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THE SANTALÓ-REGIONS OF A CONVEX BODY

MATHIEU MEYER AND ELISABETH WERNER

Abstract. Motivated by the Blaschke-Santaló inequality, we define for a con-
vex body K in Rn and for t ∈ R the Santaló-regions S(K, t) of K. We in-
vestigate the properties of these sets and relate them to a concept of affine
differential geometry, the affine surface area of K.

Let K be a convex body in Rn. For x ∈ int(K), the interior of K, let Kx be
the polar body of K with respect to x. It is well known that there exists a unique
x0 ∈ int(K) such that the product of the volumes |K||Kx0 | is minimal (see for
instance [Sch]). This unique x0 is called the Santaló-point of K.

Moreover, the Blaschke-Santaló inequality says that |K||Kx0| ≤ v2
n (where vn

denotes the volume of the n-dimensional Euclidean unit ball B(0, 1)) with equality
if and only if K is an ellipsoid.

For t ∈ R we consider here the sets

S(K, t) = {x ∈ K :
|K||Kx|
v2
n

≤ t}.

Following E. Lutwak, we call S(K, t) a Santaló-region of K.
Observe that it follows from the Blaschke-Santaló inequality that the Santaló-

point x0 ∈ S(K, 1), and that S(K, 1) = {x0} if and only if K is an ellipsoid. Thus
S(K, t) has non-empty interior for some t < 1 if and only if K is not an ellipsoid.

In the first part of this paper we show some properties of S(K, t) and give
estimates on the “size” of S(K, t). This question was asked by E. Lutwak.

In the second part we show how S(K, t) is related to the affine surface area of
K.

The affine surface area as(K) is originally a notion of differential geometry. For
a convex body K in Rn with sufficiently smooth boundary ∂K it is defined as

as(K) =
∫
∂K

κ(x)
1

n+1dµ(x),

where κ(x) is the Gaussian curvature at x ∈ ∂K and µ is the surface measure on ∂K.
The affine surface area is invariant under affine transformations with determinant
1. It arises naturally in questions concerning the approximation of convex bodies
by polytopes (see [G]) and in a priori estimates of PDE’s ([Lu-O]).
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4570 MATHIEU MEYER AND ELISABETH WERNER

It has been one of the aims of convexity theory to extend the notions of differ-
ential geometry and (for instance) of affine surface area to arbitrary convex bodies
without any smoothness assumptions on the boundary.

Within the last few years four different extensions have been given (due to
Leichtweiss [L1], Lutwak [Lu], Schütt-Werner [S-W] and Werner [W]), and it was
shown that they all coincide ([S1], [D-H]).

We give here another such extension, arising again from a completely different
context. It will also follow that this new extension coincides with the others.

The authors wish to thank MSRI for its hospitality, and the organizers of the
special semester in Convex Geometry and Geometric Functional Analysis at MSRI
for inviting them. It was during our stay there that the paper was written.

Unless stated otherwise we will always assume that a convex body K in Rn has
its Santaló-point at the origin. Then 0 is the center of mass of the polar body K0,
which may be written as∫

K0
〈x, y〉dy = 0 for every x ∈ Rn.

By |K| we denote the n-dimensional volume of K. hK is the support function of
K. If K is centrally symmetric, ||.||K is the norm on Rn that has K as its unit ball.
By ||.|| we denote the standard Euclidean norm on Rn, and 〈.,. 〉 is the usual inner
product on Rn. B(a, r) is the n-dimensional Euclidean ball with radius r centered
at a. For x ∈ K, Kx = (K − x)0 = {y ∈ Rn : 〈y, z − x〉 ≤ 1for all z ∈ K} is the
polar body of K with respect to x; K0 denotes the polar body with respect to the
Santaló-point. Moreover for u ∈ Sn−1 we will denote by φuK(y) or for short by φ(y)
the (n− 1)-dimensional volume of the sections of K orthogonal to u; that is,

φ(y) = φuK(y) = |{z ∈ K : 〈z, u〉 = y}|.

I. Properties of the Santaló-regions

We start by listing some of the properties of S(K, t). Recall that for δ > 0, δ
small enough, Kδ is said to be a (convex) floating body of K, if it is the intersection
of all halfspaces whose defining hyperplanes cut off a set of volume δ of K ([S-W]).
More precisely, for u ∈ Sn−1 and for 0 < δ let auδ be defined by

|{x ∈ K : 〈x, u〉 ≥ auδ }| = δ.

Then Kδ =
⋂
u∈Sn−1{x ∈ K : 〈x, u〉 ≤ auδ }.

In the following proposition we consider only those t ∈ R for which S(K, t) 6= ∅.
Proposition 1. Let K be a convex body in Rn. Then:

(i) S(K, t) is strictly convex for all t.
(ii) S(A(K), t) = A(S(K, t)) for all regular affine transformations A, for all t.
(iii) The boundary of S(K, t) is C∞ for all t.
(iv) t 7−→ S(K, t) is increasing and concave; that is, for all t, s and for all α ∈ R,

0 ≤ α ≤ 1,
S(K,αt+ (1 − α)s) ⊃ αS(K, t) + (1− α)S(K, s).
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THE SANTALÓ-REGIONS OF A CONVEX BODY 4571

(v) For all 0 < δ < 1
2 , Kδ|K| is contained in S(K, 1

4δ(1−δ) ).

Proof. We frequently use the following well known formula. For all x ∈ int(K)

|Kx| = 1
n

∫
Sn−1

dσ(u)
(hK(u)− 〈u, x〉)n ,(1)

where σ is the spherical Lebesgue measure.
Indeed, |Kx| = 1

n

∫
Sn−1

dσ(u)

(h̃K(u))n
, where h̃K is the support function of K centered

at x. Now observe that h̃K(u) = hK(u)− 〈u, x〉; thus (1) follows.
(i) Observe that for all u ∈ Sn−1 the function

x 7−→ 1
(hK(u)− 〈x, u〉)n

is convex on int(K). (1) then implies that

x 7−→ |Kx| = 1
n

∫
Sn−1

dσ(u)
(hK(u)− 〈u, x〉)n

is convex. In fact the function

x 7−→ |Kx| = 1
n

∫
Sn−1

dσ(u)
(hK(u)− 〈u, x〉)n

is strictly convex, as for x, y ∈ int(K), x 6= y,

σ({u ∈ Sn−1 : 〈u, x〉 = 〈u, y〉}) = 0.

