
The Saturation Attack – A Bait for Twofish

Stefan Lucks�

Theoretische Informatik
University of Mannheim, 68131 Mannheim, Germany

lucks@th.informatik.uni-mannheim.de

Abstract. This paper introduces the notion of a “saturation attack”.
Consider a permutation p over w-bit words. If p is applied to all 2w dis-
joint words, the set of outputs is exactly the same as the set of inputs. A
saturation attack exploits this fact. The current paper applies saturation
attacks on reduced-round variants of the Twofish block cipher with up
to seven rounds with full whitening or eight rounds without whitening
at the end (i.e., half of the cipher). The attacks take up to 2127 chosen
plaintexts (half of the codebook) and are 2–4 times faster than exhaustive
search. The attacks are based on key-independent distinguishers for up
to six rounds of Twofish, making extensive use of saturation properties.

1 Introduction

Modern b-bit block ciphers often use permutations p : {0, 1}w → {0, 1}w with
w < b as building blocks. E.g., p may be an S-box, a round function, or a group
operation where one of the operands is constant. The constant may be unknown
to the cryptanalyst, e.g. as a part of the (round) key. We regard the input for p
as a data channel. For the cryptanalyst, p may be known or unknown, and the
cryptanalysts may be unable to determine the input for p. A “saturation attack”
is based on the idea of choosing a set of k ∗ 2w plaintexts such that each of the
2w inputs for p occurs exactly k times. In this case, we say that the data channel
into p is “saturated”. A saturation attack exploits the fact that if the input for
p is saturated, then the output from p is saturated, too.

The name “saturation attack” is new, but such attacks have been studied
before. E.g., the “Square attack” is a saturation attack, developed for the block
cipher Square [4]. It works as well for other Square-like ciphers such as the AES
candidate Crypton [11,12] and the finalist Rijndael [5], which has recently been
chosen as the AES. All these ciphers are 128-bit block ciphers with 8-bit data
channels. The attack starts with a set of 28 plaintexts with one saturated channel.
The other 15 channels are constant. After two rounds, all 16 data channels are
saturated. After three rounds, the saturation property is likely to have been lost,
but the sum of all values in a data channel is zero. This allows to distinguish the
three-round output from random. The best currently known attacks on Crypton
[3] and Rijndael/AES [7] are extensions of the Square attack.
� Supported by German Science Foundation (DFG) grant KR1521/3-2.

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 1–15, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

2 S. Lucks

“Miss in the middle” attacks [1] are rudimentarily related to saturation at-
tacks, exploiting the fact that given two inputs x �= y for a permutation p one
gets two outputs p(x) and p(y) with p(x) �= p(y). Also related is the attack on
“Ladder DES”, based on choosing c∗232 distinct inputs for a 64-bit data channel
and checking if all the outputs are distinct [2].

When using “higher-order differentials” [9], one chooses a certain complete
set of plaintexts and, after some rounds of the cipher, predicts a key-independent
property with probability one. This resembles the current approach.

This paper shows that saturation attacks are a useful tool for ciphers which
are definitely not Square-like. We concentrate on the AES finalist Twofish [15].
So far, the authors of Twofish published some preliminary cryptanalytic results
[16,6] themselves, a key separation property has been identified for Twofish [13,
14,8], and some observations on the generation of the Twofish S-Boxes and on
differential cryptanalysis have been made [10].

The motivation for this research has been twofold. First, even though Twofish
has not been chosen as the AES, it is (and probably will continue to be) used
in practice. E.g., recent versions of popular email encryption programs, namely
PGP and GnuPG [17], implement Twofish. Second, the study of saturation at-
tacks appears to be of independent interest in cryptanalysis.

1.1 Notation

We will use the notion of a “multiset” to describe a w-bit data channel. A
multiset with k ∗ 2w entries is “saturated” if every value in {0, 1}w is found
exactly k times in the multiset. If k = 1, a saturated multiset is the set {0, 1}w.

In the context of this paper, a data channel is always 32 bits wide, and
we call a value in a data channel a “word”. We interchangeably view a word
x as a 32-bit string x = (x31, . . . , x0) ∈ {0, 1}32 and as an unsigned integer
x =

∑
i xi ∗ 2i. The addition of values in a data channel is thus addition mod

232. We write “x<<<b” for the rotation of the word x by b bits to the left, and
“x>>>b” for rotation to the right. E.g. (x<<<b)>>>b = x for all x and b, and
(x31, x30, . . . , x1, x0)<<<1 = (x30, . . . , x1, x0, x31). LSB(x) = x mod 2 denotes the
“least significant bit (LSB)” of x, and LSB1(x) = LSB(xdiv 2) denotes the
2nd-least significant bit. Similarly, we define the “most significant bit (MSB)”:
MSB(x) = LSB(x<<<1). If the multiset M denotes a data channel, the bits at
the LSB-position of M are “balanced” if

⊕
m∈M LSB(m) = 0. It turns out to

be useful to also consider “semi-saturated” data channels. The multiset M is
semi-saturated if one bit of M is constant and each of the 231 remaining values
for M appears exactly 2k times in M .

