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THE SATAKE ISOMORPHISM FOR SPECIAL MAXIMAL
PARAHORIC HECKE ALGEBRAS

THOMAS J. HAINES AND SEAN ROSTAMI

Abstract. Let G denote a connected reductive group over a nonarchimedean
local field F . Let K denote a special maximal parahoric subgroup of G(F ). We
establish a Satake isomorphism for the Hecke algebra HK of K-bi-invariant
compactly supported functions on G(F ). The key ingredient is a Cartan de-
composition describing the double coset space K\G(F )/K. As an application
we define a transfer homomorphism t : HK∗ (G∗) → HK(G) where G∗ is the
quasi-split inner form of G. We also describe how our results relate to the
treatment of Cartier [Car], where K is replaced by a special maximal compact

open subgroup K̃ ⊂ G(F ) and where a Satake isomorphism is established for
the Hecke algebra H

K̃
.

1. Introduction

The Satake isomorphism plays an important role in automorphic forms and in
representation theory of p-adic groups. For global applications, one may often
work with unramified groups. We begin by recalling the Satake isomorphism in
this context. Let G denote an unramified group over a nonarchimedean local field
F . Let vF denote a special vertex in the Bruhat-Tits building B(Gad(F )). Let
K̃ = K̃vF

denote a special maximal compact open subgroup of G(F ) which fixes
vF . Let

H
K̃

= C∞c (K̃\G(F )/K̃)

denote the Hecke algebra of K̃-bi-invariant compactly-supported complex-valued
functions on G(F ). Let A denote a maximal F -split torus in G whose corresponding
apartment in B(Gad(F )) contains vF . Let W = W (G,A) denote the relative Weyl
group. Then the Satake isomorphism is a C-algebra isomorphism

H
K̃
→̃ C[X∗(A)]W .

(See [Car].) A key ingredient is the Cartan decomposition

K̃\G(F )/K̃ ∼= W (G,A)\X∗(A).

Now let G denote an arbitrary connected reductive group over F and let K̃, vF

and so on have the same meaning as above. A form of the Satake isomorphism for
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such G was described by Cartier [Car], but it is less explicit than that above. It
identifies H

K̃
with the ring of functions

C[M(F )/M(F )1]W ,

where M := CentG(A) is a minimal F -Levi subgroup of G and M(F )1 is the unique
maximal compact open subgroup of M(F ). The quotient M(F )/M(F )1 is a free
abelian group Λ̃M which contains X∗(A) and has the same rank. (In [Car], our Λ̃M

is denoted Λ(M) or simply Λ.) As Cartier explains, in this general context we have
a Satake isomorphism

H
K̃

∼= C[Λ̃M ]W ,

and a Cartan decomposition

K̃\G(F )/K̃ ∼= W (G,A)\Λ̃M .

However, Cartier does not identify Λ̃M explicitly, except in special cases.
Now let K = KvF

denote the special maximal parahoric subgroup of G(F )
corresponding to vF ; it is a normal subgroup of K̃vF

having finite index (see section
8). This paper concerns the Hecke algebra HK = C∞c (K\G(F )/K). In several
situations, it is more appropriate to consider HK instead of H

K̃
, for example in

relation to Shimura varieties having parahoric level structure (see [Rap] and [H05]).
Let M(F )1 ⊂ M(F ) denote the unique parahoric subgroup of M(F ); it is a

finite-index normal subgroup of M(F )1. Our main result is the following theorem.

Theorem 1.0.1. Let ΛM := M(F )/M(F )1. There is a canonical isomorphism

HK →̃ C[ΛM ]W .

The group ΛM is a finitely generated abelian group which can be explicitly described
and which has the property that Λ̃M = ΛM/torsion. Moreover, K̃/K ∼= ΛM,tor, the
torsion subgroup of ΛM .

When G is unramified over F or when G is semi-simple and simply connected,
it turns out that K̃ = K and Λ̃M

∼= ΛM (see section 11) so that our theorem does
not give any new information in those cases. However our results are new in case
K̃ 6= K, and different methods from [Car] are needed to prove them. For ramified
groups in particular, our results are expected to play some role in the study of
Shimura varieties with parahoric level structure at p. For more about ramified
groups and Shimura varieties with parahoric level the reader should consult [Rap],
[PR], and [Kr].

In order to describe ΛM , we need to recall some notation and results of Kottwitz
[Ko97]. Let F s denote a separable closure of F , and let F un denote the maximal
unramified extension of F in F s. Let L = F̂ un denote the completion of F un with
respect to the valuation on F un which extends the normalized valuation on F . Let
I = Gal(F s/F un) ∼= Gal(Ls/L) denote the inertia subgroup of Gal(F s/F ), and let
σ ∈ Aut(L/F ) denote the Frobenius automorphism. In [Ko97] Kottwitz defined a
surjective homomorphism

κG : G(L) → X∗(Z(Ĝ))I ,

and in loc. cit. §7.7 he also proved that this induces a surjective homomorphism

κG : G(F ) → X∗(Z(Ĝ))σ
I
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of the groups of σ-invariants. Set G(L)1 := ker(κG) and G(F )1 := G(F ) ∩G(L)1.
(When G = M , this is consistent with our definition of M(F )1 above, see Lemmas
4.1.1, 4.2.1.)

The Iwahori-Weyl group W̃ (defined in §2.3) for G carries a natural action under
σ and contains a σ-invariant abelian subgroup ΩG (the subgroup of length-zero
elements). By choosing representatives in the normalizer of A we may embed W̃ σ

set-theoretically into G(F ), and then Ωσ
G is mapped by κG isomorphically onto

X∗(Z(Ĝ))σ
I (see section 2). The following is the sought-after explicit description of

ΛM :

Proposition 1.0.2. The Kottwitz homomorphism induces an isomorphism

ΛM = M(F )/M(F )1 ∼= X∗(Z(M̂))σ
I .

Via the Kottwitz isomorphism κM : Ωσ
M →̃ X∗(Z(M̂))σ

I , we can also identify ΛM

with Ωσ
M .

As before, the main step in the proof of Theorem 1.0.1 is an appropriate Cartan
decomposition.

Theorem 1.0.3. The embedding Ωσ
M ⊂ W̃ σ ↪→ G(F ) determines a bijection

W (G,A)\Ωσ
M
∼= K\G(F )/K.

Equivalently, via the isomorphism κM : Ωσ
M →̃ X∗(Z(M̂))σ

I , we have a bijection

W (G,A)\X∗(Z(M̂))σ
I →̃ K\G(F )/K.

We give additional information about the finitely generated abelian group ΛM

in section 11. For example, we prove that if G is an inner form of a split group,
then ΛM = X∗(Z(M̂)) = X∗(T )σ (see Corollary 11.3.2).

Finally, let G∗ denote the quasi-split inner form of F , and consider special max-
imal parahoric subgroups K∗ ⊂ G∗(F ) and K ⊂ G(F ). In section 12, we define a
canonical transfer homomorphism t : HK∗(G∗) → HK(G), and we establish some
of its basic properties.

This article relies heavily on the ideas of Kottwitz, especially as they are mani-
fested in the article [HR]. The main theorems of [HR] provide the starting points
for the proof of Theorem 1.0.3.

We thank the referee for some quite helpful suggestions.

2. Notation

2.1. Ring-theoretic notation. Let O = OF (resp. OL) denote the ring of in-
tegers in the field F (resp. L). Let $ denote a uniformizer of F (resp. L), and
let kF denote the residue field of F . We may identify the residue field kL with an
algebraic closure of kF . Let Γ := Gal(F s/F ).

