
The Scalable Hyperlink Store

Marc Najork
Microsoft Research

Mountain View, CA, USA
najork@microsoft.com

ABSTRACT
This paper describes the Scalable Hyperlink Store, a distributed
in-memory “database” for storing large portions of the web graph.
SHS is an enabler for research on structural properties of the web
graph as well as new link-based ranking algorithms. Previous work
on specialized hyperlink databases focused on finding efficient com-
pression algorithms for web graphs. By contrast, this work focuses
on the systems issues of building such a database. Specifically, it
describes how to build a hyperlink database that is fast, scalable,
fault-tolerant, and incrementally updateable.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—distributed databases

General Terms
Performance, Reliability

Keywords
Web graph, hyperlink database, scalability

1. INTRODUCTION
One of the defining characteristics of hypertext is the existence

of explicit hyperlinks between documents. These links are intended
to allow users to navigate from one document to another, allowing
them to explore related concepts and holding out the promise of
serendipitous discovery of new information.

Web search engines have relied on hyperlinks from the very be-
ginning: the web crawlers used by search engines are seeded with a
small or medium-sized set of starting URLs, download these pages,
and use the hyperlinks contained in the downloaded pages to con-
tinue the process [20]. But hyperlinks are useful to web search
in many ways beyond crawling. For example, hyperlinks can be
viewed as peer-endorsements: a link from page a to b tacitly sug-
gests that the author of page a endorses the content of page b.
Highly endorsed pages are deemed to be more authoritative, and
therefore should be ranked more highly than less-endorsed pages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HT’09, June 29–July 1, 2009, Torino, Italy.
Copyright 2009 ACM 978-1-60558-486-7/09/06 ...$5.00.

This basic idea is rooted in citation analysis used in bibliometrics. It
was first transferred to the web setting by Marchiori [14], who sug-
gested to simply keep count of the hyperlinks referring to a page,
and subsequently developed into more and more sophisticated link-
based ranking algorithms. Three of the best-known examples of
this family of ranking algorithms are PageRank [22], HITS [11] and
SALSA [13]. The first algorithm computes a query-independent
measure of the “quality” of each page on the web, while the latter
two compute a measure of the relevance of the results with respect
to a query. Consequently, the latter two algorithms inherently have
to be executed at query-time, and thus have to be quite fast.

Search engines have many other uses beyond crawling and rank-
ing for the hyperlink structure between web pages: for example,
the link structure can be used to detect communities of related web
pages [12], and can be used to identify “spam” web pages [2].

Some of the algorithms operating over the web graph – the graph
induced by the web pages and their hyperlinks – require only a very
regular access to the edges of the graph, and therefore lend them-
selves to implementations where the links are read in a streaming
fashion from disk. Modern hard disks are very well-suited for such
streaming access patterns: their latency (the time required to posi-
tion a disk head over a particular block of data) is high, on the order
of 5–10 milliseconds, but their bandwidth (the amount of data that
can be read after the head has been positioned) is quite large, on
the order of 50–100 MB/sec. So, algorithms that lend themselves
to a streaming consumption of links (e.g. PageRank) can be im-
plemented efficiently using disk-based storage of the web graph;
on the other hand, algorithms that inherently have random access
patterns (such as HITS and SALSA) are not well-suited for disk-
based implementations. Performing them even remotely efficiently
requires storing the web graph in main memory. RAM has higher
bandwidth and much lower latency than disks; unfortunately, it is
also two orders of magnitude more expensive per byte, and contem-
porary commodity systems are limited (by their memory manage-
ment units and the number of physical DIMM slots) in how much
RAM they can hold — typically under 100 gigabytes, as opposed
to the terabyte capacity afforded by even a single large hard drive.

The need for fast random access to nodes and edges in the web
graph has led to a number of research systems; the memory con-
straints have also inspired a number of more theoretical inquiries
into specialized compression algorithms for the web graph. The
first such system we are aware of was the Connectivity Server [3],
developed at DEC SRC. The Connectivity Server maintained an
in-memory representation of the web graph on a single machine.
It compressed the graph by mapping URLs to integer shorthands,
storing the edges of the graph using these shorthands, and com-
pressing URLs by sorting them lexicographically and eliding shared
prefixes using delta-encoding. It did provide for a limited number

89

of updates to the store, but once the number of updates exceeded a
certain threshold, the database had to be rebuilt from scratch.

Suel and Yuan’s system [24] adapted a key idea of the Connec-
tivity Server, namely to maintain a mapping between URLs and in-
teger shorthands, and to represent the incoming and outgoing edges
of each vertex in the graph as two lists of integer shorthands. Their
system improved on the Connectivity Server by adopting more ag-
gressive compression techniques. In addition to using prefix elision
to shorten URLs, Suel and Yuan’s system also used Huffman codes
to compress the URL suffixes. In order to compress the adjacency
lists, they first divided the vertex set into highly popular pages (web
pages with many incoming links) and less-popular pages, and com-
pressed the links using either Golomb or Huffman codes. Their
system did not provide for updates to the web graph, although they
mentioned accommodating updates as a future-work item.

The Link Database [23], also developed at DEC SRC, was a
direct descendant of the Connectivity Server. It improved on the
Connectivity Server by compressing the edge set using a variety
of techniques: gap-encoding to convert the integer shorthands rep-
resenting vertices into small values, nybble encoding or Huffman
encoding to compress the gap values, and inter-list compression to
exploit link-similarity between web pages. Unlike the Connectiv-
ity Server, the Link Database provided no mechanism for updates
at all; the model was that the database would be periodically rebuilt
from scratch using snapshots of the web graph.

The WebGraph Framework [4, 5] is another system building on
the basic design of the DEC SRC Connectivity Server. The focus
of this work is on aggressive compression of the adjacency lists
used to represent the incoming and outgoing edges of each ver-
tex. Like the previous systems, WebGraph maintains a mapping
from URLs to integer shorthands, and like the Link Database it
uses gap encoding to convert the shorthands to numbers with small
absolute values, and inter-list compression to exploit redundancy
between vertices with similar linkage. But instead of nybble or
Huffman encoding, it uses arithmetic codes to compress the inte-
ger shorthands. Like Suel & Yuan’s system and the Link Database,
WebGraph makes no provision for incremental updates to the web
graph, and like the previous systems, it runs on a single machine.

All of the above systems are non-distributed systems that store
a compressed version of the web graph in main memory; conse-
quently, they were not able to (or indeed intended to) scale up to
web graphs with tens of billions of nodes and hundreds of billions
of edges, such as the ones induced by the corpus of state-of-the-art
commercial search engines. The goal of many of these earlier sys-
tems was to explore web graph compression techniques, and when
considering time-space tradeoffs, they opted for high compression
rates over fast decompression. Moreover, because they were tested
on static reference collections of web pages (such as the Stanford
WebBase), they largely ignored the issue of incremental updates.

The system described in this paper complements this earlier work.
The primary focus is on addressing the systems issues that go along
with integrating a web graph storage system into a large-scale search
engine: allowing the store to scale up to arbitrary sizes by partition-
ing it over many machines; dealing with machine failures that will
invariably occur in a distributed system; allowing for incremen-
tal updates to the web graph (in lock-step with the search engine’s
crawler); and making it possible to enlarge the cluster without in-
terrupting service, to accommodate an ever-growing corpus. The
compression techniques used in our system are not particularly in-
ventive, following the basic ideas espoused in the earlier systems,
but using less aggressive coding schemes, thereby choosing a point
on the time-space tradeoff curve that is more biased toward decom-
pression speed than space savings.