2 A Description of Twofish

In this section, we describe the structure of Twofish. We omit many details,
concentrating on the properties of Twofish which are relevant for our attack.

The Saturation Attack – A Bait for Twofish 3

2.1 The Main Operations of Twofish

Twofish is based on the following operations:

Whitening. Decompose a 128-bit text block into words a0, . . . , a3 ∈ {0, 1}32.
The Twofish whitening operation is the XOR of four key words Kj+δ ∈
{0, 1}32 to the words aj : bj := aj ⊕Kj+δ for j ∈ {0, . . . , 3}, see Figure 1.

❦ ❦ ❦❦
❄ ❄ ❄ ❄

❄ ❄ ❄ ❄

✲ ✛ ✲ ✛

a0 a1 a2 a3

b0 b1 b2 b3

K2+δK0+δ K1+δ K3+δ

Fig. 1. The Twofish Whitening Operation.

Application of the round function. To compute the i-th round function Fi,
use a pair (a, b) ∈ ({0, 1}32)2 as the input and and compute a pair (a′, b′) =
Fi(a, b) ∈ ({0, 1}32)2. The round function Fi is defined by two round keys
K2i+2 and K2i+3 and two functions G1, G2 : {0, 1}32 → {0, 1}32, see Fig. 2:

a′ := G1(a) +G2(b) +K2i+2, and b′ := G1(a) + 2G2(b) +K2i+3,

The functions G1 and G2 are key-dependent, but do not depend on i. Given
the round function’s results a′ and b′, the remaining two words c, d ∈ {0, 1}32

come into play:

x := (a′ ⊕ c)>>>1, and y := b′ ⊕ (d<<<1).

Except for the rotate operations, Twofish works like a Feistel cipher.

❦

❦

❄ ❄

✲ ✲

✲ ✲

✲

❄

✻

❄

❄

❄

❄

❄

❄

✲

✻ ❄
✲

✲

a b c d

a b yx

K2i+2

K2i+3

G

G

1

2

<<<1

>>>1

Round Function Fi

Fig. 2. The Application of the Twofish Round Function.

Our attack greatly depends on the functions G1 and G2 to be permutations
over {0, 1}32. Actually, G2(x) = G1(x<<<8). Apart from that, the internal
structure of G1 and G2 is not relevant for us.

The swap. Replace (a, b, c, d) ∈ ({0, 1}32)4 by (c, d, a, b). See Figure 3.

4 S. Lucks

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
❄

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
❄❄

✭✭✭✭✭✭✭

❄
✭✭✭✭✭✭

✭✭✭✭✭✭
✭✭✭✭✭✭✭

a b c d

c d a b

Fig. 3. The Twofish Swap.

2.2 The Basic Structure of Twofish

Twofish uses a 16-round Feistel structure with two additional one-bit rotates in
each round, pre-whitening before the first round and post-whitening after the
last round. Twofish works as follows:

1. Generate the key-dependent S-boxes, which define the functions G1 and G2.
2. Generate four subkey words K0, . . .K3 ∈ {0, 1}32 for the pre-whitening, two

subkey words K2i+2,K2i+3 for each round and another four subkey words
K36, . . . , K39 for the post-whitening.

3. Given a plaintext block, do the pre-whitening.
4. For i := 1 to 15 do: (a) Apply the round function Fi.

(b) Do the swap.
5. Apply the last round function F16 (no swap in the final round).
6. Do the post-whitening.

The first two of the above steps constitute the “key schedule” described
below. Note that we can obviously generalise the Twofish structure to r rounds,
where the loop in step 4 is iterated r − 1 times.

2.3 The Twofish Key Schedule

A Twofish key consists of 128, 192, or 256 bit1: 2k words M0, . . . ,M2k−1 ∈
{0, 1}32 with k ∈ {2, 3, 4}, organised as two vectors Me = (M0,M2, . . . ,M2k−2)
andMo = (M1,M3, . . . ,M2k−1). A third vector S = (S0, S1, . . . , Sk−1) is derived
from Me and Mo by using techniques from the theory of Reed-Solomon codes.
Given any two of the three vectors Me, Mo and S, the third one is easy to find.

With these three vectors, the “three halves of a Twofish key”, we can do the
first two steps of the structure described above:

1. The vector S determines the internal S-boxes and thus the functions G1 and
G2. S is a k-word vector, while the key consists of 2k words or 64k bit.

2. The 40 subkey words K0, . . . , K39 are defined by using functions he and ho

and by doing 20 “subkey generation” steps (j ∈ {0, . . . , 19}):
Aj := he(j,Me); K2j := Aj +Bj ;
Bj := ho(j,Mo); K2j+1 := (Aj + 2Bj)<<<9.

1 These are the three generic key lengths of Twofish. Other keys of less than 256 bit
are padded to the next generic length by appending zeros.

The Saturation Attack – A Bait for Twofish 5

3 Distinguishers for Twofish

Given a well-chosen set of plaintexts, we describe how to distinguish reduced-
round versions of Twofish from random permutations.