Throughout this paper, if J ⊂ G(F ) denotes a compact open subgroup, we make

HJ := C∞c (J\G(F )/J)

a convolution algebra by using the Haar measure on G(F ) which gives J volume 1.
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2.2. Buildings notation. Let B(G(L)) (resp. B(G(F ))) denote the Bruhat-Tits
building of G(L) (resp. G(F )). The building B(G(L)) carries an action of σ. By
[BT2], 5.1.25, we have an identification B(G(F )) = B(G(L))σ. Moreover, there is a
bijection aJ 7→ aσ

J from the set of σ-stable facets in B(G(L)) to facets in B(G(F ))
([BT2], 5.1.28). This bijection sends alcoves to alcoves ([BT2], 5.1.14). It also
follows from loc. cit. that every σ-stable facet aJ in B(G(L)) is contained in the
closure a of a σ-stable alcove a.

Let vF denote a special vertex in B(Gad(F )) ([Tits], 1.9). LetA denote a maximal
F -split torus in G whose corresponding apartment in B(Gad(F )) contains vF . Let
A (resp. Aad) denote the apartment in B(G(F )) (resp. B(Gad(F ))) corresponding
to A. Let VG(F ) denote the real vector space X∗(Z(G))Γ ⊗R. There is a simplicial
isomorphism ([Tits], 1.2)

A ∼= Aad × VG(F ).

Therefore, there is a minimal dimensional facet aσ
0 in A associated to a σ-stable

facet a0 ⊂ B(G(L)), such that

aσ
0
∼= {vF } × VG(F ).

We consider parahoric (or Iwahori) subgroups in the sense of [BT2], 5.2. That
is, to a facet aJ ⊂ B(G(L)) we associate an OL-group scheme G◦aJ

with connected
geometric fibers, whose group of OL-points fixes identically the points of aJ . We
often write J(L) := G◦aJ

(OL). By [BT2], 5.2, if aJ is σ-stable we get a parahoric
subgroup J(F ) := J(L)σ in G(F ) and this is associated to the facet aσ

J in B(G(F )).
Moreover, every parahoric subgroup of G(F ) is of this form for a unique σ-stable
facet aJ .

Now fix a σ-stable alcove a whose closure contains a0. Let I(L) (resp. K(L))
denote the Iwahori (resp. parahoric) subgroup of G(L) corresponding to the σ-
stable alcove a (resp. facet a0). Then I := I(F ) = I(L)σ is the Iwahori subgroup
of G(F ) corresponding to aσ. Also, K := K(F ) = K(L)σ is a special maximal
parahoric subgroup of G(F ) corresponding to aσ

0 (or equivalently, to vF ).

2.3. Weyl groups and Iwahori-Weyl groups. For a torus S in G, let NG(S) =
NormG(S) denote its normalizer and CG(S) = CentG(S) its centralizer. Let
W (G,S) := NG(S)/CG(S) denote its Weyl group.

Fix the torus A as before. From now on, let S be a maximal L-split torus that
is defined over F and contains A ([BT2], 5.1.12). Let T = CG(S), a maximal torus
of G (defined over F ) since GL is quasi-split by Steinberg’s theorem.

We need to recall definitions and facts about Iwahori-Weyl groups; we refer the
reader to [HR] for details. Let T (L)1 = ker(κT ), a normal subgroup of NG(S)(L).
Let W̃ := NG(S)(L)/T (L)1 denote the Iwahori-Weyl group for G. It carries an
obvious action of σ. Let AL denote the apartment of B(G(L)) corresponding to S,
which we may assume contains the alcove a we fixed above. We let Waff denote the
affine Weyl group, which is a Coxeter group generated by the reflections through
the walls of a. The group W̃ acts on the set of all alcoves in the apartment of
B(G(L)) corresponding to S; let ΩG = ΩG,a denote the stabilizer of a. There is a
σ-equivariant decomposition

W̃ = Waff o ΩG.

We extend the Bruhat order ≤ and the length function ` fromWaff to W̃ in the usual
way: if x, x′ ∈ W̃ are written as w · τ and w′ · τ ′ via the preceding decomposition,
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then we set `(x) := `(w) and declare that x ≤ x′ if and only if both w ≤ w′ and
τ = τ ′. We can identify Waff with the Iwahori-Weyl group associated to the pair
Gsc, Ssc, where Ssc is the pull-back of (S ∩Gder)◦ via Gsc → Gder.

We can embed W̃ set-theoretically into G(L) by choosing a set-theoretic section
of the surjective homomorphism NG(S)(L) → W̃ . Since T (L)1 ⊂ ker(κG), we easily
see that the restriction of κG to W̃ ↪→ G(L) gives a homomorphism

κG : W̃ → X∗(Z(Ĝ))I

which is surjective and σ-equivariant and whose kernel is Waff .

3. Cartan decomposition: reduction to the key lemma

Changing slightly the notation of [HR], we set

W̃K := (NG(S)(L) ∩K(L))/T (L)1.

We write W̃ σ
K := (W̃K)σ.

Our starting point is the following fact (see [HR], esp. Remark 9): the map
K(L)nK(L) 7→ n ∈ W̃ induces a bijection

K(L)\G(L)/K(L) ∼= W̃K\W̃/W̃K ,

and taking fixed-points under σ yields a bijection

(3.0.1) K(F )\G(F )/K(F ) ∼= W̃ σ
K\W̃ σ/W̃ σ

K .

The Cartan decomposition follows immediately from the key lemma below, which
allows us to describe the right hand side of (3.0.1) in the desired way. To state this
we note that the σ-stable alcove a is contained in a unique σ-stable alcove aM in the
apartment AM

L ⊂ B(M(L)) corresponding to S. As before, we define ΩM ⊂ W̃M

to be the stabilizer of aM under the action of W̃M on the alcoves in AM
L .

Lemma 3.0.1. (I) There is a tautological isomorphism W̃ σ
K →̃W (G,A) which

allows us to view W (G,A) as a subgroup of W̃ σ.
(II) There is a decomposition W̃ σ = W̃ σ

M ·W (G,A), and W (G,A) normalizes
W̃ σ

M .
(III) We have W σ

M,aff = 1, and hence because of the σ-equivariant decomposition

W̃M = WM,aff o ΩM

we have W̃ σ = Ωσ
M oW (G,A).

The Kottwitz homomorphism gives an isomorphism

κM : Ωσ
M →̃ X∗(Z(M̂))σ

I

(cf. [Ko97], 7.7). Putting this together with the lemma we get Theorem 1.0.3.
The proof of Lemma 3.0.1 will occupy the next four sections.
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4. Some ingredients about parahoric subgroups

4.1. Parahoric subgroups of F -Levi subgroups. As before, let A denote a
maximal F -split torus in G, let S ⊇ A be a maximal L-split torus which is defined
over F , and let T = CG(S), a maximal torus of G which is defined over F .

Let AM denote any subtorus of A, and let M = CG(AM ). Thus M is a semi-
standard F -Levi subgroup of G. The extended buildings B(M(L)) and B(G(L))
share an apartment (which corresponds to S), but the affine hyperplanes in the
apartment AM

L for M(L) form a subset of those in the apartment AL for G(L).
Hence any facet aJ in AL is contained in a unique facet in AM

L , which we will
denote by aM

J .
The following result was proved in [H09] in the special case where G splits over

L.