2. DESIGN GOALS
We designed the Scalable Hyperlink Store as a general-purpose

system for performing graph algorithms on the full web graph, but
we were particularly interested in enabling query-time link-based
ranking algorithms along the lines of HITS [11] and SALSA [13].
In order to enable such algorithms, SHS has to satisfy multiple,
often conflicting design goals:

1. The system has to be fast enough to enable real-time execu-
tion of HITS-like link-based ranking algorithms. Given the
number of edges in a HITS neighborhood graph, this rules
out any disk-based solution, as the seek times of modern
hard drives are too slow by several orders of magnitude. To
achieve the required performance, we have to maintain the
web graph in main memory.

2. The system has to employ graph compression techniques.
Given the decision to maintain the graph in main memory,
and given that a given amount of RAM is about a hundred
times more expensive than the same amount of disk, we should
aggressively try to compress the graph. However, compres-
sion techniques tend to be computationally more expensive
the more aggressive they are, so we have to choose the appro-
priate trade-off between memory footprint and decompres-
sion cost.

3. The system has to scale to the full web graph. Given that we
decided to keep the graph in main memory, and given that the
maximum memory size of commodity machines is limited to
a few tens of gigabytes, this means that we have to partition
the graph over multiple machines.

4. The system has to be fault-tolerant. The probability of at
least one machine failing in a distributed system increases
with the number of machines in the system. If we aspire to
use our system as a production service, we certainly have to
provide mechanisms to mask such failures.

5. The system should permit incremental updates to the graph.
Search engines crawl the web continuously, to keep up with
the creation of new pages and to maintain up-to-date snap-
shots of fast-changing pages. A hyperlink store should reflect
the most recent linkage information available to the search
engine. However, this goal complicates matters substantially.
At the API level, we have to decide whether or not we want
to provide transactional semantics, since the structure of the
stored web graph might change while a computation using
the graph is in progress. At the implementation level, the
most space-efficient data structures for maintaining vertices
and edges of the web graph are ill-suited for updates.

6. The system should allow for the graph to be grown over time.
Given our choice of achieving scalability through distribu-
tion, this means that we should be able to grow the set of
SHS servers without unduly interrupting the service.

The remainder of this paper will flesh out how we achieved these
design goals, and where appropriate will provide a more detailed
discussion of the design alternatives that were available to us and
the trade-offs between them.

3. MAINTAINING STATIC WEB GRAPHS
SHS maintains the vertices and edges of the web graph in a dis-

tributed data structure called the store. An SHS store is composed
of cells. Each cell maintains a set of vertices and all the edges
that connect to each of the vertices. In order to achieve good com-
pression, edges are not represented as pairs of URLs (i.e. strings).

90

store cell C

backward
link store

cell B

URL
store cell

U

forward
link store

cell F

Figure 1: An SHS store cell.

Instead, each cell maintains a bijective mapping between textual
URLs and numerical UIDs (unique identifiers), and edges are rep-
resented in terms of UIDs. The mapping between URLs and UIDs
are kept in an URL store cell, the set of edges departing from each
vertex in a forward link store cell, and the set of edges arriving at
each vertex in a backward link store cell. Figure 1 shows these
components of a cell.

The Client API
Client applications interface with SHS through a clerk, a piece

of code that is linked into the client applications and facilitates all
interactions with the SHS servers (see Figure 2). We provide a clerk
implementation written in C++, and an alternative implementation
written in C#. Both implementations provide a very similar API to
client applications. The C# version looks as follows:

public enum ShsStore { UrlStore, FwdStore, BwdStore };
public class ShsClerk {

public ShsClerk(string shsName) {...}
public void Dispose() {...}
public void Request(ShsStore s) {...}
public void Relinquish(ShsStore s) {...}
public int NumServers() {...}
public long NumUrls() {...}
public long NumLinks() {...}
public int MaxDegree(bool fwd) {...}
public long NumUrls(int serverId) {...}
public long MinUid(int serverId) {...}
public long MaxUid(int serverId) {...}
public long NumLinks(int serverId) {...}
public int MaxDegree(bool fwd, int serverId) {...}
public long UrlToUid(string url) {...}
public string UidToUrl(long uid) {...}
public long[] BatchedUrlToUid(string[] urls) {...}
public string[] BatchedUidToUrl(long[] uids) {...}
public long[] GetLinks(bool fwd, long uid) {...}
public long[] SampleLinks(bool fwd, long uid,

int numSamples, bool consistent) {...}
public long[][] BatchedGetLinks(bool fwd, long[] uids) {...}
public long[][] BatchedSampleLinks(bool fwd, long[] uids,

int numSamples, bool consistent) {...}
}

Clients create an instance of an ShsClerk object to connect to a
particular SHS database. Creating the clerk establishes TCP con-
nections to the SHS servers, but does not cause any stores to be

High-Speed Local Area Network

SHS
server 0

SHS
server 1

SHS
server n-1

SHS client application

SHS
Clerk

SHS
server n-2

Figure 2: A client application connecting to a cluster of n SHS
servers.

loaded. Stores are loaded lazily on first use; this lazy behavior can
be overridden by calling Request(s), which returns when all servers
have loaded store s. Calling Relinquish(s) indicates to servers that
the client does not need store s right now, and that s can be un-
loaded unless other clients are using it. Calling Request and Relin-
quish merely provides hints to the SHS servers, and has no effect on
the correctness of the client program. The Dispose method is called
at the conclusion of an SHS session; it closes the connections to the
servers.

The zero-argument versions of NumServers, NumUrls, and Num-
Links return the number of SHS servers, web graph vertices and
web graph edges, respectively. MaxDegree(f) return the maximum
out-degree (f=true) or in-degree (f=false) of any node in the graph.
Variants of NumUrls, NumLinks and MaxDegree with an extra ar-
gument i indicating an SHS server return the corresponding result
restricted to the portion of the web graph maintained by server i.
Methods MinUid(i) and MaxUid(i) return the lowest and highest UID
on server i. Taken together, the NumServers, MinUid and MaxUid
methods enable clients to enumerate all UIDs of a web graph.

The UrlToUid method maps a URL to its UID, and the UidToUrl
method provides the inverse functionality. Methods BatchedUrl-
ToUid and BatchedUidToUrl allow clients to map large batches of
URLs and UIDs, thereby allowing them to amortize the remote pro-
cedure call overhead (which is about 100 microseconds for a null
RPC call in our cluster, using our custom RPC implementation).

Calling GetLinks(f,x) gets all forward- (f=true) or backward-links
(f=false) associated with UID x. Calling SampleLinks(f,x,n,c) re-
turns a sample of n such links (or all links if there are fewer than
n). Sampling on the SHS server side greatly reduces network traf-
fic. The sample is drawn uniformly at random if c is false, and
consistently if c is true. Consistent sampling [6] is deterministic,
unbiased, and it preserves the similarity between two sets that are
being sampled. It is an extremely useful operation for numerous
algorithms. Methods BatchedGetLinks and BatchedSampleLinks
allow clients to look up the links of many UIDs at once, again to
amortize the RPC overhead across many lookups.

