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THE SANTALO-REGIONS OF A CONVEX BODY

MATHIEU MEYER AND ELISABETH WERNER

ABSTRACT. Motivated by the Blaschke-Santalé inequality, we define for a con-
vex body K in R™ and for ¢ € R the Santalé-regions S(K,t) of K. We in-
vestigate the properties of these sets and relate them to a concept of affine
differential geometry, the affine surface area of K.

Let K be a convex body in R™. For z € int(K), the interior of K, let K* be
the polar body of K with respect to z. It is well known that there exists a unique
xo € int(K) such that the product of the volumes |K||K®°| is minimal (see for
instance [Sch]). This unique zg is called the Santalé-point of K.

Moreover, the Blaschke-Santalé inequality says that |K||K®| < v2 (where v,
denotes the volume of the n-dimensional Euclidean unit ball B(0, 1)) with equality
if and only if K is an ellipsoid.

For ¢t € R we consider here the sets

) - e UKLy
Following E. Lutwak, we call S(K,t) a Santal6-region of K.

Observe that it follows from the Blaschke-Santald inequality that the Santald-
point xg € S(K,1), and that S(K,1) = {zo} if and only if K is an ellipsoid. Thus
S(K,t) has non-empty interior for some ¢ < 1 if and only if K is not an ellipsoid.

In the first part of this paper we show some properties of S(K,t) and give
estimates on the “size” of S(K,t). This question was asked by E. Lutwak.

In the second part we show how S(K,t) is related to the affine surface area of
K.

The affine surface area as(K) is originally a notion of differential geometry. For
a convex body K in R"™ with sufficiently smooth boundary 0K it is defined as

as() = | (@) duta).

where k() is the Gaussian curvature at € 0K and p is the surface measure on 0K.
The affine surface area is invariant under affine transformations with determinant
1. It arises naturally in questions concerning the approximation of convex bodies
by polytopes (see [G]) and in a priori estimates of PDE’s ([Lu-O]).
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4570 MATHIEU MEYER AND ELISABETH WERNER

It has been one of the aims of convexity theory to extend the notions of differ-
ential geometry and (for instance) of affine surface area to arbitrary convex bodies
without any smoothness assumptions on the boundary.

Within the last few years four different extensions have been given (due to
Leichtweiss [L1], Lutwak [Lu], Schiitt-Werner [S-W] and Werner [W]), and it was
shown that they all coincide ([S1], [D-H]).

We give here another such extension, arising again from a completely different
context. It will also follow that this new extension coincides with the others.

The authors wish to thank MSRI for its hospitality, and the organizers of the
special semester in Convex Geometry and Geometric Functional Analysis at MSRI
for inviting them. It was during our stay there that the paper was written.

Unless stated otherwise we will always assume that a convex body K in R™ has
its Santalé-point at the origin. Then 0 is the center of mass of the polar body K,
which may be written as

/ (x,y)dy =0 for every x € R"™
KO

By |K| we denote the n-dimensional volume of K. hg is the support function of
K. If K is centrally symmetric, ||.||x is the norm on R™ that has K as its unit ball.
By ||.]| we denote the standard Euclidean norm on R™, and (-,") is the usual inner
product on R™. B(a,r) is the n-dimensional Euclidean ball with radius r centered
at a. Forz € K, K* = (K —2) ={y € R": (y,z — z) < lfor all z € K} is the
polar body of K with respect to z; K° denotes the polar body with respect to the
Santalé-point. Moreover for u € S™~! we will denote by ¢% (y) or for short by ¢(y)
the (n — 1)-dimensional volume of the sections of K orthogonal to u; that is,

o(y) = ¢k (y) = [{z € K : (z,u) = y}|.

I. PROPERTIES OF THE SANTALO-REGIONS

We start by listing some of the properties of S(K,t). Recall that for § > 0, ¢
small enough, K5 is said to be a (convex) floating body of K, if it is the intersection
of all halfspaces whose defining hyperplanes cut off a set of volume ¢ of K ([S-W]).
More precisely, for u € S~ and for 0 < § let a¥ be defined by

Hrx e K : (x,u) >aj}| =4
Then K5 = (,cgn-1{z € K : (z,u) <aj}.

In the following proposition we consider only those ¢ € R for which S(K,t) # 0.

Proposition 1. Let K be a conver body in R™. Then:
(i) S(K,t) is strictly convex for all t.
(i) S(A(K),t) = A(S(K,t)) for all regular affine transformations A, for all t.
(iii) The boundary of S(K,t) is C*° for all t.
(iv) t — S(K, t) is increasing and concave; that is, for all t, s and for all« € R,
0<a<l,
S(K,at+ (1 —a)s) D aS(K,t)+ (1 — a)S(K, s).
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THE SANTALO-REGIONS OF A CONVEX BODY 4571
1 . . . 1
(v) For all 0 < 0 < 3, K| is contained in S(K, m),

Proof. We frequently use the following well known formula. For all z € int(K)

o L do(u)
(1) |K | - n [gn—l (hK(U) - <u7x>)n7

where o is the spherical Lebesgue measure.

