Applications of Mathematics

Chérif Amrouche; Hamid Bouzit

The scalar Oseen operator $-\Delta+\partial / \partial x_{1}$ in \mathbb{R}^{2}

Applications of Mathematics, Vol. 53 (2008), No. 1, 41-80
Persistent URL: http://dml.cz/dmlcz/134698

Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE SCALAR OSEEN OPERATOR $-\Delta+\partial / \partial x_{1}$ IN \mathbb{R}^{2}

Chérif Amrouche, Pau, Hamid Bouzit, Mostaganem

(Received June 20, 2006)

Abstract. This paper solves the scalar Oseen equation, a linearized form of the NavierStokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in L^{p} theory.

Keywords: Oseen equation, weighted Sobolev space, anisotropic weight
MSC 2000: 76D05, 35Q30, 26D15

1. Introduction

Let Ω be an exterior domain of \mathbb{R}^{2} or the whole space \mathbb{R}^{2}. We consider the following Oseen's problem:

$$
\begin{align*}
-\nu \Delta \boldsymbol{u}+\lambda \frac{\partial \boldsymbol{u}}{\partial x_{1}}+\nabla \pi & =\boldsymbol{f} & & \text { in } \Omega, \tag{1.1}\\
\operatorname{div} \boldsymbol{u} & =g \quad & & \text { in } \Omega, \\
\boldsymbol{u} & =\boldsymbol{u}_{*} & & \text { on } \partial \Omega,
\end{align*}
$$

with the condition on \boldsymbol{u} at infinity

$$
\begin{equation*}
\lim _{|x| \rightarrow+\infty} \boldsymbol{u}(x)=\boldsymbol{u}_{\infty} \tag{1.2}
\end{equation*}
$$

The viscosity ν, the external force \boldsymbol{f}, the boundary values \boldsymbol{u}_{*} on $\partial \Omega$ and g are given. The positive coefficient λ corresponds to the Reynolds number. The unknown velocity field \boldsymbol{u} is assumed to converge to a constant vector \boldsymbol{u}_{∞}, and the scalar function π denotes the unknown pressure. C. W. Oseen [14] obtained (1.1) by linearizing the Navier-Stokes equations, describing the flow of a viscous and incompressible fluid.

Some authors worked on this problem. We can cite Finn [6], [7], more recently Galdi [8], Farwig [3], [4], Farwig and Sohr [5] and Amrouche and Razafison [2]. When $\Omega=\mathbb{R}^{2}$, the system (1.1) is written as follows

$$
\begin{align*}
-\nu \Delta \boldsymbol{u}+\lambda \frac{\partial \boldsymbol{u}}{\partial x_{1}}+\nabla \pi=\boldsymbol{f} & \text { in } \mathbb{R}^{2} \tag{1.3}\\
\operatorname{div} \boldsymbol{u}=g & \text { in } \mathbb{R}^{2}
\end{align*}
$$

with the same condition at infinity. Taking the divergence of the first equation of (1.3), we obtain a decoupled set of equations

$$
\begin{align*}
& \Delta \pi=\operatorname{div} \boldsymbol{f}+\nu \Delta g-\lambda \frac{\partial g}{\partial x_{1}} \quad \text { in } \mathbb{R}^{2} \tag{1.4}\\
& -\nu \Delta \boldsymbol{u}+\lambda \frac{\partial \boldsymbol{u}}{\partial x_{1}}=\boldsymbol{f}-\nabla \pi \quad \text { in } \mathbb{R}^{2} \tag{1.5}
\end{align*}
$$

We use the results obtained in [1] for the Poisson equation to solve Equation (1.4). Now observe that each component u_{j} of the velocity satisfies

$$
\begin{equation*}
-\nu \Delta u_{j}+\lambda \frac{\partial u_{j}}{\partial x_{1}}=f_{j}-\frac{\partial \pi}{\partial x_{j}} \quad \text { in } \mathbb{R}^{2} \tag{1.6}
\end{equation*}
$$

Thus, we see that if we solve the scalar equation

$$
\begin{equation*}
-\nu \Delta u+\lambda \frac{\partial u}{\partial x_{1}}=f \quad \text { in } \mathbb{R}^{2} \tag{1.7}
\end{equation*}
$$

we can apply to the Oseen problem the results obtained for this last equation. The aim of this paper is then to study the scalar Oseen equation (1.7). Since the fundamental solution of this equation has anisotropic decay properties, see (3.6), (3.9), we will work in Sobolev spaces with an isotropic weight and with the anisotropic weight introduced by Farwig [3] in the particular Hilbertian case $(p=2)$. The case $\lambda=0$ yields the Laplace equation studied by Amrouche-Girault-Giroire [1] in weighted Sobolev spaces. This paper is divided into five sections. In Section 2, we introduce the functional spaces and we recall some preliminary results. We give also a density result for $\mathcal{D}\left(\mathbb{R}^{2}\right)$ in an anisotropic weighted space and a characterization of homogeneous Sobolev spaces. In Section 3, by adapting a technique used by Stein, we obtained results on Oseen's potential which we use then to solve Equation (1.7), where the left-hand side f is given on the one hand in $L^{p}\left(\mathbb{R}^{2}\right)$ and on the other hand in $W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$. We also look at the case where f belongs at the same moment to two spaces with different powers p and q. We consider, in Section 4, the case where f belongs to spaces L^{p} with anisotropic weights. Finally, in Section 5, we consider
the limit case when λ tends to zero and we compare the limit with the solution of Poisson's equation. The main results of this paper are given by the theorems below.

In Theorem 1, we give $\left(L^{p}, L^{q}\right)$ continuity properties for the Oseen operators $f \mapsto \mathcal{O} * f, f \mapsto \partial \mathcal{O} / \partial x_{i} * f$, and $f \mapsto \partial^{2} \mathcal{O} / \partial x_{j} \partial x_{k} * f$, where \mathcal{O} is the fundamental scalar Oseen solution, which is defined in Section 3. We observe that the continuity results obtained for the Oseen equation (1.7) are better than the classic properties of the Riesz potential associated to the Laplace operator corresponding to the case $\lambda=0$.

Theorem 1.1. Let $f \in L^{p}\left(\mathbb{R}^{2}\right)$ with $1<p<\infty$. Then, $\partial^{2} \mathcal{O} / \partial x_{j} \partial x_{k} * f \in$ $L^{p}\left(\mathbb{R}^{2}\right), \partial \mathcal{O} / \partial x_{1} * f \in L^{p}\left(\mathbb{R}^{2}\right)$ and they satisfy the estimate

$$
\left\|\frac{\partial^{2} \mathcal{O}}{\partial x_{j} \partial x_{k}} * f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial \mathcal{O}}{\partial x_{1}} * f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
$$

Moreover,

1) i) if $1<p<2$, then $\nabla \mathcal{O} * f \in \boldsymbol{L}^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap \boldsymbol{L}^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ and

$$
\|\nabla \mathcal{O} * f\|_{\boldsymbol{L}^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|\nabla \mathcal{O} * f\|_{\boldsymbol{L}^{2 p /(2-p)\left(\mathbb{R}^{2}\right)}} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
$$

ii) If $p=2$, then $\nabla \mathcal{O} * f \in \boldsymbol{L}^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 6$ and the following estimate holds:

$$
\|\nabla \mathcal{O} * f\|_{L^{r}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
$$

iii) If $2<p<3$, then $\nabla \mathcal{O} * f \in \boldsymbol{L}^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap \boldsymbol{L}^{\infty}\left(\mathbb{R}^{2}\right)$ and we have the estimate

$$
\|\nabla \mathcal{O} * f\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|\nabla \mathcal{O} * f\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
$$

2) If $1<p<\frac{3}{2}$, then $\mathcal{O} * f \in L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right) \cap L^{\infty}\left(\mathbb{R}^{2}\right)$ and

$$
\|\mathcal{O} * f\|_{L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)}+\|\mathcal{O} * f\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
$$

In Theorem 2, we give similar results for the case when f belongs to a negative weighted Sobolev space $W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ and we observe again that we obtain results better than in the case $\lambda=0$.