3.1 A Four-Round Distinguisher

Consider 232 plaintexts (α0, α1, A, α3), where α0, α1, and α3 are three arbitrary
32-bit constants and A is the set of all 232 words. The pre-whitening changes
this set of texts to (β0, β1, A, β3) with new constants βi.

Given this set of texts as the input for the first round, the input for the
round function F1 is constant: (β0, β1). By (γ0, γ1) we denote the output of F1,
which then generates the texts (β0, β1, A, γ3) with γ3 = (β3<<<1)⊕γ1. (Note that
A = {ai} = {(ai ⊕ γ0)>>>1}.) The swap changes these texts to (A, γ3, β0, β1).

In the second round, the 232 inputs for the round function are (A, γ3). The
round function generates the pairs (bi, ci) with bi = G1(ai)+G2(γ3)+K6 and ci =
G1(ai)+2G2(γ3)+K7 for ai ∈ A. The sets B = {bi} and C = {ci} are saturated,
just like A. Applying the round function here means XORing the constant β0
to the values of B, followed by a rotation, and XORing β1<<<1 to C. Neither
operation changes the saturated sets B and C. We get 232 texts (A, γ3, B,C),
where A, B, and C are saturated. By the swap, we get texts (B,C,A, γ3).

The 232 inputs for the third round function are of the form (B,C) with
saturated B and C. Since bothG1 andG2 are permutations,G1(bi) �= G1(bj) and
G2(ci) �= G2(cj) for bi, bj ∈ B, ci, cj ∈ C, and i �= j. Let di = G1(bi)+G2(ci)+K8
and ei = G1(bi)+2G2(ci)+K9. The 232 outputs of the round function are of the
form (D,E), with the multisets D = {di|0 ≤ i < 232} and E = {ei|0 ≤ i < 232}.
Neither D nor E is likely to be saturated. However, we are still able to observe
a weaker property: Since

∑
bi∈B bi =

∑
ci∈C ci =

∑
0≤i<232 i ≡ 231 mod 232:

∑

0≤i<232

di ≡ 231 + 231 + 232 ∗K8 ≡ 0 (mod 232),

∑

0≤i<232

ei ≡ 231 + 2 ∗ 231 + 232 ∗K9 ≡ 231 (mod 232),

thus
∑
di ≡ ∑

ei ≡ 0 (mod 2) – i.e., the LSBs of D and E are balanced.
Applying the round function means to evaluate 232 pairs (fi, gi) with fi =

f ′
i>>>1, f

′
i = ai ⊕ di, and gi = (γ3<<<1) ⊕ ei. Define the multisets F = {fi},

F ′ = {f ′
i}, and G = {gi}. We observe: The bits at the LSB-positions of both F ′

and G are balanced, and, due to the rotate, the bits at the MSB-position of F
are balanced. Hence, the third round generates 232 texts of the form (B,C, F,G),
which are then swapped to (F,G,B,C).

The multisets (F,G) of inputs for the fourth round function F4 are balanced.
We write (?, ?) for the outputs. Applying F4 gives us 232 texts (F,G, ?, ?). After
the swap, we get (?, ?, F,G), where one bit in each F and G is balanced.

6 S. Lucks

Figure 4 describes graphically, how the distinguisher works. Having chosen
232 plaintexts, we can check the balancedness of the ciphertext bits at the two
positions determined by the MSB of F and the LSB of G. Whatever the keys are,
four rounds of Twofish always pass this test – even the post-whitening cannot
destroy the balancedness. But a random permutation only passes this test with
about a 25% probability.

❢ ❢ ❢❢

❢
❢

❢
❢

❢
❢

❢
❢

✘✘❄❄✘
✘✘

❄

❄

✘✘✘✘✘

❄

❄
✘✘❄

✘✘✘✘✘

❄✘
✘✘

❄ ❄ ❄ ❄

❄ ❄ ❄ ❄

✲
✲✲

✲ ❄

❄
❄❄

✲
✲

❄ ❄

❄

❄

❄

❄

❄❄

✲
✲

❄ ❄
❄

❄

✘✘✘✘✘

✲
✲

❄

❄

❄

❄

❄❄

✲
✲

❄ ❄

✲
✲ ❄

❄

❄

❄

❄❄

✲
✲

✘✘❄

❄

❄
✘✘❄

✘✘✘✘✘

❄✘
✘✘

❄✘
✘✘

❄

❄

❄

❄

❄ ❄ ❄ ❄

❄ ❄ ❄

		

		 ❄

F3
<<<

>>>

(const)(const) (const)

AC(const)(const) A (const)

F

A CB

B C (const)

2

(const)(const)A

>>>

<<<

B

B C (bal.)

F4

(bal.) (bal.)

>>>

<<<

(bal.) (bal.)

(const)

A (const)(const)(const)

(const)

F

(const)

(bal.)

A

CB(bal.)(bal.)

1

?
? ?

? ?