Lemma 4.1.1. Suppose J(L) ⊂ G(L) is the parahoric subgroup corresponding to a
facet aJ ⊂ AL. Then J(L) ∩M is a parahoric subgroup of M(L), and corresponds
to the facet aM

J ⊂ AM
L .

Proof. The main result of [HR] is the following characterization of parahoric sub-
groups:

J(L) = Fix(aJ) ∩G(L)1
where Fix(aJ) is the set of elements of G(L) that fix every point of aJ . Applying
this for the groups M and G, we see we only need to show

Fix(aJ) ∩G(L)1 ∩M(L) = Fix(aM
J ) ∩M(L)1.

The functoriality of the Kottwitz homomorphisms shows M(L)1 ⊂ G(L)1, and then
the inclusion ”⊇” is evident. Let aM denote an alcove in AM

L whose closure contains
aM

J . Let IM denote the Iwahori subgroup of M(L) corresponding to aM .
Let SM

sc resp. TM
sc denote the pull-back of the torus (S ∩Mder)◦ resp. T ∩Mder

along the homomorphism Msc → Mder. To prove the inclusion “⊆” it is enough
to prove the following claim, since NMsc(S

M
sc )(L) and IM belong to M(L)1. Here

and in what follows, we abuse notation slightly by writing NMsc(S
M
sc )(L) where we

really mean its image in M(L).
Claim: Any element m ∈M(L) ∩G(L)1 which fixes a point in aM

J belongs to

IM NMsc(S
M
sc )(L) IM

and fixes every point of aM
J .

Proof: Recall the decomposition

(4.1.1) IM\M(L)/IM ∼= NM (S)(L)/T (L)1

of [HR], Prop. 8. Using this we may assume m ∈ NM (S)(L).
We will show that for such an element m which fixes a point of aM

J we have
m ∈ T (L)1NMsc(S

M
sc )(L), which will prove the first statement of the claim. It

will also prove the second statement, since then m determines a type-preserving
automorphism of the apartment AM

L , hence fixes every point of aM
J if it fixes any

of its points.
Choose a special vertex aM

0 contained in the closure of aM , and let K0 denote
the corresponding special maximal parahoric subgroup of M(L). We may write
m = tn, where t ∈ T (L) and n ∈ NM (S)(L) ∩ K0 (cf. [HR], Prop. 13). Define
ν ∈ X∗(T )I to be κT (t) and w ∈W (M,S) to be the image of n under the projection
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NM (S)(L) →W (M,S). Thus m maps to the element tν w ∈ X∗(T )I oW (M,S) ∼=
W̃M , the Iwahori-Weyl group for M .

Let Σ∨ denote the coroots associated to the unique reduced root system Σ such
that the set of affine roots Φaf(G(L), S) onAL are given by Φaf = {α+k | α ∈ Σ, k ∈
Z}, cf. [HR]. Let Σ∨M denote the coroots for the corresponding root system ΣM for
Φaf(M(L), S) on AM

L . Let Q∨(Σ) resp. Q∨(ΣM ) denote the lattice spanned by Σ∨

resp. Σ∨M . Recall from [HR] that we have identifications Q∨(Σ) ∼= X∗(Tsc)I and
Q∨(ΣM ) ∼= X∗(TM

sc )I . Also, we have Φaf(M(L), S) ⊆ Φaf(G(L), S), and therefore
Q∨(ΣM ) ⊆ Q∨(Σ).

Clearly w is the image of an element from NMsc(S
M
sc )(L) ∩K0, since the latter

also surjects onto W (M,S). Thus we need only show that ν ∈ Q∨(ΣM ), since
Q∨(ΣM ) is also in the image of NMsc(S

M
sc )(L) → W̃M .

First, we will prove that ν ∈ Q∨(Σ). Indeed, by construction t ∈ G(L)1, and
using

X∗(T )I/X∗(Tsc)I
∼= X∗(Z(Ĝ))I

(cf. [HR]) we see that ν ∈ X∗(Tsc)I = Q∨(Σ).
Next, let r denote the order of w ∈W (M,S). The element mr maps to (tνw)r ∈

W̃M , which is the translation by the element µ :=
∑r−1

i=0 w
iν ∈ Q∨(Σ). But as

this translation fixes a point of aM
J , we must have µ = 0. Since wiν ≡ ν modulo

Q∨(ΣM ), it follows that

ν ∈ Q∨(ΣM )Q ∩Q∨(Σ) = Q∨(ΣM ).

This completes the proof of the claim, and thus the lemma. �

4.2. Parahoric subgroups of minimal F -Levi subgroups. Now we return to
the usual notation, where M := CG(A) is a minimal F -Levi subgroup of G. In
this case Mad is anisotropic over F , so the semi-simple building B(Mad(F )) =
B(Mad(L))σ is a singleton and the apartment (AM

L )σ contains no affine hyperplanes.
Therefore, M(F ) has only one parahoric subgroup.

Lemma 4.2.1. Let J be any parahoric subgroup of G(L) corresponding to a σ-
invariant facet aJ in AL. Then J(L) ∩M(F ) = M(F )1.

Proof. By Lemma 4.1.1, the inclusion ”⊆” is clear. Let m ∈M(F )1. Since m acts
trivially on the apartment Aσ

L in the building B(G(F )) = B(G(L))σ, it fixes a point
of the σ-invariant facet aJ (e.g. its barycenter). But then since m ∈ G(F )1, by
the Claim in the proof of Lemma 4.1.1 (taking M = G), m fixes every point in aJ .
Clearly then m ∈ Fix(aJ) ∩G(L)1 ∩M(F ) = J(L) ∩M(F ). �

Lemma 4.2.2. Let K(L) denote the parahoric subgroup of G(L) whose σ-fixed
subgroup K = K(L)σ is the special maximal compact subgroup of G(F ) we fixed
earlier. Then

K ∩NG(S)(L) ∩M(F ) = T (F )1.

Proof. Fix an Iwahori subgroup I ⊂ G(L) corresponding to a σ-invariant alcove in
AL. Note that by Lemma 4.2.1, we have K ∩M(F ) = I ∩M(F ) and hence

K ∩NG(S)(L) ∩M(F ) = I ∩NG(S)(L) ∩M(F ).

By [HR], Lemma 6, the right hand side is T (L)1 ∩M(F ) = T (F )1. �
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5. The isomorphism W̃ σ
K
∼= W (G,A)

By [HR], Remark 9, any element of W̃ σ
K is represented by an element ofNG(S)(F ).

Let x ∈ NG(S)(F ). Then xSx−1 = S contains xAx−1 and A, which being maximal
F -split tori in S, must coincide. Thus, there is a tautological homomorphism

NG(S)(F ) → NG(A)(F ).

By Lemma 4.2.2, this factors to give an injective homomorphism

W̃ σ
K ↪→W (G,A).

The next statement furnishes the proof of Lemma 3.0.1, (I).

Lemma 5.0.1. The homomorphism W̃ σ
K → W (G,A) is an isomorphism. This

allows us to regard W (G,A) as a subgroup of W̃ σ.

Proof. It is enough to prove the domain and codomain have the same order. Let
kL denote the residue field of OL, which can be identified with an algebraic closure
of kF . Consider the special fiber G◦a0

= G◦a0
×OL

kL of the Bruhat-Tits group
scheme G◦a0

over OL which is associated to the facet a0 in the building B(G(L)).