Therefore (i) follows.
(ii) Let A be a one-to-one affine transformation. We can write A = L+ a, where

L is a one-to-one linear transformation and a is a vector in Rn. Then

(A(K))y = {x ∈ Rn : 〈x,Az − y〉 ≤ 1 for all z ∈ K}
= {x ∈ Rn : 〈L∗x, z −A−1y〉 ≤ 1 for all z ∈ K}

= (L∗)−1(KA−1(y)).
Hence

S(AK, t) = {y ∈ AK :
|AK||AKy|

v2
n

≤ t}

= {y ∈ AK :
|K||KA−1(y)|

v2
n

≤ t}
= A(S(K, t)).

(iii) Let K, n and t be fixed. By (1), ∂S(K, t) = {x ∈ K : F (x) = ntv2n
|K| }, where

F (x) =
∫
Sn−1

dσ(u)
(hK(u)−〈u,x〉)n . F is continuous on int(K) with continuous partial

derivatives of all orders, has a unique minimum at the Santaló-point x0, and is
convex (see (i)). Therefore (iii) follows from the implicit function theorem.

(iv) is obvious from the proof of (i).
(v) Let δ ∈ (0, 1

2 ), and let H be a hyperplane that has non-empty intersection
with K and is such that

|K ∩H+| = δ|K|,
where H+ is one of the two halfspaces determined by H . By definition the convex
floating body Kδ|K| is the intersection of all the halfspaces H− determined by all
such hyperplanes H .
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On the other hand, by [Me-P] there exists x ∈ H ∩ int(K) such that

|K||Kx|
v2
n

≤ 1
4δ(1− δ)

.

This means that x ∈ S(K, 1
4δ(1−δ) ). Consequently

Kδ|K| ⊆ S(K,
1

4δ(1− δ)
).

Remark 2. (i) Proposition 1,(iv) says that Kδ|K| ⊆ S(K, 1
4δ(1−δ ). We will show

(see Proposition 14) that in the case of the convex body with sufficiently smooth
boundary and positive Gaussian curvature everywhere a converse inclusion holds
for δ “small”.

(ii) Note also that for K = B(0, 1),

(B(0, 1))δvn ∼ S(B(0, 1),
vn−1

δ(n+ 1)vn
),

for δ sufficiently small. More precisely, for δ ≤ 2n+1vn−1
√
e(n+1)vnn

n+1
2

S(B(0, 1),
vn−1√

eδ(n+ 1)vn
) ⊆ (B(0, 1))δvn ⊆ S(B(0, 1),

(
√
e)

n+1
n−1 vn−1

δ(n+ 1)vn
).

This follows from the forthcoming Corollary 5 and from the fact that the volume
of a cap of the Euclidean unit ball of height ∆ can be estimated from above by

vn−1

n+ 1
(2∆)

n+1
2

and from below by
vn−1

n+ 1
(2∆)

n+1
2 (1− ∆

2
)

n−1
2 .

For δ “close” to 1
2 ,

(B(0, 1))δvn ∼ S(B(0, 1),
1

4δ(1− δ)
).

More precisely, let ε ≤ 1√
n

and 1
2 > δ ≥ 1

2 − ε vn−1√
evn

. Then

(B(0, 1))δvn ⊆ S(B(0, 1),
1

4δ(1− δ)
) ⊆ 8vn−1√

n+ 1vn
(B(0, 1))δvn .

The following lemmas will enable us to compute |(B(0, 1))x|. They are also
needed for Part II.

Lemma 3. Let x ∈ int(K). Then

|Kx| =
∫
K0

dy

(1 − 〈x, y〉)n+1
.

Proof. By (1)
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|Kx| = 1
n

∫
Sn−1

dσ(u)
(hK(u))n(1− 〈 u

hK(u) , x〉)n

=
∫
Sn−1

∫ 1
hK (u)

0

rn−1

(1− 〈x, ru〉)n+1
drdσ(u) =

∫
K0

dy

(1− 〈x, y〉)n+1
.

Remark. We will use Lemma 3 mostly in the following form:
Let u ∈ Sn−1 and λ ∈ R be such that x = λu ∈ int(K). Then Lemma 3 says

that

|Kx| =
∫ hK0 (u)

−hK0 (−u)

φuK0(t)dt
(1− λt)n+1

,(2)

where φuK0(t) = |{z ∈ K0 : 〈z, u〉 = t}|.
Lemma 4. (i) Let 0 ≤ α < 1. Then∫ 1

−1

(1− x2)
n−1

2 dx

(1− αx)n+1
=

2n(Γ(n+1
2 ))2

(1− α2)
n+1

2 n!

(ii) For α ∈ (0, 1) let

I(α) = (
∫ 1

0

(1− x2)
n−1

2 dx

(1− αx)n+1
)(
α

n+1
2 (1− α)

n+1
2 n!

2
n−1

2 (Γ(n+1
2 ))2

).

Then
I(α) ≤ 1 and lim

α→1
I(α) = 1.

(iii) Let a, b > 0, n ∈ N and λa < 1. Then∫ a

−b

(1− y
a )n−1

(1− λy)n+1
dy =

(a+ b)n

nan−1(1− λa)(1 + λb)n
.

Proof. (i) We put x = (1 − 1−α
1+αu)/(1 + 1α

1+αu). This gives (i).
(ii) Put x = 1− w 1−α

α . Then

I(α) =
n!

2
n−1

2 (Γ(n+1
2 ))2

∫ α
1−α

0

w
n−1

2 (2 − 1−α
α w)

n−1
2 dw

(1 + w)n+1
.

The upper estimate for (ii) follows immediately from this last expression. And by
the monotone convergence theorem this last expression tends to

n!
(Γ(n+1

2 ))2

∫ ∞

0

w
n−1

2 dw

(1 + w)n+1
,

which is equal to 1.
(iii) Note that ∫

(1− y
a )n−1

(1− λy)n+1
dy =

(1− y
a )n

n(λ− 1
a )(1− λy)n

.

This immediately implies (iii).
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Corollary 5. Let B(0, r) be the n-dimensional Euclidean ball with radius r centered
at 0. For u ∈ Sn−1 let x = λu, 0 ≤ λ < r. Then

|(B(0, r))x| = vn

rn(1 − (λr )2)
n+1

2

.

Proof. The proof follows from (2) and Lemma 4 (i).

Next we estimate the “size” of S(K, t) in terms of ellipsoids. Recall that for a
convex body K the Binet ellipsoid E(K) is defined by (see [Mi-P])

||u||2E(K) =
1
|K|

∫
K

〈x, u〉2dx, for all u ∈ Rn.

We first treat the case when K is a symmetric convex body.