The following short C# program illustrates how clients use the
SHS API.

using System.Console;
public class ShsDemo {
private static void List(long uid, ShsClerk shs, int dist) {

if (dist == 0) {
Console.WriteLine(shs.UidToUrl(uid));

} else {
long[] uids = shs.GetLinks(dist > 0, uid);
for (int i = 0; i < uids.Length; i++) {
List(uids[i], shs, dist > 0 ? dist - 1 : dist + 1);

}
}

}
public static void Main(string[] args) {

if (args.Length != 3) {
Console.WriteLine("Usage: ShsDemo <shsName> <dist> <url>");

} else {
ShsClerk shs = new ShsClerk(args[0]);
long uid = shs.UrlToUid(args[2]);
if (uid == -1) {
Console.WriteLine("URL {0} not in store", args[2]);

} else {
List(uid, shs, int.Parse(args[1]));

}
}

}
}

The program takes three arguments from the command line – the
name of an SHS instance, an integer d, and a URL u – and prints all
URLs that can be reached from u via d hyperlinks if d is positive,
or that lead to u via −d hyperlinks if d is negative. For reasons of

91

http://www.letters.org/

http://www.letters.org/alep

http://www.letters.org/aleph http://www.letters.org/alif

http://www.letters.org/alpha

3072 ↔ http://www.letters.org/

3073 ↔ http://www.letters.org/alep

3074 ↔ http://www.letters.org/aleph

3075 ↔ http://www.letters.org/alif

3076 ↔ http://www.letters.org/alpha

URL store cell U

3072 → {3073,3074,3075,3076}

3073 → {3072,3074,3075}

3074 → {3076}

3075 → { }

3076 → { }

backward link store cell B

3072 → {3073}

3073 → {3072}

3074 → {3072,3073}

3075 → {3072,3073}

3076 → {3072,3074}

forward link store cell F

Figure 3: A small web graph and an abstract view of a store
cell encoding that graph.

brevity, the program does not try to eliminate any duplicate URLs
(e.g. URLs that can be reached from u via multiple paths).

URL store cells
UIDs are 64-bit integers, and the UIDs maintained by an URL

store cell are drawn from a densely-packed space. If an URL store
cell contains n entries1 and the UID of the entry at position 0 is
a, the UID of the last entry is a + n− 1. The fact that UIDs are
drawn from a contiguous range means that an URL store cell does
not need to explicitly store them; the URL at position i in an URL
store cell with starting UID a is implicitly equated with UID a+ i.
Likewise, if we view a forward link store cell as a mapping from
a “key” UID u to a set of UIDs (the endpoints of all the edges
that lead away from u), then it is not necessary to store any of the
keys explicitly, it suffices to store the sets of destination UIDs. The
analogous argument holds for backward link store cells.2 Figure 3
shows an abstract view of a store cell with five vertices and their in-
coming and outgoing edges. The starting UID of this store is 3072.
UIDs that are implied and thus don’t need to be stored explicitly are
grayed out. Some of the edges connect to vertices not maintained
by this store cell; their UIDs are outside of the range from 3072 to
3076.

The URLs in an URL store cell are stored in lexicographically
sorted order. This has two implications: First, all the URLs in a
cell referring to the same web server (“host”) are stored consecu-
tively, and their associated UIDs form a range with no UID associ-
ated with a different host falling into that range. Second, adjacent
URLs in the URL store cell will tend to have shared prefixes, and
the larger the cell is (the more URLs it contains), the longer these
prefixes will tend to be. This means that front coding [25, page
159ff] – omitting the prefix shared with the previous URL in the
store and instead simply storing its length – can be used to reduce
the size of the URL store cell. Our implementation represents each
URL in the URL store cell by the length of the omitted prefix, fol-
lowed by the length of suffix (using variable byte-length encoding
to represent both numbers), and finally the suffix itself.

There are two variants of front coding: partial front coding, where
every kth word is stored in full (and thus making it possible to de-
compress any word by examining at most the k−1 previous words),
and complete front coding, where every word is front-coded.3 Our
implementation uses complete front coding. In order to be able to

1Throughout this paper, we use zero-based indexing.
2We will see later that things get more complicated once we allow
for continuous updates to SHS.
3The first word is assumed to be preceded by the empty string.

0 23 h t t p : / / w w w . l e t

t e r s . o r g / 23 4 a l e p 27

1 h 25 2 i f 25 3 p h a

0 15main part

http://www.letters.org/alif

http://www.letters.org/alpha

index (k=4)

38

43

0

16

32

Figure 4: Concrete implementation of URL store cell from Fig-
ure 3.

map URLs to UIDs and vice versa without having to scan through
the entire URL store cell, we maintain an index data structure in ad-
dition to the main part of the URL store cell. The main part of the
cell is segmented into blocks of k URLs each. For each block, the
index contains an entry capturing the last URL in that block and the
starting position (a byte-offset from the beginning of the main part)
of the next block. The index is organized as an array of uncom-
pressed URL strings and offsets, i.e. its elements can be accessed
at random in constant time. Figure 4 shows the representation of
the URL store cell from Figure 3. White cells show ASCII (char-
acter) values; gray cells show numeric values. The arrows pointing
from the index to the main part do not represent C pointers, they
simply illustrate where offsets in the index refer.

Assume we are given an URL store cell with starting UID a. In
order to map a URL u to its corresponding UID, we first perform
binary search on the index to locate the entry at position b with the
lexicographically largest URL u′ in the index that is no larger than
u (if there is no such b, we report that u is not contained in this cell).
If u = u′, we can compute u’s UID to be a + bk− 1 and return it.
Otherwise, we scan the main part starting at the position indicated
by the index entry, and using u′ as the starting value for undoing the
front coding. If we find u at position i, we return its corresponding
UID a+ bk + i, otherwise, we report that u is not contained in this
cell.

Mapping a UID v to a URL is even simpler. The URL will be
contained in block b = (v − a)div k of the main part. If b > 0,
we retrieve URL u and offset o from position b− 1 of the index,
otherwise we set u to the empty string and o to 0. Then, we scan
(v− a)mod k URLs starting at offset o in the main part and using
u as a starting value to undo the front coding, and return the last
scanned URL.

Figure 5 illustrates how the choice of k affects the space/time
tradeoff. The statistics are based on an SHS database containing
2.9 billion distinct URLs. The left graph shows the storage cost as
a function of k; the right graph shows the lookup time as a function
of k. In both graphs, the horizontal axis denotes the index stride
length k (the number of URLs per block in the main part of the
URL store), using a logarithmic scale. In the left graph, the vertical
axis denotes the average storage cost (in bytes) of each front-coded
URL in the main index, plus the fractional overhead attributable
to the index entry. As can be seen, the cost asymptotically ap-
proaches about 18 bytes, and is less than 20 bytes (i.e. within 10%

0
10
20
30
40
50
60
70
80
90

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Index stride length k

B
yt

es
 p

er
 U

R
L

1

10

100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Index stride length k

M
ic

ro
se

co
nd

s/
m

ap
pi

ng
 UID to URL mapping

URL to UID mapping

Figure 5: Impact of k on the space/time tradeoff for URL store
cells.