Theorem 1.2. Let $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ satisfy the compatibility condition

$$
\langle f, 1\rangle_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \times W_{0}^{1, p^{\prime}}\left(\mathbb{R}^{2}\right)}=0, \quad \text { when } 1<p \leqslant 2 .
$$

i) If $1<p<3$, then $u=\mathcal{O} * f \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ is the unique solution of Equation (3.1) such that $\nabla u \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$ and $\partial u / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$. Moreover, we have the estimate

$$
\|u\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|\nabla u\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)},
$$

and $u \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ when $1<p<2, u \in L^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 6$ when $p=2$, and $u \in L^{\infty}\left(\mathbb{R}^{2}\right)$ when $2<p<3$.
ii) If $p \geqslant 3$, then Equation (3.1) has a solution $u \in \widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ that is unique up to a constant, and we have

$$
\inf _{k \in \mathbb{R}}\|u+k\|_{\widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}
$$

Theorem 1.3 is concerned with the case when f belongs to L^{p} spaces with anisotropic weight.

Theorem 1.3. Assume that $2<p<\frac{32}{11}$ and $f \in L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$. Then $u=$ $\mathcal{O} * f \in L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right), \partial u / \partial x_{2} \in L_{0,1 / 4}^{p}\left(\mathbb{R}^{2}\right), \partial u / \partial x_{1} \in L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$, and $\nabla^{2} u \in$ $\left(L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$. Moreover, we have the estimates

$$
\begin{gathered}
\int_{\mathbb{R}^{2}}(1+r)^{-p / 2}(1+s)^{p / 4}|u|^{p} \mathrm{~d} \boldsymbol{x}+\int_{\mathbb{R}^{2}}(1+r)^{p / 2}(1+s)^{p / 4}\left(\left|\partial u / \partial x_{1}\right|^{p}+\left|\nabla^{2} u\right|^{p}\right) \mathrm{d} \boldsymbol{x} \\
+\int_{\mathbb{R}^{2}}(1+s)^{p / 4}\left|\frac{\partial u}{\partial x_{2}}\right|^{p} \mathrm{~d} \boldsymbol{x} \leqslant C \int_{\mathbb{R}^{2}}(1+r)^{p / 2}(1+s)^{p / 4}|f|^{p} \mathrm{~d} \boldsymbol{x}
\end{gathered}
$$

where $r=|\boldsymbol{x}|, s=r-x_{1}=|\boldsymbol{x}|-x_{1}$, and the anisotropic weighted L^{p} spaces are defined in Section 4.

2. Functional spaces and preliminaries

In this paper, p is a real number in the interval $] 1,+\infty[$ and its conjugate is denoted by p^{\prime}. A point in \mathbb{R}^{2} is denoted $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ and we denote as above:

$$
\begin{gathered}
r=|\boldsymbol{x}|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}, \quad \varrho=\left(1+r^{2}\right)^{1 / 2}, \quad s=r-x_{1} \\
s^{\prime}=r+x_{1}, \quad \text { for } a, b \in \mathbb{R}, \eta_{b}^{a}=(1+r)^{a}(1+s)^{b} .
\end{gathered}
$$

For $R>0, B_{R}$ denotes the open ball of radius R centered at the origin and $B_{R}^{\prime}=$ $\mathbb{R}^{2} \backslash \overline{B_{R}}$. For any $j \in \mathbb{Z}, \mathcal{P}_{j}$ is the space of polynomials of degree lower than or equal to j and if j is negative we set, by convention, $\mathcal{P}_{j}=0$. Let B be a Banach space, with dual space B^{\prime} and a closed subspace X of B. We denote by $B^{\prime} \perp X$ the subspace of B^{\prime} orthogonal to X defined by

$$
B^{\prime} \perp X=\left\{f \in B^{\prime} ; \forall v \in X:\langle f, v\rangle=0\right\} .
$$

For $m \in \mathbb{N}^{*}$, we set

$$
k=k(m, p, \alpha)= \begin{cases}-1 & \text { if } \alpha+2 / p \notin\{1, \ldots, m\} \tag{2.1}\\ m-\alpha-2 / p & \text { if } \alpha+2 / p \in\{1, \ldots, m\}\end{cases}
$$

and we define the weighted Sobolev space

$$
\begin{aligned}
& W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right)=\left\{u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) ; \forall \lambda \in \mathbb{N}^{2}:\right. \\
& \text { if } 0 \leqslant|\lambda| \leqslant k \text {, then } \varrho^{\alpha-m+|\lambda|}(\lg \varrho)^{-1} \partial^{\lambda} u \in L^{p}\left(\mathbb{R}^{2}\right) \text {; } \\
& \text { if } \left.k+1 \leqslant|\lambda| \leqslant m \text {, then } \varrho^{\alpha-m+|\lambda|} \partial^{\lambda} u \in L^{p}\left(\mathbb{R}^{2}\right)\right\} \text {, }
\end{aligned}
$$

where $\lg \varrho=\ln (1+\varrho)$. It is a reflexive Banach space equipped with its natural norm:

$$
\begin{aligned}
& \|u\|_{W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right)} \\
& =\left(\sum_{0 \leqslant|\lambda| \leqslant k}\left\|\varrho^{\alpha-m+|\lambda|}(\lg \varrho)^{-1} \partial^{\lambda} u\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}^{p}+\sum_{k+1 \leqslant|\lambda| \leqslant m}\left\|\varrho^{\alpha-m+|\lambda|} \partial^{\lambda} u\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}^{p}\right)^{1 / p} .
\end{aligned}
$$

Its semi-norm is defined by

$$
|u|_{W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right)}=\left(\sum_{|\lambda|=m}\left\|\varrho^{\alpha} \partial^{\lambda} u\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}^{p}\right)^{1 / p}
$$

The logarithmic weight appears only when $\alpha+2 / p \in\{1, \ldots, m\}$. We refer to Kufner [11], Hanouzet [9], and Amrouche-Girault-Giroire [1] for a detailed study
of the space $W_{\alpha}^{m, p}\left(\mathbb{R}^{n}\right)$. However, we recall some properties and results that we use in this paper. For any $\lambda \in \mathbb{N}^{2}$, the mapping

$$
\begin{equation*}
u \in W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right) \mapsto \partial^{\lambda} u \in W_{\alpha}^{m-|\lambda|, p}\left(\mathbb{R}^{2}\right) \tag{2.2}
\end{equation*}
$$

is continuous. When $\alpha+2 / p \notin\{1, \ldots, m\}$, we have the following continuous embedding and density

$$
\begin{equation*}
W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right) \subset W_{\alpha-1}^{m-1, p}\left(\mathbb{R}^{2}\right) \subset \ldots \subset W_{\alpha-m}^{0, p}\left(\mathbb{R}^{2}\right) \tag{2.3}
\end{equation*}
$$

where

$$
W_{\alpha}^{0, p}\left(\mathbb{R}^{2}\right)=\left\{u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) ; \varrho^{\alpha} u \in L^{p}\left(\mathbb{R}^{2}\right)\right\} ;
$$

also note that the mapping

$$
\begin{equation*}
u \in W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right) \mapsto \varrho^{\gamma} u \in W_{\alpha-\gamma}^{m, p}\left(\mathbb{R}^{2}\right) \tag{2.4}
\end{equation*}
$$

is continuous, which is not the case if $\alpha+2 / p \in\{1, \ldots, m\}$. The space $W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right)$ contains the polynomials of degree lower than or equal to j, denoted \mathcal{P}_{j}, where $j \in \mathbb{N}$ is defined by

$$
j= \begin{cases}{[m-\alpha-2 / p]} & \text { if } \alpha+2 / p \notin \mathbb{Z}^{-} \tag{2.5}\\ m-1-\alpha-2 / p & \text { otherwise }\end{cases}
$$

The following theorem is fundamental (see [1]).
Theorem 2.1. Let $m \geqslant 1$ be an integer and α a real number, then there exists a constant C such that

$$
\begin{equation*}
\forall u \in W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right) \quad \inf _{\mu \in \mathcal{P}_{j}}\|u+\mu\|_{W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right)} \leqslant C|u|_{W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right)} \tag{2.6}
\end{equation*}
$$

where j is the highest degree of a polynomial contained in $W_{\alpha}^{m, p}\left(\mathbb{R}^{2}\right)$.
We define the space

$$
\boldsymbol{H}_{p}=\left\{\boldsymbol{v} \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right), \operatorname{div} \boldsymbol{v}=0\right\} .
$$