Theorem 6. Let K be a symmetric convex body in Rn. For all t ∈ R

dn(t)E(K0) ⊆ S(K, t) ⊆ cn(t)E(K0),

where

dn(t) =
1√
3n

(1− |K||K0|
tv2
n

)
1
2

and

cn(t) = min{( 2
(n+ 1)(n+ 2)

)
1
2 (

tv2
n

|K||K0| )
1
2 (1− |K||K0|

tv2
n

)
1
2 ,
√

2(1− (
|K||K0|
tv2
n

)
1
n )

1
2 }.

Remarks. (i) In particular, for any ellipsoid E, S(E, 1) = {0}.
(ii) If t→ |K||K0|

v2n
, then S(K, t) → {0}.

(iii) The second expression in cn(t) gives a better estimate from above than the
first iff |K||K0|/tv2

n is of a smaller order of magnitude than (n logn)−1.
(iv) Recall that for two isomorphic Banach spaces E and F the Banach-Mazur

distance d(E,F ) is defined by

d(E,F ) = inf{||T || ||T−1|| : T is an isomorphism from E onto F}.
For symmetric convex bodies K, L in Rn we define

d(K,L) = d((Rn, ||.||K), (Rn, ||.||L)).

Then it follows from Theorem 6 that

d(S(K, t), E(K0)) ≤ (
6tv2

n

|K||K0| )
1
2 .

Thus for ρ ∈ R, ρ > 1,

d({x ∈ K : |Kx| ≤ ρ|K0|}, E(K0)) ≤ (6ρ)
1
2 ,

independent of K and n. It follows that for fixed ρ, {x; |Kx| ≤ ρ|K0|} is almost an
ellipsoid.

Proof of Theorem 6. Let u ∈ Sn−1, λ ∈ R, 0 ≤ λ < 1
||u||K and x = λu. By (2) and

symmetry,

|Kx| =
∫ ||u||K

0

φ(y)(
1

(1 − λy)n+1
+

1
(1 + λy)n+1

)dy,

where φ = φuK0 . For fixed λ ≥ 0 put

fλ(y) =
1

(1 − λy)n+1
+

1
(1 + λy)n+1

.
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Observe that fλ is increasing in y, if y ≥ 0. Put

a =
n

∫∞
0 φ(y)dy
φ(0)

=
n|K0|
2φ(0)

.

Now we distinguish two cases.
1. λa < 1. Then we claim that for all functions ψ : R+

0 → R+
0 such that ψ

1
n−1

is continuous on its support and continuous from the right at 0, decreasing and
concave on its support and such that

(i) ψ(0) = φ(0),

(ii)
∫ ∞

0

ψ(y)dy =
∫ ∞

0

φ(y)dy =
|K0|

2
,

the integral
∫∞
0 ψ(y)fλ(y)dy is maximal if ψ is of the form

ψ0(y) =
{
φ(0)(1 − y

a )n−1 if y ∈ [0, a],
0 otherwise.

Indeed, let ψ be a function with above properties and with support on [0,ã]. Put

H(t) =
∫ a

t

ψ(y)dy −
∫ a

t

ψ0(y)dy.

Note that ã ≤ a, H(0) = 0 = H(a) and that the derivative of H with respect to t
is first negative, then positive; therefore H(t) ≤ 0.

Consequently (with gλ(y) = fλ(y)− 2)∫ ∞

0

ψ(y)gλ(y)dy =
∫ ∞

y=0

ψ(y)(
∫ y

t=0

g
′
λ(t)dt)dy =

∫ ∞

t=0

g
′
λ(t)(

∫ ∞

t

ψ(y)dy) dt

≤
∫ ∞

0

g
′
λ(t)(

∫ ∞

t

ψ0(y)dy) dt =
∫ ∞

0

ψ0(y)gλ(y)dy.

From this the above claim follows.
Hence

|Kx| ≤ φ(0)
∫ a

0

(
(1− y

a )n−1

(1− λy)n+1
+

(1− y
a )n−1

(1 + λy)n+1
)dy =

|K0|
1− λ2a2

.

Here we have used Lemma 4 (iii).
For x = λu ∈ ∂S(K, t),

1 = ||x||S(K,t) = λ||u||S(K,t)(3)

and

t =
|K||Kx|
v2
n

.(4)

Therefore

t ≤ |K||K0|
v2
n(1− λ2a2)

and hence by (3)

||u||S(K,t) ≤ n

2
(1− |K||K0|

tv2
n

)−
1
2
|K0|
φ(0)

.

Now ([B], respectively [He]; see also [Mi-P])

|K0|
φ(0)

≤ 2
√

3(

∫
K0 |〈x, u〉|2dx

|K0| )
1
2 = 2

√
3||u||E(K0),(5)
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and thus

S(K, t) ⊇ 1√
3n

(1 − |K||K0|
tv2
n

)
1
2E(K0).

2. λa ≥ 1. Again let x = λu ∈ ∂S(K, t). By definition of a, (3) and (5)

||u||S(K,t) ≤
√

3n||u||E(K0).

This implies that

S(K, t) ⊇ 1√
3n
E(K0),

which proves the inclusion from below also in this case.

On the other hand, by (1) and symmetry

|Kx| = 1
2n

∫
Sn−1

(
1

(||v||K0 − 〈v, x〉)n +
1

(||v||K0 + 〈v, x〉)n )dσ(v)

≥ 1
2n

∫
Sn−1

(2 + n(n+ 1)(
〈x, v〉
||v||K0

)2)
dσ(v)
||v||nK0

= |K0|+ (n+ 1)(n+ 2)
2

∫
K0
|〈x, y〉|2dy

= |K0|+ (n+ 1)(n+ 2)
2

λ2|K0| ||u||2E(K0).

Then (3) and (4) give

||u||S(K,t) ≥ ((n+ 1)(n+ 2))
1
2√

2
(

tv2
n

|K||K0| − 1)−
1
2 ||u||E(K0),

or, equivalently,

S(K, t) ⊆
√

2
((n+ 1)(n+ 2))

1
2
(

tv2
n

|K||K0| − 1)
1
2E(K0).

Using (2) and a minimality argument similar to the maximality argument of the
above claim, we get the other upper bound. Namely, for fixed λ and for all functions
ψ : R+

0 → R+
0 such that ψ

1
n−1 is continuous on its support and continuous from

the right at 0, decreasing and concave on its support and such that

(i) ψ(0) = φ(0),

(ii)
∫ ∞

0

ψ(y)dy =
∫ ∞

0

φ(y)dy =
|K0|

2
,

the integral
∫∞
0 ψ(y)fλ(y)dy is minimal if ψ is of the form

ψ(y) =
{
φ(0) if y ∈ [0, a],
0 otherwise,

where

a =
|K0|
2φ(0)

.

