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Abstract: Antibodies (Abs) are important immune mediators and powerful diagnostic markers in a wide
range of infectious diseases. Understanding the humoral immunity or the development of effective antibodies
against SARS-CoV-2 is a prerequisite for limiting disease burden in the community and aids in the development
of new diagnostic, therapeutic, and vaccination options. Accordingly, the role of antiviral antibodies in the
resistance to and diagnosis of SARS-CoV-2 infection was explored. Antibody testing showed the potential
in adding important diagnostic value to the routine diagnosis and clinical management of COVID-19. They
could also play a critical role in COVID-19 surveillance, allowing for a better understanding of the full scope of
the disease. The development of several vaccines and the success of passive immunotherapy suggest that anti-
SARS-CoV-2 antibodies have the potential to be used in the treatment and prevention of SARS-CoV-2 infection.
In this review, we highlight the role of antibodies in the diagnosis of SARS-CoV-2 infection and provide an
update on their protective roles in controlling SARS-CoV-2 infection as well as vaccine development.
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1. Introduction

The unprecedented and ongoing spread of coronavirus disease 2019 (COVID-19) has
caused a global crisis and prompted widespread concerns [1,2]. As of 21 July 2022, there
have been a total of 564,126,546 confirmed cases, and approximately 6,371,354 patients
have died in 222 countries [3]. The persisting spreading of SARS-CoV-2 has prompted
the scientific community to develop effective vaccine candidates and to produce or find
potential drugs or passive immune strategies. The scientific efforts have also focused on
acquiring rapid and accurate SARS-CoV-2 diagnostic tests, which are critical for developing
effective COVID-19 containment strategies. The human immune response remains the most
effective mechanism of combating SARS-CoV-2 infection [4]. Despite the fact that both
innate and adaptive immunity are important, SARS-CoV-2-specific humoral immunity has
proven to be crucial in determining the disease outcome [5]. Understanding the humoral
immunity—or the development of antibodies against SARS-CoV-2—is a prerequisite for
limiting disease burden in the community and aids in the development of new diagnostic,
therapeutic, and vaccination options [5].

The insufficient testing capacity of the real-time reverse transcriptase polymerase
chain reaction (qRT-PCR), particularly in low-resource countries, has highlighted the need
for an alternative rapid, simple, accurate, and relatively inexpensive diagnostic approach.
For diagnostic purposes, anti-SARS-CoV-2 antibodies represent the most easily identifiable
targets [6]. As of now, serological tests have been substantially considered for use as a
complements or alternatives to qRT-PCR. Thus, a number of SARS-CoV-2 serodiagnostic
tests have been developed and assessed. Many of these tests have proven valuable in
detecting SARS-CoV-2 antigens and/or antibodies. Antibody tests have the potential to add
important diagnostic value to the routine diagnosis and clinical management of COVID-19.
They could also play a critical role in SARS-CoV-2 surveillance for understanding the full
scope of the disease and to rebuild public confidence.

While the rapid development of many SARS-CoV-2 vaccines is an extraordinary
achievement, the continual emergence of new SARS-CoV-2 variants raises additional
questions about the capability of the new virus variants to alter the efficacy of the current
vaccine candidates. Therefore, data on the antibody dynamics of SARS-CoV-2-infected
individuals or on the vaccination-induced immune responses are critical for understanding
vaccine protection and durability, as well as for determining whether additional booster
doses are required. Indeed, booster doses are being applied to target certain SARS-CoV-2
variants, such as Omicron [7,8]. Furthermore, the study of specific neutralizing antibodies
could aid in the discovery of critical SARS-CoV-2 antigenic regions which could be used in
therapeutics and vaccine design.

In this review, we highlight the role of antibodies in the diagnosis of SARS-CoV-2
infection and provide an update on their protective roles in immunotherapy and in current
vaccine candidates for the virus.

2. Key Proteins of SARS-CoV-2

Understanding the behavior of SARS-CoV-2 key proteins is crucial for developing
diagnostic tests, vaccines, and therapeutics. The genome of SARS-CoV-2 encodes both
structural and nonstructural proteins. Spike (S), nucleocapsid (N), membrane (M), and
envelope (E) are the four key structural proteins that have the potential to be targeted
by the antibody response (Figure 1) [9]. The choice of antigen is crucially important in
utilizing the virus-specific antibodies for detecting SARS-CoV-2 infection and aiding the
development of therapeutics and vaccine candidates. Achieving high sensitivity and
specificity when developing antibody tests is mainly dependent on the selection of the
diagnostic antigens [10]. However, focusing on the proteins required for viral entry would
have a significant impact on the development of any therapeutics or vaccination strategies;
the E and M proteins have an essential role in viral assembly [11], and the N protein
has been proved to be necessary for viral RNA synthesis (Figure 1) [12]. On the other
hand, the S protein plays a crucial role in SARS-CoV-2 attachment and entry into the host
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cells [13]. Coronavirus S and N proteins are the most antigenic targets for the development
of serological assays against SARS-CoV-2. The N protein has high immunogenic potential
and is abundantly expressed during the viral infection; however, use of the SARS-CoV-2 N
protein is expected to generate more cross-reactivity with other coronavirus strains [14]. The
S protein contains the most highly conserved domain among the SARS-CoV-2 isolates [15].
Indeed, the S protein is a key target for eliciting neutralizing antibodies, which are believed
to be the major protective effectors against SARS-CoV-2 infection. Therefore, it has been
identified as the primary antigenic target for SARS-CoV-2 vaccine development.