A

F G

<<<

>>>

Fig. 4. The Four-Round Distinguisher from Section 3.1

3.2 Another Four-Round Distinguisher

Our second distinguisher works quite similarly to the first one. We start with
232 plaintexts of the form (α0, α1, α2, A) with arbitrary constants αi. The pre-
whitening changes the constants and we get texts (β0, β1, β2, A). After the first
round, including the swap, these are (γ2, A, β0, β1).

In the second round, the inputs to the round function are of the form
(γ2, A), where A = {0, 1}32 is a saturated set and γ2 is constant. The round
function generates the pairs (bi, ci) with bi = G1(γ2) + G2(ai) + K6 and
ci = G1(γ2) + 2G2(ai) + K7 for ai ∈ A. Now the set B = {bi} is saturated
like A, but the multiset C∗ = {ci} isn’t. Instead, it is semi-saturated with a
constant LSB(ci) = γ∗ ∈ {0, 1} for all ci ∈ C∗: γ∗ = LSB(G1(γ2)) ⊕ LSB(K7).
We apply the round function by adding some constants to the elements of B
and C∗, and by then rotating the elements of B. The results are a saturated set
B and a semi-saturated set C∗, as before. After the swap, we have texts of the
form (B,C∗, γ2, A).

In the third round the 232 inputs for the round function are of the form
(B,C∗). Consider the round function’s outputs (di, ei) with di = G1(bi) +

The Saturation Attack – A Bait for Twofish 7

G2(ci) + K8 and ei = G1(bi) + 2G2(ci) + K9. Since B = {bi} is saturated,
so is {G1(bi)}, and especially

∑

0≤i<232

G1(bi) ≡ 0 (mod 2).

Since C∗ is semi-saturated, it has 231 different values, each repeated exactly
twice. The same holds for the 232 values G2(ci) (with ci ∈ C∗), hence

∑

0≤i<232

G2(ci) ≡ 0 (mod 2).

Thus, both multisets D = {di} and E = {ei} are balanced:
∑

0≤i<232

di =
∑

i

G1(bi) +
∑

i

G2(ci) + 232 ∗K8 ≡ 0 (mod 2)

and
∑

0≤i<232

ei =
∑

i

G1(bi) + 2 ∗
∑

i

G2(ci) + 232 ∗K9 ≡ 0 (mod 2).

By applying the round function and swapping, we get 232 texts of the form
(F,G,B,C∗). The bits at the LSB-position of G are balanced, as are the bits at
the MSB-position of F (due to the one-bit rotate). The fourth round makes this
(F,G, ?, ?), and if we do the swap we get texts of the form (?, ?, F,G).

A random permutation passes the corresponding test only with a probability
of about 0.25.

3.3 An Extension to Five Rounds

Next, we show how to extend the distinguisher from Section 3.2 to five rounds.
Let α an arbitrary 32-bit constant and c∗ an arbitrary 1-bit constant. We
choose all 295 plaintexts of the form (α, ai, bj , ck), with ci div 231 = c∗. We
write (α,A,B,C+) for these 295 texts. Note that the multisets A and B are
saturated and the multiset C+ is semi-saturated. The pre-whitening changes the
constant α to β, and the constant c∗ to γ∗, but leaves A and B saturated and
C+ semi-saturated with a constant MSB. We still have 295 distinct input texts
(β,A,B,C+) for the first round.

Let (ei, fi) = F1(β, ai) with ai ∈ A. We can write ei = βe + G2(ai) and
fi = βf + 2G2(ai), for some constants βe, βf . Hence the outputs of F1 consist
of pairs (E,F ∗) with saturated E and semi-saturated F ∗. Set β∗ = fi mod 2 for
the constant LSB of the values fi ∈ F ∗.

For every value ai ∈ A there are 263 pairs (bi, ci) with a constant bit γ∗ =
ci div 231 = MSB(ci). We can fix any constants γ2, γ3 ∈ {0, 1}32 with γ3 mod 2 =
γ∗ ⊕ β∗ and find pairs (bi, ci) in (B,C+) such that (ei ⊕ bi)>>>1 = γ2 and
fi ⊕ (ci<<<1) = γ3 holds for every ai. (Note that the MSB of ci is the LSB of
ci<<<1.)

8 S. Lucks

Now the 295 input texts (β,A,B,C+) can be separated into 263 disjoint
groups of 232 texts, determined by the pair (γ2, γ3) of constants, such that after
applying the first round functions all texts in the same group are of the form
(β,A, γ2, γ3). The swap changes these to (γ2, γ3, β, A).

For each such group, applying the four-round distinguisher from Section 3.2
would result in a set of 232 ciphertexts (?, ?, F,G), where the ciphertext bits at
the LSB-position of G and at the MSB-position of F are balanced. Now, we do
not know which ciphertexts belong into which group, but if these bits for each
group are balanced, then so are all 295 such bits. Five rounds of Twofish always
pass this test, while a random permutation passes it with about 25% probability.