Let G◦,reda0
denote the maximal reductive quotient of G◦a0

. By [HR], Prop. 12, W̃K

is the Weyl group of G◦,reda0
. The group G◦,reda0

is defined over kF , and in fact we

have G◦,reda0
= G◦,redvF

×kF
kL, where G◦vF

is the special fiber of G◦vF
(cf. [Land], Cor.

10.10). Since kF is finite, G◦,redvF
is automatically quasi-split over kF , and it follows

that W̃ σ
K is the Weyl group of G◦,redvF

(this is well-known, but one can also use the
argument which yields Remark 6.1.3 below).

On the other hand, by [Tits], 3.5.1, the root system of G◦,redvF
is ΦvF

, the root
system consisting of the vector parts of the affine roots for A which vanish on vF

(loc. cit. 1.9). Because vF is special, ΦvF
= Φ(G,A), the relative root system.

Thus the Weyl group of G◦,redvF
is isomorphic to W (G,A).

These remarks imply that W̃ σ
K and W (G,A) are abstractly isomorphic groups

and in particular they have the same order. �

6. A decomposition of the Iwahori Weyl group

The goal here is to prove Lemma 3.0.1, (II).

6.1. A lemma on finite Weyl groups. Let w ∈W (G,A) and choose a represen-
tative g ∈ NG(A)(F ) for w; write [g] = w. The tori gSg−1 and S are both maximal
L-split tori in M , hence there exists m ∈ M(L) such that mgSg−1m−1 = S. We
claim that the map

W (G,A) →W (G,S)/W (M,S)

w 7→ [mg] ·W (M,S)

is well-defined and injective. Indeed, suppose g0 ∈ NG(A)(F ) represents an ele-
ment w0 ∈ W (G,A) and that m0 ∈ M(L) satisfies m0g0Sg

−1
0 m−1

0 = S. To show
the map is well-defined, we suppose w = w0 and we show that (mg)−1m0g0 ∈
NM (S). It will suffice to show (mg)−1m0g0 belongs to M(L). Since g normalizes
M = CG(A) and g−1g0 ∈ M , this is obvious. To show the map is injective we
suppose [mg]W (M,S) = [m0g0]W (M,S), that is, (mg)−1m0g0 ∈ NM (S). Arguing
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as before, we deduce that g−1g0 ∈ M . This shows that w = w0 and so we get the
injectivity.

Remark 6.1.1. Here is another way to describe the map. For an element w ∈
W (G,A), using Lemma 5.0.1 choose an element x ∈ NG(S)(F ) ∩K whose image
in W̃ σ

K maps to w under the isomorphism W̃ σ
K →̃ W (G,A). Then the map sends

w to the coset [x]W (M,S).

Lemma 6.1.2. The above map induces a bijection

W (G,A) →̃ [W (G,S)/W (M,S)]σ.

Proof. First we prove the image [mg]W (M,S) is σ-invariant. This follows because
the element (mg)−1σ(m)g belongs to M , hence to NM (S).

Next we prove the surjectivity. Suppose x ∈ NG(S) projects to an element
in W (G,S) which represents a σ-fixed coset C in W (G,S)/W (M,S), that is,
x−1σ(x) ∈ M . Then the subtorus xAx−1 ⊂ S is defined over F . The inner auto-
morphism Int(x) : S → S, restricted to A gives an isomorphism Int(x) : A →̃ xAx−1

which is defined over F . It follows that xAx−1 is F -split. Since A and xAx−1 are
maximal F -split tori in S, they coincide. Thus x ∈ NG(A), and the image of x is
the coset C. �

Remark 6.1.3. If G is quasi-split over F , then M = T and we recover the well-
known result that W (G,A) = W (G,S)σ.

6.2. Proof of the decomposition. We keep the notation of the previous sub-
section. There is a commutative diagram of exact sequences with σ-equivariant
morphisms and injective vertical maps

0 // X∗(T )I
//

=

��

W̃M
//

��

W (M,S) //

��

0

0 // X∗(T )I
//
W̃

// W (G,S) // 0

(see [HR], Prop. 13). The canonical map W̃M\W̃ →W (M,S)\W (G,S) is bijective
and σ-equivariant, so we get

[W̃M\W̃ ]σ ∼= [W (M,S)\W (G,S)]σ.

Using the map W (G,A) ↪→ W̃ σ constructed in Lemma 5.0.1 we get a commutative
diagram

W (G,A) //

&&MMMMMMMMMMM W̃ σ
M\W̃ σ

��
(W̃M\W̃ )σ.

The commutativity of this diagram follows using Remark 6.1.1. Since the diagonal
arrow is a bijection by the above discussion, and the vertical arrow is obviously an
injection, it follows that all arrows in the diagram are bijections. The decomposition

W̃ σ = W̃ σ
M ·W (G,A)

follows. It is clear that W (G,A) normalizes W̃ σ
M . This completes the proof of

Lemma 3.0.1,(II) .
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7. End of proof of the Cartan decomposition

7.1. Invariants in the affine Weyl group of M .

Lemma 7.1.1. Let M again denote a minimal F -Levi subgroup, and let WM,aff

denote the affine Weyl group associated to M . Then W σ
M,aff = 1.

Proof. We identify WM,aff with the Iwahori-Weyl group NMsc(S
M
sc )(L)/TM

sc (L)1.
Let IMsc denote the Iwahori subgroup of Msc(L) corresponding to a σ-invariant
alcove aMsc in the apartment AMsc

L = X∗(SM
sc )R of B(Msc(L)) associated to the

torus SM
sc . By [HR], Remark 9, the set W σ

M,aff is in bijective correspondence with

IMsc(F )\Msc(F )/IMsc(F ).

Therefore it is enough to prove that Msc(F ) = IMsc(F ). But Msc(F ) = Msc(F )1 =
IMsc . (For the second equality, use Lemma 4.2.1 with G = Msc.) �

7.2. Conclusion of the proof of Theorem 1.0.3. We have fixed the σ-stable
alcove a and this determines the σ-stable alcove aM and the corresponding subgroup
ΩM ⊂ W̃M . There is a canonical σ-equivariant decomposition W̃M = WM,aff oΩM ,
so in view of the above lemma, we deduce that

W̃ σ
M = Ωσ

M .

This completes the proof of the last part, namely (III), of Lemma 3.0.1. Since the
Theorem 1.0.3 is a consequence of Lemma 3.0.1, we have proved Theorem 1.0.3. �

8. Characterization of special maximal compact subgroups

Let
vG : G(L) → X∗(Z(Ĝ))I/torsion

denote the homomorphism derived from the Kottwitz homomorphism

κG : G(L) → X∗(Z(Ĝ))I

in the obvious way. Denote its kernel by G(L)1 and let G(F )1 = G(L)1 ∩G(F ) (cf.
[BT2], 5.1.29). Note that if M is a minimal F -Levi subgroup of G, then M(F )1 is
the unique maximal compact open subgroup of M(F ), consistent with the notation
used in the introduction.

Let K := G◦vF
(OF ), the maximal parahoric subgroup of G(F ) corresponding to

vF . By [HR], Prop. 3 and Remark 9, we have the equality

K = G(F )1 ∩ Fix(a0).

Using the Claim from the proof of Lemma 4.1.1 in the case M = G, we derive
the equality

(8.0.1) K = G(F )1 ∩ Fix(vF ).

Our goal is to prove the analogous description of K̃.