Vaccines 2022, 10, x FOR PEER REVIEW 3 of 19 
 

 

the antibody response (Figure 1) [9]. The choice of antigen is crucially important in utiliz-
ing the virus-specific antibodies for detecting SARS-CoV-2 infection and aiding the devel-
opment of therapeutics and vaccine candidates. Achieving high sensitivity and specificity 
when developing antibody tests is mainly dependent on the selection of the diagnostic 
antigens [10]. However, focusing on the proteins required for viral entry would have a 
significant impact on the development of any therapeutics or vaccination strategies; the E 
and M proteins have an essential role in viral assembly [11], and the N protein has been 
proved to be necessary for viral RNA synthesis (Figure 1) [12]. On the other hand, the S 
protein plays a crucial role in SARS-CoV-2 attachment and entry into the host cells [13]. 
Coronavirus S and N proteins are the most antigenic targets for the development of sero-
logical assays against SARS-CoV-2. The N protein has high immunogenic potential and is 
abundantly expressed during the viral infection; however, use of the SARS-CoV-2 N pro-
tein is expected to generate more cross-reactivity with other coronavirus strains [14]. The 
S protein contains the most highly conserved domain among the SARS-CoV-2 isolates 
[15]. Indeed, the S protein is a key target for eliciting neutralizing antibodies, which are 
believed to be the major protective effectors against SARS-CoV-2 infection. Therefore, it 
has been identified as the primary antigenic target for SARS-CoV-2 vaccine development. 

 
Figure 1. The SARS-CoV-2 genome, expected mutations (antibody resistance), and the structural 
proteins. The genome virus contains ORF1a (nsp1, 2, 3 (Plpro), 4, 5 (3CLPro), 6, 7, 8, 9, 10, and 11), 
ORF1b (nsp12 (RdRp), 13 (Hel), 14, 15, and 16), S (NTD, RBD, SD1/2, FL, HR1/2, and TM), ORF3, E, 
M, ORF6, ORF7a/b, ORF8, ORF9, and N, respectively. The complete virus also contains four struc-
tural proteins: Spike (S), nucleocapsid (N), membrane (M), and envelope (E) proteins, in addition to 
the viral RNA genome. Interestingly, mutations (e.g., T547 and ins214EPE) in the viral S gene (which 
produces the spike proteins, specifically NTD and RBD) have made the SARS-CoV-2 highly resistant 
to a wide range of antibodies, including monoclonal, those from natural infection or sera, and, fi-
nally, those produced after vaccination. RdRp, RNA-dependent RNA polymerase; RBD, receptor-
binding domain; Plpro, papain-like protease; NTD, N-terminal domain; 3CLPro, 3C-like proteinase; 
SD1, subdomain 1, SD2 subdomain 2; Hel, helicase; HR1, heptad repeat 1; HR2, heptad repeat 2; 
TM, transmembrane domain; FL, fusion loop. 

  

Figure 1. The SARS-CoV-2 genome, expected mutations (antibody resistance), and the structural
proteins. The genome virus contains ORF1a (nsp1, 2, 3 (Plpro), 4, 5 (3CLPro), 6, 7, 8, 9, 10, and
11), ORF1b (nsp12 (RdRp), 13 (Hel), 14, 15, and 16), S (NTD, RBD, SD1/2, FL, HR1/2, and TM),
ORF3, E, M, ORF6, ORF7a/b, ORF8, ORF9, and N, respectively. The complete virus also contains
four structural proteins: Spike (S), nucleocapsid (N), membrane (M), and envelope (E) proteins, in
addition to the viral RNA genome. Interestingly, mutations (e.g., T547 and ins214EPE) in the viral S
gene (which produces the spike proteins, specifically NTD and RBD) have made the SARS-CoV-2
highly resistant to a wide range of antibodies, including monoclonal, those from natural infection or
sera, and, finally, those produced after vaccination. RdRp, RNA-dependent RNA polymerase; RBD,
receptor-binding domain; Plpro, papain-like protease; NTD, N-terminal domain; 3CLPro, 3C-like
proteinase; SD1, subdomain 1, SD2 subdomain 2; Hel, helicase; HR1, heptad repeat 1; HR2, heptad
repeat 2; TM, transmembrane domain; FL, fusion loop.

3. Antibody Response against SARS-CoV-2

Similar to all viral infections, virus-specific antibodies are crucial for the recognition
of, clearance of, and protection against SARS-CoV-2. Antibody response to SARS-CoV-2
infection first develops against the N protein. However, protective immunity against SARS-
CoV-2 infection is mostly dependent on the neutralizing antibody responses that target the
virus’s S protein. Studies on the time and durability of the neutralizing antibody production
following SARS-CoV-2 infection revealed that patients begin to generate these antibodies
by week two, and the majority of them develop neutralizing antibodies by week three.
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However, in most recovered patients, independent of age or comorbidities, neutralizing
antibody titers gradually declined after 5–8 weeks but continued to be detectable for up to
eight months [16].

The transition from a seronegative to a seropositive condition or the development of
detectable antibodies in a patient’s serum is known as seroconversion [17]. Many studies
have analyzed the kinetics of antibody response in COVID-19 patients. Both severe and
nonsevere patients have reported stronger total antibodies as well as single Ig classes’
responses (IgM, IgA, and IgG).