Note that in this situation λa < 1 always.
Consequently

|Kx| ≥ φ(0)
∫ a

0

fλ(y)dy ≥ |K0|
(1 − λ2a2)n

.
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Then we again use (3), (4) and the fact that ([B], or respectively [He]; see also
[Mi-P])

|K0|
φ(0)

≥ √
2||u||E(K0),

and get

S(K, t) ⊆
√

2(1− (
|K||K0|
tv2
n

)
1
n )

1
2E(K0).

Now we consider the non-symmetric case.

Theorem 7. Let K be a convex body in Rn. Then

d′n(t)E(K0) ⊆ S(K, t) ⊆ c′n(t)E(K0),

where

c′n(t) =
2
√

2
((e− 2)(n+ 1)(n+ 2))

1
2
(

tv2
n

|K||K0| )
1
2 (1− |K||K0|

tv2
n

)
1
2

and

d′n(t) = dn(t) =
1√
3n

(1− |K||K0|
tv2
n

)
1
2 .

Proof. By (2) we get for u ∈ Sn−1 and x = λu with 0 ≤ λ < 1/hK0(u) that

|Kx| =
∫ hK0 (u)

−hK0(−u)

φ(y)
(1 − λy)n+1

dy,

where φ = φuK0 .
Notice that K0 has its center of gravity at 0, as K has its Santaló-point at 0.

Therefore ∫ hK0(u)

−hK0(−u)

yφ(y)dy = 0.

Notice also that

1 = hS(K,t)0(x) = λhS(K,t)0(u).(6)

Now we apply the following result of Fradelizi [F] to the functions φ(y) and
fλ(y) = 1

(1−λy)n+1 to get the same upper estimate for |Kx|as in the proof of Theo-
rem 6. Therefore d′n(t) = dn(t).

Theorem ([F]). Let ψ : R → R, ψ ≥ 0, be such that ψ
1

n−1 is continuous and
concave on its support and such that

∫∞
−∞ yψ(y)dy = 0. Let f : R → R be any

convex function. Then, if

a =
n

∫∞
−∞ ψ(y)dy
2ψ(0)

,

one has ∫ ∞

−∞
ψ(y)f(y)dy ≤ ψ(0)

∫ a

−a
(1 − |y|

a
)n−1f(y)dy.
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For the right-hand inclusion write

|Kx| =
∫ 0

−hK0 (−u)

φ(y)
(1− λy)n+1

dy +
∫ hK0 (u)

0

φ(y)
(1 − λy)n+1

dy

≥
∫ 0

−hK0 (−u)

φ(y)(1 + (n+ 1)λy)dy

+
∫ hK0(u)

0

φ(y)(1 + (n+ 1)λy +
(n+ 1)(n+ 2)

2
λ2y2)dy

= |K0|+ (n+ 1)(n+ 2)
2

λ2

∫ hK0 (u)

0

y2φ(y)dy,

where for the last equality we have used the fact that the center of gravity is at 0.
Let a be such that∫ hK0 (u)

0

yφ(y)dy = φ(0)
a2

n(n+ 1)
=

∫ a
n

−a
yψ0(y)dy,

where ψ0(y) = φ(0)(1 + y
a )n−1.

Now one shows as in the beginning of the proof of Theorem 6 that for all functions
ψ : R+

0 → R+
0 such that ψ

1
n−1 is continuous on its support and continuous from

the right at 0, concave on its support and such that

(i) ψ(0) = φ(0),

(ii)
∫ ∞

0

yψ(y)dy =
∫ ∞

0

yφ(y)dy,

the integral
∫∞
0
y2ψ(y)dy is minimal if ψ is of the form

ψ0(y) =
{
φ(0)(1 + y

a )n−1 if y ∈ [0, an ],
0 otherwise,

and that for all functions ψ : R−
0 → R+

0 such that ψ
1

n−1 is continuous on its support
and continuous from the left at 0, concave on its support and such that

(i) ψ(0) = φ(0),

(ii)
∫ 0

−∞
yψ(y)dy =

∫ 0

−∞
yφ(y)dy,

the integral
∫ 0

−∞ y2ψ(y)dy is maximal if ψ is of the form

ψ0(y) =
{
φ(0)(1 + y

a )n−1 if y ∈ [−a, 0],
0 otherwise.

Therefore∫ hK0 (u)

0

y2φ(y)dy ≥
∫ a

n

0

y2ψ0(y)dy =
(1 + 1

n )n+1 − 2
n(n+ 1)(n+ 2)

a3φ(0)

and ∫ 0

−hK0(−u)

y2φ(y)dy ≤
∫ 0

−a
y2ψ0(y)dy =

2
n(n+ 1)(n+ 2)

a3φ(0).

Thus we get ∫ hK0 (u)

0

y2φ(y)dy ≥ e− 2
2

∫ 0

−hK0 (−u)

y2φ(y)dy,
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and therefore ∫ hK0 (u)

0

y2φ(y)dy ≥ e− 2
4

∫ hK0 (u)

−hK0 (−u)

y2φ(y)dy.

It follows that

|Kx| ≥ |K0|(1 +
(n+ 1)(n+ 2)(e− 2)

8
λ2‖u‖2

E(K0)),

which implies, using (6),

S(K, t) ⊆ 2
√

2
((e− 2)(n+ 1)(n+ 2))

1
2
(

tv2
n

|K||K0| )
1
2 (1− |K||K0|

tv2
n

)
1
2E(K0).

Next we estimate the “size” of S(K, t) in terms of the body K. We need the
following lemma.

Lemma 8 (see for instance [S2]). Let K be a convex body in Rn with center of
gravity at 0. Then

1
e
≤ 1
|K|

∫ hK(u)

0

φ(y)dy ≤ 1− 1
e
.

Theorem 9. Let K be a convex body in Rn. Then:
(i)

(1− (
|K||K0|
tv2
n

)
1
n )K ⊆ S(K, t) ⊆ (1− |K||K0|

etv2
n

)K.

(ii) If in addition K is symmetric, then

(1 − (
|K||K0|
tv2
n

)
1
n )K ⊆ S(K, t) ⊆ (1 − |K||K0|

tv2
n

)
1
2K.

Proof. Let u ∈ Sn−1, λ ∈ R, 0 ≤ λ ≤ 1, be given and let x = λ
hK0 (u)u. Then K

contains αK + x for all α, 0 ≤ α ≤ 1− λ, and consequently Kx ⊆ 1
αK

0; therefore
for x ∈ ∂S(K, t) we have

t =
|K||Kx|
v2
n

≤ |K||K0|
αnv2

n

,

and hence

α ≤ (
|K||K0|
tv2
n

)
1
n .