Lemma 8.0.1. The special maximal compact subgroups of G(F ) are precisely the
subgroups of the form

(8.0.2) K̃ = G(F )1 ∩ Fix(vF ),

where vF ranges over the special vertices in the building B(Gad(F )).
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Proof. A compact subgroup of G(F ) is automatically contained in G(F )1. This
follows from the alternative description of G(L)1 as the intersection of the kernels
of the homomorphisms |χ| : G(L) → R>0, where χ ranges over L-rational characters
on G.

Thus, using [BT1], Cor. (4.4.1), every maximal compact subgroup K̃ of G(F )
(equiv., of G(F )1) is the stabilizer in G(F )1 of a well-defined facet in the building
B(Gder(F )). By definition, such a K̃ is special if and only if the facet it stabilizes
is a special vertex vF . In that case, we have K̃ = G(F )1 ∩ Fix(vF ).

To show the converse, we must check that G(F )1 ∩ Fix(vF ) is compact (the
argument above will then show it is (special) maximal compact). Recall K =
G◦vF

(OF ) is compact and is given by (8.0.1). Since G(F )1∩Fix(vF ) has finite index
in G(F )1∩Fix(vF ), and since the former is compact, so is the latter. This completes
the proof. �

Remark 8.0.2. Equation (8.0.1) can be generalized. Let aJ denote any σ-stable
alcove in B(G(L)). Then

G◦aJ
(OF ) = G(F )1 ∩ Fix(aσ

J).

However, if G◦aJ
is replaced with the “full-fixer” group scheme ĜaJ

(cf. [BT2], 4.6.28,
5.1.29), the corresponding statement

ĜaJ
(OF ) = G(F )1 ∩ Fix(aσ

J)

is false. Indeed, the right hand side, a general analogue of our K̃ above, can be
strictly larger than the left hand side. For example, consider the anisotropic group
G = D×/F× of Remark 11.1.3, and let aσ

J = vF , and aJ = a. Then the right hand
side is G(F ), but the left hand side is a subgroup of index n =

√
dimF (D), namely

O×
D/O

×
F .

9. Statement of the Satake isomorphism

In this section, let P = MN denote any F -rational parabolic subgroup of G with
unipotent radical N , which has M as a Levi factor.

9.1. Iwasawa decomposition. In light of Lemma 8.0.1, the following version of
the Iwasawa decomposition can be derived easily from similar statements in the
literature (cf. [BT1], Rem. (4.4.5) or Prop. (7.3.1)):

Proposition 9.1.1. There is an equality of sets

G(F ) = P (F ) · K̃(F ).

We need the variant of this where K̃(F ) is replaced by K(F ). It will be enough
to prove that

K̃(F ) = (K̃ ∩M(F )) ·K(F ).

Using (3.0.1) together with Lemma 3.0.1, we see that any element k̃ ∈ K̃(F ) satisfies

k̃ ∈ K(F )mK(F )

for some m ∈ Ωσ
M ⊂ M(F ). It follows that m ∈ K̃(F ), and then since K̃(F )

normalizes K(F ) (cf. e.g. Lemma 8.0.1), we see that k̃ ∈ mK(F ) as desired.
We have thus proved the first part of the following corollary.
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Corollary 9.1.2 (Iwasawa decomposition). There is an equality of sets

G(F ) = P (F ) ·K(F ).

Moreover, P (F ) ∩K(F ) = (M(F ) ∩K) · (N(F ) ∩K).

Proof. We need only show the second equality, which can be rewritten as

P (F ) ∩ G◦vF
(OF ) = (M(F ) ∩ G◦vF

(OF )) · (N(F ) ∩ G◦vF
(OF )).

This follows from [BT2], 5.2.4 (taking the set denoted by Ω there to be {vF }). �

9.2. Construction of the Satake transform. We will follow the approach taken
in [HKP], which treated the case of F -split groups.

Recall that HK := Cc(K(F )\G(F )/K(F )), the spherical Hecke algebra of K(F )-
bi-invariant compactly-supported functions on G(F ). The convolution is defined
using the Haar measure on G(F ) which gives K(F ) volume 1.

Set R := C[M(F )/M(F )1]. Since M(F )1 is the unique parahoric subgroup of
M(F ), this is just the Iwahori-Hecke algebra for M(F ). Let

M := Cc(M(F )1N(F )\G(F )/K(F )),

where the subscript “c” means we consider functions supported on finitely many
double cosets. Then M carries an obvious right convolution action under HK . It
also carries a left action by R given by normalized convolutions:

r · φ(m) :=
∫

M(F )

δ
1/2
P (m1) r(m1)φ(m−1

1 m) dm1.

Here dm1 is the Haar measure on M(F ) giving M(F )1 volume 1, and δP is the mod-
ular function on P (F ) given by the normalized absolute value of the determinant
of the adjoint action on Lie(N(F )). For m ∈M(F ) we have

δP (m) := |det(Ad(m) ; Lie(N(F )))|F .

The actions of R and HK on M commute, so that M is an (R,HK)-bimodule.

Lemma 9.2.1. The R-module M is free of rank 1, with canonical generator

v1 := char(M(F )1N(F )K(F )).

Proof. This follows directly from Corollary 9.1.2. �

Given f ∈ HK , let f∨ ∈ R denote the unique element satisfying the identity

(9.2.1) v1f = f∨v1.

It is obvious that

HK → R

f 7→ f∨

is a C-algebra homomorphism.
Evaluating both sides of (9.2.1) on m ∈ M(F ) and using the usual G = MNK

integration formula (see [Car]), we get the familiar expression

(9.2.2) f∨(m) = δ
−1/2
P (m)

∫
N(F )

f(nm) dn = δ
1/2
P (m)

∫
N(F )

f(mn) dn,

where dn gives N(F ) ∩K(F ) measure 1.
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10. The Satake transform is an isomorphism

10.1. Weyl group invariance. The first step is to prove that f∨ belongs to the
subring RW (G,A) of W (G,A)-invariants in R. Once this is proved, the functoriality
of the Kottwitz homomorphism

κM : M(F )/M(F )1 →̃ X∗(Z(M̂))σ
I

shows that f∨ ∈ C[X∗(Z(M̂))σ
I ]W (G,A), as well.

The argument is virtually the same as Cartier’s [Car]. Define a function on
m ∈M(F ) by

D(m) = |det(Ad(m)− 1 ; Lie G(F )/Lie M(F ))|1/2.

Then exactly as in loc. cit. one can prove the formula

(10.1.1) f∨(m) = D(m)
∫

G/A

f(gmg−1)
dg

da

on the Zariski-dense subset of elements m ∈ M(F ) which are regular semi-simple
as elements in G. Here dg (resp. da) is the Haar measure on G(F ) (resp. A(F ))
which gives K (resp. K ∩ A(F )) volume 1. By Lemma 3.0.1 (I), every element
w ∈ W (G,A) can be represented by an x ∈ NG(A) ∩ K. Clearly D(m) =
D(xmx−1). Since the measure on G/A is invariant under conjugation by x, we
see as in loc. cit. that the integral in (10.1.1) is also invariant under m 7→ xmx−1.
Thus (10.1.1) is similarly invariant, as desired.

Remark 10.1.1. As in the case of H
K̃

, equation (10.1.1) also shows that f∨ is
independent of the choice of F -rational parabolic subgroup P which contains M as
a Levi factor.

10.2. Upper triangularity. The second step is to show that with respect to nat-
ural C-bases of HK and RW (G,A), the map f 7→ f∨ is “invertible upper triangular”,
hence is an isomorphism of algebras.