Theorem 2.1 permits to prove that the following divergence operator is an isomorphism (see [1]):

$$
\begin{equation*}
\operatorname{div}: \boldsymbol{L}^{p^{\prime}}\left(\mathbb{R}^{2}\right) / \boldsymbol{H}_{p} \longrightarrow W_{0}^{-1, p^{\prime}}\left(\mathbb{R}^{2}\right) \perp \mathcal{P}_{[1-2 / p]} \tag{2.7}
\end{equation*}
$$

The next result is a consequence of Theorem 2.1 (see [1]):

Proposition 2.2. Let $m \geqslant 1$ be an integer and u a distribution such that

$$
\forall \lambda \in \mathbb{N}^{2}:|\lambda|=m, \partial^{\lambda} u \in L^{p}\left(\mathbb{R}^{2}\right)
$$

(i) If $1<p<2$, then there exists a unique polynomial $K(u) \in \mathcal{P}_{m-1}$ such that $u+K(u) \in W_{0}^{m, p}\left(\mathbb{R}^{2}\right)$, and

$$
\begin{equation*}
\inf _{\mu \in \mathcal{P}_{[m-2 / p]}}\|u+K(u)+\mu\|_{W_{0}^{m, p}\left(\mathbb{R}^{2}\right)} \leqslant C|u|_{W_{0}^{m, p}\left(\mathbb{R}^{2}\right)} . \tag{2.8}
\end{equation*}
$$

(ii) If $p \geqslant 2$, then $u \in W_{0}^{m, p}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\inf _{\mu \in \mathcal{P}_{[m-2 / p]}}\|u+\mu\|_{W_{0}^{m, p}\left(\mathbb{R}^{2}\right)} \leqslant C|u|_{W_{0}^{m, p}\left(\mathbb{R}^{2}\right)} . \tag{2.9}
\end{equation*}
$$

When $1<p<2$, we have the following characterization of the space $W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$:

$$
\begin{equation*}
W_{0}^{1, p}\left(\mathbb{R}^{2}\right)=\left\{v \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right) ; \nabla v \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)\right\} \tag{2.10}
\end{equation*}
$$

We recall the space introduced in [2]:

$$
\begin{equation*}
\widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)=\left\{u \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right) ; \frac{\partial u}{\partial x_{1}} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)\right\} \tag{2.11}
\end{equation*}
$$

which is a Banach space for its natural norm:

$$
\|u\|_{\widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)}=\|u\|_{W_{0}^{1, p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}
$$

Also, we define

$$
\begin{equation*}
\widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)=\left\{u \in W_{0}^{2, p}\left(\mathbb{R}^{2}\right) ; \frac{\partial u}{\partial x_{1}} \in L^{p}\left(\mathbb{R}^{2}\right)\right\} \tag{2.12}
\end{equation*}
$$

which is a Banach space for its natural norm:

$$
\|u\|_{\widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)}=\|u\|_{W_{0}^{2, p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
$$

Its dual space denoted $\widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right)$ can be characterized as follows (see also Remark 2.5).

Proposition 2.3. Let $f \in \widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right)$. Then:
(i) If $p \neq 2$, there exist $f_{0} \in W_{2}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right), \boldsymbol{F} \in\left(W_{1}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right)\right)^{2}, \boldsymbol{H} \in\left(L^{p^{\prime}}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$, and $h \in L^{p^{\prime}}\left(\mathbb{R}^{2}\right)$ such that for all $v \in \widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)$, we have

$$
\begin{align*}
\langle f, v\rangle_{\widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right) \times \widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)}= & \left\langle f_{0}, v\right\rangle_{W_{2}^{0, p^{\prime}} \times W_{-2}^{0, p}}+\langle\boldsymbol{F}, \nabla v\rangle_{W_{1}^{0, p^{\prime}} \times W_{-1}^{0, p}} \tag{2.13}\\
& +\left\langle\boldsymbol{H}, \nabla^{2} v\right\rangle_{\boldsymbol{L}^{p^{\prime}} \times \boldsymbol{L}^{p}}+\left\langle h, \frac{\partial v}{\partial x_{1}}\right\rangle_{L^{p^{\prime}} \times L^{p}} .
\end{align*}
$$

(ii) If $p=2$, then (2.13) holds if we take the weight $\varrho \lg \varrho$ instead of ϱ in the definition of $W_{1}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right)$ and $W_{-1}^{0, p}\left(\mathbb{R}^{2}\right)$, and $\varrho^{2} \lg \varrho$ instead of ϱ^{2} in the definition of $W_{2}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right)$ and $W_{-2}^{0, p}\left(\mathbb{R}^{2}\right)$.

Proof. i) Suppose $p \neq 2$. Let $\boldsymbol{E}=W_{-2}^{0, p}\left(\mathbb{R}^{2}\right) \times\left(W_{-1}^{0, p}\left(\mathbb{R}^{2}\right)\right)^{2} \times\left(L^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2} \times$ $L^{p}\left(\mathbb{R}^{2}\right)$, equipped with the norm:

$$
\|\boldsymbol{\psi}\|_{\boldsymbol{E}}=\left\|\psi_{0}\right\|_{W_{-2}^{0, p}}+\sum_{i=1}^{n}\left\|\psi_{i}\right\|_{W_{-1}^{0, p}}+\sum_{j, k=1}^{n}\left\|\psi_{j, k}\right\|_{L^{p}}+\|\Omega\|_{L^{p}}
$$

where $\boldsymbol{\psi}=\left(\psi_{0}, \psi_{i}, \psi_{j, k}, \Omega\right)$. It is clear that the following operator is an isometry

$$
T: v \in \widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right) \mapsto\left(v, \nabla v, \nabla^{2} v, \frac{\partial v}{\partial x_{1}}\right) \in \boldsymbol{E}
$$

For all $f \in \widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right)$ the operator defined by $L(h)=\left\langle f, T^{-1} h\right\rangle$ is continuous on $T\left(\widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)\right)$ which is a closed subspace of \boldsymbol{E}. Thus, by the Hahn-Banach theorem, we can extend L to an element \widetilde{L} of the dual of \boldsymbol{E}. Now, by the Riesz theorem, there exist $f_{0} \in W_{2}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right), \boldsymbol{F} \in\left(W_{1}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right)\right)^{2}, \boldsymbol{H} \in\left(L^{p^{\prime}}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$ and $h \in L^{p^{\prime}}\left(\mathbb{R}^{2}\right)$ satisfying (2.13).
ii) If $p=2$, we take $\varrho \lg \varrho F_{i} \in L^{p^{\prime}}\left(\mathbb{R}^{2}\right)$ in the definition of $W_{1}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right), \varrho^{2} \lg \varrho f_{0} \in$ $L^{p^{\prime}}\left(\mathbb{R}^{2}\right)$ in the definition of $W_{2}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right)$ and we proceed as in the case i). Let us note that, when $1<p<2$, we can take $\boldsymbol{F}=\mathbf{0}$ thanks to Theorem 2.1.

The last proposition permits to prove the next result.

