, for example, 1.23
is the value of a' observed in a sample, then the lower
and upper bounds, Land U, of a 95% confidence inter
val should be chosen so that

2.5% = Pr( tI' > 1.231d' = L) = Pr( tI' < 1.231d' = U). (12)

That is, the observed value 1.23 should lie at the 2.5th
percentile point in the bottom tail of the sampling distri
bution generated when d' = U, and it should lie at the

across I conditions. Using Gourevitch and Galanter's ap
proximation formula for Var [a'], the best fit was often
obtained with parameters that gave extremely large values
of the afs, because such parameters also yield large pre
dicted variances for the denominator of the overall error
measure, L1. For example, in a condition with N, = Nn =

200 and a' = 2.5, a bias-free model makes a smaller
contribution to L1 if it predicts d' = 7.8 than if it predicts
d' = 2.8. Even though d' = 7.8 is much more discrepant
from the observed value than is d' = 2.8, the ratio of
squared error to predicted variance is smaller in the for
mer case because of the large predicted variance associ
ated with d' = 7.8. This property of the approximation
formula can easily cause automatic parameter-search
programs to settle on parameter estimates yielding un
reasonably large predicted d's. Fortunately, direct com
putation of variances allows one to avoid this problem,
because for any convention the predicted variance de
creases for values ofd' larger than some fixed constant.'
Naturally, it would be wise to fit a model by using several
different conventions to show that the arbitrarily selected
convention did not have a large influence on the fit.

97.5th percentile point ofthe sampling distribution when
d' = L. Intuitively, this means that 1.23 is almost dis
crepant enough from the lower (or upper) bound that we
can reject the null hypothesis that the true value is equal
to this bound, at the .05 significance level with a two
tailed test.

The appropriate values of Land U can be obtained by
numerical search (see, e.g., Press, Flannery, Teukolsky,
& Vetterling, 1986), although the procedure is somewhat
computationally intensive. To find U, for example, one
tries a series of candidate values of d', For each candi
date d' value, the associated values ofPh and Pt« are de
termined by using the cumulative normal distribution
(cf. Equations 4 and 5). Then, the predicted sampling
distributions of z(H) and z(F) are obtained from the un
derlying binomials Nh and Nfa, and the predicted sam
pling distribution of a' is tabulated by convoluting the
predicted distributions ofz(H) and z(F)-that is, by gen
erating the differences obtained with all possible combi
nations of the component at/i) andz(F) values (cf. Equa
tion 3). Finally, the predicted sampling distribution is
examined to see whether its 2.5th percentile is equal to
the observed a' value, as desired. The search continues
until a candidate d' is found for which the predicted
2.5th percentile equals the observed sample a', and this
candidate is then taken as the value of U. The lower
bound of the confidence interval is found similarly, ex
cept that the search stops when 97.5th percentile of the
predicted distribution is equal to the observeda'. As al
ways, computing the sampling distribution ofa' for each
candidate d' requires adoption of some convention for
handling problematic cases. It is therefore prudent to de
termine confidence intervals by using different conven
tions and to make sure that the results do not depend on
the convention.

Table 3 shows a number of examples ofconfidence in
terval upper bounds computed with direct computation
and with the approximation of Gourevitch and Galanter
(1967); similar results were obtained in a comparison of
lower bounds computed with the different methods. The
approximation is quite accurate when a' s 2.5 and there
are more than 50-100 trials per condition. Examination
of cases in which the approximation is not accurate sug
gests that the inaccuracies are due to a combination of
factors, including the following: (1) The approximated
variance differs from the true variance; (2) the sampling
distribution of a' deviates somewhat from the normality
assumed in the standard procedure for computing confi
dence intervals; and (3) in the standard procedure, there
is only one variance, estimated by using a', whereas the
true predicted variance differs somewhat for d's at the
top and bottom of the confidence interval.

It is also interesting to note the virtual identity, with
a' ::; 2.5 and 16 or more trials per condition, of confi
dence bounds computed by using adjustments of0.5 ver
sus 0.0001 to handle problematic cases. Under these
conditions, the problematic cases are rare enough that
their adjustment influences only the outer 5% of the

(11)
I (;]' _ d')2

~ = L I -'

i~1 Var[d;J
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Table 3
Upper Bounds of95% Confidence Intervals for d' Obtained With Direct
Computation or the Approximation of Gourevitch and Galanter (1967)