The set W̃ σ
K\W̃ σ/W̃ σ

K
∼= W (G,A)\Ωσ

M provides a natural C-basis for HK and
for RW (G,A). Recall that W̃ has a natural structure of a quasi-Coxeter group

W̃ = Waff o Ω

(cf. [HR], Lemma 14). We extend the Bruhat order ≤ and the length function `

from Waff to W̃ in the usual way (cf. loc. cit.). Given x ∈ W̃ , denote by x̃ ∈ W̃

the unique minimal element in W̃KxW̃K . (Note that W̃K is finite and that the
usual theory of such minimal elements for Coxeter groups goes over to handle
quasi-Coxeter groups.)

By [HR], Remark 9, we may regard W̃ σ
K\W̃ σ/W̃ σ

K as a subset (the σ-invariant
elements) in W̃K\W̃/W̃K . For y, y′ ∈ W (G,A)\Ωσ

M resp. x, x′ ∈ W̃ σ
K\W̃ σ/W̃ σ

K ,
we define the partial order � by requiring

y � y′ ⇔ ỹ ≤ ỹ′, resp.

x � x′ ⇔ x̃ ≤ x̃′.

The set W (G,A)\Ωσ
M is countable and every element y has only finitely many

predecessors with respect to the partial order �. Therefore there is a total ordering
y1, y2, . . . on this set which is compatible with �, meaning that yi � yj only if
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i ≤ j. Similar remarks apply to the partially ordered set W̃ σ
K\W̃ σ/W̃ σ

K , and we get
an analogous total ordering x1, x2, . . . for it.

We claim that the matrix for f 7→ f∨ in terms of the bases {yi}∞1 and {xi}∞1 is
upper triangular and invertible. The upper triangularity is the content of the next
lemma.

Lemma 10.2.1. Suppose x ∈ W̃ σ and y ∈ Ωσ
M and that

(10.2.1) N(F )yK(F ) ∩K(F )xK(F ) 6= ∅.

Then ỹ ≤ x̃.

Proof. Let I denote the Iwahori subgroup of G(L) associated to the σ-stable alcove
a, as defined earlier. We shall need two BN-pair relations. The first is the relation

(10.2.2) K(L) = I(L) W̃K I(L).

This follows easily using [HR], Prop. 8. The second is the relation

(10.2.3) I(L)w I(L)w′ I(L) ⊆
∐

w′′≤w′

I(L)ww′′ I(L).

This relation per se does not appear in the literature, but it follows easily from
the BN-pair relations established in [BT2], 5.2.12 (cf. [HR], paragraph following
Lemma 17).

Using (10.2.2) and (10.2.3) we see that (10.2.1) implies that

(10.2.4) N(L)yI(L) ∩ I(L)x′ I(L) 6= ∅

for some x′ ∈ W̃KxW̃K . Write

(10.2.5) ny = i x′ i′

for n ∈ N(L), and i, i′ ∈ I(L). Choose a cocharacter λ ∈ X∗(A) such that
$λn$−λ ∈ I(L). Then multiplying (10.2.5) by $λ we see that

I(L)$λy I(L) ⊆ I(L)$λ I(L)x′ I(L).

Using (10.2.3) again we deduce that

I(L)$λy I(L) = I(L)$λx′′ I(L)

and hence y = x′′ for some x′′ ∈ W̃ with x′′ ≤ x′. Thus ỹ ≤ x′. A standard
argument then shows that ỹ ≤ x̃, which is what we wanted to prove. �

Finally, the invertibility follows from the obvious fact that

N(F )xK(F ) ∩K(F )xK(F ) 6= ∅.

This completes the proof that f 7→ f∨ is an isomorphism. �

11. The structure of ΛM

It is clear that ΛM = X∗(Z(M̂))σ
I is a finitely-generated abelian group. In this

section we make it more concrete in various situations.
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11.1. General results. As before, in this subsection T denotes the centralizer in
G of the torus S. Recall that we can assume S is defined over F , and so T is also
defined over F . Recall also that TM

sc denotes the pull-back of T via Msc →M .

Lemma 11.1.1. There is an embedding X∗(T )σ
I ↪→ ΛM whose cokernel is isomor-

phic to the finite abelian group ker[X∗(TM
sc )Γ → X∗(T )Γ].

Proof. Use the long exact sequence for Hi(〈σ〉,−) associated to the short exact
sequence

0 // X∗(TM
sc )I

// X∗(T )I
// X∗(Z(M̂))I

// 0.

(For a discussion of this short exact sequence, see [HR], proof of Prop. 13.) Note
that X∗(TM

sc )σ
I ⊂ W σ

M,aff = 1 (cf. Lemma 7.1.1). Also, X∗(TM
sc )Γ is finite because

Msc is anisotropic over F . The lemma follows easily using these remarks. �

Corollary 11.1.2. (a) If G is quasi-split over F , then ΛM = X∗(T )σ
I .

(b) If G is split over L, then ΛM fits into the exact sequence

1 → X∗(A) → ΛM → ker[X∗(TM
sc )σ → X∗(T )σ] → 0.

(c) If G is unramified over F , then ΛM = X∗(A).

Proof. Part (a). Since G is quasi-split over F , we have M = T , and the desired
formula follows directly from the definition of ΛM .

Part (b) follows immediately from Lemma 11.1.1.
Part (c) follows as a special case of either (a) or (b). Part (c) was known

previously (cf. [Bo], 9.5). �

Remark 11.1.3. If G is semi-simple and anisotropic, then ΛM is finite. There are
examples, namely G = D×/F× for D a central simple division algebra over F with
dimF (D) > 1, where ΛM 6= 0.

At the opposite extreme, let E/F denote a finite totally ramified extension.
Consider the “diagonal” embedding Gm ↪→ RE/F Gm and set G = (RE/F Gm)/Gm.
Then ΛG is torsion, and non-zero if E 6= F .

The next proposition tells us how to measure the difference between the sub-
groups K and K̃ of G(F ) attached to a special vertex vF . This will complete
the proof of Theorem 1.0.1. For an abelian group H let Htor denote its torsion
subgroup.

Proposition 11.1.4. There is a set-theoretic inclusion Ωσ
M,tor ⊂ K̃ which induces

an isomorphism of groups
ΛM,tor →̃ K̃/K.

Proof. Clearly Ωσ
M,tor lies in M(F )1 hence in G(F )1. Also, every element of M(F )1

acts trivially on the apartment Aσ
L, and in particular, fixes aσ

0 . This shows that
Ωσ

M,tor ⊂ FixG(F )(vF ) ∩G(F )1 = K̃ (cf. Lemma 8.0.1).
We claim the induced homomorphism Ωσ

M,tor → K̃/K is an isomorphism. It is
injective because

ΩM ∩K = ΩM ∩M(F ) ∩K = ΩM ∩M(F )1 = {1}

(cf. Lemma 4.2.1).
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Let us prove surjectivity. Any coset in K̃/K can be represented by an element
x ∈ Ωσ

M . We need to show this element is torsion. Let r be such that xr ∈ K. But
then xr ∈ Ωσ

M ∩K = {1} (see above), and we are done. �

Corollary 11.1.5. If ML is L-split group and Mder = Msc, then ΛM is torsion-
free, and for every special vertex vF , we have K̃vF

= KvF
.

Proof. We have

(11.1.1) X∗(Z(M̂))I = X∗(Z(M̂))

and the latter is torsion free since Mder = Msc is equivalent to Z(M̂) being con-
nected. �

Remark 11.1.6. The hypotheses on M hold if Gder = Gsc and GL is an L-split
group.