Proposition 2.4. $\mathcal{D}\left(\mathbb{R}^{2}\right)$ is dense in $\widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)$.
Proof. Let $f \in \widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right)$ be such that

$$
\begin{equation*}
\forall \varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right) \quad\langle f, \varphi\rangle_{\widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right) \times \widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)}=0 \tag{2.14}
\end{equation*}
$$

i) If $p^{\prime} \neq 2$, by the previous proposition, there exist $f_{0} \in W_{2}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right), \boldsymbol{F} \in$ $\left(W_{1}^{0, p^{\prime}}(\mathbb{R})^{2}\right)^{2}, \boldsymbol{H} \in\left(L^{p^{\prime}}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$, and $h \in L^{p}\left(\mathbb{R}^{2}\right)$ satisfying (2.13). In particular, taking $v=\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$ in this equation, we have by (2.14):

$$
f_{0}-\operatorname{div} \boldsymbol{F}+\operatorname{div}(\operatorname{div} \boldsymbol{H})-\frac{\partial h}{\partial x_{1}}=0
$$

in the sense of distributions. Now, by (2.3), we have the continuous embedding and density $W_{0}^{1, p}\left(\mathbb{R}^{2}\right) \subset W_{-1}^{0, p}\left(\mathbb{R}^{2}\right)$. Thus, by duality, we have the embedding $W_{1}^{0, p^{\prime}}\left(\mathbb{R}^{2}\right) \subset W_{0}^{1, p^{\prime}}\left(\mathbb{R}^{2}\right)$, so $\boldsymbol{F} \in\left(W_{0}^{-1, p^{\prime}}\left(\mathbb{R}^{2}\right)\right)^{2}$, which implies $\operatorname{div} \boldsymbol{F} \in W_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right)$. By the same argument, we deduce that $f_{0} \in W_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right)$, thus the last equation yields

$$
\frac{\partial h}{\partial x_{1}}=f_{0}-\operatorname{div} \boldsymbol{F}+\operatorname{div}(\operatorname{div} \boldsymbol{H}) \in W_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right) \cap W_{0}^{-1, p^{\prime}}\left(\mathbb{R}^{2}\right)
$$

So, Equation (2.13) can be written:

$$
\langle f, v\rangle_{\widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right) \times \widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)}=\left\langle f_{0}-\operatorname{div} \boldsymbol{F}+\operatorname{div}(\operatorname{div} \boldsymbol{H})-\frac{\partial h}{\partial x_{1}}, v\right\rangle_{W_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right) \times W_{0}^{2, p}\left(\mathbb{R}^{2}\right)} .
$$

Let $v \in \widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)$. Since $\mathcal{D}\left(\mathbb{R}^{2}\right)$ is dense in $W_{0}^{2, p}\left(\mathbb{R}^{2}\right)$, there exists a sequence $\varphi_{k} \in$ $\mathcal{D}\left(\mathbb{R}^{2}\right)$ such that $\varphi_{k} \longrightarrow v$ in $W_{0}^{2, p}\left(\mathbb{R}^{2}\right)$. We then obtain

$$
\begin{aligned}
& \langle f, v\rangle_{\widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right) \times \widetilde{W}_{0}^{2, p}\left(\mathbb{R}^{2}\right)} \quad=\lim _{k \rightarrow \infty}\left\langle f_{0}-\operatorname{div} \boldsymbol{F}+\operatorname{div}(\operatorname{div} \boldsymbol{H})-\frac{\partial h}{\partial x_{1}}, \varphi_{k}\right\rangle_{W_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right) \times W_{0}^{2, p}\left(\mathbb{R}^{2}\right)}=0 .
\end{aligned}
$$

ii) If $p=2$, we take $(\varrho \lg \varrho) \boldsymbol{F} \in \boldsymbol{L}^{p^{\prime}}\left(\mathbb{R}^{2}\right)$ and $\left(\varrho^{2} \lg \varrho\right) f_{0} \in L^{p^{\prime}}\left(\mathbb{R}^{2}\right)$ and obtain, by the previous embeddings, $\boldsymbol{F} \in\left(W_{0}^{-1, p^{\prime}}\left(\mathbb{R}^{2}\right)\right)^{2}$ and $f_{0} \in W_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right)$. We can proceed as in the case i); the density result holds and finishes the proof.

Remark 2.5. Property (2.13) is equivalent to

$$
\begin{equation*}
\widetilde{W}_{0}^{-2, p^{\prime}}\left(\mathbb{R}^{2}\right)=\left\{f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) ; f=f_{0}+\operatorname{div} \boldsymbol{F}+\operatorname{div}(\operatorname{div} \boldsymbol{H})+\frac{\partial h}{\partial x_{1}}\right\}, \tag{2.15}
\end{equation*}
$$

where $f_{0}, \boldsymbol{F}, \boldsymbol{H}$, and h are defined in Proposition 2.3.
Using the same technique as in the proof of the Payne-Weinberger inequality, we get the following:

Lemma 2.6. Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ be such that $\nabla u \in L^{p}\left(\mathbb{R}^{2}\right)$.
i) If $1<p<2$, then there exists a unique constant u_{∞} defined by

$$
\begin{equation*}
u_{\infty}=\lim _{r \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} u(r \cos \theta, r \sin \theta) \mathrm{d} \theta \tag{2.16}
\end{equation*}
$$

and such that

$$
\begin{equation*}
u-u_{\infty} \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right) \tag{2.17}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
u-u_{\infty} \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right) \tag{2.18}
\end{equation*}
$$

with the estimate

$$
\begin{equation*}
\left\|u-u_{\infty}\right\|_{L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\|\nabla u\|_{L^{p}\left(\mathbb{R}^{2}\right)} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|u(r \cos \theta, r \sin \theta)-u_{\infty}\right|^{p} \mathrm{~d} \theta \leqslant C r^{p-2} \int_{\{|\boldsymbol{x}|>r\}}|\nabla u|^{p} \mathrm{~d} \boldsymbol{x} \tag{2.20}
\end{equation*}
$$

ii) If $p>2$, then $u \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
|u(\boldsymbol{x})| \leqslant C r^{1-2 / p}\|u\|_{W_{0}^{1, p}\left(\mathbb{R}^{2}\right)} \quad \text { and } \quad r^{(2 / p)-1}|u(\boldsymbol{x})| \longrightarrow 0 \tag{2.21}
\end{equation*}
$$

The next result is a corollary of the previous lemma.
Corollary 2.7. Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ be such that $\nabla^{2} u \in\left(L^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$. Then:
i) If $1<p<2$ then there exists a unique vector $\boldsymbol{A} \in \mathbb{R}^{2}$ such that

$$
\nabla u+\boldsymbol{A} \in \boldsymbol{L}^{2 p /(2-p)}\left(\mathbb{R}^{2}\right),
$$

where \boldsymbol{A} is defined by

$$
\begin{equation*}
\boldsymbol{A}=-\lim _{r \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} \nabla u(r \cos \theta, r \sin \theta) \mathrm{d} \theta \tag{2.22}
\end{equation*}
$$

Moreover, $u+\boldsymbol{A} \cdot \boldsymbol{x} \in W_{0}^{2, p}\left(\mathbb{R}^{2}\right)$ and satisfies

$$
\begin{equation*}
\inf _{k \in \mathbb{R}}\|u+\boldsymbol{A} \cdot \boldsymbol{x}+k\|_{W_{0}^{2, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|u\|_{W_{0}^{2, p}\left(\mathbb{R}^{2}\right)} \tag{2.23}
\end{equation*}
$$

ii) If $p \geqslant 2$, then $u \in W_{0}^{2, p}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\inf _{\mu \in \mathcal{P}_{1}}\|u+\mu\|_{W_{0}^{2, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|u\|_{W_{0}^{2, p}\left(\mathbb{R}^{2}\right)} . \tag{2.24}
\end{equation*}
$$

Now, with these last results, we can give a precise definition of the limit at infinity.

Definition 2.8. Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ be such that $\nabla u \in L^{p}\left(\mathbb{R}^{2}\right)$. We say that u tends to $u_{\infty} \in \mathbb{R}$ at infinity and we denote

$$
\lim _{|\boldsymbol{x}| \rightarrow \infty} u(\boldsymbol{x})=u_{\infty}
$$

if

$$
\lim _{r \rightarrow \infty} \int_{0}^{2 \pi}\left|u(r \cos \theta, r \sin \theta)-u_{\infty}\right| \mathrm{d} \theta=0
$$

Remark 2.9. Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ be such that $\nabla u \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$. If $1<p<2$, we have the equivalence of the following statements
i) $u-u_{\infty} \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$,
ii) $\lim _{|\boldsymbol{x}| \rightarrow \infty} u(\boldsymbol{x})=u_{\infty}$ in the sense of Definition 2.8.

Finally, we recall the following lemma.