4. The Role of Antibodies in SARS-CoV-2 Diagnosis

Currently, real-time reverse transcriptase polymerase chain reaction (qRT-PCR) is
essential for confirming SARS-CoV-2 infection [18]. It was quickly established and has
become the most reliable assay for viral detection [19]. Despite the wide use, high sensitivity,
and specificity of the qRT-PCR, whether it is the gold standard for COVID-19 detection
remains unclear [20]. Regardless of the current recommendations for using qRT-PCR in the
laboratory diagnosis of suspected people with COVID-19, it has a number of limitations.
The primary limitations include viral load and optimal sample types [18]. The efficiency
of the detection methods depends on collecting sufficient amounts of viral RNA, and the
accuracy of the qRT-PCR for COVID-19 is affected by the quality of the sample. Furthermore,
missing the time window of SARS-CoV-2 replication can generate false-negative results,
and this incident can happen if samples are collected either at early stages or during
recovery [21]. The test also requires a specific specimen type that needs appropriate
collection, storage, packaging, and transport [22]. In addition, collecting and handling
suspected COVID-19 specimens poses a substantial risk to patients and healthcare workers.
Hence, establishing adequate safety measures is mandatory [23]. Other potential limitations
are the significant variation in the assay’s sensitivity based on the types of clinical specimens,
and the false-negative results as a consequence of improper clinical sampling [24].

As the pandemic exacerbates, medical professionals and researchers are looking
for additional epidemiological solutions, and the scientific response to this scenario is
based on serological investigation [25]. It is comparatively easier to perform, faster, less
expensive, and less complicated than molecular detection [26]. Moreover, the use of blood
for most serological tests can reduce the exposure risk amongst healthcare workers handling
the samples [17].

Many serological platforms for the detection of SARS-CoV-2-specific antibody re-
sponses have been developed and assessed. However, many questions and challenges
about serodiagnosis remain: What can COVID-19 antibody tests reveal? Who do we test?
When do we conduct a test? What should be tested? Why do we need antigen and antibody
tests for COVID-19? This review aimed to provide an update on the recent developments
in antibody testing and comprehensively address these questions.

4.1. COVID-19 Antibody Tests

Unlike molecular techniques, antibody tests (also known as serological assays) rely on
the detection of either viral antigenic proteins or diagnostically detectable antibodies which
are created during the immune response to SARS-CoV-2 infection [27]. The main advantage
of SARS-CoV-2 antigen tests is that the results—detecting viral antigens in throat or nasal
swab samples—can be obtained in minutes [28]. For this reason, using antigen tests is
practical, particularly for a large number of people. However, the gradual decline in viral
load over time may cause difficulty in detecting viral antigens [29]. Instead, measuring
the antibodies produced during SARS-CoV-2 infection has shown great potential for the
indirect detection of the virus in a larger time window. In addition, antibody testing can play
a crucial role in SARS-CoV-2 contact tracing, surveillance, and epidemiological efforts [30].

Many serological assays have been developed to detect SARS-CoV-2-specific IgM,
IgG, and IgA, despite the uncertainty about using these different isotypes individually
or in combination [31]. However, none of these antibody isotypes have been clearly
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identified as the optimal option in the scenario of COVID-19, even though the accurate
interpretation of serodiagnostic tests currently depends on the type of antibodies being
detected. Indeed, many serological platforms have been utilized to measure the presence
of SARS-CoV-2 antibodies and/or antigens (Table 1). These platforms generally take the
form of chemiluminescence immunoassays (CLIA) [32,33], enzyme-linked immunosorbent
assay (ELISA) [21,34], fluorescence immunoassays (FIA), rapid diagnostic tests (RDTs) and
neutralization assays [35,36].

Table 1. Characteristic data of different COVID-19 serological assays that employ S and/or M
proteins.

SARS-CoV-2
Antigen (s) Manufacturer Test Type of Test Specimen Target Antibody Ref

S protein

Babson Diagnostics, Inc. Babson Diagnostics
aC19G1 CLIA Serum and Plasma IgG [37]

Xiamen Biotime
Biotechnology Co., Ltd.

BIOTIME SARS-CoV-2
IgG/IgM Rapid
Qualitative Test

RDT Serum, Plasma, and
Whole Blood IgG and IgM [38]

Beijing Wantai Biological
Pharmacy Enterprise

Co., Ltd.

WANTAI SARS-CoV-2
Ab Rapid Test RDT Serum, Plasma, and

Whole Blood Pan-Ig [39]

Hangzhou Biotest
Biotech

RightSign COVID-19
IgG/IgM Rapid

Test Cassette
RDT Serum, Plasma, and

Whole Blood IgG and IgM [40]

Healgen COVID-19 IgG/IgM
Rapid Test Cassette RDT Serum, Plasma, and

Whole Blood IgG and IgM [41]

Siemens Healthcare
Diagnostics Inc.

ADVIA Centaur
SARS-CoV-2 IgG

(sCOVG)
CLIA Serum and Plasma IgG [42]

Diabetomics, Inc. CovAb SARS-CoV-2
Ab Test RDT Oral fluid IgG, IgA, and IgM [43]

NOWDiagnostics, Inc. ADEXUSDx® COVID-19
Test RDT Serum and Plasma IgG [44]

N protein
Abbott Laboratories Inc. ARCHITECT

SARS-CoV-2 IgG CMIA Serum and Plasma IgG [45]

Roche Diagnostics, Inc. Elecsys
Anti-SARS-CoV-2 ECLIA Serum and Plasma Pan-Ig [46]

LumiraDx UK Ltd. LumiraDx SARS-CoV-2
Ab Test CLIA

Nasal Swab and
Nasopharyngeal

Swab
IgM and IgG [47]

S + N proteins

Cellex Inc. qSARS-CoV-2 IgG/IgM RDT Serum, Plasma, and
Whole blood IgG and IgM [48]

Access Bio, Inc. CareStart COVID-19
IgM/IgG RDT Serum, Plasma, and

Whole blood IgG and IgM [49]

Bio-Rad Laboratories,
Inc.