Indeed, |[K*| =1 [, . @ dd((")))n , where hy is the support function of K centered

at z. Now observe that hx (u) = hx(u) — (u,z); thus (1) follows.
(i) Observe that for all u € S"~! the function

1
(hx(u) = (z,u)"

is convex on int(K). (1) then implies that

. _ l da(u)
x— |K"| = n/snf1 (hic (u) — (u, z))"

is convex. In fact the function

Xr —

K 1 do(u)
L L e e

is strictly convex, as for z,y € int(K),x # y,
o({ue $"1: (u,z) = (u,y)}) = 0.

Therefore (i) follows.
(ii) Let A be a one-to-one affine transformation. We can write A = L + a, where
L is a one-to-one linear transformation and a is a vector in R™. Then

(AK))Y ={zeR": (z,Az—y) <1 forallz e K}
={zeR": (L'z,z— A7 'y) <1 forallze K}
= (L)1 (EATO),

Hence AKIARY
S — e AELA
K[| KA W)
={yc AK: o < t}
= A(S(K,1)).
(iii) Let K, n and ¢t be fixed. By (1), 0S(K,t) ={x € K : F(z) = TKU\ }, where

=/ gn-1 #?’Z‘z»”' F' is continuous on int(K) with continuous partial

derlvatlves of all orders, has a unique minimum at the Santalé-point zg, and is
convex (see (i)). Therefore (iii) follows from the implicit function theorem.

(iv) is obvious from the proof of (i).

(v) Let 6 € (0, %)7 and let H be a hyperplane that has non-empty intersection
with K and is such that

|[KNHY| =0|K|,

where H7 is one of the two halfspaces determined by H. By definition the convex
floating body Kj k| is the intersection of all the halfspaces H™ determined by all
such hyperplanes H.
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4572 MATHIEU MEYER AND ELISABETH WERNER

On the other hand, by [Me-P] there exists z € H N int(K) such that
KUK _ 1
v2 T 46(1-96)

This means that z € S(K, m). Consequently

1

Ks k) € S(K, B -9)

).
|

Remark 2. (i) Proposition 1,(iv) says that Ks x| C S(K, M(lﬁ). We will show
(see Proposition 14) that in the case of the convex body with sufficiently smooth
boundary and positive Gaussian curvature everywhere a converse inclusion holds

for 0 “small”.
(ii) Note also that for K = B(0, 1),

(BO)so, ~ S(BO1), 5255,

n+1
for § sufficiently small. More precisely, for § < — 2 n=1___

\/E(n+l)vnnnT

(V) Tvn_
o(n+ 1)v,

Un—1
"Ved(n + Doy,

This follows from the forthcoming Corollary 5 and from the fact that the volume
of a cap of the Euclidean unit ball of height A can be estimated from above by

S(B(Ov 1) ) - (B(Ov 1))50n C S(B(Oa 1)7 )

Un—1 (ZA)TLTH
n+1
and from below by
Up—1 nt1 A naa
prrcA) T a5
For § “close” to %,
1
B(0,1))s0. ~ S(B(0,1), ——).
(BO.D)s, ~ SBO). 157 —57)

More precisely, let ¢ < ﬁ and % > 4§ > % — E:J/"E;; Then

1 - 8Un_1

(B(O, 1))5vn Cc S(B(Ov 1)7 45(1 — 5)) = \/n——|—lv

(B(0,1))s0,,-

The following lemmas will enable us to compute [(B(0,1))*|. They are also
needed for Part II.

Lemma 3. Let z € int(K). Then

_ dy
= 0 {a.g))

Proof. By (1)
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THE SANTALO-REGIONS OF A CONVEX BODY 4573

L1 do(u)
K= o G ——T

R pr—1 dy
= —deO' u :/ e ——
L) 0 arayt T = | T, gy
O

Remark. We will use Lemma 3 mostly in the following form:
Let u € S"7! and A € R be such that 2 = Au € int(K). Then Lemma 3 says
that

) = [ P oo @)t
—h o (—u) (1 - )‘t)n+1 ’

where ¢l (t) = [{z € K°: (z,u) = t}|.
Lemma 4. (i) Let 0 < o < 1. Then

/1 (1—a?) "z de  27(D(%EL))?

L @—ar)™T T (1 -2

(ii) For o € (0,1) let

B 1(1—:1:2)7%16&1: o 1
o) = S

n+1

3| o)
|

Then
I(a) <1 and limlI(a) =1

(iii) Let a,b > 0,n € N and Ma < 1. Then

Ca-p o (b
/b (1 — Ay)nt1 dy = na™ 11— Aa)(1 + Xb)™’

Proof. (1) We put x = (1 — L‘_—gu)/(l + %U) This gives (i).
(ii) Put = 1 — wl=%. Then

[eq n—1 n—1
! = wz (2-—1=2w)T dw
(C p— G-

The upper estimate for (ii) follows immediately from this last expression. And by
the monotone convergence theorem this last expression tends to

n! /°° w™ T dw
T2 o (1 +wntt?

which is equal to 1.
(iii) Note that

=) Y T a = D)

[z, (-2

This immediately implies (iii). |
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4574 MATHIEU MEYER AND ELISABETH WERNER

Corollary 5. Let B(0,r) be the n-dimensional Euclidean ball with radius r centered
at 0. Forue 8" 1letx=Mu, 0<\<r. Then

Un
B0, = —
(BO.N) | =
Proof. The proof follows from (2) and Lemma 4 (i). O

Next we estimate the “size” of S(K,t) in terms of ellipsoids. Recall that for a
convex body K the Binet ellipsoid F(K) is defined by (see [Mi-P])

||u||2E( K) = |K|/ x,u)?dz, for allu € R"™.