Lemma 2.10. Let r and p be two reals such that $1<r<\infty$ and $p>2$. Let $u \in L^{r}\left(\mathbb{R}^{2}\right)$ and $\nabla u \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$. Then u is a continuous function on \mathbb{R}^{2} and

$$
\lim _{|\boldsymbol{x}| \rightarrow \infty} u(\boldsymbol{x})=0 .
$$

3. The scalar Oseen equation in \mathbb{R}^{2}

In this section, we propose to solve the scalar Oseen equation (1.7). In order to simplify the notation, we assume without loss of generality $\lambda=\nu=1$:

$$
\begin{equation*}
-\Delta u+\frac{\partial u}{\partial x_{1}}=f \quad \text { in } \mathbb{R}^{2}, \tag{3.1}
\end{equation*}
$$

$f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$. To that end, let us define the operator

$$
\begin{equation*}
T: u \mapsto-\Delta u+\frac{\partial u}{\partial x_{1}} \tag{3.2}
\end{equation*}
$$

3.1. Study of the kernel

We consider the kernel of the operator T when it is defined on the tempered distributions $\mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$. Let u be an element of the kernel, by Fourier transform we can write

$$
4 \pi^{2}|\boldsymbol{\xi}|^{2} \hat{u}(\boldsymbol{\xi})+2 \pi \mathrm{i} \xi_{1} \hat{u}(\boldsymbol{\xi})=0
$$

Setting

$$
\hat{u}(\boldsymbol{\xi})=v(\boldsymbol{\xi})+\mathrm{i} w(\boldsymbol{\xi}),
$$

it follows that

$$
\left\{\begin{array}{l}
4 \pi^{2}|\boldsymbol{\xi}|^{2} v(\boldsymbol{\xi})-2 \pi \xi_{1} w(\boldsymbol{\xi})=0 \tag{3.3}\\
2 \pi \xi_{1} v(\boldsymbol{\xi})+4 \pi^{2}|\boldsymbol{\xi}|^{2} w(\boldsymbol{\xi})=0
\end{array}\right.
$$

Since the determinant of the above system is $16 \pi^{4}|\boldsymbol{\xi}|^{4}+4 \pi^{2} \xi_{1}^{2}$, we deduce that, for $\boldsymbol{\xi} \neq 0$, the support of \hat{u} is included in $\{0\}$. Then we have

$$
\hat{u}(\boldsymbol{\xi})=\sum c_{\alpha} \delta^{(\alpha)}, \quad c_{\alpha} \in \mathbb{C}, \quad \text { with a finite sum. }
$$

By the inverse Fourier transform, we get

$$
u(\boldsymbol{x})=\sum d_{\alpha} x^{\alpha}, \quad d_{\alpha} \in \mathbb{C}, \quad \text { with a finite sum },
$$

that is, u is a polynomial. Setting for all integers k

$$
\begin{equation*}
\mathcal{S}_{k}=\left\{q \in \mathcal{P}_{k} ;-\Delta q+\frac{\partial q}{\partial x_{1}}=0\right\} \tag{3.4}
\end{equation*}
$$

if T is defined on $\mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$, then $\operatorname{ker} T=\mathcal{S}_{k}$, and we have:

Lemma 3.1. Let $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$ be a tempered distribution and let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$ be a solution of (3.1). Then u is uniquely determined up to a polynomial in \mathcal{S}_{k}.

Let us notice that $\mathcal{S}_{0}=\mathbb{R}$ and \mathcal{S}_{1} is the space of polynomials of degree less than or equal to one and independent of x_{1}.

3.2. The fundamental solution

Following the idea of [8], we look for the fundamental solution \mathcal{O} of the scalar Oseen equation in the form

$$
\mathcal{O}(\boldsymbol{x})=\mathrm{e}^{x_{1} / 2} f\left(\frac{r}{2}\right) .
$$

We find by direct computations:

$$
\left(-\Delta \mathcal{O}+\frac{\partial \mathcal{O}}{\partial x_{1}}\right)=\frac{1}{2 \pi r^{2}} \mathrm{e}^{x_{1} / 2}\left(\left(\frac{r}{2}\right)^{2} f^{\prime \prime}\left(\frac{r}{2}\right)+\frac{r}{2} f^{\prime}\left(\frac{r}{2}\right)-\left(\frac{r}{2}\right)^{2} f\left(\frac{r}{2}\right)\right),
$$

where, for $y=\frac{1}{2} r$,

$$
y^{2} f^{\prime \prime}(y)+y f^{\prime}(y)-y^{2} f(y)=0
$$

is the modified Bessel equation. Although K_{0}, the singular solution (at $y=0$) of this equation cannot be given explicitly, we can give an estimate in a neighborhood of zero and also when y is large:
(i) When y is small

$$
\begin{equation*}
K_{0}(y)=\ln \frac{1}{y}+\ln 2-\gamma+\sigma(y) \tag{3.5}
\end{equation*}
$$

where γ is the Euler constant and σ satisfies

$$
\frac{\mathrm{d}^{k} \sigma}{\mathrm{~d} y^{k}}=o\left(y^{-k}\right)
$$

Thus, when r is close to zero,

$$
\begin{equation*}
\mathcal{O}(\boldsymbol{x})=-\frac{1}{2 \pi} \mathrm{e}^{x_{1} / 2}\left\{\ln \frac{1}{r}+2 \ln 2-\gamma+\sigma(r)\right\} . \tag{3.6}
\end{equation*}
$$

(ii) When $r \longrightarrow+\infty$, using the asymptotic expansion given in [10], we have

$$
\begin{aligned}
& K_{0}\left(\frac{r}{2}\right)=\left(\frac{\pi}{r}\right)^{1 / 2} \mathrm{e}^{-r / 2}\left[1-\frac{1}{4 r}+O\left(r^{-2}\right)\right] \\
& K_{0}^{\prime}\left(\frac{r}{2}\right)=\left(\frac{\pi}{r}\right)^{1 / 2} \mathrm{e}^{-r / 2}\left[-1-\frac{3}{4 r}+O\left(r^{-2}\right)\right]
\end{aligned}
$$

As the derivatives of \mathcal{O} are given by

$$
\begin{align*}
& \frac{\partial \mathcal{O}}{\partial x_{1}}=-\frac{1}{4 \pi} \mathrm{e}^{x_{1} / 2}\left[K_{0}\left(\frac{r}{2}\right)+\frac{x_{1}}{r} K_{0}^{\prime}\left(\frac{r}{2}\right)\right] \tag{3.7}\\
& \frac{\partial \mathcal{O}}{\partial x_{2}}=-\frac{x_{2}}{4 \pi r} \mathrm{e}^{x_{1} / 2} K_{0}^{\prime}\left(\frac{r}{2}\right) \tag{3.8}
\end{align*}
$$

we can deduce the behavior of the fundamental solution \mathcal{O} and these derivatives when r tends to infinity:

$$
\begin{align*}
\mathcal{O}(\boldsymbol{x}) & =-\frac{1}{2 \sqrt{\pi r}} \mathrm{e}^{-s / 2}\left[1-\frac{1}{4 r}+O\left(r^{-2}\right)\right] \tag{3.9}\\
\frac{\partial \mathcal{O}}{\partial x_{1}} & =-\frac{1}{4 \sqrt{\pi r}} \mathrm{e}^{-s / 2}\left[\frac{s}{r}-\frac{r+3 x_{1}}{8 r^{2}}+O\left(r^{-2}\right)\right] \tag{3.10}\\
\frac{\partial \mathcal{O}}{\partial x_{2}} & =\frac{x_{2}}{4 r \sqrt{\pi r}} \mathrm{e}^{-s / 2}\left[1+\frac{3}{4 r}+O\left(r^{-2}\right)\right] \tag{3.11}
\end{align*}
$$

Using the inequality

$$
\forall b \in \mathbb{R} \quad \mathrm{e}^{-s / 2} \leqslant C_{b}(1+s)^{b},
$$

we obtain the following anisotropic estimates

$$
\begin{gather*}
|\mathcal{O}(\boldsymbol{x})| \leqslant C r^{-1 / 2}(1+s)^{-1}, \quad\left|\frac{\partial \mathcal{O}}{\partial x_{1}}(\boldsymbol{x})\right| \leqslant C r^{-3 / 2}(1+s)^{-1} \tag{3.12}\\
\left|\frac{\partial \mathcal{O}}{\partial x_{2}}(\boldsymbol{x})\right| \leqslant C r^{-1}(1+s)^{-1}
\end{gather*}
$$

Let f and g be two functions defined on an interval $I \subset \mathbb{R}$. We denote $f \sim g$ on $J \subset I$ if there exist two positive constants C_{1} and C_{2} such that $C_{1} g(t) \leqslant f(t) \leqslant C_{2} g(t)$ for all t in J.