Thus for all λ with λ ≤ 1− (|K||K0|/tv2
n)

1
n we have

λ

hK0(u)
u ∈ S(K, t).

This proves the left-hand inclusion.
For the right-hand inclusion we first treat the symmetric case.
Let x = λu, u ∈ Sn−1, 0 ≤ λ < ||u||−1

K . Let fλ be as in the proof of Theorem 6.
By (2) and symmetry,

|Kx| =
∫ ||u||K

0

φ(y)fλ(y)dy.
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Notice that for all functions ψ : R+
0 → R+

0 such that ψ
1

n−1 is continuous on its
support and continuous at 0 from the right, decreasing and concave on its support
and such that

(i) ψ > 0 on [0, ||u||K), ψ = 0 on [||u||K ,∞),

(ii)
∫ ||u||K

0

ψ(y)dy =
∫ ||u||K

0

φ(y)dy =
|K0|

2
,

the integral
∫ ||u||K
0 ψ(y)fλ(y)dy is smallest if ψ is of the form

ψ(y) =
{
c(1− y

||u||K )n−1 if y ∈ [0, ||u||K),
0 otherwise,

where

c =
n|K0|
2||u||K .

Hence

|Kx| ≥ c

∫ ||u||K

0

(
(1− y

||u||K )n−1

(1− λy)n+1
+

(1 − y
||u||K )n−1

(1 + λy)n+1
)dy

=
|K0|

1− λ2||u||2K
,

which implies

S(K, t) ⊆ (1 − |K||K0|
tv2
n

)
1
2K.

Next we consider the non-symmetric case:

|Kx| =
∫ hK0 (u)

0

φ(y)
(1− λy)n+1

dy +
∫ hK0 (−u)

0

φ(−y)
(1 + λy)n+1

dy

≥
∫ hK0(u)

0

φ(y)
(1− λy)n+1

dy.

Fix λ, and note again that among all functions ψ : R+
0 → R+

0 such that ψ
1

n−1

is continuous on its support and continuous from the right at 0, decreasing and
concave on its support and for which

ψ > 0 on [0, hK0(u)), ψ = 0 on [hK0(u),∞),∫ hK0 (u)

0

ψ(y)dy =
∫ hK0 (u)

0

φ(y)dy,

the integral
∫ hK0 (u)

0
ψ(y)

(1−λy)n+1dy is smallest if ψ is of the form

ψ(y) =
{
c(1− y

hK0 (u) )
n−1 if y ∈ [0, hK0(u)),

0 otherwise,

where

c =
n

∫ hK0(u)

0 φ(y)dy
hK0(u)

.

Arguments similar to the previous ones, together with Lemma 8, then finish the
proof.
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II. Santaló-regions and affine surface area

Recall that for a convex body K in Rn the affine surface area is

as(K) =
∫
∂K

κ(x)
1

n+1dµ(x),

where κ(x) is the (generalized) Gaussian curvature in x ∈ ∂K and µ is the surface
measure on ∂K. We prove here

Theorem 10. Let K be a convex body in Rn. Then

lim
t→∞ t

2
n+1 (|K| − |S(K, t)|) =

1
2
(
|K|
vn

)
2

n+1as(K).

In the proof of Theorem 10 we follow the ideas of [S-W]. We need several lemmas
for the proof. We also use the following notations. For x ∈ ∂K, N(x) is the outer
unit normal vector to ∂K in x. For two points x and y in Rn, [x, y] = {αx+(1−α)y :
0 ≤ α ≤ 1} denotes the line segment from x to y.

The proof of the following lemma is standard.

Lemma 11. Let K and L be two convex bodies in Rn such that 0 ∈ int(L) and
L ⊆ K. Then

|K| − |L| = 1
n

∫
∂K

〈x,N(x)〉(1 − (
||xL||
||x|| )n)dµ(x),

where xL = [0, x] ∩ ∂L.

For x ∈ ∂K denote by r(x) the radius of the biggest Euclidean ball contained in
K that touches ∂K at x. More precisely,

r(x) = max{r : x ∈ B(y, r) ⊂ K for some y ∈ K}.
Remark. It was shown in [S-W] that

(i) if B(0, 1) ⊂ K, then

µ{x ∈ ∂K : r(x) ≥ β} ≥ (1 − β)n−1voln−1(∂K),

(ii) ∫
∂K

r(x)−αdµ(x) <∞ for all α, 0 < α < 1.

We postpone the proof of the next two lemmas, which we use for the proof of
Theorem 10.

Lemma 12. Suppose 0 is in the interior of K. Then, for all x with r(x) > 0 and
for all t such that (S(K, t) has non-empty interior, we have

0 ≤ 1
n
〈x,N(x)〉t 2

n+1

(
1− (

‖xt‖
‖x‖ )n

)
≤ cr(x)−

n−1
n+1 ,

where xt = [0, x] ∩ ∂S(K, t) and c is a constant independent of x and t.

Lemma 13. Suppose 0 is in the interior of K. Then the limit

lim
t→∞

1
n
〈x,N(x)〉t 2

n+1

(
1− (

‖xt‖
‖x‖ )n

)
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exists a.e. and is equal to
1
2
(
|K|
vn

)
2

n+1κ(x)
1

n+1 ,

where κ(x) is the Gaussian curvature at x ∈ ∂K.

Proof of Theorem 10. We may assume that 0 is in the interior of K. By Lemma 11
and with the notation of Lemma 12 we have

|K| − |S(K, t)| = 1
n

∫
∂K

〈x,N(x)〉(1 − (
||xt||
||x|| )

n)dµ(x).

By Lemma 12 and the remark preceding it, the functions under the integral sign
are bounded uniformly in t by an L1-function, and by Lemma 13 they converge
pointwise a.e. We apply Lebesgue’s convergence theorem.

Proof of Lemma 12. Let x ∈ ∂K be such that r(x) > 0. As ‖xt‖ = ‖x‖− ‖x− xt‖,
we have

1
n
〈x,N(x)〉

(
1− (

‖xt‖
‖x‖ )n

)
≤ 〈 x

‖x‖ , N(x)〉‖x − xt‖.(7)

a) We consider first the case where

‖x− xt‖ < r(x)〈 x

‖x‖ , N(x)〉.

Let ρ̃ = ‖xt− (x− r(x)N(x))‖. By assumption 0 < ρ̃ < r(x). Computing ρ̃, we get

ρ̃ = (||x− xt||2 + r(x)2 − 2r(x)||x − xt||〈 x

‖x‖ , N(x)〉)1/2.