We first treat the case when K is a symmetric convex body.

Theorem 6. Let K be a symmetric convex body in R™. For allt € R
dn(H)E(K) C S(K,t) C cn(H)E(K?),

where
1 |K||KO| 1
dult) = Ze (1= )
and
o 2 1, top 1 |K||K°\ 1 |K|[K°] 1,1

Remarks. (i) In particular, for any ellipsoid E, S(F,1) = {0}.
9]
(i) If ¢ — EUET then S(K,t) — {0}.
(iii) The second expression in ¢, (t) gives a better estimate from above than the
first iff |K||K°|/tv? is of a smaller order of magnitude than (n logn)~!.
(iv) Recall that for two isomorphic Banach spaces F and F' the Banach-Mazur
distance d(E, F') is defined by
d(E,F) = inf{||T|| ||T~}| : T is an isomorphism from E onto F'}.
For symmetric convex bodies K, L in R™ we define
d(K, L) = d((R", [|.[[ ), (R", ||.[[2))-
Then it follows from Theorem 6 that
6t’l}2 1
d(S(K, 1), E(K®)) < (7zm1)*
[ K[| KO
Thus for pe R, p > 1,
d(fw € K : |K”| < p|K°[}, E(K®)) < (6p)2,
independent of K and n. It follows that for fixed p, {x;|K*| < p|K°|} is almost an
ellipsoid.

Proof of Theorem 6. Let u € S"" ' A e R,0< A < m and z = Au. By (2) and
symmetry,
1

[l 2 1
K*| = d
1= [ o) + e
where ¢ = ¢%,. For fixed A > 0 put

Ny) =

1 1
(1 _ )\y)n+l + (1 + )\y)n+1'
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THE SANTALO-REGIONS OF A CONVEX BODY 4575

Observe that fy is increasing in y, if y > 0. Put
_n fo y)dy ”|KO|
¢(0) - 20(0)

Now we distinguish two cases.

1. Aa < 1. Then we claim that for all functions ¢ : R — Rg such that P
is continuous on its support and continuous from the right at 0, decreasing and
concave on its support and such that

(i) $(0),
0
@ [ vy = / o)y = 51
the integral fo y) fr(y)dy is maximal if ¢ is of the form
_ [ o0 = )"t ify €[0,q],
Yoly) = { 0 otherwise.

Indeed, let ¥ be a function with above properties and with support on [0,a]. Put

_/taqj;(y)dy—/ta%(y)dy

Note that @ < a, H(0) = 0 = H(a) and that the derivative of H with respect to ¢
is first negative, then positive therefore H(t) < 0.
Consequently (with gx(y) = fa

(5) - 2)
JR dy—/ v [ swandy= [ g v
< / gA) / s d = [ " dow)orw)dy

From this the above claim follows.
Hence

a ( _ g)n—l (1 _ g)n—l |K0|
K*| < ¢(0 4 4 dy = .
| |*¢()/O((l_)\y)n+l+(1+/\y)n+l)y 1 — 2242
Here we have used Lemma 4 (iii).
For z = Au € 0S(K, ),

(3) L= [2]|sx.t) = Mlullsx b
and

| K[| K7
(4) t = U% .
Therefore o

| K| K°

~ 02(1 = A2a?)
and hence by (3)

n o IKIEY s KO
< —-(1- .
||u||S(K,t) > 2( tv% ) 2 ¢(0)
Now ([B], respectively [Hel; see also [Mi-P])
K0 Jico la, w) Pde
) — < 2V3(F—FF—)2 =2V3
(5) $(0) — vl Ed ? = 2V3[ul| g0y,
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4576 MATHIEU MEYER AND ELISABETH WERNER

and thus 0

1 | K[| K°

(1 - t 2
v’ﬂ

S(K,t) D )2 E(K").

= \/gn
2. Aa > 1. Again let x = Au € 9S(K,t). By definition of a, (3) and (5)

ullscr, < V3nllul| o).
This implies that

S(K,t) D ﬁE(KO)

which proves the inclusion from below also in this case.