92

3072 → {3073}

3073 → {3072}

3074 → {3072,3073}

3075 → {3072,3073}

3076 → {3072,3074}

abstract view

3072 → 1, +1

3073 → 1, -1

3074 → 2, -2, 1

3075 → 2, -3, 1

3076 → 2, -4, 2

difference encoding
(list length in red)

1 2 1 1 2 3 1 2 5 1 2 11
11

11
11

11
00

0

2 7 2 9 11
10

00
00

00
00

1

0

1

index
(k=4)

main part (array of 64-bit container words)
3072 → 1, 2

3073 → 1, 1

3074 → 2, 3, 1

3075 → 2, 5, 1

3076 → 2, 7, 2

signed gaps
mapped to unsigned

#empty12 payload nybbles 12 cont. bits

Figure 6: Concrete implementation of forward link store cell from Figure 3, and its derivation from the abstract view.

of the asymptotic limit) for k ≥ 32. In the right graph, the vertical
axis denotes the average time (in microseconds) required to map a
URL to a UID or vice versa, again using a logarithmic scale. The
green line shows the cost of the UID-to-URL mapping. The line is
fairly straight for k ≥ 32, suggesting a linear relationship between k
and UID-to-URL mapping time. This make sense, since the imple-
mentation performs a linear scan of the block containing the URL,
and on average has to scan half the block to obtain the URL. The
red line depicts the cost of the URL-to-UID mapping; it is non-
monotonic with a minimum at k = 16, and turns straight for fairly
large values of k. The reason for the non-monotonicity is as fol-
lows: The mapping function first performs a binary search on the
index followed by a linear scan of a block in the main part. Small
values of k require more binary search probes per lookup, and be-
cause the index is less likely to fit into L3 cache, each probe is more
likely to have to access main memory, which takes on the order of
100 CPU cycles. On the other hand, the cost of the linear scan is
proportional to k; it will be higher (and eventually dominant) for
large k.

Link store cells
As we said earlier, storing URLs in lexicographic order and as-

signing UIDs according to that order means that, within a cell,
URLs referring to the same host will be equated with UIDs that
are numerically close. This property, together with the fact that
there is a great deal of link locality in the web graph (most hyper-
links refer to other pages on the same web server), is key to our
approach to link compression. As we saw in Figure 3, each entry
in a link store cell maps a UID u0 to a set of n UIDs ui (1 ≤ i ≤ n),
each representing an edge from u0 to ui in the case of a forward link
store cell, and ui to u0 in the case of a backward link store cell. As
we mentioned before, UID u is implicit and thus does not need to
be stored. We sort the set such that u1 ≤ ·· · ≤ un and represent it as
a list [δ1, · · · ,δn] where δi = ui −ui−i. This technique is known as
difference coding or gap coding [25, page 114ff]. Because of link
locality, the δi are likely to have low absolute values, and since we
sorted the ui, δi is guaranteed to be non-negative for i > 1. Because
u1 may be less than u0, δ1 may be negative, but its absolute value is
still likely to be low. In the two’s-complement representation used
in standard computers, the bit-pattern of a negative number close to
0 has many leading 1’s. To transform δ1 into a non-negative value
while preserving the fact that its absolute value is likely to be small,
we move the sign-bit from the leading to the trailing position of the
64-bit word, and take the one-complement of the other 63 bits if δ1
is negative. This can be done quite efficiently — the C expression

x < 0 ? (UINT64)(~x) << 1 | 1 : (UINT64)x << 1
maps the signed 64-bit integer x (δ1) to an unsigned value, and the
inverse operation is equally simple.

So, each entry in a link store cell can be represented by a list

of positive and probably small integers [n,δ1, · · · ,δn]. We can now
choose between many alternative variable-length encoding schemes
for compressing these integers, such as Huffman codes, Elias γ and
δ codes, Golomb codes, Rice codes, and arithmetic codes [15]. We
actually implemented two very simple coding schemes: variable-
byte codes and variable-nybble codes.4 Both schemes allow for
very fast encoding and decoding, and given our data sets, their com-
pression ratio is acceptable (although not superb). The computer
representations of small positive numbers have long sequences of
leading zeroes. In the variable-nybble scheme, the maximum pos-
sible number of leading all-zero nybbles is omitted, and only the re-
mainder is stored. The data is stored in containers of 64-bit words,
which are divided into 16 nybbles each. The first 12 nybbles hold
the “payload” (the integers to be stored without their leading ze-
roes); the last 3 nybbles hold twelve continuation bits, each of
which corresponds to a payload nybble and indicates whether that
nybble contains the last nybble of a source integer; and the remain-
ing nybble indicates how many of the payload nybbles are unused
(this information is not needed for decompression, but useful as a
sanity check). Figure 6 shows 2 container words containing the
variable-nybble representation of the forward link store cell from
Figure 3.

It is worth mentioning that SHS was designed to allow for multi-
ple compression schemes. There are clean interfaces for URL and
link encoding and decoding; and the URL and link store cells con-
tain a field indicating the compression scheme used to construct
them, allowing for different cells to use different schemes (and in
particular, newer cells to use newer coding schemes).

Each link store cell is represented as a contiguous array of mem-
ory (consisting of 64-bit container words in the case of variable-
byte and variable-nybble encodings). In theory, one could retrieve
the UID set of any key UID by performing a linear scan from
the beginning of the array, but that would be prohibitively expen-
sive. Instead, we maintain an index data structure, much as we
did for URL store cells. A link store cell index is a simple array
of integers, one per key UID u, and each entry of the array con-
tains the starting position of u’s UID set in the main array. To
map a key UID u to its links, one simply gets the value o of in-
dex entry u− a, and beginning at offset o in the main array de-
compresses integers n,δ1, · · · ,δn; finally returning the link UID set
[u+δ1,u+δ1 +δ2, · · ·].

Figure 7 illustrates how the choice of k affects the space/time
tradeoff. The statistics are based on an SHS database containing
17.7 billion hyperlinks; we used variable-nybble coding to com-
press the UID gap values. The left graph shows the storage cost as a

4A “nybble” is four bits or a half-byte, a pun inspired by the ho-
mophony between byte and bite.

93

0

2

4

6

8

10

12

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Index stride length k

B
yt

es
 p

er
 li

nk

Forward links
Backward links

0.1

1

10

100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Index stride length k

M
ic

ro
so

co
nd

s
pe

r l
in

k Forward link
Backward link

Figure 7: Impact of k on the space/time tradeoff for link store
cells.

function of k; the right graph shows the lookup time as a function of
k. In both graphs, the horizontal axis denotes the index stride length
k (the number of UID-lists per block in the main part of the URL
store), using a logarithmic scale. In the left graph, the vertical axis
denotes the average storage cost (in bytes) of each compressed link
in the main index, plus the fractional overhead attributable to the
index entry. As can be seen, forward links compress slightly better
than backward links, and the cost is less than 2 bytes and within
10% of the asymptotic limit for k ≥ 16. In the right graph, the ver-
tical axis denotes the average time (in microseconds) required to
retrieve one forward link (green line) or backward link (red line) of
a UID. It is slightly cheaper to look up forward links than backward
links. Both lines are fairly straight for k ≥ 32, not surprising since
the implementation performs a linear scan of the block containing
the key UID, and on average has to scan half the block to obtain the
list of links.

Distributing the graph
Given a web graph (or subgraph), the SHS system distributes the

data across a set of available SHS servers. Each SHS server main-
tains a cell (consisting of an URL store cell, a forward link store
cell, and a backward link store cell), and together these cells con-
tain the entire (sub)graph. For reasons that will become apparent
later, we refer to these cells as a row or a generation of cells.