Platelia SARS-CoV-2
Total Ab ELISA Serum and Plasma Pan-Ig [50]

Assure Tech. (Hangzhou
Co., Ltd.)

Assure COVID-19
IgG/IgM Rapid

Test Device
RDT Serum, Plasma, and

Whole Blood IgG and IgM [51]

Sugentech, Inc. SGTi-flex COVID-19 IgG RDT Serum, Plasma, and
Whole Blood IgG [52]

Inova Diagnostics, Inc. QUANTA Flash
SARS-CoV-2 IgG CLIA Serum and Plasma IgG [53]

ACON Laboratories, Inc.
ACON Laboratories
ACON SARS-CoV-2
IgG/IgM Rapid Test

RDT Serum, Plasma, and
Whole Blood IgM and IgG [54]

Bio-Rad Laboratories BioPlex 2200
SARS-CoV-2 IgG CLIA Serum and Plasma IgG [55]

Combined (Co), hours (H), receptor-binding domain (RBD), spike (S), spike 1 (S1), spike 2 (S2), and nucleocapsid
proteins (N), chemiluminescent immunoassay (CLIA), rapid diagnostic test (RDT), chemiluminescent micropar-
ticle immunoassay (CMIA), electrochemiluminescence immunoassay (ECLIA), minute (min), enzyme-linked
immunosorbent assay (ELISA), references (Ref).
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4.2. Implications of Seroconversion in SARS-CoV-2 Antibody Tests

The time required by the host immune system to develop an antibody response
significantly affects the capability of the serological tests to confirm SARS-CoV infection
immediately after a person contracts the virus or during the early stage of infection [56].
Understanding the timing of seroconversion is crucial in determining the optimal time
points for specimen collection [57]. Accordingly, establishing or planning any diagnostic
protocol involving antibody tests should consider seroconversion time because it has a
pivotal role in the efficacy of serodiagnostic tests.

Similar to patients with SARS-CoV, the majority of COVID-19 patients seroconvert
after seven days of contracting the virus. The median seroconversion times for IgM and
IgG were 12 and 14 days, respectively (Figure 2) [29,58,59]. Even though in some patients,
IgM and IgG were detected as early as four or five days (Figure 2) [60,61]. By contrast,
delayed antibody response was also reported from a previous study and patients were
seroconverted within weeks three or six [62]. The natural delay of antibody production
may make antibody tests not well suited for early and accurate detection [17]. However,
serological tests that detect SARS-CoV-2 antigens have the potential to identify early
infection. Of note, the variation in the seroconversion between different assays reflects
their sensitivity [63].
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Figure 2. Overall antibody responses to 3 COVID-19 doses. After the first dose (sometimes IgM and
IgG are detected as early as day 4 or 5 in week one), the dendritic cell (DC) in the body activates
both T cells to differentiate into T helper 2 (Th2) cells and naïve B cell to differentiate into plasma
cells. After the second dose at 3–4 weeks, the immune response becomes stronger and faster (primary
immune response), producing high IgM and low IgG antibodies. However, booster vaccine injection
might induce a very strong and vigorous immune response, with long-lived plasma cells producing
low IgM and high IgG antibodies that may effectively opsonize, neutralizing the SARS-CoV-2 viruses
(secondary immune response).

Overall, regardless of the seroconversion time, almost all COVID-19 symptomatic pa-
tients seroconvert after their infection with the virus. This suggests that utilizing serological
tests in COVID-19 diagnosis among symptomatic patients can serve as a complementary
testing approach to the qRT-PCR [62].

Despite the fact that a few studies have addressed the issue of antibody production
among asymptomatic patients, seroconversion of anti-SARS-CoV-2 antibodies remains
poorly understood [11]. This is because asymptomatic and symptomatic patients exhibit
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different IgG/IgM response kinetics to SARS-CoV-2. Asymptomatic patients may transmit
SARS-CoV-2, highlighting the importance of early diagnosis and treatment [64,65].

In addition, better understanding of the association between seroconversion and
disease severity is urgently needed. Importantly, the impact of early or late seroconversion
on clinical disease severity is unknown [66], even though a high titer of SARS-CoV-2
antibodies is likely associated with intensive viral loads and severe clinical symptoms [56].
All the above necessitate the need to establish antibody detection assays which are expected
to have significant implications for COVID-19 management and control.

4.3. Antibody Tests at an Individual Level

Given the uncertainties about the accuracy of antibody tests, additional information is
required to support recommending serological testing for use as the sole basis to confirm
or exclude active SARS-CoV-2 infection [14]. Nonetheless, and despite critical knowledge
gaps, the use of antibody tests in the clinical diagnosis of COVID-19 and assessing immunity
to the virus is critical [66]. Given the limited availability of molecular testing, particularly
in limited-resource countries, it is necessary to prioritize who gets tested. Accordingly,
the WHO, the center for disease prevention and control (CDC), and the European center
for disease prevention and control (ECDC) have suggested specific criteria for prioritizing
testing. Under this scenario, antigen and antibody tests may offer another avenue to be used
as an alternative for diagnosing those not prioritized for molecular testing with specific
caution. In general, antibody tests may be utilized at an individual level as a complement
to molecular testing for investigating patients with negative qRT-PCR results [26,61]. It
may be used to monitor and identify asymptomatic infections amongst close contacts [17].
It may help to understand a patient’s clinical findings, particularly in clinically complicated
COVID-19 cases, if multisystem inflammatory syndromes are detected [67]. Antibody tests
can be further applied to determine who is qualified to donate convalescent plasma and to
screen COVID-19 survivors who undergo convalescent plasma treatments to determine
whether they develop their own immunity [68]. Thus, antibody tests may eventually
be useful in studying the kinetics of SARS-CoV-2 antibody responses [21]. Serological
measurements at baseline, as well as during and after immunization trials, are important
for evaluating any vaccine candidate. In all situations, serological results must be carefully
interpreted. Finally, testing a pair of serum samples within an interval of two weeks can
further increase diagnostic accuracy [69].