On the other hand, by (1) and symmetry

e ! ! o(v
R (s o e e L)

> L [ @anm 150
2n Jgn-1 |[v]] 0

=0+ PEED oy

(n+1)(n+2)
2

=K%+
Then (3) and (4) give

((n+ 1)(n—|—2))% tv? _1
||u||S(K7t) > \/5 (|K||KO| - 1) 2||u||E(KO)7

NI [l [ g0y -

or, equivalently,

2 tv?
sy
(n+1)(n+2)z |K||K |
Using (2) and a minimality argument similar to the maximality argument of the
above claim, we get the other upper bound. Namely, for fixed A and for all functions

P R(‘JIr — RS‘ such that wﬁ is continuous on its support and continuous from
the right at 0, decreasing and concave on its support and such that

(i) ¥(0) = ¢(0),

(i) /w dy—/ sty = 1,

(SIS

E(KY).

the integral fo y)fa(y)dy is minimal if ¢ is of the form
_ [ ¢(0) ifyel0,a],
vly) = { 0 otherwise,
where
_ K
2¢(0)°
Note that in this situation Aa < 1 always.
Consequently

a 0
|K®| > <z6(0)/O Ix(y)dy > %
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THE SANTALO-REGIONS OF A CONVEX BODY 4577

Then we again use (3), (4) and the fact that ([B], or respectively [He]; see also
[Mi-P))
KO
— >V2
and get
(KK
tv2

S(K,t) € V2(1— ( )"):E(K®). O
Now we consider the non-symmetric case.

Theorem 7. Let K be a convex body in R™. Then
d;, () B(K®) C S(K,t) C ¢, () E(K"),

where
'y 2v2 tvg 1. KK 1
c"(t)_((e—z)(n+1)(n+2))%(IKIIKOI)( tv )
and
o1 IK[IKY,

Proof. By (2) we get for u € S" ! and z = Au with 0 < X\ < 1/hgo(u) that

Pco () $(y)
S =
| | —hgo(—u) (1= Ay)ntt

where ¢ = ¢%,.
Notice that K° has its center of gravity at 0, as K has its Santalé-point at 0.

Therefore
hK[) (’LL)
/ yo(y)dy = 0.
—hKO (—u)

Notice also that
(6) L= hs(r,yo(r) = Mgk 1o (u).

Now we apply the following result of Fradelizi [F] to the functions ¢(y) and
ily) = W to get the same upper estimate for |K?|as in the proof of Theo-
rem 6. Therefore d, (t) = d, ().

Theorem ([F]). Let ¢y : R — R, ¢ > 0, be such that 7T s continuous and
concave on its support and such that ffooo y(y)dy = 0. Let f : R — R be any
convez function. Then, if

0 2 W(y)dy
o 2p(0)
one has
| vwiwar <o [ a-Lypga,
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4578 MATHIEU MEYER AND ELISABETH WERNER

For the right-hand inclusion write

. 0 $(y) o) g(y)
K®| = Y4 Y4
] /_hKo<_u> (v Rl A e et

0
> / @)1 + (n+ 1) \y)dy

—h o (—u)
hKO(“)

+/ ¢(y)(1+(n+1),\y+w

0 2

n+1)(n+2 hico(w)
= IKOI+MA2/ y*o(y)dy,
0

Ny?)dy

2

where for the last equality we have used the fact that the center of gravity is at 0.
Let a be such that
2

h o (u) a -
/0 yo(y)dy = ¢(0)m = /_a yo(y)dy,

where o(y) = 6(0)(1 + £)n1.

Now one shows as in the beginning of the proof of Theorem 6 that for all functions
P Rar — Rar such that wﬁ is continuous on its support and continuous from
the right at 0, concave on its support and such that

1) ¥(0) = ¢(0),
(i) /O Yy (y)dy = /0 yo(y)dy,

the integral [ 5%t (y)dy is minimal if ¢ is of the form

_ [ o0+ 5t ify e 0,1,
Yoly) = { 0 otherwise,

and that for all functions ¢ : Ry, — Rar such that ¢ﬁ is continuous on its support
and continuous from the left at 0, concave on its support and such that

(i) (0) = ¢(0),
0 0
(i) / y(y)dy = / yo(y)dy,

the integral f_ooo y21p(y)dy is maximal if 1 is of the form

_ [ o(0)1+ )T ify € [~a,0],
toly) = { 0 otherwise.
Therefore
o (u) s (14 Lyt 9
2 2 _ n 3
[ wetmay = [T iy = e —atol0)
and
’ 2o(y)dy < " dy = 2 36(0
/—hKo(—u)y o(y)dy < /_ay Yo(y)dy = ma #(0).
Thus we get

h o (u) _9 0
/O Poly)dy > 5 / y>d(y)dy,

—hKO (—’LL)
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THE SANTALO-REGIONS OF A CONVEX BODY 4579

and therefore

hxo(u) e — 2 hKQ('u)
/ y'oy)dy > — / v (y)dy.
0

—hKO (—’LL)
It follows that

K7 > (K01 + (n+1)(n+2)(e—2)

)\2||U||2E(K0)),

8
which implies, using (6),
2v/2 2 . K||K°|. .
S(K 1) € CB— - S
(e —2)(n+1)(n+2))z |K||K| tv

Next we estimate the “size” of S(K,t) in terms of the body K. We need the
following lemma.