The same technique can also be applied to the distinguisher from Section
3.1. Here, we need 296 plaintexts of the form (α,A,B,C) with constant α. A
random permutation passes the corresponding test with about 25% probability.

3.4 An Extension to Six Rounds

To attack six rounds, we choose 2127 plaintexts (ai, bi, ci, di), (half of the code-
book (!)), where bi div 231 = MSB(bi) is fixed to an arbitrary constant. Our
plaintexts are of the form (A,B+, C,D), where A, B, and D are saturated mul-
tisets, and B+ is a semi-saturated one.

Our choice of plaintexts ensures that for each of the 263 left-side pairs (ai, bi),
all 264 right-side pairs (ci, di) exist. Neither the pre-whitening nor the application
of the first round function change this property. By the swap we get 2127 texts
(C,D,A,B+) as the input for the second round. For each 32-bit constant α we
get a group of 295 texts (α,D,A,B+). These are 232 disjoint groups which are
the kind of input we need for the 5-round distinguisher.

After six rounds of Twofish, we get 2127 ciphertexts (?, ?, F,G) with balanced
bits at two positions. A random permutation does satisfy this with about 25%
probability.

3.5 Distinguishers: Summary

In Table 1 we summarise the distinguishers we have found. We describe which
section the distinguisher was described in, the number r of Twofish rounds the
attack works for, the chosen plaintexts required (how they look like and how
many we need), and the probability for a random permutation to pass the test.
All tests are one-sided, i.e. r rounds of Twofish pass the test with probability 1.

4 Finding the Key

In modern cryptanalysis, one often uses a distinguisher for some rounds of a
product cipher to find the key: Guess some key bits for one or more additional
rounds and exploit the distinguishing property to falsify wrong key guesses. This
is what we do below, concentrating on using the six-round distinguisher.

The Saturation Attack – A Bait for Twofish 9

Table 1. Distinguishers for Twofish.

Section Rounds Chosen Plaintexts Probability
r Form Number

3.1 4 (α0, α1, A, α3) 232 25%
3.2 4 (α0, α1, α2, A) 232 25%
3.3 5 (α, A, B, C+) 295 25%
3.3 5 (α, A, B, C) 296 25%
3.4 6 (A, B+, C, D) 2127 25%

4.1 The Basic Technique

Consider seven rounds of Twofish. Let 2127 plaintexts be chosen as required
for the six-round distinguisher. After six rounds (including the swap), we have
2127 text quadruples (ai, bi, ci, di) of 32-bit words. We have two distinguishing
properties: the bits at the LSB-position of the words di are balanced, and the bits
at the MSB-position of the ci-words are balanced. We start with concentrating
on the first distinguishing property.

The XOR over the 2127 LSBs δi = di mod 2 of di is:

δ∗ =
⊕

0≤i<2127

δi = 0.

After seven rounds, we have 2127 ciphertext quadruples (wi, xi, yi, zi), and
we cannot count on balanced ciphertext bits. Note that the seventh round uses
the keys K16 and K17, and the post-whitening keys denoted by K18, . . . , K21.
Figure 5 visualises the last round, including the post-whitening.

❦

❦ ❦ ❦❦

❦

❄ ❄

✲ ✲

✲ ✲

✲

✻

❄

❄

❄

❄

❄

❄

✲

✻ ❄
✲

✲

❄

❄ ❄ ❄ ❄

✲ ✛ ✲ ✛

ai

K16

K17

G

G

1

2

<<<1

>>>1

ci di

wi xi yi zi

bi

K19 K21K20K18

Fig. 5. The Seventh Round and the Post-Whitening.

10 S. Lucks

Rewrite δi by δi = δw,i ⊕ (δcw,i ∗ LSB(K17)) ⊕ δx,i ⊕ δz,i ⊕ LSB1(K17) with

δw,i = LSB1(G1(wi ⊕K18))
δcw,i = LSB(G1(wi ⊕K18)),
δx,i = LSB(G2(xi ⊕K19)),
δz,i = LSB1(zi) ⊕ LSB1(K21).

The necessity to consider the 2nd-least significant bits LSB1(. . .) is due to
the last round’s one-bit rotate: LSB(di) = LSB1(di<<<1). Note that the value
(δcw,i ∗ LSB(K17)) ∈ {0, 1} specifically deals with the carry bit generated at the
LSB-position.

We can evaluate the bit δi by partial decryption. Since we are rather inter-
ested in the bit δ∗ =

⊕
i δi, we rewrite δ

∗ by

δ∗ = δ∗
w ⊕ (δ∗c

w ∗ LSB(K17)) ⊕ δ∗
x ⊕ δ∗

z

with

δ∗
w =

⊕

0≤i<2127

δw,i =
⊕

i

(LSB1(G1(wi ⊕K18))),

δ∗c
w =

⊕

0≤i<2127

δcw,i =
⊕

i

(LSB(G1(wi ⊕K18))),

δ∗
x =

⊕

0≤i<2127

δx,i =
⊕

i

LSB(G2(xi ⊕K19)),

δ∗
z =

⊕

0≤i<2127

δz,i =
⊕

i

(LSB1(zi) ⊕ LSB1(K21)) =
⊕

i

LSB1(zi).