A single negative serological test may reflect a false-negative result, so it does not
exclude SARS-CoV-2 infection [66,70], particularly in highly exposed persons; this could
be due to the low antibody concentrations if the test is performed at the beginning of the
infection [68,71], the type of a specimen, or due to the decrease in the number of antibodies
after the clearance of the infection. In this case, repeating the test is the best advice. The
relatively low negative predictive value of many COVID-19 antibody tests indicates the
missing data of many acute infections based on seronegative results [26]. Negative results
also allow clinicians to suspect other diseases, because COVID-19 symptoms can resemble
those of many other diseases.

By contrast, a positive antigen-based detection test is considered very accurate for
identifying acute or early infection [72] and can indicate that a person is likely infected
with SARS-CoV-2. Nevertheless, the test positivity may be due to cross-reactivity with
other infections, including other human coronaviruses [73]. Therefore, a full-panel test,
including other CoVs, SARS-CoV-2, bacterial bronchitis, and influenza, is recommended if
applicable [74]. Nevertheless, repeating the tests helps confirm the infection. A fourfold
increase in antibody titers is suitable for the diagnosis of SARS-CoV-2. Several factors
must be considered to better interpret the results and provide clinically meaningful and
valuable recommendations to healthcare providers and test recipients: whether the person
is symptomatic or asymptomatic at the time of testing; the positive or negative status of
IgM and IgG [74]; and the quality of the test devices.
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4.4. Population Serological Testing

Nationwide antibody surveillance allows for the tracking of large-scale immunogenic-
ity to COVID-19 vaccines as well as the identification of host variables that may influence
antibody formation. Data obtained from antibody testing are used to identify and contain
the disease. In addition, the wide application of these tests could transform the battle
against COVID-19 [75]. Population serological testing is helpful in assessing and mon-
itoring the spread of the virus [76]. To date, only a few surveillance studies have been
conducted, and they primarily targeted symptomatic patients or those who have a severe
disease [17,77,78]. Such studies cannot reflect the full spectrum of the disease, as mild
or asymptomatic infections may be neglected [79]. Therefore, serologic surveillance is
important for defining the infection rate in a population [80] and determining the case
fatality rate, the cumulative incidence of COVID-19 [81], and the level of herd immunity in
a population [82].

Serological testing can help identify who is infected or exposed and who is immune
by assuming protective immunity. Accordingly, population-based serological information
will be helpful for officials in making decisions about lifting or enforcing any control
measures. The potential of this test in determining the accurate number of infected people
in a large population has been tested [83,84]. Population seropositivity indicates that the
number of people positive for anti-SARS-CoV-2 antibodies is much higher than that of
the reported cases [84,85]. Population-based serological surveillance has been carried out
around the world, including countries in Europe [86,87], America [88,89], Asia [90,91], and
Africa [92,93]. Indeed, healthcare workers are the population most targeted for serological
surveillance due to their high risk of SARS-CoV-2 infection, with ELISA being the most
commonly used diagnostic tool for detecting anti-SARS-CoV-2 antibodies.

5. Antibody Tests and Seroprotection

At this point in the pandemic, evidence on the status of using antibodies as an immu-
nity passport is insufficient, and we have yet to know whether having antibodies against
COVID-19 can protect individuals from future infection. If they do, what is the level of
antibodies that provides protective immunity? How long will this potential protection
last? Nevertheless, studies have revealed that viral load declines as antibodies form and
antibody titers increase. However, different patients can have different antibody responses.
According to the WHO, no evidence has supported the idea that patients who recover from
COVID-19 are protected against reacquiring infection [94]. Despite the accuracy of antibody
tests, results cannot be used as a risk-free certificate, and people should not assume that
they are protected against reinfection. Another complicating factor is that most antibody
tests measure antibodies that bind to SARS-CoV-2 proteins, and not all binding antibodies
are effective in blocking or eliminating viral infection. Therefore, using antibody tests for
the prediction of expected immune protection has limitations [95].

As scientists continue to review the evidence, they must understand whether recovery
from SARS-CoV-2 infection or the presence of antibodies against the virus will provide
future immunity, how it will do so, and whether the severity of subsequent infection will
decrease. With these uncertainties, all individuals who have positive results for antibodies
will be advised to maintain protective measures. Additional information is urgently
needed to determine the strength and duration of generated immunity in individuals
who have recovered from COVID-19 and whether some of them can still be infectious or
become reinfected [96].

5.1. Do Further SARS-CoV-2 Waves Affect the Interpretation of Antibody Test Results?

At the beginning of any pandemic, the positive and negative results of antibody testing
can easily be used to discriminate between infected and noninfected individuals. However,
with time, real challenges will emerge in terms of differentiating between previously
infected, currently infected, and recently recovered patients. In many countries around the
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world, a massive second or third wave of COVID-19 has already started reporting spikes
in cases.