The graph consists of vertices (URLs) and edges (conceptually,
pairs of URLs), and it is partitioned based on the URLs’ host-
components. We write host(u) to denote the host component of
URL u, and we write Hn to denote a hash function (fixed ahead of
time) that maps host names to the half-open interval [0,n). Given
an SHS cluster consisting of n servers numbered 0 through n− 1,
and a web graph with vertex set V and edge set E ⊆ V ×V , the
graph is partitioned as follows:

• The URL store cell on server i contains all URLs u∈V where
Hn(host(u)) = i

• The forward link store cell on server i contains a mapping
u �→ {v : (u,v) ∈ E} for each u ∈V where Hn(host(u)) = i

• The backward link store cell on server i contains a mapping
u �→ {v : (v,u) ∈ E} for each u ∈V where Hn(host(u)) = i

Partitioning the URL and hyperlink set according to the URLs’
host component has several desirable properties. First, the parti-
tioning scheme preserves link locality: all URLs belonging to a
web server and all links between pages on the same web server (i.e.
the majority of all links) are maintained by the same SHS server.
Moreover, since the UIDs of a web server’s pages form an unin-
terrupted numeric range, difference coding paired with variable-
length coding works well. Second, clerks can determine the SHS
server responsible for a URL by performing a simple local compu-
tation, without any communication with the service.

Likewise, we would like to be able to determine which SHS
server “owns” a UID locally, without any communication. This in-
formation is encoded in the UID bit-pattern: Some high-order bits

10/30/2008 - 11/6/2008
relative position

10/30/2008 - 11/6/2008
degraded-

mode
partition

ID

10/30/2008 - 11/6/2008
normal-
mode

partition
ID10/30/2008 - 11/6/2008

reserved

63 0

Figure 8: Bit layout of a UID.

in the UID contain a (normal-mode) partition ID, while the low-
order bits contain the relative portion of the UID. The partition ID
identifies the SHS server maintaining the corresponding vertex and
its connected edges. Figure 8 illustrates the layout. So, given a
UID, the clerk can determine which SHS server owns it simply by
extracting the partition ID.

Providing Fault Tolerance
Any distributed system is vulnerable to machine failures, and the

probability of a machine failing increases with the number of ma-
chines. In a system of n computers, if a single machine fails with
probability p in a given time window, and assuming independent
failures, the probability that at least one of the machines in the sys-
tem has failed is 1− (1− p)n .

The graph partitioning scheme we described above does not have
any redundancy, so if any of the SHS servers fails, the portion of
the graph stored on that server would become inaccessible to client
applications. This is unacceptable in a production setting, and un-
desirable even in a more-relaxed research setting. We would like
to provide some measure of fault tolerance. Specifically, we would
like to tolerate up to f machine failures for some low value of f ,
and we would like to survive complete machine loss (including the
loss of all data stored on the failed machines).

The easiest way to provide fault tolerance would be to simply
replicate the service. Running f + 1 identical SHS clusters would
allow us to tolerate (at least) f failures without service interrup-
tions, simply by rerouting requests from failed machines to surviv-
ing replicas. There are circumstances where this strategy makes
sense; for example, the service might be replicated anyway in or-
der to increase the request throughput. However, full replication is
costly, and we were interested in a more frugal solution.

The approach we took is predicated on the observation that RAM
is far more scarce and expensive than disk. The cost of RAM was
the driving factor in developing web graph compression schemes,
and it is the reason why our in-memory representation of the web
graph does not have any redundancy. Disk, by comparison, is vir-
tually free – it is difficult to buy a hard drive that is not at least an
order of magnitude larger than the amount of main memory. So, it
is quite acceptable to keep several copies of the web graph on disk.

Given an SHS cluster of n machines, we provide tolerance of
up to f failures by building two SHS stores: a normal-mode store
with the graph partitioned over n machines, and a degraded-mode
store containing precisely the same graph, but partitioned across
n− f machines (by hashing the URLs’ hosts using Hn− f instead
of Hn). On average, each cell in the degraded-mode store contains
f /(n− f) more data that a normal-mode cell (and cells must fit into
RAM); if n = 200 and f = 4, this overhead is just 2%.

Each normal-mode cell and each degraded-mode cell is stored
on disk by f + 1 SHS servers. A cell associated by the host-hash
with server i is stored on servers i, i+1, · · · , i+ f . (We use modular
arithmetic in addressing servers; n ≡ 0.)

Figure 9 illustrates the behavior during a failure. The figure
shows a system of 8 SHS servers, arranged in a circle, to suggest
the modular or “clock” arithmetic used to address servers. There

94

00

7

6

4 4

3 3

2 2

5

54

43

3

6

5
5

4
4

7

6

5

5

2
2

1
1

0
0

1

1 0

0 5

7

3

3

2

2

1

1

Server 0

Server 1

Server 2

Server 3

Server 4

S
er

ve
r 6

Serv
er

5

Serv
er

7

00

7

6

4 4

3 3

2 2

6

5
5

4
4

7

6

5

5

1

1 0

0 5

7

3

3

2

2

1

1

Server 0

Server 1

Server 3

Server 4

S
er

ve
r 6

Serv
er

7

00

7

6

4 4

3 3

2 2

5

54

43

3

6

5
5

4
4

7

6

5

5

2
2

1
1

0
0

1

1 0

0 5

7

3

3

2

2

1

1

Server 0

Server 1

Server 2

Server 3

Server 4

S
er

ve
r 6

Serv
er

5

Serv
er

7

Figure 9: Dealing with failure.

are three copies of each cell, i.e. the system tolerates up to two fail-
ures. Normal-mode cells are shown in green, degraded-mode cells
are red, and the cells currently loaded into RAM are bold. The
left panel shows the system in normal mode, with the primary copy
of each normal-mode cell loaded into main memory and used to
answer requests. In the center panel, servers 2 and 5 have failed;
the in-memory normal-mode store on the surviving machines con-
tains only about three-quarters of the web graph. Therefore, n− f
of the surviving SHS servers load degraded-mode cells from their
local disks, so that the entire web graph is back in main mem-
ory, but distributed according to a different host-hash. Clerks are
aware of which machines have failed, and direct requests to the
SHS server holding the data required to answer the request. Read-
ing the degraded-mode store from disk takes about one minute, and
the SHS service is interrupted during that time. Once the system is
operating in degraded mode, two blank machines are provisioned
from a pool of hot-spares, and the states of the failed machines are
copied from surviving machines to the hot-spares (see right panel).
Since there were only f failures, there is guaranteed to be at least
one surviving replica of each cell on the failed machines. Once the
states of the failed machines have been copied to the hot-spares, the
system transitions back into normal mode (the left panel), experi-
encing another minute-long service interruption in the process.

The degraded-mode store is distributed over n− f machines, but
there may be more than n− f surviving machines, so in general
there are multiple possible mappings of degraded-mode cells to sur-
viving machines. It does not matter which mapping is used, as long
as both SHS servers and clerks agree on the same mapping. Given
a URL u, clerks can determine which SHS server is responsible for
it, by applying hash Hn− f to u’s host and applying the aforemen-
tioned partition-to-survivor mapping to the result.

A degraded-mode cell maintains different URLs (due to the dif-
ferent host-hash function) than its normal-mode counterpart, so the
mapping from URL to UID space is different. In particular, the
relative portion of a UID is based on the lexical order of the URLs
in a given URL store cell, and since degraded-mode cells contain
URLs from a different (and on average slightly larger) set of hosts
than normal-mode cells, a URL u will have different normal-mode
and degraded-mode UIDs. One way to address this problem would
be to adopt a transactional semantics. In this model, mapping a
URL to its UID and any subsequent SHS queries using this UID
must be in the same transaction; and if any SHS server fails dur-
ing the transaction (thereby causing the system to transition into
degraded mode and causing UID spaces to change), clients have to
restart the transaction from the beginning.