To study the integrability properties of the fundamental solution and its derivatives, we need the following result.

Lemma 3.2. Assume that $2-\alpha-\min \left(\frac{1}{2}, \beta\right)<0$. Then, there exists a constant $C>0$ such that, for all $\mu>1$, we have

$$
\int_{|\boldsymbol{x}|>\mu} r^{-\alpha}(1+s)^{-\beta} \mathrm{d} \boldsymbol{x} \leqslant \begin{cases}C \mu^{2-\alpha-\min \left(\frac{1}{2}, \beta\right)} & \text { if } \beta \neq \frac{1}{2} \tag{3.13}\\ C \mu^{3 / 2-\alpha} \ln r & \text { if } \beta=\frac{1}{2}\end{cases}
$$

Proof. First we prove the following result:

$$
\int_{\partial B_{r}} r^{-\alpha}(1+s)^{-\beta} \mathrm{d} \sigma \sim \begin{cases}r^{1-\alpha-\min \left(\frac{1}{2}, \beta\right)} & \text { if } \beta \neq \frac{1}{2} \tag{3.14}\\ r^{\frac{1}{2}-\alpha} \ln r & \text { if } \beta=\frac{1}{2}\end{cases}
$$

Using the polar coordinates, we have for $s=r(1-\cos \theta)$:

$$
I=\int_{\partial B_{r}} r^{-\alpha}(1+s)^{-\beta} \mathrm{d} \sigma=2 r^{1-\alpha} \int_{0}^{\pi}(1+r(1-\cos \theta))^{-\beta} \mathrm{d} \theta
$$

Since $r^{2} \sin ^{2} \theta=2 r s-s^{2}$,

$$
I=2 r^{1-\alpha} \int_{0}^{2 r}(1+s)^{-\beta}\left(2 r s-s^{2}\right)^{-1 / 2} \mathrm{~d} s
$$

i) When $0<s \leqslant 1,1+s \sim 1$, thus

$$
\int_{0}^{1}(1+s)^{-\beta}\left(2 r s-s^{2}\right)^{-1 / 2} \mathrm{~d} s \sim r^{-1 / 2} \int_{0}^{1} s^{-1 / 2} \mathrm{~d} s \sim r^{-1 / 2}
$$

ii) When $1<s<r, 1+s \sim s$ and $2 r s-s^{2}=s(2 r-s) \sim r s$, thus

$$
\int_{1}^{r}(1+s)^{-\beta}\left(2 r s-s^{2}\right)^{-1 / 2} \mathrm{~d} s \sim r^{-1 / 2} \int_{1}^{r} s^{-1 / 2-\beta} \mathrm{d} s \sim r^{-\min \left(\frac{1}{2}, \beta\right)},
$$

and, if $\beta=\frac{1}{2}$, we get

$$
\int_{1}^{r}(1+s)^{-\beta}\left(2 r s-s^{2}\right)^{-1 / 2} \mathrm{~d} s \sim r^{-1 / 2} \ln r
$$

iii) When $r<s<2 r, 1+s \sim r$ and $2 r s-s^{2} \sim r(2 r-s)$, thus

$$
\int_{r}^{2 r}(1+s)^{-\beta}\left(2 r s-s^{2}\right)^{-1 / 2} \mathrm{~d} s \sim r^{-1 / 2-\beta} \int_{r}^{2 r}(2 r-s)^{-1 / 2} \mathrm{~d} s \sim r^{-\beta}
$$

So,

$$
I \sim r^{1-\alpha-\min \left(\frac{1}{2}, \beta\right)}\left(r^{\min \left(\frac{1}{2}, \beta\right)-\frac{1}{2}}+1+r^{\min \left(\frac{1}{2}, \beta\right)-\beta}\right) \sim \begin{cases}r^{1-\alpha-\min \left(\frac{1}{2}, \beta\right)} & \text { if } \beta \neq \frac{1}{2} \\ r^{\frac{1}{2}-\alpha} \ln r & \text { if } \beta=\frac{1}{2}\end{cases}
$$

By this equivalence we deduce:

$$
\begin{equation*}
\int_{|\boldsymbol{x}|>\mu} r^{-\alpha}(1+s)^{-\beta} \mathrm{d} \boldsymbol{x}<+\infty \Longleftrightarrow 2-\alpha-\min \left(\frac{1}{2}, \beta\right)<0 . \tag{3.15}
\end{equation*}
$$

When this condition is satisfied we obtain our result.
Using Lemma 3.2 with estimate (3.12), we deduce

$$
\begin{equation*}
\left.\forall p>3 \quad \mathcal{O} \in L^{p}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad \forall p \in\right] \frac{3}{2}, 2\left[\quad \nabla \mathcal{O} \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)\right. \tag{3.16}
\end{equation*}
$$

which means in particular that $\mathcal{O} \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ for any $\frac{3}{2}<p<2$. Note also that

$$
\begin{equation*}
\mathcal{O} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad \nabla \mathcal{O} \in \boldsymbol{L}_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right) \tag{3.17}
\end{equation*}
$$

and for $\mathcal{B}^{R}=\mathbb{R}^{2} \backslash \overline{\mathcal{B}(\mathbf{0}, R)}$

$$
\begin{equation*}
\forall p>3 \quad \mathcal{O} \in L^{p}\left(\mathcal{B}^{R}\right) \quad \text { and } \quad \forall p>\frac{3}{2} \quad \nabla \mathcal{O} \in \boldsymbol{L}^{p}\left(\mathcal{B}^{R}\right) . \tag{3.18}
\end{equation*}
$$

With the weighted L^{∞} estimates obtained in [10, Theorems 3.5, 3.7, and 3.8], we get estimates on the convolution of $\breve{\mathcal{O}}$ with a function $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$ as follows.

Lemma 3.3. For any $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$ we have the estimates

$$
\begin{gather*}
|\breve{\mathcal{O}} * \varphi(\boldsymbol{x})| \leqslant C_{\varphi} \frac{1}{|\boldsymbol{x}|^{1 / 2}\left(1+|\boldsymbol{x}|+x_{1}\right)^{1 / 2}} \tag{3.19}\\
\left|\frac{\partial}{\partial x_{1}}(\breve{\mathcal{O}} * \varphi)(\boldsymbol{x})\right| \leqslant C_{\varphi} \frac{1}{|\boldsymbol{x}|^{3 / 2}\left(1+|\boldsymbol{x}|+x_{1}\right)^{1 / 2}} \\
\left|\frac{\partial}{\partial x_{2}}(\breve{\mathcal{O}} * \varphi)(\boldsymbol{x})\right| \leqslant C_{\varphi} \frac{1}{|\boldsymbol{x}|\left(1+|\boldsymbol{x}|+x_{1}\right)}
\end{gather*}
$$

where C_{φ} depends on the support of φ and $\breve{\mathcal{O}}(\boldsymbol{x})=\mathcal{O}(-\boldsymbol{x})$.
Remark 3.4. 1) The dependence on $|\boldsymbol{x}|$ of $\breve{\mathcal{O}} * \varphi$ and its first derivatives is the same that of $\breve{\mathcal{O}}$, but the dependence on $1+s^{\prime}$ is a little bit different.
2) By Lemma 3.2 and these last estimates we find that

$$
\begin{equation*}
\forall q>\frac{3}{2} \quad \breve{\mathcal{O}} * \varphi \in W_{0}^{1, q}\left(\mathbb{R}^{2}\right) . \tag{3.22}
\end{equation*}
$$

3.3. Oseen potential and existence results

Using the weak-type (p, q) operators and the Marcinkiewicz Interpolation Theorem, we have the following.