Corollary 11.1.7. If G = Gsc, then K̃ = K and ΛM is torsion-free.

Proof. Observe that since Z(Ĝ) = 1 we have G(F )1 = G(F )1 = G(F ). Then use
(8.0.1) and (8.0.2). �

Of course, this corollary was already known (cf. [BT2], 4.6.32).

11.2. Passing to inner forms. It is of interest to describe ΛM explicitly in terms
of an appropriate maximal torus T̂ in Ĝ. For quasi-split groups this has been done
in Corollary 11.1.2, (a), which proves that ΛM = X∗(T̂ )σ

I = X∗(T̂ I)σ. Here we
study the effect of passing to an inner form of a quasi-split group.

Thus, we fix a connected reductive group G∗ which is quasi-split over F . Recall
that an inner form of G∗ is a pair (G,Ψ) consisting of a connected reductive F -
group G and a Γ-stable G∗ad(F s)-orbit Ψ of F s-isomorphisms ψ : G → G∗. The
set of isomorphism classes of inner forms of G∗ corresponds bijectively to the set
H1(F,G∗ad), by the rule which sends (G,Ψ) to the 1-cocycle τ 7→ ψ ◦ τ(ψ)−1 for
any ψ ∈ Ψ (cf. [Ko97], 5.2).

Now assume (G,Ψ) is an inner form of G∗. Denote the action of τ ∈ Γ on G(F s)
(resp. G∗(F s)) by τ (resp. τ∗).

Let A be a maximal F -split torus in G, and let S denote a maximal F un-split
torus in G which is defined over F and contains A. Such a torus S exists by [BT2],
5.1.12, noting that that any F -torus which is split over L is already split over F un.
Let T = CG(S) and M = CG(A). Then T is a maximal torus of G, since the group
GFun is quasi-split. Let A∗, S∗, T ∗ have the corresponding meaning for the group
G∗, and assume that T ∗ is contained in an F -rational Borel subgroup B∗ = T ∗U∗

of G∗. Of course T ∗ = CG∗(A∗) since G∗ is quasi-split over F .
Let P = MN be an F -rational parabolic subgroup of G having Levi factor M

and unipotent radical N . Let P ∗ be the unique standard F -rational parabolic
subgroup of G∗ which is G∗(F s)-conjugate to ψ(P ) for all ψ ∈ Ψ (cf. [Bo], section
3). Let M∗ denote the unique Levi factor of P ∗ which contains T ∗. Let ΨM denote
the set of ψ ∈ Ψ such that ψ(P ) = P ∗ and ψ(M) = M∗. Then ΨM is a non-empty
Γ-stable M∗

ad(F s)-orbit of F s-isomorphisms M → M∗; hence M is an inner form
of the F -quasi-split group M∗.

It is clear that GFun and G∗Fun are isomorphic, since they are inner forms of each
other and are both quasi-split (cf. [Tits], 1.10.3). In fact it is easy to see that any
inner twisting GFun →̃ G∗Fun over F un is G∗(F s)-conjugate to an isomorphism of
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F un-groups. For this a key fact is that the image T ∗ad of T ∗ in G∗ad,Fun is an induced
F un-torus. The same remarks obviously apply to MFun and M∗

Fun . Hence we may
choose ψ0 ∈ ΨM such that ψ0 : M → M∗ is an F un-isomorphism and ψ0(S) = S∗

(and thus also ψ0(T ) = T ∗). Since ψ0 restricted to A is defined over F , we see that
ψ0(A) is an F -split subtorus of T ∗ and hence ψ0(A) ⊆ A∗.

Let σ̃ denote any lift in Γ of the Frobenius element σ ∈ Gal(F un/F ). We may
write

ψ0 ◦ σ̃(ψ0)−1 = ψ0 ◦ σ(ψ0)−1 = Int(m∗
σ)

for an element m∗
σ ∈ NM∗(S∗)(F s) whose image in M∗

ad(F s) is well-defined. As
operators on X∗(T ∗) = X∗(T̂ ∗), we may write

(11.2.1) ψ0 ◦ σ(ψ0)−1 = w∗σ

for a well-defined element w∗σ ∈W (M∗, S∗)(F un). Denote by wσ the preimage un-
der the isomorphism ψ0 : W (M,S)(F un) →̃ W (M∗, S∗)(F un) of w∗σ. Then (11.2.1)
translates into the equality

(11.2.2) σ ◦ ψ−1
0 ◦ (σ∗)−1 ◦ ψ0 = wσ

of operators on X∗(T ) = X∗(T̂ ). In defining wσ ∈ W (M,S), we fixed the objects
A and S (needed to specify the ambient group W (M,S)) and along the way we
also chose several additional objects: P , A∗, S∗, B∗, and an element ψ0 ∈ ΨM such
that ψ0(S) = S∗ and ψ0 : M → M∗ is F un-rational. It is straightforward to check
that the element wσ ∈W (M,S) is independent of all of these additional choices.

11.3. Inner forms of split groups. In this subsection we assume G∗ is F -split.
Then A∗ = S∗ = T ∗, and GFun and MFun are split groups. In particular, the
relative Weyl groupW (M∗, S∗) coincides with the absolute Weyl groupW (M∗, T ∗).
Using ψ0 as above, we may regard wσ as an element of W (M,S) = W (M,T )I =
W (M̂, T̂ )I .

For the next lemma, we need to recall the notion of cuspidal elements of Weyl
groups. Let (W,S) be any Coxeter group with a finite set S of simple reflections.
We say w ∈W is cuspidal if every conjugate of w is elliptic, that is, every conjugate
w′ has the property that any reduced expression for w′ contains every element of
S. Note that the identity element of W is cuspidal if and only if S = ∅, in which
case W itself is trivial.

Lemma 11.3.1. (a) The element wσ is a cuspidal element of the absolute
Weyl group W (M,T ) of M .

(b) The group M is of type A and the element wσ is a Coxeter element of
W (M,T ).

(c) We have the equality Z(M̂) = T̂wσ .

Proof. Part (a). We may assumeM 6= T and henceW (M,T ) is not trivial. Suppose
the assertion is false. Then there is a notion of simple positive root for M,T and a
corresponding Coxeter group structure on W (M,T ), for which wσ is not an elliptic
element. Let si denote a simple reflection in W (M,T ) which does not appear
in a reduced expression for wσ. Then the corresponding fundamental coweight
λi ∈ X∗(T/Z(M)) for Mad is fixed by wσ. It is also fixed by ψ−1

0 ◦ (σ∗)−1 ◦ ψ0.
Thus by (11.2.2) λi is fixed by σ, and λi(Gm) is an F -split torus in Mad. This
contradicts the fact that Mad is anisotropic over F .
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Part (b). Since every anisotropic F -group is type A (cf. Kneser [Kn] and Bruhat-
Tits [BT3], 4.3), the group M is type A. For type A groups, every cuspidal element
in the Weyl group is Coxeter, as may be seen using cycle decompositions of permu-
tations. Thus, the cuspidal element wσ is a Coxeter element of W (M,T ).

Part (c). It is enough to prove the following statement: if G is a type A connected
reductive complex group with maximal torus T , and if w ∈ W (G, T ) is a Coxeter
element, then Z(G) = T w. First, if G = PGLn, a simple computation shows
that T w = 1 = Z(G). Since Gad is a product of projective linear groups and w
corresponds to a product of Coxeter elements, this also handles the case of adjoint
groups. In the general case, note that an element t ∈ T w maps to (Tad)w = 1 in
Gad, hence t ∈ ker(G → Gad) = Z(G). �

Corollary 11.3.2. If G is an inner form of an F -split group, then

ΛM = X∗(Z(M̂)) = X∗(T̂ σ) = X∗(T )σ.