Lemma 8 (see for instance [S2]). Let K be a conver body in R™ with center of

gravity at 0. Then
11 /Mu) 1
- < P(y)dy <1——.
e " K| Jo

e
Theorem 9. Let K be a convex body in R™. Then:
()
KK 2 KK
1-— K CSK,t)C(l—-——)K
(- (B hE € S0 € (1= Ei)
(ii) If in addition K is symmetric, then
[K[IK°\ 1 KK\
1—-(————)" ) K CS(K,t) C(1-— K.
(- (S hE € sun € (1 - !
Proof. Let u € S*~ ' A e R,0 < A <1, be given and let z = —2—u. Then K

hKO(u)
contains aX + x for all o, 0 < a < 1 — A, and consequently K* C éKO; therefore
for x € OS(K,t) we have

T 0
¢ = KK KK
v2 T a™?

and hence
K|[Ko| s
tv2 '

Thus for all A with A < 1 — (|K||Ko|/tv2) we have

a < (

hKo(u)u € S(K,1).

This proves the left-hand inclusion.

For the right-hand inclusion we first treat the symmetric case.

Let = Mu,u € "1, 0 < X\ < [|ul|5". Let f\ be as in the proof of Theorem 6.
By (2) and symmetry,

[Jul| &
K| = /0 o(y) f(y)dy.
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4580 MATHIEU MEYER AND ELISABETH WERNER

Notice that for all functions ¢ : Rj — Ry such that 7711ﬁ is continuous on its
support and continuous at 0 from the right, decreasing and concave on its support
and such that

() %> 00n [0, llull), w=00n [fullxo0)
 plili il K|
i) [ vt = [ oty =

the integral fO”uHK ¥(y) fa(y)dy is smallest if ¢ is of the form
(1= gi=)"=1 if y € [0, [|ul|x)
= ||’U‘HK ! ’
¥(y) { 0

otherwise,

where

_ K]

2||uf|x
Hence
|K*] > c/u”K((l — W)"‘l N (1-— m)n—l)d
=" (1 — Ay)ntl F ) Y
_ | KO

1— )\2||u||%(7

which implies
| K[| Kol 1
S(K.1) C (1 — 220G g
el tv2 )

Next we consider the non-symmetric case:

I P g(—y)
o "/o - y"+1dy+/o < a

L+ Ay)ntt Y
o) g(y)
> — 7 _dy.
*/o (=)t

Fix A, and note again that among all functions 1 : R(‘JIr — RS‘ such that wﬁ
is continuous on its support and continuous from the right at 0, decreasing and
concave on its support and for which

>0 on [0,hxo(u)), Y =0 on [hgo(u),o0),

hKO (’LL) hK[) (’LL)
/ W(y)dy = / o(y)dy,
0 0

the integral fohko(u) %dy is smallest if 1) is of the form

Y(y) = e(1 - TK?W”* if y € [0, ho(u)),
0 otherwise,
where
h n
oy gy)dy
C =
hKO (u)

Arguments similar to the previous ones, together with Lemma 8, then finish the

proof. :
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THE SANTALO-REGIONS OF A CONVEX BODY 4581

II. SANTALO-REGIONS AND AFFINE SURFACE AREA

Recall that for a convex body K in R" the affine surface area is

as(k) = | (@) duta).

where k(z) is the (generalized) Gaussian curvature in € 0K and p is the surface
measure on 0K. We prove here

Theorem 10. Let K be a conver body in R™. Then
_ 1K

=5 )T as(K).

Jim 675 (K] = |S(K, )

In the proof of Theorem 10 we follow the ideas of [S-W]. We need several lemmas

for the proof. We also use the following notations. For x € 0K, N(z) is the outer

unit normal vector to 0K in . For two points z and y in R”, [z,y] = {az+(1—a)y :
0 < « < 1} denotes the line segment from x to y.
The proof of the following lemma is standard.

Lemma 11. Let K and L be two convex bodies in R™ such that 0 € int(L) and
L C K. Then

K11t = [ e - )

||
where xr, = [0,2] N OL.

For z € 9K denote by r(z) the radius of the biggest Euclidean ball contained in
K that touches OK at x. More precisely,

r(z) = max{r:x € B(y,r) C K for somey € K}.

Remark. It was shown in [S-W] that
(i) if B(0,1) C K, then

p{r € OK : r(x) >} > (1 — B)" tvol,,_1(9K),
(i)
/ r(z)"%du(z) < oo forall a, O0<a<1l1.
oK

We postpone the proof of the next two lemmas, which we use for the proof of
Theorem 10.

Lemma 12. Suppose 0 is in the interior of K. Then, for all x with r(z) > 0 and
for all t such that (S(K,t) has non-empty interior, we have

0< Lo V@)t (1= ) < entoy 1,

where xy = [0,2] NOS(K,t) and ¢ is a constant independent of x and t.

Lemma 13. Suppose 0 is in the interior of K. Then the limit

lim = {z, N (2))t <1 - (”“’”)”)

t=oom ]
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erists a.e. and is equal to
|K|, 2

1
5 (o)),

where k(x) is the Gaussian curvature at x € K.