Theorem 3.5. Let f be given in $L^{p}\left(\mathbb{R}^{2}\right)$. Then $\partial^{2} \mathcal{O} / \partial x_{j} \partial x_{k} * f \in L^{p}\left(\mathbb{R}^{2}\right)$, $\partial \mathcal{O} / \partial x_{1} * f \in L^{p}\left(\mathbb{R}^{2}\right)$ and they satisfy the estimate

$$
\begin{equation*}
\left\|\frac{\partial^{2} \mathcal{O}}{\partial x_{j} \partial x_{k}} * f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial \mathcal{O}}{\partial x_{1}} * f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.23}
\end{equation*}
$$

Moreover:
i) If $1<p<\frac{3}{2}$, then $\mathcal{O} * f \in L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|\mathcal{O} * f\|_{L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} \tag{3.24}
\end{equation*}
$$

ii) If $1<p<3$, then $\left(\partial \mathcal{O} / \partial x_{i}\right) * f \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\left\|\frac{\partial \mathcal{O}}{\partial x_{i}} * f\right\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.25}
\end{equation*}
$$

Proof. By the Fourier transform, we obtain from Equation (3.1):

$$
\mathcal{F}\left(\frac{\partial^{2} \mathcal{O}}{\partial x_{j} \partial x_{k}} * f\right)=\frac{-4 \pi^{2} \xi_{j} \xi_{k}}{4 \pi^{2}|\boldsymbol{\xi}|^{2}+2 \pi \mathrm{i} \xi_{1}} \mathcal{F}(f)
$$

The function $\xi \mapsto m(\xi)=\left(-4 \pi^{2} \xi_{j} \xi_{k}\right) /\left(4 \pi^{2}|\boldsymbol{\xi}|^{2}+2 \pi \mathrm{i} \xi_{1}\right)$ is of class \mathcal{C}^{2} in $\mathbb{R}^{2} \backslash\{0\}$ and satisfies for every $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}^{2}$

$$
\left|\frac{\partial^{|\alpha|} m}{\partial \xi^{\alpha}}(\xi)\right| \leqslant B|\xi|^{-\alpha}
$$

where $|\alpha|=\alpha_{1}+\alpha_{2}$ and B is a constant. Thus, the linear operator

$$
T: f \mapsto \frac{\partial^{2} \mathcal{O}}{\partial x_{j} \partial x_{k}} * f(\boldsymbol{x})=\int_{\mathbb{R}^{2}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{x} \boldsymbol{\xi}} \frac{-4 \pi^{2} \xi_{j} \xi_{k}}{4 \pi^{2}|\boldsymbol{\xi}|^{2}+2 \pi \mathrm{i} \xi_{1}} \mathcal{F}(f)(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}
$$

is continuos from $L^{p}\left(\mathbb{R}^{2}\right)$ to $L^{p}\left(\mathbb{R}^{2}\right)$. So, $\partial^{2} \mathcal{O} / \partial x_{j} \partial x_{k} * f \in L^{p}\left(\mathbb{R}^{2}\right)$ and satisfies

$$
\begin{equation*}
\left\|\frac{\partial^{2} \mathcal{O}}{\partial x_{j} \partial x_{k}} * f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} \tag{3.26}
\end{equation*}
$$

(see Stein [17, Theorem 3.2, p. 96]). Now, from Equation (3.1), we deduce that $\partial \mathcal{O} / \partial x_{1} * f \in L^{p}\left(\mathbb{R}^{2}\right)$ and the estimate

$$
\begin{equation*}
\left\|\frac{\partial \mathcal{O}}{\partial x_{1}} * f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\left(\|\Delta \mathcal{O} * f\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)}\right) \tag{3.27}
\end{equation*}
$$

which proves the first part of the proposition and Estimate (3.23). Next, to prove i) and ii), we adapt the technique used by Stein in [17] which studied the convolution of $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with the kernel $|\boldsymbol{x}|^{\alpha-n}$. We split the function K into $K_{1}+K_{\infty}$, where

$$
\begin{aligned}
K_{1}(\boldsymbol{x}) & =K(\boldsymbol{x}) \text { if }|\boldsymbol{x}| \leqslant \mu \quad \text { and } \quad K_{1}(\boldsymbol{x})=0 \text { if }|\boldsymbol{x}|>\mu \\
K_{\infty}(\boldsymbol{x}) & =0 \text { if }|\boldsymbol{x}| \leqslant \mu \quad \text { and } \quad K_{\infty}(\boldsymbol{x})=K(\boldsymbol{x}) \text { if }|\boldsymbol{x}|>\mu .
\end{aligned}
$$

The function K denotes successively \mathcal{O} and $\partial \mathcal{O} / \partial x_{i}$ and the positive number μ will be fixed in the sequel.

1) Estimate (3.24). According to (3.6), we have $\mathcal{O}_{1} \in L^{1}\left(\mathbb{R}^{2}\right)$ and by (3.16), $\mathcal{O}_{\infty} \in L^{p^{\prime}}\left(\mathbb{R}^{2}\right)$, thus $\mathcal{O}_{1} * f$ exists almost everywhere and $\mathcal{O}_{\infty} * f$ exists everywhere, so $\mathcal{O} * f=\mathcal{O}_{1} * f+\mathcal{O}_{\infty} * f$ exists almost everywhere. Next, we shall show that $f \mapsto \mathcal{O} * f$ is of weak-type (p, q) with $q=3 p /(3-2 p)$ in the sense that:

$$
\begin{equation*}
\operatorname{mes}\{\boldsymbol{x} ;|(\mathcal{O} * f)(\boldsymbol{x})|>\lambda\} \leqslant\left(C_{p, q} \frac{\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)}}{\lambda}\right)^{q}, \quad \text { for all } \lambda>0 . \tag{3.28}
\end{equation*}
$$

We have:
$\operatorname{mes}\{\boldsymbol{x} ;(\mathcal{O} * f)(\boldsymbol{x})>2 \lambda\} \leqslant \operatorname{mes}\left\{\boldsymbol{x} ;\left(\mathcal{O}_{1} * f\right)(\boldsymbol{x})>\lambda\right\}+\operatorname{mes}\left\{\boldsymbol{x} ;\left(\mathcal{O}_{\infty} * f\right)(\boldsymbol{x})>\lambda\right\}$,
and

$$
\begin{gathered}
\operatorname{mes}\left\{\boldsymbol{x} ;\left|\left(\mathcal{O}_{1} * f\right)(\boldsymbol{x})\right|>\lambda\right\} \leqslant \frac{\left\|\mathcal{O}_{1}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}^{p}\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)}^{p}}{\lambda^{p}}, \\
\left\|\mathcal{O}_{\infty} * f\right\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leqslant\left\|\mathcal{O}_{\infty}\right\|_{L^{p^{\prime}\left(\mathbb{R}^{2}\right)}}\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
\end{gathered}
$$

Note that it is enough to prove the inequality (3.28) for $\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)}=1$.
i) Estimate of $I=\int_{|\boldsymbol{x}|<\mu}|\mathcal{O}(\boldsymbol{x})| \mathrm{d} \boldsymbol{x}$.

If $0<\mu \leqslant 1$, then by $(3.6), I \leqslant C \mu$.

If $\mu>1$,

$$
I=\int_{|\boldsymbol{x}|<1}|\mathcal{O}(\boldsymbol{x})| \mathrm{d} \boldsymbol{x}+\int_{1<|\boldsymbol{x}| \leqslant \mu}|\mathcal{O}(\boldsymbol{x})| \mathrm{d} \boldsymbol{x} .
$$

Since $\mathcal{O} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$,

$$
\int_{|\boldsymbol{x}|<1}|\mathcal{O}(\boldsymbol{x})| \mathrm{d} \boldsymbol{x} \leqslant C \leqslant C \mu
$$

Further, from the estimate (3.12) and by using Lemma 3.2, we have

$$
\int_{1<|\boldsymbol{x}|<\mu}|\mathcal{O}(\boldsymbol{x})| \mathrm{d} \boldsymbol{x} \leqslant C \int_{1<|\boldsymbol{x}|<\mu} r^{-1 / 2}(1+s)^{-1} \mathrm{~d} \boldsymbol{x} \leqslant C \mu,
$$

thus

$$
\begin{equation*}
\forall \mu>0 \quad\left\|\mathcal{O}_{1}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)} \leqslant C \mu . \tag{3.29}
\end{equation*}
$$

ii) Estimate of $J=\int_{|\boldsymbol{x}|>\mu}|\mathcal{O}(\boldsymbol{x})|^{p^{\prime}} \mathrm{d} \boldsymbol{x}$.

If $\mu>1,|\mathcal{O}(\boldsymbol{x})|^{p^{\prime}} \sim \mathrm{e}^{-p^{\prime} s / 2} r^{-p^{\prime} / 2} \leqslant C r^{-p^{\prime} / 2}(1+s)^{-p^{\prime}}$. Thus by Lemma 3.2, for $p^{\prime}>3$, we have $J \leqslant C \mu^{3 / 2-p^{\prime} / 2}$.