However, we chose an alternative solution, in which SHS client
applications are oblivious to failures. In order to achieve this, we
have to address two issues: How to direct a UID to the right server,
and how to translate between normal-mode and degraded-mode
UID spaces.

Given a UID v, clerks cannot tell from the normal-mode partition
ID of v which degraded-mode cell contains it. Therefore, the lay-
out of each UID reserves some additional high-order bits to contain
a degraded-mode partition ID, which stores the result of applying
Hn− f to the host of v’s URL. These degraded-mode partition IDs
allow the clerk (transparently to client applications) to direct re-
quests related to UID v to the SHS server responsible for v in de-
graded mode. Note that each URL still has a normal-mode and a
degraded-mode UID; these two UIDs have identical normal-mode
and degraded-mode partition IDs but (in general) different relative
portions.

Client applications always use normal-mode UIDs, and the SHS
clerk communicates each normal-mode UID to the responsible SHS
server. If the system is in degraded mode, this will be the server
addressed by the degraded-mode partition ID and the partition-to-
survivor mapping. The server translates the normal-mode UID to
a degraded-mode UID, retrieves the desired information from the
degraded-mode cell, translates all degraded-mode result UIDs back
to normal-mode UIDs, and sends these back to the clerk.

The translation mechanism between normal- and degraded-mode
UIDs profits from the fact that we partitioned URLs according to
their host component. All the URLs and links associated with a
web server are stored in one normal-mode and one degraded-mode
cell. So, for all URLs from a given host, the arithmetic difference
between their normal-mode and degraded-mode UIDs is constant.

Each SHS server maintains two translation tables: A normal-
to-degraded table that maps the lowest normal-mode UID of each
host to its degraded-mode counterpart, and a degraded-to-normal
table that maps the lowest degraded-mode UID of each host to its
normal-mode counterpart. Each table is implemented as an ar-
ray of UID pairs sorted by key UID; lookup amounts to binary
search on the key UID column. Both tables only contain entries
for those hosts that are covered by the degraded-mode cell of that
SHS server. All normal-to-degraded UID mappings can be resolved
locally, since an SHS server will only receive requests related to
hosts it covers in degraded mode. Result UIDs, however, may be-
long to any host. Because of link-locality, most result UIDs can
be translated using the local degraded-to-normal table. Translating
the remaining results requires a round of RPC calls to peer servers;
caching of the degraded-to-normal UID pair of “popular” hosts re-

95

duces the number of translations that cannot be performed locally.

Building a store row
The typical way to compile a web graph is to crawl the web and

to write the URLs of crawled pages and their links to disk. Con-
structing an SHS store from this data is a multi-stage process:

1. One or more ShsBuilder processes read through the data pro-
duced by the crawler, and send each page and link URL u to
the SHS servers identified by Hn(host(u)) and Hn− f (host(u)).
Each SHS server receives a stream of URLs from the SHS
builders, and appends each URL to a normal-mode and/or a
degraded-mode file (performing the same two hashes to de-
cide what file to append to).

2. Once all the crawled URLs have been transmitted, the SHS
servers sort the normal-mode URLs lexicographically. Sort-
ing is done in two phases: In phase 1, a large number of
URLs are read from the normal-mode file into memory, sorted
using Quicksort, and written to a separate temporary file; this
process is repeated until the normal-mode file is exhausted;
in phase 2, the temporary files are read in a merge-sort pat-
tern, duplicate URLs are eliminated, distinct URLs are front-
coded and written to the main part of an URL store cell, and
the index is written en passant. Following that, the degraded-
mode URLs are sorted in the same way.

3. The ShsBuilder processes make a second pass through the
data produced by the crawler, and send each pair (u,v) of
page URLs u and link URLs v to the servers identified by
Hn(host(u)), Hn(host(v)), Hn− f (host(u)), and Hn− f (host(v)).
By performing the same hashes, an SHS server can deter-
mine whether a received pair (u,v) belongs to a normal-mode
or/and degraded mode cell on this machine, as well as to
the forward- or/and backward-link store cell on this machine.
Because of link-locality, most pairs belong to both the forward-
and the backward-link store cell on this machine. If this is the
case, both u and v can be mapped to their UIDs locally, by
looking them up in the URL store cell constructed in step
2; otherwise, the lookup is performed by a peer SHS server,
and many URLs are batched up to amortize the RPC over-
head. UID pairs are written to one or more (depending on
host-hashes) of four temporary disk files – a normal- and a
degraded mode forward-file containing uid(u),uid(v) pairs,
and a normal- and a degraded mode backward-file containing
uid(v),uid(u) pairs.

4. Once all the crawled page/link pairs have been transmitted,
each SHS server sorts the four temporary files according to
key UID, eliminates duplicate links in the process, and builds
four link store cells based on these files. All temporary files
are discarded once they are no longer needed.

5. Finally, each SHS i server copies all the newly constructed
cells to its peer servers i + 1, · · · , i + f , thus ensuring that
there are f +1 copies of each file.

4. MANAGING CHANGE AND GROWTH
The SHS implementation described in the previous section was

designed for immutable web graphs. The SHS store is built from
a set of crawled web pages (as described in section 3) and sub-
sequently becomes available to SHS clients, but once the store is
built, it can no longer be changed. Performing incremental updates
on an SHS store is hard due to its basic design: The URLs in an
URL store cell are stored in lexicographic order, and UIDs are as-
signed according to that order. Inserting a new URL u into an URL

store cell U would increment the UIDs of all those URLs in U that
are larger than u, which in turn would require every occurrence of
these UIDs in all link store cells to be adjusted. In other words, in-
serting even a single new URL into the store would require all link
store cells to be rewritten.

In this section, we will describe an extension of the basic SHS
design that allows for incremental updates to the store. However,
this additional functionality comes at a substantial price: The URL
and link compression ratio decreases, lookups of both URLs and
links become more expensive, and the system is decidedly more
complex. So, in domains where incremental updates are not re-
quired, the basic SHS design described in section 3 is preferable.

The key idea of our incremental update scheme is to put up-
dates into a new store row (a set of cells partitioned across all
SHS servers) rather than integrating them into the existing store,
thereby avoiding any changes in the existing URL-to-UID map-
ping and the resulting need to rewrite existing link store cells. So,
instead of a single row of cells, an SHS store is now a grid of cells,
where the columns correspond to SHS servers and the rows cor-
respond to “generations” of the vertices and edges. In order to
avoid a rapid increase in the number of rows, updates are performed
in appropriately-sized batches; each batch produces one new row.
Moreover, several rows are periodically merged into a single row,
further controlling the number of rows. We leverage this merge pro-
cess to also allow us to change the number of machines in a running
SHS cluster, e.g. to cope with an increase in the graph size.

Incorporating new and changed web pages
As in the static case, building a store row g is a multi-step pro-

cess involving an ShsBuilder (which now processes a batch of up-
dates) and n ShsServer processes. Step 1 of the process remains
unchanged: the ShsBuilder sends each page and link URL to the
server identified by the host-hash. In step 2, each server i sorts the
received URLs as before; however, the merge phase of the sort is
modified such that only new URLs (those that are not already con-
tained in an existing URL cell on that server) are incorporated into
the new URL cell Ui,g. This duplicate elimination requires a single,
streaming pass through the existing URL cells on that server. Step
3 of the build process remains unchanged (except that the URL-to-
UID mapping involves more cells, as described below).