Multiple waves of SARS-CoV-2 have been reported in various countries so far. The
new waves of the disease have been setting records, particularly in Europe, the U.S., and
Asia. Despite the overwhelming demand for testing during the previous waves [97],
health experts are continuously emphasizing the importance of testing to prevent any
following waves of SARS-CoV-2 infections [98]. As a result, many countries turned to
faster, cheaper tests to contain the second wave and avoid the delays and shortages that
challenged the efforts to rapidly diagnose and track infected people. Nevertheless, we
are still not ready to establish the widespread use of antibody tests or develop an efficient
diagnostic algorithm. Therefore, experts, clinical laboratories, research institutions, industry
partners, and government agencies should be involved in a general framework to generate
or improve antibody tests and be adequately prepared for a third wave.

The tremendous achievement of acquiring an effective SARS-CoV-2 vaccine added
another task to the role of antibody tests. How long will the antibodies generated from
the vaccination last? Can they be differentiated from the antibodies generated against
the real virus during the testing? These questions remain to be answered. The scientific
response to this scenario has been to explore differential antigens and antibodies that have
great potential for application in antibody testing to get ready for any future wave of
SARS-CoV-2 infections.

5.2. Antibodies in SARS-CoV-2 Vaccine Development

Immunity against SARS-CoV-2 infection is normally acquired in one of two ways.
Contracting the virus typically ends in natural immunity for a certain period, and vaccina-
tion is another way to become resistant. The entry of SARS-CoV-2 into the human cell is
the first step of the infection and one of the most crucial processes in the virus’ life cycle.
As a result, it is a prime target for vaccinations and therapeutics.

The virus enters the cells of the lung, gastrointestinal tract (GI tract), kidneys, liver,
heart, and other organs through the binding of the S protein’s receptor-binding domain
(RBD) to its target host receptor, the angiotensin-converting enzyme 2 (ACE2), and a host
protease known as transmembrane serine protease 2 (TMPRSS2), which facilitates the
cleavage of the S glycoprotein, allowing viral access into the host cells [99,100]. Therefore,
one of the main goals of SARS-CoV-2 vaccine development is to generate neutralizing
antibodies that block virus entry or prevent membrane fusion. Accordingly, the vast
majority of the current vaccines have been designed to induce antibodies against the S
proteins due to their protective neutralizing activity [101].

Despite the fact that the post-vaccination immune response has several components,
including innate, humoral, cellular, and cytokine responses, immunological surveillance
that measures antibody response is fundamental for assessing the efficacy of all SARS-
CoV-2 vaccines. In particular, measuring the level of circulating anti-S-RBD antibodies
could provide important information on SARS-CoV-2 acquired immunity [102]. Indeed, a
significant correlation was seen between antibody titers and vaccine efficacy, with higher
titers corresponding to better vaccine efficacy [103].

In fact, the level and duration of neutralizing antibodies required for long-term immu-
nity is currently unknown. One study demonstrated that health care professionals who
received the BNT162b2 vaccination showed a significant reduction in anti-RBD IgG anti-
bodies after six months (7.4-fold drop). In addition, the decline was 2.5 times greater when
evaluated after nine months [104]. The dynamics of the antibody response against SARS-
CoV-2 pre- and post-vaccination with the different types of SARS-CoV-2 vaccines have been
evaluated in several studies [103]. Most of them reported a gradual and substantial decrease
in anti-SARS-CoV-2 antibody levels throughout the first six months following vaccination.
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5.3. Mechanism of Antibody-Mediated Protection

The role of antibodies in resistance to SARS-CoV-2 infection was explored. Under-
standing the properties and mechanisms by which antibodies provide protection is essential
to defining immunity. Infection or vaccination history may have a role in providing pro-
tection against the subsequent infection, and several studies have provided evidence for
such protective associations [105]. Upon infection, pre-existing antibodies bind to the
surface of SARS-CoV-2 virus particles and lead to the neutralization of the viral spike.
Neutralizing antibodies are critical for the efficacy of any SARS-CoV-2 vaccine. Over the
past two years, SARS-CoV-2-neutralizing antibodies have been developed for preventive
or therapeutic uses [106–108]. Most of the neutralizing antibodies target the S protein;
their neutralization potency and breadth vary according to recognition epitopes. These
findings have prompted an intense effort to identify potential immunodominant epitopes
that are recognized by broadly neutralizing the antibodies that could be used as templates
for SARS-CoV-2 vaccine design.

Beyond neutralization, recent research suggests that antibodies also mediate other
effector functions via the recruitment of complement and/or Fc receptors, which are present
on all immune cells and represent important contributors to protective immunity against the
SARS-CoV-2 virus. These extraneutralizing functions include opsonization for complement
activation, phagocytosis, and antibody-dependent cell-mediated cytotoxicity [109].

Antibodies possess two functional domains: Fab and Fc. The Fab portion of an
antibody is highly variable and allows the antibody to recognize and bind to widely
diverse molecular structures. The Fc portion of the antibody is more highly conserved and
performs two basic functions. First, it interacts with the rest of the immune system after an
antibody has bound to its target. This interaction can lead to the activation of one of the
aforementioned effector mechanisms.

5.4. Prevaccination Antibody Screening

Notably, limited-resource countries (LRCs) remain at the back of the line when it
comes to new technologies, infrastructure, and public health control measures such as
vaccines. Evidently, COVID-19 mass vaccination is currently not applicable in most of
the LRCs, where a lack of resources is placing enormous pressure on governments to
accelerate the mass vaccination strategies. Accordingly, the establishment of new strategies
that maximize the number of individuals who get vaccines without losing the efficacy of
immune protection is urgently needed. The limited availability of authorized SARS-CoV-2
vaccines has led to widespread consideration of a single vaccine dose for people with past
SARS-CoV-2 infection [110]. Recent evidence has suggested that one shot of SARS-CoV-2
vaccine could be all that is necessary to reach a high titer of antibodies for people who have
had SARS-CoV-2 [111–113]. Accordingly, considering a one-shot vaccination program for
SARS-CoV-2 previously infected individuals in African countries could have both economic
and public health benefits [114]. To do this, a prevaccination screening approach would be
used, in which individuals with evidence of a previous SARS-CoV-2 infection would be
vaccinated with a single dose. Practically, implementing such a program necessitates the use
of an antibody test to measure anti-SARS-CoV-2 antibodies and determine serostatus [115].
Ideally, such an antibody test should be both sensitive and specific in order to reduce
false-positive and -negative results and to maximize the population-level benefit from the
test and vaccination approach.