Since K contains the Euclidean ball of radius r(x) centered at x−r(x)N(x), Kxt is
contained in the polar (with respect to xt) of the Euclidean ball with radius r(x).
Hence by Corollary 5,

t =
|K||Kxt|

v2
n

≤ |K|
vnr(x)n(1− ( ρ̃

r(x))
2)

n+1
2

,

and therefore, using (7),

1
n
〈x,N(x)〉t 2

n+1 (1− (
‖xt‖
‖x‖ )n) ≤ (

|K|
vn

)
2

n+1 r(x)−
n−1
n+1 ,

which proves Lemma 12 in this case.
b) Now we consider the case where

‖x− xt‖ ≥ r(x)〈 x

‖x‖ , N(x)〉.

We can suppose that t is big enough so that xt 6= 0. We choose α > 0 such that
B(0, α) ⊆ K ⊆ B(0, 1

α ) and t so big that xt /∈ B(0, α). K contains the spherical
cone C = co[x,H ∩ B(0, α)], where H is the hyperplane through 0 orthogonal to
the line segment [0, x]. We get

|Cxt | = vn−1||x||n
nαn−1||xt||(||x|| − ||xt||)n .

Consequently

t =
|K||Kxt |

v2
n

≤ |K|vn−1‖x‖n
nv2

nα
n−1‖xt‖ ‖x− xt‖n
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and hence, using (7),

1
n
〈x,N(x)〉t 2

n+1 (1− (
‖xt‖
‖x‖ )n) ≤ (

|K|vn−1

n v2
n

)
2

n+1 r(x)−
n−1
n+1

1

α
4n

n+1
.

Proof of Lemma 13. As in the proof of Lemma 12, we can choose an α > 0 such
that

B(0, α) ⊆ K ⊆ B(0,
1
α

).

Therefore

1 ≥ 〈 x

‖x‖ , N(x)〉 ≥ α2.(8)

Since x and xt are collinear,

||x|| = ||xt||+ ||x− xt||,
and hence

1
n
〈x,N(x)〉

(
1− (

‖xt‖
‖x‖ )n

)
=

1
n
〈x,N(x)〉

(
(1− (1− ‖x− xt‖

‖x‖ )n
)

≥ 〈 x

‖x‖ , N(x)〉‖x − xt‖
(

1− d · ‖x− xt‖
‖x‖

)
,

(9)

for some constant d, if we choose t sufficiently large. We denote by θ the angle
between x and N(x). Then 〈x/‖x‖, N(x)〉 = cosθ.

By [S-W], r(x) > 0 a.e., and by [L2] the Dupin indicatrix exists a.e. and is an
elliptic cylinder or an ellipsoid.

(i) Case where the indicatrix is an ellipsoid. This case can be reduced to the
case of a sphere by an affine transformation with determinant 1 (see for instance
[S-W]). Let

√
ρ(x) be the radius of this sphere. Recall that we have to show that

lim
t→∞

1
n
〈x,N(x)〉t 2

n+1

(
1− (

‖xt‖
‖x‖ )n

)
=

1
2
(
|K|
vn

)
2

n+1ρ(x)−
n−1
n+1 .

We put ρ(x) = ρ and we introduce a coordinate system such that x = 0 and N(x) =
(0, . . . 0,−1). H0 is the tangent hyperplane to ∂K at x = 0, and {Hs : s ≥ 0} is
the family of hyperplanes parallel to H0 that have non-empty intersection with K
and are at distance s from H0. For s > 0, H+

s is the halfspace generated by Hs

that contains x = 0. For a ∈ R, let za = (0, . . . , 0, a), and let Ba = B(za, a) be the
Euclidean ball with center za and radius a. As in [W], for ε > 0 we can choose s0
so small that for all s ≤ s0

Bρ−ε ∩H+
s ⊆ K ∩H+

s ⊆ Bρ+ε ∩H+
s .

For λ ∈ R let Gλ = {x : 〈x, zρ+ε − xt〉 = λ} be a hyperplane orthogonal to the
line segment [xt, zρ+ε], if t is sufficiently large. Let λ0 = max{λ : G+

λ ∩ Bρ+ε ⊆
H+
s0 ∩Bρ+ε}. Define C to be the cone tangent to Bρ+ε at Gλ0 ∩Bρ+ε, and choose

the minimal λ1 so that

K ∩ {x : λ0 ≤ 〈x, zρ+ε − xt〉 ≤ λ1} ⊆ D = C ∩ {x : λ0 ≤ 〈x, zρ+ε − xt〉 ≤ λ1}.
Then K is contained in the union of the truncated cone D of height h = |λ1 − λ0|
and the cap L = {x ∈ Bρ+ε : 〈x, zρ+ε − xt〉 ≤ λ0} (see Figure 1).
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ε+ρ

x

x
 t

s
 0
H
 1

h
 1

Figure 1. The estimate from below

Therefore
Kxt ⊇ (D ∪ L)xt ,

and to estimate |Kxt | we have to compute |(D ∪ L)xt |. To do so we prove the
following more general result.

Claim 1. Let M be the convex body that is the union of a truncated spherical cone D
with height h and a cap L of a Euclidean ball with radius r such that D is “tangent”
to L. For a point x in L and on the axis of symmetry of M let a=distance(x,D),
b=distance(x,∂L) and b0 = rb+(a+b)(r−b)

r−(a+b) (see Figure 2). Then, if x is such that
r > a+ b,

|Mx| = vn−1(
1
rn

∫ 1

r
(r−b)+b0

(1− y2)
n−1

2

(1− (r−b)y
r )n+1

dy

+
1
n

(
1
b0

+
1

a+ h
)(

(2r(a + b)− (a+ b)2)
1
2

rb+ (a+ b)(r − b)
)n−1).

Proof of Claim 1. We introduce a coordinate system such that x = 0 and the x1-
axis coincides with the axis of symmetry of M (see Figure 2).

Notice now that M0 is such that each (n− 1)-dimensional section orthogonal to
the x1-axis is an (n− 1)-dimensional Euclidean ball with radius l(x1), where

l(x1) =
((a+ h)x1 + 1)(2r(a+ b)− (a+ b)2)

1
2

(a+ h+ b0)(r − (a+ b))
, if − 1

a+ h
≤ x1 ≤ 1

b0
,

l(x1) =
1
r
((1 + x1(r − b))2 − r2x2

1)
1
2 , if

1
b0
≤ x1 ≤ 1

b
.

From this Claim 1 follows.

Now we apply Claim 1 to our situation. Then

r = ρ+ ε and b = ρ+ ε− c,

where
c2 = ||x− xt||2 + (ρ+ ε)2 − 2(ρ+ ε)||x − xt|| cos θ,
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x=O

ah

b

x
 1

Figure 2. Claim 1

a = c− ρ+ ε− s0
c

(c2 − ||x− xt||2 sin2 θ)
1
2 − (2(ρ+ ε)s0 − s20)

1
2 ||x − xt|| sin θ

c
,

and

b0 =
(ρ+ ε)2

c− a
− c.