Assume an adversary to know (or to have guessed) the S-boxes, i.e., to know
the functions G1 and G2. Given 2127 ciphertexts (wi, xi, yi, zi), we can compute
the bits δ∗

w, δ
∗c
w , δ∗

x and δ∗
z independently.

For δ∗
z just count how often one of the 2127 bits LSB1(zi) is one – δ∗

z is just
this number (modulo 2). Regarding δ∗

x we just need to consider all words xi

which appear an odd time as a part of a ciphertext (wk, xi, yk, zk). These are at
most 232 words xi. Given these and the key word K19 we just count mod 2 how
often LSB(G2(xi ⊕K19)) is one. Computing δ∗

w and δ∗c can be done similarly.

4.2 Attacking Seven Rounds with Full Whitening

In this section we describe and analyse the seven-round attack. Consider the
following algorithm.

0. Choose 2127 plaintexts as required for the six-round distinguisher. Ask for
the corresponding ciphertexts (wi, xi, yi, zi), 0 ≤ i < 2127.

1. For all W ∈ {0, 1}32: count (mod 2) the ciphertexts (W,xi, yi, zi).
2. For all X ∈ {0, 1}32: count (mod 2) the ciphertexts (wi, X, yi, zi).

The Saturation Attack – A Bait for Twofish 11

3. Evaluate δ∗
z by counting the bits LSB1(zi) of the words zi.

4. Guess the key-dependent vector S, defining the functions G1 and G2.
5. Consider the 232 one-bit counters for ciphertexts (wi, X, yi, zi). For every key
K19 ∈ {0, 1}32 evaluate δ∗

x. Write δ∗
x(K19) for the results.

6. Consider the 232 one-bit counters for ciphertexts (W,xi, yi, zi). For every
choice ofK18 evaluate δ∗

w and δ∗c
w . Write δ∗

w(K18) and δ∗c
w (K18) for the results.

7. Check the subkey triple (LSB(K17),K18,K19) ∈ {0, 1} × {0, 1}32 × {0, 1}32.
It is is “valid for S” if and only if

δ∗
w(K18) ⊕ (δ∗c

w (K18) ∗ LSB(K17)) ⊕ δ∗
x(K19) = δ∗

z .

How expensive is this algorithm? Let K ∈ {128, 192, 256} be the key size,
i.e. each of the “key halfs” Me, Mo, and S consists of K/64 ∈ {2, 3, 4} words.
Obviously, we need 2127 chosen plaintexts, half of the codebook. Each of the
steps 1–3 requires 2127 very simple operations (incrementing a one-bit counter).
Step 4 requires to guess K/2 key bits. Each of the steps 5–7 is repeated 2K/2

times:

– Note that we can compute and store a table with 232 entries for the function
G1. Then for each key K19, step 5 requires an average of 231 very simple
operations (essentially table look-ups).

– Since G2(x) = G1(x>>>8), we can reuse the table for G1 for the function G2.
Then for Each key K18, step 6 requires 2 ∗ 232 very simple operations, on
the average.

Hence this algorithm requires about 3∗2(K/2)+64 “very simple” operations. Since
such an operation is much faster than a single Twofish encryption, the attack is
much faster than exhaustive key search for K ≥ 128.

The algorithm allows us to filter out half of the keys. (I.e., about 50% of all
random permutations pass the test.) So a key finding attack based on the algo-
rithm has to exhaustively search the remaining half of the key space, requiring
an expected number of 2K−2 Twofish encryptions.

4.3 Attacking Eight Rounds without Post-whitening

The previous attack can be modified to work for eight rounds of Twofish with-
out post-whitening. Let the usual 2127 plaintext be chosen. After six rounds,
including the swap, we have 2127 quadruples (ai, bi, ci, di) of 32 bit words, and

δ∗ = 0 =
⊕

0≤i<2127

LSB(di).

Applying the seven round functions changes these to (ai, bi, ei, fi), the swap to
(ei, fi, ai, bi), and the last round to (ei, fi, gi, hi). See Figure 6. Note that K18
and K19 are no longer part of the post-whitening key, but constitute the round
key for round eight.

Set xi = G1(ei)+G2(fi) and yi = G1(ei)+2G2(fi). For every key-dependent
k-word vector S we know a mapping from the 264 pairs (ei, fi) to the pairs

12 S. Lucks

❦

❦

❦

❦

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
❄

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
❄❄

✭✭✭✭✭✭✭

❄
✭✭✭✭✭✭

✭✭✭✭✭✭
✭✭✭✭✭✭✭

❄ ❄

✲ ✲

✲ ✲

✲

❄

✻

❄

❄

❄

❄

❄

❄

✲

✻ ❄
✲

✲

❄ ❄

✲ ✲

✲ ✲

✲

❄

✻

❄

❄

❄

❄

❄

❄

✲

✻ ❄
✲

✲

ai

ai

K16

K17

G

G

1

2

<<<1

>>>1

ei fi ai

fi higi

K18

K19

G

G

1

2

<<<1

>>>1

bi ci di

bi ei fi

bi

ei

Fig. 6. Round Seven and Eight Without Post-Whitening.