6. Resistance to SARS-CoV-2 Antibodies

Resistance to the SARS-CoV-2’s antibody is now a living fact due to the introduction of
new virus variants, and this places an enormous load on the vaccination process. As such,
recent vaccines have been developed to contradict the virus that was first discovered in late
2019 in Wuhan, China [116]. However, emerged variants such as the South African-Beta
(B.1.351) and the UK-Alpha (B.1.1.7) have demonstrated extensive mutations in their S
proteins, and these variants have been demonstrated to be highly contiguous [117]. Indeed,
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almost all monoclonal antibodies directed against the S protein’s N-terminal domain failed
to recognize Alpha, although antibodies directed against the receptor-binding region were
more effective [118]. Nonetheless, the variation exhibited reduced affinity for plasma
from patients who have recovered from SARS-CoV-2 or sera from those who have been
immunized against SARS-CoV-2. Both monoclonal antibodies directed against the N-
terminal domain and several separate monoclonal antibodies directed against the receptor-
binding motif are very ineffective against the mutated Beta, and this resistance might have
been acquired from the mutated E484K substitution. Furthermore, Beta is much more
resistant to neutralization by convalescent plasma (9.4-fold) and serum (10.3–12.4-fold)
from BNT162b2-immunized individuals [118]. Furthermore, the Beta SARS-CoV-2 variants,
which had various changes in their S proteins, were resistant to 17 neutralizing monoclonal
antibodies as well as sera from convalescent patients and vaccinated mice, which were
unable to neutralize the variants [119].

Subsequent studies indicated that certain Omicron variants are now resistant to an-
tibodies elicited by vaccine doses. Remarkably, Omicron S proteins evaded blockage by
antibodies obtained from persons inoculated with the BioNTech-Pfizer vaccine (BNT162b2)
or convalescent patients with 12- to 44-fold more efficiency than the Delta (B.1.617.2) vari-
ant S protein [120]. However, heterologous doses of ChAdOx1 (Astra Zeneca-Oxford)
and BNT162b2 or three doses of BNT162b2 caused significant antibody neutralization;
however, the virus’s S proteins can still avoid neutralization more effectively than the
B.1.617.2 S proteins [120]. More specifically, this resistance could be attributed to the reason
that the N-terminal domain (NTD; 11 mutations with 6 deletions, 1 insertion, and the
unique mutations N211∆ and ins214EPE) and RBD (two unique mutations: T547K and
P681H) of the Omicron variant is highly mutated (Figure 1) [120]. These results show
that the Omicron variant might be immune to the vast majority of the currently available
antibody treatments. It also appears that the double-BNT162b2 immunization might not
be sufficient to protect against the most virulent type. Supporting this notion, the anti-
genic characterization of new Omicron sublineages supports this notion, as polyclonal sera
from infected patients with wild-type SARS-CoV-2 or receivers of existing mRNA vaccines
showed a significant loss in neutralizing affectivity, both against BA.1 + R346K and BA.2,
with declines similar to those previously noted for BA.1. In addition, BA.2 was shown to be
refractory to 17 of the 19 monoclonal antibodies used in this investigation [121]. The BA.1
and BA.2 Omicron variants were also shown to be resistant to Regeneron (REGN10933
and REGN10987) and Lilly (LY-CoV555 and LY-CoV016) antibodies, but Vir-7831 and a
combination of AstraZeneca monoclonal antibodies (AZD8895 and AZD1061) dramatically
reduced neutralizing titer (Figure 1). In contrast, the LY-CoV1404 monoclonal antibody
proved efficient in neutralizing both Omicron forms [122]. In addition, 18 antibodies lost
their ability to neutralize Omicron sublineages BA 2.12.1 and BA.4/5. Three class 3 RBD
antibodies (Brii-198, REGN10987, and COV2-2130) were inactive or impaired against BA.
BA.4/5 showed poor neutralizing resistance to two class 3 RBD antibodies (REGN10987
and COV2-2130) and elevated neutralizing resistance to two class 2 RBD antibodies (ZCB11
and COV2-2196). These variations imply that, whereas BA.4/5 mutations facilitate the
avoidance of both class 2 and class 3 RBD antibodies, BA.2.12.1 mutations facilitate the
avoidance of class 3 RBD antibodies [123]. However, RBD CAB-A17, COV2-2130, 2–7, and
LY-COV1404 antibodies showed neutralizing activity in vitro against both BA.2.12.1 and
BA.4/5, with a half-maximum inhibitory concentration (IC50) less than 0.1µg mL [123]. Al-
though, the LY-CoV1404 (bebtelovimab) antibodies effectively neutralized the SARS-CoV-2
B.1.1.7, B.1.351, and B.1.617.2 variants, it also shows substantial neutralizing activity against
several variants in pseudovirus neutralization reports, including B.1.1.7, B.1.351, B.1.617.2,
B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. It also interacts with spike
proteins with RBD mutations, notably K417N, L452R, E484K, as well as N501Y [124].