Therefore

|Kxt | ≥ vn−1

(ρ+ ε)n

∫ 1

0

(1− y2)
n−1

2

(1 − cy
ρ+ε)

n+1
dy

+
1
n

(
1
b0

+
1

a+ h
)
vn−1

rn−1
D

− vn−1

(ρ+ ε)n

∫ ρ+ε
b0+c

0

(1− y2)
n−1

2

(1 − cy
ρ+ε )

n+1
dy,

where rD is the radius of the base of the spherical cone in (D ∪ L)xt . We put

R =
1
n

(
1
b0

+
1

a+ h
)
vn−1

rn−1
D

− vn−1

(ρ+ ε)n

∫ ρ+ε
b0+c

0

(1− y2)
n−1

2

(1− cy
ρ+ε )

n+1
dy.

Then, by Lemma 4 (ii), for ε > 0

|Kxt | ≥ (1 − ε)vn
2

n+1
2 (ρ+ ε)n( c

ρ+ε )
n+1

2 (1− c
ρ+ε )

n+1
2

+R,

provided that
c

ρ+ ε
>

1
1 + 2ε

3n

.

We choose t so big that this holds.
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Hence

t =
|K||Kxt |

v2
n

≥
(

1
2

)n+1
2

(
(1− ε)|K|

vn

)
(ρ+ ε)−n

( c
ρ+ε(1 − c

ρ+ε))
n+1

2

×
{

1 +
2

n+1
2 R(ρ+ ε)n( c

ρ+ε )
n+1
2 (1 − c

ρ+ε)
n+1

2

(1− ε)vn

}
and by (9), for some constant d,

t
2

n+1

n
〈x,N(x)〉

(
1− (

‖xt‖
‖x‖ )n

)

≥ 1
2
(
(1 − ε)|K|

vn
)

2
n+1 (ρ+ ε)−

n−1
n+1

(1 + k(2 ‖x−xt‖ cos θ
ρ+ε − ‖x−xt‖2

(ρ+ε)2 ))−1(1 − d · ‖x−xt‖
‖x‖ )

(1 + ‖x−xt‖2
(ρ+ε)2 − 2 ‖x−xt‖ cos θ

ρ+ε )
1
2 (1 − ‖x−xt‖

2(ρ+ε) cos θ )

×{1 +
2

n+1
2 R(ρ+ ε)n

(1− ε)vn
(1− c

ρ+ ε
)

n+1
2 (

c

ρ+ ε
)

n+1
2 } 2

n+1 ,

as

1− c

ρ+ ε
≤ ‖x− xt‖ cos θ

ρ+ ε
(1− ‖x− xt‖

2(ρ+ ε) cos θ
)(1 + k(2

‖xxt‖ cos θ
ρ+ ε

− ‖x− xt‖2

(ρ+ ε)2
)),

for some constant k, if t is big enough. R remains bounded for t→∞.
Note also that cos θ remains bounded from below by (8).
Thus we have a lower bound for the expression in question.
To get an upper bound we proceed in a similar way. For λ ∈ R, now let

Gλ = {x : 〈x, zρ−ε − xt〉 = λ} be a hyperplane orthogonal to the line segment
[xt, zρ−ε]. Let λ0 = max{λ : G+

λ ∩ Bρε ⊆ H+
s0 ∩ Bρ−ε}. Let P be the point where

the half-line starting at xt through zρ−ε intersects ∂K.
Let C be the spherical cone C = co[P,Bρ−ε ∩ Gλ0 ]. Let h be the height of this

cone (see Figure 3).
Let L = {x ∈ Bρ−ε : 〈x, zρ−ε − xt〉 ≤ λ0}. Then K ⊇ C ∪ L, and hence

Kxt ⊆ (C ∪ L)xt ,

and to estimate |Kxt | we have to compute (C ∪ L)xt .

To do so we prove the more general

Claim 2. Let M be the union of a spherical cone C with height h and a cap L of
a Euclidean ball with radius r such that the base of C coincides with the base of
L. For a point x in L and on the axis of symmetry of M let α = distance(x,C),
β = distance(x, ∂L) (see Figure 4). Then, with β0 = rβ+(α+β)(r−β)

r(α+β) and x chosen
such that r > α+ β,

|Mx| = vn−1(
1
rn

∫ 1

r
(r−β)+β0

(1 − y2)
n−1

2

(1− (r−β)y
r )n+1

dy

+
1

nα(2r(α + β)− (α+ β)2)
n1
2

(
(α + β0)n

βn0
− hn

(α+ h)n
)).
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ε−ρ
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x
 t

s
 0

H
 2

h
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Figure 3. The estimate from above

x=O
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x
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Figure 4. Claim 2
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Proof of Claim 2. We introduce a coordinate system such that x = 0 and the x1-
axis coincides with the axis of symmetry of M (see Figure 4).

Notice now that M0 is such that each (n− 1)-dimensional section orthogonal to
the x1-axis is an (n− 1)-dimensional Euclidean ball with radius l(x1), where

l(x1) =
αx1 + 1

(2r(α+ β)− (α + β)2)
1
2
, if − 1

α+ h
≤ x1 ≤ 1

β0
,

l(x1) =
1
r
((1 + x1(r − β))2 − r2x2

1)
1
2 , if

1
β0

≤ x1 ≤ 1
β
.

From this Claim 2 follows.
Now we apply Claim 2 to our situation. There

r = ρ− ε, β = ρ− ε− γ,

where
γ2 = ||x− xt||2 + (ρ− ε)2 − 2(ρ− ε)||x− xt|| cos θ,

α = γ − ρ− ε− s0
γ

(γ2 − ||x− xt||2 sin2 θ)
1
2 − (2(ρ− ε)s0 − s20)

1
2 ||x− xt|| sin θ

γ
,

and

β0 =
(ρ− ε)2

γ − α
− γ.

Then we get, similarily as before,

t
2

n+1

n
〈x,N(x)〉

(
1− (

‖xt‖
‖x‖ )n

)

≤ 1
2
(
|K|
vn

)
2

n+1 (ρ− ε)−
n−1
n+1

1

(1 + ‖x−xt‖2
(ρ−ε)2 − 2 ‖x−xt‖ cos θ

ρ−ε )
1
2 (1− ‖x−xt‖

2(ρ−ε) cos θ )

×{1 +
2

n+1
2 R(ρ− ε)n

vn
(1− γ

ρ− ε
)

n+1
2 (

γ

ρ− ε
)

n+1
2 } 2

n+1 ,

with a suitably defined R.
This finishes the proof of Lemma 13 in the case where the indicatrix is an ellip-

soid.