(xi, yi). So we can virtually blow up the 2127 ciphertext quadruples (ei, fi, gi, hi)
to six-tuples (ei, fi, xi, yi, gi, hi). Computing the mapping requires about the
time of 264 one-round decryptions.

The attack on eight rounds of Twofish works quite similarly to the previous
attack. We decompose σ∗ into key-dependent bits δ∗

a(K18), δ∗c
a (K18), δ∗

b (K19)
and δf with

δ∗
a(K18) =

⊕

i

(
LSB1(G1(ai))

)
=

⊕

i

(
LSB1(G1((xi +K18) ⊕ (gi<<<1)))

)
,

δ∗c
a (K18) =

⊕

i

(LSB(G1(ai))) =
⊕

i

(LSB(G1((xi +K18) ⊕ (gi<<<1)))) ,

δ∗
b (K19) =

⊕

i

(LSB(G2(bi))) =
⊕

i

(LSB(G2(((yi +K19) ⊕ hi)>>>1))) ,

and δ∗
f =

⊕

i

(
LSB1(fi)

)
.

As above, a subkey triple (LSB(K17),K18,K19) ∈ {0, 1} × {0, 1}32 × {0, 1}32

is “valid for S” if and only if

δ∗
a(K18) ⊕ (δ∗c

a (K18) ∗ LSB(K17)) ⊕ δ∗
b (K19) = δ∗

f .

The Saturation Attack – A Bait for Twofish 13

The basic idea for the attack is to run a filtering algorithm to sort out 50%
of the keys, and then to exhaustively search the remaining half of the keys. First
we guess the key-dependent vector S, defining G1 and G2. When G1 and G2 are
known, computing δ∗

b (K19) takes roughly 264 very simple steps for each key K19.
Similarly, computing δa(K18) and δ∗c

a (K18) takes roughly 264 very simple steps
for each key K18. The filtering is significantly faster than exhaustive key search
for K ≥ 192, key finding using this attack takes the equivalent of about 2K−2

encryptions and hence is twice as fast as exhaustively searching the entire key
space.

4.4 An Improvement for 256-Bit Keys

Reconsider seven rounds of Twofish and 2127 plaintexts chosen as before, as
described in Section 4.2 and Figure 5. So far, we only have used one distinguishing
property: the bits at the LSB-position of the words di are balanced. Thus we
could filter out half of the keys. Using the second property too, we can filter out
75% of the keys: the bits at the MSB-position of the ci-words are balanced.

Set ui = G1(wi ⊕ K18) + G2(xi ⊕ K19) and vi = ui ⊕ K16. Then ci =
vi ⊕ ((yi ⊕K20)>>>1). The bits at the MSB-position of ci are balanced, i,e.,

⊕

0≤i<2127

MSB(ci) = 0 ⇐⇒
⊕

0≤i<2127

MSB(vi) =
⊕

0≤i<2127

MSB(yi<<<1).

Consider running the following algorithm:

0. Choose 2127 plaintexts as before and ask for the ciphertexts (wi, xi, yi, zi).
1. For all (W,X) ∈ ({0, 1}32)2: count (mod 232) the ciphertexts (W,X, yi, zi).
2. Evaluate δ∗∗

y by counting the bits MSB(yi<<<1)
3. Guess the key-dependent vector S, defining the functions G1 and G2.
4. For each of the 264 key pairs (K18,K19), and every ui ∈ {0, 1}32:

Use the 264 counters from Step 1 to compute counters cnt[ui,K18,K19]
for the values ui = G1(wi ⊕K18) +G2(xi ⊕K19).

5. For each of the 232 keys K16, compute

δ∗∗
v (K18,K18,K20) =

⊕

i

MSB((ui +K16) ∗ cnt[ui,K18,K19]).

6. The triple (K16,K18,K19) ∈ ({0, 1}32)3 is “good for S” if and only if

δ∗∗
v (K18,K18,K20) = δ∗∗

y .

Similar to Section 4.2, the above algorithm requires 2127 chosen plaintexts,
and each of the steps 1–2 requires 2127 very simple operations (incrementing a
32-bit counter). Step 4 requires to guess K/2 key bits, and both the steps 4 and
5 are repeated 2K/2 times. Step 4 deals with 264 counters and 2 key words, and
step 5 deals with 232 values ui and 3 key words. Hence, both steps require 2128

very simple operations.

14 S. Lucks

The entire algorithm requires about 2 ∗ 2(K/2)+64+64 = 2(K/2)+129 “very
simple” operations and is clearly faster than exhaustive key search for K ≥ 256.

The same technique works for the attack on eight rounds of Twofish without
post-whitening, too. So for K = 256 a key finding attack based on checking
subkeys being both valid and good requires computation time equivalent to about
2K−3 Twofish encryptions.