Furthermore, the antibodies ReGN10933, REGN10987, and JS016 and serum from
vaccinated participants neutralized the S protein of numerous wild-type variations, in-
cluding Alpha, Beta, Gamma, and Delta. Regn10987 antibodies, for example, were the
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most effective in neutralizing the aforementioned variations. In addition, the Regn10933
and JS016 antibodies were both effective, although their reactions to the S protein were
quite different [125]. These two antibodies, however, were unable to neutralize the Beta
version. Unexpectedly, none of these antibodies neutralized the Omicron variant [125].
This result implies that these antibodies cannot be used to combat the ongoing Omicron
variant pandemic or any developing variation.

Despite immunocompromised individuals potentially being more susceptible to SARS-
CoV-2 viruses with unusual manifestations, prolonged immunosuppression treatment may
provide some defense from severe COVID-19 disease consequences. However, the possibil-
ity of immunocompromised people acquiring abnormally severe COVID-19 is currently
elusive [126]. Recent evidence shows that immunocompromised people may benefit greatly
from convalescent plasma therapy [127–130], and that mutations and newly emerged virus
strains will lead to more severe complications in the group. New variants, however, can
appear in this patient population as a result of the selection pressure brought on by a
severe viral infection [131]. The majority of people who have severe SARS-CoV-2 have
immune system issues, thus the virus may live on for a very long period. Patients with
impaired immune systems have been demonstrated to have varying SARS-CoV-2 evo-
lution patterns [131]. How selection forces and evolutionary processes interact during
chronic infection is an issue that has yet to be resolved. With that in mind, due to mu-
tations (Q493KRBD, Q493K/RRBD) in the S protein in immunocompromised individuals,
antibodies that were recovered from a healthy COVID-19 convalescent donor were shown
to be ineffective in providing protection against SARS-CoV-2. In particular, the Q493KRBD
mutation 15-fold reduced the effectiveness of REGN10933 pseudotype neutralization, but
the Q493K/RRBD mutations almost completely imparted resistance to healthy COVID-19
convalescent donor IgG [132]. Additionally, research on SARS-CoV-2-infected immuno-
compromised patients revealed that convalescent plasma treatment may have contributed
to the formation of the novel SARS-CoV-2 variants. In actuality, this novel type seemed
to develop treatment resistance. In one experiment, repetitive passage of the virus, to-
gether with convalescent plasma, selected for antibody-resistant SARS-CoV-2 variants,
including the E484K mutation which is linked to vaccination tolerance [133]. As a result,
SARS-CoV-2 infection should be avoided in immunocompromised individuals because of
their increased risk of COVID-19 consequences and the potential for the virus to grow and
mutate. The link between immunosuppression and the production of more transmissible
or more pathogenic SARS-CoV-2 variants demands further elucidation and mitigation
measures since a sizable population of individuals worldwide suffers from inherent or
induced immunosuppression [134].

7. Limitations of Antibody Tests

Although antibody tests are useful in COVID-19 case management and in vaccinations
effectiveness, a number of drawbacks occur. The significant limitation is that antibodies
may be present at undetectable levels in early days, thereby influencing the potency of any
serodiagnostic tests and their effectiveness for diagnosing SARS-CoV-2 infection [135,136].
In this situation, a false-negative serological result from individuals with replicating and
shedding viruses can have serious public health consequences [68]. Another limitation is
the unknown duration at which IgM or IgG antibodies remain detectable after the virus has
been cleared from the body. Furthermore, variations in antigens and methodologies used
in IgM and IgG detection kits are essential, and they affect the sensitivity and specificity
of the tests [137]. Unfortunately, the inaccuracy of antibody tests is unavoidable and
will inevitably lead to false-positive or -negative results and disease misclassifications,
particularly if these tests are not properly conducted and interpreted [138]. Moreover,
the proven cross-reactivity of SARS-CoV-2 antibody tests with other coronaviruses is
difficult to avoid [73]. Indeed, increasing the levels and duration of antibodies after
SARS-CoV-2 vaccination to provide full protection and diagnostic opportunity against the
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current variants and those that can emerge in the future is still the primary objective in the
upcoming studies.

8. Conclusions

In conclusion, the continuous spread of SARS-CoV-2 all over the world necessitates
the utilization of anti-SARS-CoV-2 antibodies as efficient preventive and therapeutic agents
to prevent, treat, and control the virus’s spread. For diagnostic purposes, antibodies
could represent promising candidates and their potential role in the ongoing SARS-CoV-2
pandemic has generated considerable interest. Strong evidence suggests that it can be
utilized for the routine diagnosis and clinical management of COVID-19. It can also be
beneficial for the understanding of the spread of the virus amongst populations. Antibody
testing helps epidemiologists to obtain seroprevalence data that can be used to estimate the
proportion of infected people in the population. Furthermore, antibody testing will allow
research scientists and vaccine developers to study the immune response during natural
infection with SARS-CoV-2, as well as to evaluate vaccine efficacy in clinical trials. Indeed,
understanding the humoral immune responses against SARS-CoV-2 and how antibodies
are generated is vital for the development of therapeutic and vaccination options. However,
more research is needed to determine the modulation of innate and vaccine-induced SARS-
CoV-2 immunogenicity.

Due to the vital effect that antibodies play in the immune response to SARS-CoV-
2, antibody cocktail treatments and potential vaccines may be utilized. These must be
modified for effective protection against both the current and emerging SARS-CoV-2 types.
Even though these techniques are being developed, heterologous or booster vaccines might
help reduce the effect of any novel SARS-CoV-2 variations on population safety; standard
control measures such as face masks and social seclusion should still be enforced.
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