(ii) Case where the Dupin indicatix is an elliptic cylinder. Recall that then we
have to show that

lim
t→∞

1
n
〈x,N(x)〉t 2

n+1

(
1− (

‖xt‖
‖x‖ )n

)
= 0.

We can again assume (see [S-W]) that the indicatrix is a spherical cylinder, i.e. the
product of a k-dimensional plane and an (n− k− 1)-dimensional Euclidean sphere
of radius ρ. Moreover we can assume that ρ is arbitrarily large (see also [S-W]).

By Lemma 9 of [S-W] we then have, for sufficiently small s and some ε > 0,

Bρ−ε ∩H+
s ⊆ K ∩H+

s .

Using similar methods, this implies Lemma 13.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proposition 14. Let K be a convex body such that ∂K is C3 and has strictly
positive Gaussian curvature everywhere. Then there is δ0 > 0 such that for all
δ < δ0

S(K,
vn−1

2(n+ 1)vnδ
) ⊆ Kδ|K|.

Proof. As in the proof of Lemma 12, we can choose 1 > α > 0 such that

B(0, α) ⊆ K ⊆ B(0,
1
α

).

Therefore we have, for all x ∈ ∂K,

1 ≥ 〈 x

‖x‖ , N(x)〉 ≥ α2.

Let R0 = minx∈∂K,1≤i≤n−1Ri(x), where Ri(x) is the i-th principal radius of cur-
vature at x ∈ ∂K. We know that R0 > 0 (see [L2]).

Let 1 > ε > 0 be given such that ε < min{R0
2 , 6nα

4} and

(1− ε)(1− ε

R0
)n−1(1− ε

6nα4
)n >

1
2
.

By assumption the Dupin indicatrix exists for all x ∈ ∂K and is an ellipsoid. For
x ∈ ∂K given, we can assume that, after an affine transformation, the indicatrix at
x is a Euclidean sphere. Let

√
ρ(x) be the radius of this Euclidean sphere. Note

that, for all x ∈ ∂K,

ρ(x) ≥ R0.(10)

Then, with the notation used in the proof of Lemma 13, there exists s(x) > 0 such
that

Bρ(x)−ε ∩H+
s(x) ⊆ K ∩H+

s(x) ⊆ Bρ(x)+ε ∩H+
s(x).

Let s1 = minx∈∂K s(x). We know that s1 > 0, as ∂K is C3 and compact. Let

s0 = min{s1, (R0 − ε)(1− 1
1 + 2ε

3n

)}.(11)

Let δ0 > 0 be so small that for all x ∈ ∂K two conditions are satisfied: first

||x− xδ0 ||〈
x

||x|| , N(x)〉 ≤ s0
2
,(12)

where xδ0 = [0, x] ∩ ∂Kδ0|K|, and, second,

H+
δ0
∩Bρ(x)−ε ⊆ H+

s0 ∩Bρ(x)−ε,
where Hδ0 is the hyperplane through xδ0 that cuts off exactly δ0|K| from K.

Suppose now that the above proposition is not true. Then there is δ < δ0 and
xs ∈ ∂S(K, vn−1

2(n+1)vnδ
) such that xs /∈ Kδ|K|. Let x ∈ ∂K be such that xs ∈ [0, x].

We also can assume that the Dupin indicatrix at x is a Euclidean ball with radius√
ρ(x). We choose xδ ∈ ∂Kδ|K| such that xδ ∈ [0, x]. Then

||x− xδ||〈 x

||x|| , N(x)〉 < ||x− xs||〈 x

||x|| , N(x)〉.

By construction
δ|K| = |K ∩H+

δ | ≥ |Bρ(x)−ε ∩H+
δ |

≥ min
H∈H

|Bρ(x)−ε ∩H+| = |Bρ(x)−ε ∩H+
0 |,
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where

H = {H : H is a hyperplane through xδ, x ∈ H+}.
For the height h of this cap |Bρ(x)−ε ∩H+

0 | of Bρ(x)−ε of minimal volume we have

h ≥ ||x− xδ||〈 x

||x|| , N(x)〉(1 − ||x− xδ||
2〈 x
||x|| , N(x)〉(ρ(x) − ε)

).

Using (10), (11) and (12), we get

h ≥ ||x− xδ||〈 x

||x|| , N(x)〉(1 − ε

6nα4
).

The volume of a cap of a Euclidean ball with radius r and height h can be
estimated from below by

≥ vn−12
n+1
2 r

n−1
2 h

n+1
2

n+ 1
(1 − h

2r
)

n+1
2 .

Therefore

δ|K| ≥ vn−1

n+ 1
2

n+1
2 ρ(x)

n−1
2 (||x − xδ||〈 x

||x|| , N(x)〉)n+1
2 (1 − ε

R0
)

n−1
2 (1− ε

6nα4
)n,

where we have used again (10), (11), (12) and the fact that 〈 x
||x|| , N(x)〉 ≥ α2. Thus

(||x− xs||〈 x

||x|| , N(x)〉)n+1
2 <

(n+ 1)δ|K|ρ(x)−n−1
2

vn−12
n+1
2 (1− ε

6nα4 )n(1 − ε
R0

)
n−1

2

.(13)

Since, in the notation of Lemma 13 and using (10), (11) and (12),

c

ρ(x) + ε
≥ 1−

||x− xs||〈 x
||x|| , N(x)〉

ρ(x) + ε
>

1
1 + 2ε

3n

,

the estimate from below from Lemma 13 for |K||Kx|/v2
n holds for x = xs, and we

get (see p. 17)

|K||Kxs|
v2
n

>
(1− ε)|K|ρ(x)−n(1 + ε

ρ(x) )
−n

2
n+1
2 vn( c

ρ(x)+ε )
n+1

2 (1− c
ρ(x)+ε )

n+1
2

.

Now notice that
c

ρ(x) + ε
≤ 1

and

1− c

ρ(x) + ε
≤
||x− xs||〈 x

||x|| , N(x)〉
ρ(x)(1 + ε

ρ(x)

.

Therefore (13) implies that

|K||Kxs |
v2
n

> (1− ε)(1− ε

R0
)n−1(1− ε

6nα4
)n

vn−1

(n+ 1)δvn
.

This is a contradiction.
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[S2] C. Schütt: Floating body, illumination body and polytopal approximation, C. R. Acad.
Sci. Paris Sér. I Math. 324 (1997), 201-203. MR 98b:52005
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