Explaining the changes to step 4 of the build process requires
some background. A batch of updates consists of a set of crawled
pages and their embedded hyperlinks. Some of these pages may be
new, other may have been crawled previously and their embedded
links may have changed. Assume that the page u previously con-
tained links v1, · · · ,vp and now contains links v′1, · · · ,v′q. We reflect
this by adding a mapping u �→ v′1, · · · ,v′q to the forward link store.
Updating the backward link store is not as straightforward; there
are two alternative solutions.

The first solution requires no modification to the semantics of a
backward link store entry, but is expensive both in terms of space
and update time cost. We look up the old forward links W of ev-
ery v ∈ {v′1, · · · ,v′q}\{v1, · · · ,vp} and add a mapping v �→ W ∪
{u}, and similarly look up the old forward W links of every v ∈
{v1, · · · ,vp}\{v′1, · · · ,v′q} and add a mapping v �→ W \{u}. If the
average out-degree is δ and the fraction of changed links on a page
is λ, this solution requires 2λδ + 1 lookups in the old forward link
store, and adds an average of 2λδ2 link UIDs per changed page to
the new backward link store cell.

A more efficient solution is to add deleted-tags to link UIDs. We
write u to tag UID u as deleted. We add a mapping v �→ {u} to the
new backward link store cell for each v∈{v′1, · · · ,v′q}\{v1, · · · ,vp},
and a mapping v �→ {u} for each v ∈ {v1, · · · ,vp}\{v′1, · · · ,v′q}.

96

This solution requires just one lookup in the old forward link store
(to obtain v1, · · · ,vp), and adds an average of 2λδ link UIDs per
changed page to the new backward link store cell. However, look-
ing up a UID u in the backward link store becomes somewhat more
complicated, as we need to look up u in multiple backward link
store cells and combine the UID lists to obtain the final result list.

The link store cell implementation described in section 3 ex-
ploited the fact that each URL in an URL store had exactly one
corresponding entry in the forward link store cell and one entry in
the backward link store cell. Now, however, some of the entries in
the backward and forward link store cells will have “new” key UIDs
(UIDs defined by the corresponding URL store cell), others will be
“old” (corresponding to URLs from previous generations). In order
to cope with this, each link store cell is divided into an “old key”
and a “new key” portion. The implementation of the “new key”
portion is unchanged from section 3. Keys in the “old key” portion
are non-continuous, so they are stored explicitly in both the index
and the main part.

Deleted-tags can only occur in link UIDs in the “old key” portion
of a backward link store cell. They can be encoded efficiently by
multiplying each link UID in this portion by 2, and using the now
vacant lowest-order bit of the UID to represent the tag. Using the
lowest-order bit means that two UIDs on the same server (deleted
or not) continue to be numerically close and thus compress well.

A UID u has an associated generation g of the URL store cell
that maps u to its corresponding URL. Looking up a UID u in the
forward link store entails looking it up in the newest-generation
cell on the server responsible for u. If u is not in that cell, the
search progresses to the previous-generation cell, until u is found
or generation g has been passed. Looking up u in the backward link
store (and assuming the “deleted-tag” solution) entails looking u up
in all backward link store cells starting at generation g and up to the
current generation, and combining the partial results obtained from
each cell into a total result.

Merging cell rows
Incorporating a batch of updates into the SHS server creates a

new row of cells, and the cost of lookups is proportional to the
number of rows. Therefore, we control the store growth by period-
ically merging the m newest rows. Merging rows (and in particular
merging URL store cells) changes the mapping between URLs and
UIDs; merging the newest rows has the desirable property that the
only rows affected by this remapping are the rows that are being
merged.

Merging m rows is a multi-step process: First, each SHS server
merges its m newest URL store cells, which involves a linear scan
through all these cells. The new URL store cell is written to disk
as it is being assembled. In addition, the server constructs a trans-
lation table T for mapping old UIDs to new UIDs, as the merge
sort is being performed. The new UIDs occupy the same numeric
range as the old UIDs; specifically, the lowest new UID is identical
to the lowest old UID. The most straightforward implementation of
T consists of arrays of 64-bit integers, one array per old URL store
cell and one entry per UID, each entry indexed by the old UID and
containing the new UID. A more sophisticated implementation re-
duces the memory requirements by nybble-and gap-encoding the
new UIDs (which conveniently are in sorted order in each sub-
table, with small deltas between adjacent entries), and uses an in-
dex data structure similar to the indices described in section 3 to
avoid the need for a linear scan through the main array to undo the
decompression.

Second, each server merges its m newest forward link store cells.
Merging link store cells consists of interleaving entries from the old

cells in the correct order (such that the new key UIDs are in sorted
order), and remapping all UIDs that belong to the generations be-
ing merged (older UIDs are unaffected). Because of link locality,
most of the remappings can be performed using this server’s trans-
lation table; some fraction requires lookups in the tables of peer
servers; these lookups can be batched up (to amortize the RPC
cost), and caching popular mappings helps as well. Third, each
server merges its m newest backward link store cells in much the
same way. This concludes the merger of the normal-mode cells;
each server now repeats the same process for the degraded-mode
cells. Having done so, the new normal- and degraded-mode cells
are copied to the server’s f neighbors (to provide redundancy).

Once the merge is completed, the SHS server atomically switches
over to the new store. This switch-over involves unloading the m
cell rows that are now defunct, and loading the merged row that
replaces them. This causes a brief service interruption similar to
the transition between normal and degraded mode. However, un-
like the transition between normal and degraded mode, this tran-
sition cannot be made transparent to the client. The UID space
has changed, and the SHS servers make no attempt to translate old
UIDs to new UIDs. Instead, the SHS client API is modified: meth-
ods such as UrlToUid or MinUid whose results are relative to a par-
ticular UID space now return an epoch number in addition to their
result, and methods such as UidToUrl or GetLinks whose inputs are
relative to a particular UID space now take an epoch number as
an additional input. If the epoch number passed to such a method
no longer matches the epoch of the SHS servers (because a merge
has been committed), the method call throws an exception. Clients
must catch these exceptions and restart at the call that produced the
epoch number. In effect, this introduces transactional semantics to
SHS.

The epoch number is increased whenever the SHS store changes
visibly to the client, e.g. by incorporating a batch of updates possi-
bly followed by a merge. Merge operations are triggered by updates
to the store. If the binary representation of the new epoch number
has m trailing zeros, then m + 1 generations are merged as part of
the update. So, half of the updates incur no merge overhead (since
merging one row is a no-op), a quarter merge the two newest rows,
an eighth merge the three newest rows, and so on. Since the cost of
merging rows is proportional to the combined size of the old rows,
merging rows in the way we described means that the amortized
merge cost is logarithmic to the size of the store. Furthermore, the
merge scheme controls the number of rows: at epoch e, there will
be log2 e store rows.

Without going into too much detail, the merge process is also
used to garbage-collect URLs. During the URL store cell merge
phase, any URLs that do not have any edges associated with them
are not incorporated into the new URL store cell. Determining
whether a URL has associated edges requires lookups in the link
store cells that are in the scope of the merge; these lookups are not
random, but rather stream through the link store cells in the same
way the URL merging streams through the URL store cells; there-
fore this process of weeding out “dead” URLs is very efficient.