Proof of Theorem 10. We may assume that 0 is in the interior of K. By Lemma 11
and with the notation of Lemma 12 we have

K| =[5 =+ [ N - G ),

oK |||
By Lemma 12 and the remark preceding it, the functions under the integral sign
are bounded uniformly in ¢ by an L!'-function, and by Lemma 13 they converge
pointwise a.e. We apply Lebesgue’s convergence theorem. O

Proof of Lemma 12. Let x € 0K be such that r(z) > 0. As ||z = ||z]| — ||l — z¢]|,
we have

X

(7) %@,N(:c» (1—(”“”)") < <W,N<:v)>||x — ze].

]

a) We consider first the case where
x
o — ] < T(x)<m,N(w)>~

Let p = ||at — (x — r(z)N(x))||. By assumption 0 < p < r(z). Computing p, we get
N(a)))'/2.

< x
p= (o= +r@)? - 2r(2)lls — xtll<ma
Since K contains the Euclidean ball of radius r(z) centered at x —r(z)N(z), K% is
contained in the polar (with respect to ;) of the Euclidean ball with radius r(z).

Hence by Corollary 5,

K[| K™ |K|
t_ 2 S P n4+1 9
B v (- ()
and therefore, using (7),
1 2 22 K\ 2y o \ont
_ N tnt+i (1 — Y < (LY m¥T n+1
Lo N (- () < (D) i

which proves Lemma 12 in this case.
b) Now we consider the case where

|z — @] > r($)<ﬁ,N(:c)>-

We can suppose that t is big enough so that z; # 0. We choose o > 0 such that
B(0,a) C K C B(0,1) and t so big that z; ¢ B(0,). K contains the spherical
cone C = colz, H N B(0,«)], where H is the hyperplane through 0 orthogonal to
the line segment [0, z]. We get

|Cmt| _ ’Un_1||$||n )
na™ |z ([[]] — [z |))"
Consequently
o IEIE™] | K| on 1 |||
2 S e il o —al”
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and hence, using (7),

[E |K|vp—1, 2 _n-1 1
N tnti (1 — < T ntl
(N (- () < (L whr) T
O
Proof of Lemma 13. As in the proof of Lemma 12, we can choose an « > 0 such
that )
B(0,a) C K C B(0, —).
@
Therefore
8) 1> (ﬁ,N(m)> > a?.
T
Since x and x; are collinear,
]| = lae]] + [Jo — 2],
and hence
seN@) (1- ) = Ly (- 0 - )
n [l n ]

(9)
T taoMle — ol (1 — g 12 =2l

for some constant d, if we choose t sufficiently large. We denote by 6 the angle
between x and N(z). Then (x/|z||, N(z)) = cosf.

By [S-W], r(z) > 0 a.e., and by [L2] the Dupin indicatrix exists a.e. and is an
elliptic cylinder or an ellipsoid.

(i) Case where the indicatriz is an ellipsoid. This case can be reduced to the
case of a sphere by an affine transformation with determinant 1 (see for instance
[S-W]). Let y/p(x) be the radius of this sphere. Recall that we have to show that

1 P A N T (P
i o V@)t (1 ) = 5Pt
We put p(x) = p and we introduce a coordinate system such that + = 0 and N(z) =
(0,...0,—1). Hp is the tangent hyperplane to 0K at x = 0, and {H, : s > 0} is
the family of hyperplanes parallel to Hy that have non-empty intersection with K
and are at distance s from Hy. For s > 0, H is the halfspace generated by H
that contains x = 0. For a € R, let 2z, = (0,...,0,a), and let B, = B(z,, a) be the
Euclidean ball with center z, and radius a. As in [W], for € > 0 we can choose s
so small that for all s < s

B,_.NHf CKNHf CB,,.NH/.
For A € R let Gy = {z : (x,2,4e — #+) = A} be a hyperplane orthogonal to the
line segment [x¢, 2,1, if ¢ is sufficiently large. Let Ao = max{\ : Gi‘ N Byre C

H;’B N Bptc}. Define C to be the cone tangent to B,1. at G, N B,., and choose
the minimal Ay so that

Kn{x: o <(z,2p1e —2) <M} CD=CnN{z: X < (2,2p4c —x) < M}

Then K is contained in the union of the truncated cone D of height h = |A; — Ao|
and the cap L = {x € Byic : (2, 2p4e — 2t) < Ao} (see Figure 1).
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h
1
P+e€
>0
N4
X 1

FIGURE 1. The estimate from below

Therefore
K™ D (DUL)™,
and to estimate |K*t| we have to compute |(D U L)**|. To do so we prove the
following more general result.

Claim 1. Let M be the convex body that is the union of a truncated spherical cone D
with height h and a cap L of a Fuclidean ball with radius r such that D is “tangent”
to L. For a point z in L and on the axis of symmetry of M let a=distance(z,D),

b=distance(z,0L) and by = rbt(atb)(r=b) (see Figure 2). Then, if x is such that

r—(a+Db)
r>a-+b,
1 1 1_ 2 n;l
|Mm| :’Un—l(r_n ((ﬁ—bgynﬂdy
m (1 - T )
+l(l 1 )((2r(a+b)—(a+b)2)%)n_1)
n'by  a+h’ rb+(a+b)(r—>) '

Proof of Claim 1. We introduce a coordinate system such that £ = 0 and the ;-
axis coincides with the axis of symmetry of M (see Figure 2).