Method of Sample Number of Signal and Noise Trials

Computation d' 8 16 32 64 128 256 512 1,024

0.5 0.5 1.701 1.414 1.130 0.933 0.815 0.719 0.657 0.611
1.0 2.377 1.943 1.652 1.451 1.320 1.229 1.162 1.114
1.5 2.892 2.398 2.176 1.955 1.831 1.736 1.669 1.620
2.0 3.490 2.889 2.688 2.504 2.366 2.256 2.184 2.130
2.5 3.597 3.317 3.078 2.891 2.782 2.702 2.644
3.0 4.117 3.819 3.665 3.446 3.323 3.233 3.165
4.0 4.767 4.641 4.473 4.330 4.237
5.0 5.695 5.537 5.379

0.0001 0.5 1.701 1.414 1.130 0.933 0.815 0.719 0.657 0.611
1.0 2.376 1.943 1.652 1.451 1.320 1.229 1.162 1.114
1.5 2.890 2.398 2.176 1.955 1.831 1.736 1.669 1.620
2.0 3.418 2.889 2.688 2.504 2.366 2.256 2.184 2.130
2.5 3.594 3.317 3.078 2.891 2.782 2.702 2.644
3.0 4.042 3.819 3.665 3.446 3.323 3.233 3.165
4.0 4.741 4.641 4.473 4.330 4.237
5.0 5.692 5.537 5.379

Conditional 0.5 1.820 1.419 1.130 0.933 0.815 0.719 0.657 0.611
1.0 2.755 1.968 1.653 1.451 1.320 1.229 1.162 1.114
1.5 3.700 2.473 2.179 1.955 1.831 1.736 1.669 1.620
2.0 5.375 3.098 2.706 2.504 2.366 2.256 2.184 2.130
2.5 4.348 3.425 3.083 2.891 2.782 2.702 2.644
3.0 5.865 4.150 3.707 3.447 3.323 3.233 3.165
4.0 5.392 4.778 4.482 4.330 4.237
5.0 6.266 5.627 5.384

G&G 0.5 1.742 1.378 1.120 0.938 0.810 0.719 0.654 0.609
1.0 2.285 1.908 1.642 1.454 1.321 1.226 1.160 1.113
1.5 2.862 2.463 2.181 1.981 1.840 1.740 1.670 1.620
2.0 3.480 3.046 2.740 2.523 2.370 2.262 2.185 2.131
2.5 3.667 3.325 3.084 2.913 2.792 2.707 2.646
3.0 4.337 3.946 3.669 3.473 3.335 3.237 3.168
4.0 4.959 4.678 4.480 4.340 4.240
5.0 5.778 5.551 5.390

Note-Because Nh and Ns« must be integers, it is not possible to observe all listed values ofd'
for each number of trials. The upper bounds were nonetheless determined by finding the value of
d' satisfying Equation 12 for each of the possible observed values listed in the column headed
"Sample d'," Empty cells indicate cases in which the indicated sample d' was larger than could
be observed without perfect performance on signal or noise trials, making computation of an
upper bound on d' unreasonably sensitive to the convention for handling perfect performance.

sampling distribution. This means that it is possible to
compute convention-independent 95% confidence inter
vals with sample sizes too small for convention
independent variances (cf. Table 2), because variances
are influenced by the full distribution whereas confi
dence intervals are influenced only by the middle 95%.

CONCLUSION

The method ofdirect computation can be used to inves
tigate the distribution of d' in virtually any signal detec
tion paradigm, because all paradigms yield values ofJ'
computed from the observed values of underlying bino
mial or multinomial random variables (cf. Macmillan &
Creelman, 1991). This method, while computationally
intensive, is well within the capabilities of available
desk-top computers. The method can be used to investi
gate the statistical properties of d' despite the mathemat
ical intractability of this measure, and thereby to improve
the accuracy of quantitative model tests and confidence-

interval computation performed with data from individ
ual subjects.
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NOTES

I. Throughout this article, symbols with "hats" denote estimates,
computed from data, of the corresponding theoretical parameter values
symbolized without hats (e.g., d' is an estimate of d').

2. I ignore the fact that the same value of d' could arise from differ
ent combinations of z(H) and z(f:). This presents no computational
problems, because such equivalent combinations can be identified and
their probabilities combined in the procedure described below.

3. In principle, a researcher could decide in advance how to handle
problematic cases and obtain predicted means and variances by direct

computation, using that specific convention. This seems unsatisfac
tory, however, because it could lead to a scenario in which a model
would be accepted or rejected depending on an experimenter's arbi
trary choice of how to handle problematic data that never occurred in
the actual experiment.

4. As d' increases, the true probability of a hit approaches one and
the true probability ofa false alarm approaches zero. In the limit, then,
performance is always perfect, so the variance of d' approaches an as
ymptote of zero.
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