Proof. The element σ∗ acts trivially on Z(M̂) ↪→ T̂ ∗, since T ∗ is F -split. Moreover
wσ ∈ W (M,T ) acts trivially on X∗(Z(M̂)). Then using (11.2.2) it follows that σ
acts trivially on X∗(Z(M̂))I = X∗(Z(M̂)). This proves the first equality.

The second equality follows similarly using Lemma 11.3.1,(c), and the third
equality is apparent. �

12. The transfer homomorphism

Now we return to the conventions and notation of subsection 11.2. Let AS
L

(resp. AS∗

L ) denote the apartment of B(G(L)) (resp. B(G∗(L))) corresponding to
S (resp. S∗). The twisting ψ0 gives an isomorphism X∗(S)R → X∗(S∗)R of the
real vector spaces underlying these apartments. Let K (resp. K∗) denote a special
maximal parahoric subgroup of G(F ) (resp. G∗(F )) corresponding to a special
vertex in (AS

L)σ (resp. (AS∗

L )σ∗
). Then our goal is to define a canonical algebra

homomorphism
t : HK∗(G∗) → HK(G).

We expect t will play a role in the study of Shimura varieties with parahoric level
structure and in some related problems in p-adic harmonic analysis. These issues
will be addressed on another occasion.

12.1. Relating the relative Weyl groups for G∗ and G.

Proposition 12.1.1. Any twist ψ0 ∈ ΨM induces a map

W (G,A) →W (G∗, A∗)/W (M∗, A∗).

Proof. For w ∈W (G,A), choose a lift n ∈ NG(S)σ (cf. Lemma 5.0.1). Write

σ ◦ ψ−1
0 ◦ (σ∗)−1 ◦ ψ0 = Int(mσ)

for an element mσ ∈ NM (S)(F s). Set m∗ = ψ0(σ−1(mσ)) ∈ NM∗(S∗)(F s). Using
σ(n) = n and the fact that ψ0(n) normalizes M∗, we obtain

(σ∗)−1(ψ0(n)) = m∗ ψ0(n)m−1
∗

= ψ0(n) · (ψ0(n)−1m∗ψ0(n)m−1
∗ )

∈ ψ0(n)NM∗(S∗).
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Thus n 7→ ψ0(n) induces a well-defined map

W (G,A) →
(
W (G∗, S∗)/W (M∗, S∗)

)σ∗

.

The natural map W (G∗, S∗)σ∗ →
(
W (G∗, S∗)/W (M∗, S∗)

)σ∗

is surjective. In-
deed, the choice of an F -rational Borel subgroup of G∗ containing T ∗ gives us
a notion of length on W (G∗, S∗) which is preserved by σ∗, so that the minimal-
length representatives of σ∗-fixed cosets in W (G∗, S∗)/W (M∗, S∗) are fixed by σ∗.
It follows that

W (G∗, S∗)σ∗
/W (M∗, S∗)σ∗

=
(
W (G∗, S∗)/W (M∗, S∗)

)σ∗

.

Thus, we have a well-defined map

W (G,A) →W (G∗, S∗)σ∗
/W (M∗, S∗)σ∗

= W (G∗, A∗)/W (M∗, A∗)

(cf. Remark 6.1.3). �

12.2. Definition of t : HK∗(G∗) → HK(G). The isomorphism

ψ̂0 : Z(M̂∗) →̃ Z(M̂)

is Galois-equivariant. Combined with the canonical inclusion Z(M̂∗) ↪→ T̂ ∗ we see
that ψ̂0 induces a homomorphism

(12.2.1) ψ0 : X∗(T̂ ∗)σ∗

I → X∗(Z(M̂))σ
I .

Since W (M∗, A∗) induces the trivial action on Z(M̂∗), it follows using Propo-
sition 12.1.1 that (12.2.1) is equivariant with respect to the map W (G,A) →
W (G∗, A∗)/W (M∗, A∗), in an obvious sense. We thus get an algebra homomor-
phism

(12.2.2) ψ0 : C[X∗(T̂ ∗)σ∗

I ]W (G∗,A∗) → C[X∗(Z(M̂))σ
I ]W (G,A).

Since ΨM is a torsor forM∗
ad, one can check that this homomorphism is independent

of the choice of ψ0 in ΨM . In fact it depends only on the choice of A and A∗.
Therefore it makes sense to denote it by tA∗,A in what follows. It is easy to check
that this homomorphism is surjective when G∗ is split over F .

Definition 12.2.1. Fix A and A∗ as above. Define t : HK∗(G∗) → HK(G) to be
the unique homomorphism making the following diagram commute

HK∗(G∗) t //

o
��

HK(G)

o
��

C[X∗(T̂ ∗)σ∗

I ]W (G∗,A∗)
tA∗,A // C[X∗(Z(M̂))σ

I ]W (G,A),

where the vertical arrows are the Satake isomorphisms.

Obviously t depends on K and K∗. It is easy to see that t is independent of all
other choices used in its construction. Also, if G∗ is split over F , t is surjective.
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12.3. Compatibilities with constant term homomorphisms. Let A, A∗, K,
and K∗ be fixed as above. Let H be a semi-standard F -Levi subgroup of G; this
means that H = CG(AH) for some subtorus AH ⊆ A. Let H∗ be a semi-standard
F -Levi subgroup of G∗, so that H∗ = CG∗(A∗H∗) for a subtorus A∗H∗ ⊂ A∗. We
have M ⊆ H and T ∗ ⊆ H∗. Let us suppose that some inner twist G→ G∗ restricts
to give an inner twist H → H∗.

For example, for any ψ0 ∈ ΨM as above, we could take AH to be any subtorus
of A and set A∗H∗ = ψ0(AH) (recalling that ψ0(A) ⊆ A∗).

Choose any F -rational parabolic subgroup PH = HNH of G with unipotent
radical NH which contains H as a Levi factor. Recall the constant term map
cGH : HK(G) → HH∩K(H), which is defined by

(12.3.1) cGH(f)(h) = δ
1/2
PH

(h)
∫

NH(F )

f(hn) dn,

for h ∈ H(F ), where the Haar measure dn on NH(F ) gives NH(F )∩K measure 1.
We have a commutative diagram

(12.3.2) HK(G) ∼ //

cG
H

��

C[ΛM ]W (G,A)

��
HH∩K(H) ∼ // C[ΛM ]W (H,A),

where the horizontal arrows are the Satake isomorphisms, and the right vertical
arrow is the inclusion homomorphism. It follows that cGH is an injective algebra
homomorphism which is independent of the choice of F -rational parabolic subgroup
PH ⊆ G which contains H as a Levi factor.

The following proposition is proved using (12.3.2) and the definitions.

Proposition 12.3.1. The following diagram commutes:

HK∗(G∗) t //

cG∗
H∗

��

HK(G)

cG
M

��
HH∗∩K∗(H∗) t // HH∩K(H).

�
Taking H = M , the diagram shows that in order to compute t, it is enough to

compute it in the case where Gad is anisotropic. In that case, if f ∈ HK∗(G∗), the
function t(f) is given by summing f over the fibers of the Kottwitz homomorphism
kG∗(F ).
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[Bou] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5, et 6, Masson, 1981.
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