Notice now that MY is such that each (n — 1)-dimensional section orthogonal to
the xj-axis is an (n — 1)-dimensional Euclidean ball with radius I(x;), where

(a4 h)xy +1)2r(a+Db) — (a+b)%)z 1 1
= f — < < —
Ha) (a+h+bo)(r — (a+0)) R T AR =T Sy
1 1 1 1
W(z1) = (1 +z2(r —b)* —r2})7, if — <@ <.
T bo b
From this Claim 1 follows. O

Now we apply Claim 1 to our situation. Then
r=p+e and b=p+e—cg,

where
A =z —z|> + (p+ )2 —2(p+e)||x — || cos b,
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FIGURE 2. Claim 1

1 .
a=c— 7p+5_80(02 - ||$—xt||28in29)% - (2(p +€)s0 = 55)* [|w — ]| sin 0
c c ’
and
2
b= P
c—a
Therefore
1 2\ =1
Un—1 (1—-y*)>
) > | oty
Gt or Jo T
L N e /— 1=
n'by  a+h’rit (p4e) Jo (1= L)t

where 7p is the radius of the base of the spherical cone in (D U L)**. We put

1.1 1 [ vna Un—1 te (1—y2)n771
R=—(—+ ) T / T W
nbo a+h TDl (p+€)" 0 (1_p__;_yg)n+1
Then, by Lemma 4 (ii), for € > 0
Tt (1_6)UH
K™ > =5 i c \niL o TR
272 (pt+e)(5) T (L—552)
provided that
c S 1
pte 14+

We choose t so big that this holds.
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Hence

tIKWW‘ (9 (1—?KO( E pﬁ»wl

n+1 c ntl

(1—-¢)v,

and by (9), for some constant d,

tﬁ?aN@»Q—ﬂ“%ﬂ

n [l
x—x¢|| cos 6 z—xe||? \\ — T—T¢
§ 1((1—8)|K|) H(p—'—g) s (1+/€(2H pH _ ||(p+s)|2| ) 1(1—d- I = ||)
=3 ! ! [z—z.]2 _ olla—wllcosf\ L |
2 Un (1 + (pFe)2 -2 pte )2 (1 T 2(pte) cose)
n+1
272 n n n
L T
(1 —¢€)vy, pte pt+e
as
c T — x¢|| cos O r—x zx¢|| cos O x — |2
p+e p+e 2(p+¢€)cosd p+e (p+¢)

for some constant k, if ¢ is big enough. R remains bounded for ¢t — oo.

Note also that cosd remains bounded from below by (8).

Thus we have a lower bound for the expression in question.

To get an upper bound we proceed in a similar way. For A € R, now let
Gy = {z : (x,zp—e — x¢) = A} be a hyperplane orthogonal to the line segment
[24, 2p—c]. Let Ao = max{\: Gy N B,. C Hf N B,_.}. Let P be the point where
the half-line starting at x; through z,_. intersects 0K.

Let C be the spherical cone C' = co[P, B,—. N Gy,]. Let h be the height of this
cone (see Figure 3).

Let L={x € By—- : (z,2p—c — @) < Ao}. Then K D C UL, and hence

K® C (CuUL)*™,
and to estimate |K®t| we have to compute (C'U L)t

To do so we prove the more general

Claim 2. Let M be the union of a spherical cone C with height h and a cap L of
a Euclidean ball with radius r such that the base of C coincides with the base of
L. For a point z in L and on the axis of symmetry of M let o = distance(z,C),
8 = distance(x,0L) (see Figure 4). Then, with By = % and x chosen
such that r > a + (3,

1/t 1— ¢y
|Mw|:fun_1(r—n/ Ldy

- (r=BRy
(r—B)+Bo (1_ r >n+l

1 ((a+6o)" W ).
na(2r(a+B) — (o +B)2)%

Pe (a4 h)"
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[T

FIGURE 3. The estimate from above

FIGURE 4. Claim 2
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Proof of Claim 2. We introduce a coordinate system such that z = 0 and the x;-
axis coincides with the axis of symmetry of M (see Figure 4).
Notice now that M? is such that each (n — 1)-dimensional section orthogonal to
the zj-axis is an (n — 1)-dimensional Euclidean ball with radius I(x;), where
l(21) = ar; +1 . £ 1 legi
@r(a+B) - (a+B)P)* ot h B

)

lar) = (o= )P —r%ad)t, it <o <

®l =

From this Claim 2 follows.
Now we apply Claim 2 to our situation. There

r=p-—ef=p—c—n,

where
7= [l —a]]? + (p—€)® = 2(p — &) ||z — x| cos,
. 92 _ 2 1 _ . 9
a:’y—ip © 80(72_||1'—$t||251n29)%_( (b =€) 507)2||:1c ]| sin ;
and
2
—¢
o= P
-«
Then we get, similarily as before,
i [EA]
.8 (1- (hed)
n [l
1K 2 _n—1 1
< () (p— o)
llz—z¢ | lla—wellcos By 1 llz—zl
2 un (1+ (p—e)? -2 p—e )2(1_2(;)—5)0059)
n+1
272 R(p—e)" Y o\nkl, Y\ ndly 2
x{1+ 1— 2 2 pfT
{ - S

with a suitably defined R.
This finishes the proof of Lemma 13 in the case where the indicatrix is an ellip-
soid.