4.5 Finding the Key: Summary

In Table 2 we summarise our key finding attacks and compare them with
exhaustive key search. Note that the running time depends on the number
K ∈ {128, 192, 256} of key bits, and we use one encryption as unit of time.

Table 2. Key Finding Attacks for Twofish.

Attack Plaintexts Rounds Key Whitening Running
Bits Pre- Post- Time

Section 4.2 2127 chosen 7 K ≥ 128 yes yes 2K−2

Section 4.2 / 4.4 2127 chosen 7 K = 256 yes yes 2K−3

Section 4.3 2127 chosen 8 K ≥ 192 yes no 2K−2

Section 4.3 / 4.4 2127 chosen 8 K = 256 yes no 2K−3

ex. key search ≈ 3 known any any any any 2K−1

Note that our attacks are only 2–4 times faster than exhaustive key search,
because we filter out 50% or 75% of the keys. The overwhelming part of the
running time is needed to exhaustively search the remaining key space. Improved
distinguishers for six rounds of Twofish, filtering out more keys, could speed up
our attacks. Finding such improved distinguishers remains an open problem.

5 Conclusion

At present, this paper describes the best known attack on the AES finalist
Twofish. We can break up to 8 rounds of Twofish with one-sided whitening
faster than exhaustively searching the key would require, though our attacks are
only 2–4 times faster than exhausive key search. Since Twofish is a 16-round
cipher with twosided whitening, we are able to penetrate exactly one half of
Twofish. This still leaves Twofish with a reasonable security margin. An inter-
esting side-note is that the one-bit rotates in Twofish appear to be useful – a
variant of without the rotates would allow some enhancement of our attacks.

Also, the paper demonstrates the usefulness of saturation attacks for attack-
ing ciphers which are not square-like. It would be interesting to use saturation
techniques to attack other cryptographic primitives.

The Saturation Attack – A Bait for Twofish 15

Acknowledgements. Supported by Counterpane and Hi/fn, the author par-
ticipated at the “Third Twofish Retreat” in Utah, USA. He thanks the work-
shop participants for their encouragement in considering saturation attacks for
Twofish. Also, the FSE referees provided useful comments to improve this pre-
sentation.

References

1. E. Biham, A. Biryukov, A. Shamir, “Miss in the Middle Attacks on IDEA and
Khufru”, Fast Software Encryption 1999, Springer LNCS 1636, pp. 124–138.

2. E. Biham, “Cryptanalysis of Ladder DES”, Fast Software Encryption 1997,
Springer LNCS 1267, pp. 134–138.

3. C. D’Halluin, G. Bijnens, V. Rijmen, B., Preneel, “Attack on six round of Crypton”,
Fast Software Encryption 1999, Springer LNCS 1636, pp. 46–59.

4. J. Daemen, L. Knudsen, V. Rijmen: “The block cipher Square”, Fast Software
Encryption 1997, Springer LNCS 1267, pp. 149–165.

5. J. Daemen, V. Rijmen, “AES proposal: Rijndael” (2nd version) [18].
6. N. Ferguson, “Impossible differentials in Twofish”, Twofish TR #5, 1999 [18].
7. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, D. Whiting,
“Improved Cryptanalysis of Rijndael” Fast Software Encryption 2000, to appear.

8. J. Kelsey, “Key Separation in Twofish”, Twofish TR #7, 2000 [18].
9. L. Knudsen, “Truncated and Higher Order Differentials”, Fast Software Encryption

1995, Springer LNCS 1008, pp. 196-211.
10. L. Knudsen, “Trawling Twofish (revisited)” May 15, 2000, [18].
11. C. H. Lim, “Crypton: a new 128-bit block cipher” [18].
12. C. H. Lim, “A revised version of Crypton – Crypton V1.0 – ”, Fast Software

Encryption 1999, Springer LNCS 1636, pp. 31–45.
13. F. Mirza, S. Murphy, “An Observation on the Key Schedule of Twofish”, In: The

2nd Advanced Encryption Standard Conference, pp. 151–154, April 1999 [18].
14. S. Murphy, “The Key Separation of Twofish”, 2000 [18].
15. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, “Twofish: A

128-bit Block Cipher” [18].
16. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, “The Twofish

Encryption Algorithm”, Wiley, 1999.
17. “The GNU Privacy Guard”, “http://www.gnupg.org/”.
18. “AES Development Effort”, NIST, “http://www.nist.gov/aes”.

	Introduction
	Notation

	A Description of Twofish
	The Main Operations of Twofish
	The Basic Structure of Twofish
	The Twofish Key Schedule

	Distinguishers for Twofish
	A Four-Round Distinguisher
	Another Four-Round Distinguisher
	An Extension to Five Rounds
	An Extension to Six Rounds
	Distinguishers: Summary

	Finding the Key
	The Basic Technique
	Attacking Seven Rounds with Full Whitening
	Attacking Eight Rounds without Post-whitening
	An Improvement for 256-Bit Keys
	Finding the Key: Summary

	Conclusion