Changing the number of SHS servers
The amount of useful content on the web continues to increase,5

and search engines respond to this by increasing their index sizes.
In order to grow the web graph maintained by SHS in lock-step,
we need to provision more servers. We can change the number of
servers in an operating SHS cluster by leveraging the row merging
mechanisms. The basic idea is that we do not attempt to repartition
the entire store at once. Instead, batches of updates arriving after

5The amount of useless content has been infinite for a while now.

97

the cluster has been grown are hashed over all available machines.
Moreover, during each merge operation the new row that replaces
the m old rows is hashed over all available machines. This way, the
web graph will be gradually repartitioned to utilize the extended
cluster of SHS servers.

The details of this scheme for growing the cluster add yet more
complexity to the design. Growing the cluster from n to n+ d ma-
chines means that now there are two normal-mode host-hash func-
tions, Hn and Hn+d , and if the cluster was grown several times,
there might be more. In order to perform a UrlToUid(u) call, SHS
clerks need to contact all servers that could contain URL u based on
the host-hash functions. Moreover, row merge operations that cross
an expansion boundary are more complicated. URLs and their as-
sociated links have to be repartitioned to peer servers (which re-
quires streaming network communication), and the UID translation
tables have to be shuffled between the servers as well. A detailed
description of the process is beyond the score of this paper; suf-
fice it to say that the overhead of merging rows that cross cluster
expansion boundaries is not prohibitive.

5. CONCLUSION AND FUTURE WORK
This paper described the Scalable Hyperlink Store, a scalable

system that provides extremely fast access to the web graph. SHS
partitions the nodes and edges that make up the web graph over a
set of servers, keeps all the data in main memory to provide ex-
tremely fast access, and uses compression techniques that leverage
properties of the web graph to reduce the memory footprint. We
believe that the design presented in this paper will be a useful blue-
print for future storage systems for the web graph.

The basic SHS architecture was developed in early 2003 [16];
the core system has been operational and in fairly constant use
since 2005. We have used it to study the effectiveness of various
query-dependent link-based ranking algorithms along the lines of
HITS [10, 17, 18, 19, 21]. Other groups within Microsoft have
used SHS as well, sometimes in unexpected ways. For example,
SHS has been used to maintain a “click graph” – a graph that asso-
ciates search queries with the results that users click on. Performing
random walks on this graph surfaces keywords related to the query,
which is useful for query suggestion, ad targeting, and keyword
sales [9]. SHS has also been used to study structural properties of
the MSN messenger graph.

There are numerous avenues for future work. We are currently
experimenting with alternative URL and link compression schemes
and measuring the resulting space/time tradeoffs. We are continu-
ing to investigate query-dependent link-based ranking algorithms;
in the past, such work provided motivation to extend the SHS API;
for example, we incorporated random and consistent sampling of
links into the SHS server after it became apparent that this oper-
ation was used by many HITS-like ranking algorithms, and that
pushing it from the client into the server would result in substan-
tial performance gains. We are looking for improvements to the
incremental update scheme that preserve more of the performance
advantages of the basic system for maintaining static graphs. Fi-
nally, we are considering whether there are efficient ways for at-
taching extra information to nodes and edges (examples include an-
chor texts and weights), a feature that has been requested by several
users. Unfortunately, our link compression scheme in particular is
highly optimized, and attaching arbitrary labels (with a distribution
that is not known a priori) would have a severe impact on the com-
pression ratio. One solution would be to allow clients to supply
label-specific coders and decoders.

6. REFERENCES
[1] M. Adler and M. Mitzenmacher. Towards Compressing Web Graphs. In

11th IEEE Data Compression Conference, March 2001, pages 203–212.
[2] L. Becchetti, C. Castillo, D. Donato, R. Baeza-Yates, and S. Leonardi.

Link Analysis for Web Spam Detection. ACM Transactions on the Web,
2(1), 2008.

[3] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S.
Venkatasubramanian. The Connectivity Server: fast access to linkage
information on the Web. In 7th International World Wide Web
Conference, April 1998, pages 469–477.

[4] P. Boldi and S. Vigna. The WebGraph Framework I: Compression
Techniques. In 13th International World Wide Web Conference, May
2004, pages 595–601.

[5] P. Boldi and S. Vigna. The WebGraph Framework II: Codes For The
World-Wide Web. In 14th IEEE Data Compression Conference, March
2004, page 528.

[6] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-Wise
Independent Permutations. Journal of Computer and System Sciences
60(3):630–659, 2000.

[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the Web. In 9th
International World Wide Web Conference, May 2000, pages 309–320.

[8] G. Buehrer and K. Chellapilla. A Scalable Pattern Mining Approach to
Web Graph Compression with Communities. In 1st Intl. Conf. on Web
Search and Data Mining, February 2008, pages 95–106.

[9] A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal. Using the Wisdom
of the Crowds for Keyword Generation. In 17th International World Wide
Web Conference, April 2008, pages 61–70.

[10] S. Gollapudi, M. Najork, and R. Panigrahy. Using Bloom Filters to Speed
Up HITS-like Ranking Algorithms. In 5th Workshop on Algorithms and
Models for the Web-Graph, December 2007, pages 195–201.

[11] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. In
9th Annual ACM-SIAM Symposium on Discrete Algorithms, January
1998, pages 668–677.

[12] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the
Web for Emerging Cyber-Communities. In 8th International World Wide
Web Conference, May 1999, pages 11–16.

[13] R. Lempel and S. Moran. The stochastic approach for link-structure
analysis (SALSA) and the TKC effect. Computer Networks and ISDN
Systems, 33(1–6):387–401, 2000.

[14] M. Marchiori. The quest for correct information on the Web: Hyper
search engines. In Computer Networks and ISDN Systems,
29(8–13):1225–1236, 1997.

[15] A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer
Academic Publishers, 2002.

[16] M. Najork. System and method for maintaining a distributed database of
hyperlinks. US Patent 7340467; filed April 2003, issued March 2008.

[17] M. Najork. Comparing the Effectiveness of HITS and SALSA. In 16th
ACM Conference on Information and Knowledge Management,
November 2007, pages 157–164.

[18] M. Najork and N. Craswell. Efficient and Effective Link Analysis with
Precomputed SALSA Maps. In 17th ACM Conference on Information
and Knowledge Management, October 2008, pages 53–61.

[19] M. Najork, S. Gollapudi, and R. Panigrahy. Less is More: Sampling the
Neighborhood Graph Makes SALSA Better and Faster. In 2nd ACM
International Conference on Web Search and Data Mining, February
2009, pages 242–251.

[20] M. Najork and A. Heydon. High-Performance Web Crawling. In
Handbook of Massive Data Sets, Kluwer Academic Publishers, 2002.

[21] M. Najork, H. Zaragoza, and M. Taylor. HITS on the Web: How does it
Compare? In 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, July 2007, pages
471–478.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

[23] K. Randall, R. Stata, R. Wickremesinghe, and J. Wiener. The Link
Database: Fast Access to Graphs of the Web. In 12th IEEE Data
Compression Conference, April 2002, pages 122–131.

[24] T. Suel and J. Yuan. Compressing the Graph Structure of the Web. In
11th IEEE Data Compression Conference, March 2001, pages 213–222.

[25] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes (2nd edition).
Academic Press, 1999.

98