(ii) Case where the Dupin indicatiz is an elliptic cylinder. Recall that then we
have to show that

t—oon

lim L (2, N ()¢ (1 - ('xt”)") = 0.

We can again assume (see [S-W]) that the indicatrix is a spherical cylinder, i.e. the

product of a k-dimensional plane and an (n — k — 1)-dimensional Euclidean sphere

of radius p. Moreover we can assume that p is arbitrarily large (see also [S-W]).
By Lemma 9 of [S-W] we then have, for sufficiently small s and some ¢ > 0,

B,_.NHf CKnH/.

Using similar methods, this implies Lemma 13.
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Proposition 14. Let K be a convex body such that OK is C® and has strictly
positive Gaussian curvature everywhere. Then there is 69 > 0 such that for all

5<50

Un—1
(K, 2(n+ 1)v,d

Proof. As in the proof of Lemma 12, we can choose 1 > « > 0 such that

) € K5k

1
B(0,a) C K C B(0, —).
o)
Therefore we have, for all x € 0K,

1> (ﬁ,N(x» > o’

Let Ry = mingecar,1<i<n—1 Ri(z), where R;(z) is the i-th principal radius of cur-
vature at € K. We know that Ry > 0 (see [L2]).
Let 1 > > 0 be given such that ¢ < min{£2, 6na*} and

n—1 € n 1
By assumption the Dupin indicatrix exists for all x € 0K and is an ellipsoid. For
x € 0K given, we can assume that, after an affine transformation, the indicatrix at
z is a Euclidean sphere. Let /p(z) be the radius of this Euclidean sphere. Note
that, for all x € 0K,

(1—e)(1 - : ~ 6nat

(10) p(z) = Ro.
Then, with the notation used in the proof of Lemma 13, there exists s(z) > 0 such
that

+ + +
BP(W)_E N Hs(z) CKN Hs(m) < Bp(w)-i—a N Hs(z)

Let 51 = mingepx s(x). We know that s; > 0, as K is C® and compact. Let
1

(11) so = min{s1, (Ro —¢)(1 - H—g_g)}-
3n
Let g > 0 be so small that for all x € K two conditions are satisfied: first
X So
(12) Iz — 25 (77, N(2)) < =
* ]| 2

where x5, = [0, 2] N 0K, x|, and, second,
+
H{ N By@)-e € H N By(a)—c,

where Hs, is the hyperplane through x5, that cuts off exactly dg| K| from K.

Suppose now that the above proposition is not true. Then there is § < §y and
xzs € 0S(K, 2(:_:%) such that x, ¢ Kjx|. Let x € 0K be such that =, € [0, z].
We also can assume that the Dupin indicatrix at x is a Euclidean ball with radius
vV p(z). We choose 25 € 0Kk such that x5 € [0,2]. Then

N(z)).

x x
|z — 25| {5, N(2)) < |lz — 2| {7
||| ||

By construction
O|K| =K NH| = | By N Hy |

2 min [ By N H Y| = By N Hy .
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where
H = {H : His a hyperplane through x5,z € H*}.
For the height h of this cap |Bj(;)— N Hy | of Bp(y)—e of minimal volume we have

||z — 5]

h> [z — ]| (mr 2(1%, N (2)) (p(@) —¢)

N ()1 -

Ik )

Using (10), (11) and (12), we get

h> ||x—z5||<ﬁ,fv<x>><1 -

e

).

6not

The volume of a cap of a Euclidean ball with radius r and height h can be
estimated from below by

n+1 n—1_  n+4+1l

Up 1272 12 hT2 RS
> 1—— .
- n+1 ( 2r) ’
Therefore
Un—1 n_+1 ntl g (n-1 9
5K > 2 — 1__ 1_ n
K] 2 222" pla) T (o — ol N@) (1= )" (1= g™

where we have used again (10), (11), (12) and the fact that <W N(zx)) > a?. Thus

s _ (4 DOK|pa) T

ol NN < o TR

(13) ([l — sl

n+1
( 6nat

Since, in the notation of Lemma 13 and using (10), (11) and (12),

c ||z — x3||<||r||,N(x)> 1
>

- >
p(x) +¢ = p(z) +e 1+ 227

the estimate from below from Lemma 13 for |K||K?|/v2 holds for # = x4, and we
get (see p. 17)

|K|| K| (1 =e)Klp(x) ™" (1 + 555)7"

2 nfl ¢ \nEL ¢\t

v 27 (o) (- peyee)
Now notice that

C
<1
plx)+e ~

and

N [t i o)

p(x) +e p(@)(1+ 55

Therefore (13) implies that

| K[| K| € \no1 € Vn1
2 s -1 -—)"11- " .
v2 (1=e) Ry ) 6na4) (n+1)dv,
This is a contradiction. O
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