If $0<\mu \leqslant 1$,

$$
J=\int_{\mu<|\boldsymbol{x}|<1}|\mathcal{O}(\boldsymbol{x})|^{p^{\prime}} \mathrm{d} \boldsymbol{x}+\int_{|\boldsymbol{x}|>1}|\mathcal{O}(\boldsymbol{x})|^{p^{\prime}} \mathrm{d} \boldsymbol{x}=J_{1}+J_{2}
$$

Proceeding as previously, we get $J_{2} \leqslant C \leqslant C \mu^{3 / 2-p^{\prime} / 2}$. We also have

$$
J_{1}=\int_{\mu<|\boldsymbol{x}| \leqslant 1} \mathrm{e}^{p^{p^{\prime} x_{1} / 2}|-\ln r+2 \ln 2+\gamma+o(r)|^{p^{\prime}} \mathrm{d} \boldsymbol{x} \leqslant C \leqslant C \mu^{3 / 2-p^{\prime} / 2} . . .2 . . .}
$$

Thus

$$
\begin{equation*}
\text { for } p^{\prime}>3 \text { and } \mu>0 \quad\left\|\mathcal{O}_{\infty}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{2}\right)} \leqslant C \mu^{\left(3-p^{\prime}\right) / 2 p^{\prime}} \tag{3.30}
\end{equation*}
$$

Setting $\lambda=C \mu^{\left(3-p^{\prime}\right) / 2 p^{\prime}}$, which implies $\mu=C^{\prime} \lambda^{2 p^{\prime} /\left(3-p^{\prime}\right)}=C^{\prime} \lambda^{2 p /(2 p-3)}$, we get

$$
\operatorname{mes}\left\{\boldsymbol{x} \in \mathbb{R}^{2} ;\left|\left(\mathcal{O}_{\infty} * f\right)(\boldsymbol{x})\right|>\lambda\right\}=0
$$

So, for $1<p<\frac{3}{2}$, we have

$$
\operatorname{mes}\left\{\boldsymbol{x} \in \mathbb{R}^{2} ;(\mid \mathcal{O} * f)(\boldsymbol{x}) \mid>2 \lambda\right\} \leqslant C \frac{\left\|\mathcal{O}_{1}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}^{p}}{\lambda^{p}} \leqslant C \frac{\mu^{p}}{\lambda^{p}} \leqslant C\left(\frac{1}{\lambda}\right)^{3 p /(3-2 p)},
$$

which proves the inequality (3.28).
2. Estimate (3.25). We also have $K_{1} \in L^{1}\left(\mathbb{R}^{2}\right)$ and $K_{\infty} \in L^{p^{\prime}}\left(\mathbb{R}^{2}\right)$, where $K=\partial \mathcal{O} / \partial x_{i}, i=1,2$.
i) Estimate of $\int_{|\boldsymbol{x}|>\mu}\left|\partial \mathcal{O} / \partial x_{i}(\boldsymbol{x})\right|^{p^{\prime}} \mathrm{d} \boldsymbol{x}$.

Using estimate (3.12), we get for $\mu \geqslant 1$ and $p<3$:

$$
\begin{equation*}
\int_{|\boldsymbol{x}|>\mu}\left|\frac{\partial \mathcal{O}}{\partial x_{i}}(\boldsymbol{x})\right|^{p^{\prime}} \mathrm{d} \boldsymbol{x} \leqslant C \mu^{3 / 2-3 p^{\prime} / 2} \leqslant C \mu^{3 / 2-p^{\prime}} \tag{3.31}
\end{equation*}
$$

For $\mu<1$,

$$
\int_{|\boldsymbol{x}|>\mu}\left|\frac{\partial \mathcal{O}}{\partial x_{i}}(\boldsymbol{x})\right|^{p^{\prime}} \mathrm{d} \boldsymbol{x}=\int_{\mu<|\boldsymbol{x}|<1}\left|\frac{\partial \mathcal{O}}{\partial x_{i}}(\boldsymbol{x})\right|^{p^{\prime}} \mathrm{d} \boldsymbol{x}+\int_{|\boldsymbol{x}|>1}\left|\frac{\partial \mathcal{O}}{\partial x_{i}}(\boldsymbol{x})\right|^{p^{\prime}} \mathrm{d} \boldsymbol{x} .
$$

The case $\mu \geqslant 1$ yields

$$
\int_{|\boldsymbol{x}|>1}\left|\frac{\partial \mathcal{O}}{\partial x_{i}}(\boldsymbol{x})\right|^{p^{\prime}} \mathrm{d} \boldsymbol{x} \leqslant C \leqslant C \mu^{3 / 2-p^{\prime}} .
$$

We also have

$$
\begin{aligned}
\int_{\mu<|\boldsymbol{x}|<1}\left|\frac{\partial \mathcal{O}}{\partial x_{i}}(\boldsymbol{x})\right|^{p^{\prime}} \mathrm{d} \boldsymbol{x} & \leqslant \int_{\mu}^{1} r^{1-q} \mathrm{~d} r \int_{0}^{\pi} \mathrm{e}^{\left(p^{\prime} / 2\right) r \cos \theta}\left|\sin \theta+C^{\prime}\right|^{p^{\prime}} \mathrm{d} \theta \\
& \leqslant C \int_{\mu}^{1} r^{1 / 2-q} \mathrm{~d} r \leqslant C \mu^{3 / 2-p^{\prime}}
\end{aligned}
$$

So, by these two inequalities and (3.31), we get

$$
\begin{equation*}
\left\|\frac{\partial \mathcal{O}}{\partial x_{i}}\right\|_{L^{p^{\prime}\left(\mathbb{R}^{2}\right)}} \leqslant C \mu^{\left(3-2 p^{\prime}\right) / p^{\prime}} \tag{3.32}
\end{equation*}
$$

ii) Estimate of $J=\int_{|\boldsymbol{x}|<\mu}\left|\partial \mathcal{O} / \partial x_{i}(\boldsymbol{x})\right| \mathrm{d} \boldsymbol{x}$. If $0<\mu<1$,

$$
\begin{aligned}
J=\int_{|\boldsymbol{x}|<\mu}\left|\mathrm{e}^{x_{1} / 2} \frac{x_{2}}{r^{2}}+o\left(\frac{1}{r}\right)\right| \mathrm{d} \boldsymbol{x} & =\int_{0}^{\mu} \int_{-\pi}^{\pi} \mathrm{e}^{(r / 2) \cos \theta}\left|\sin \theta+C^{\prime}\right| \mathrm{d} r \mathrm{~d} \theta \\
& \leqslant C \int_{0}^{\mu} \mathrm{d} r \leqslant C \mu \leqslant C \mu^{1 / 2}
\end{aligned}
$$

If $\mu \geqslant 1$,

$$
J=\int_{|\boldsymbol{x}|<1}\left|\frac{\partial \mathcal{O}}{\partial x_{i}}\right| \mathrm{d} \boldsymbol{x}+\int_{1<|\boldsymbol{x}|<\mu}\left|\frac{\partial \mathcal{O}}{\partial x_{i}}\right| \mathrm{d} \boldsymbol{x}=J_{1}+J_{2}
$$

The preceding case yields $J_{1} \leqslant C \leqslant C \mu^{1 / 2}$. By Estimate (3.12) and Lemma 3.2 we have

$$
J_{2} \leqslant C \int_{|\boldsymbol{x}|<\mu} \frac{\mathrm{d} \boldsymbol{x}}{r(1+s)} \leqslant C \int_{0}^{\mu} r^{-1 / 2} \mathrm{~d} r \leqslant C \mu^{1 / 2}
$$

We obtain then

$$
\begin{equation*}
\left\|\frac{\partial \mathcal{O}}{\partial x_{i}}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)} \leqslant C \mu^{1 / 2} \tag{3.33}
\end{equation*}
$$

As previously, we have, for $1<p<3$ and all $\lambda>0$:

$$
\operatorname{mes}\left\{\boldsymbol{x} \in \mathbb{R}^{2} ;\left|\left(\frac{\partial \mathcal{O}}{\partial x_{i}} * f\right)(\boldsymbol{x})\right|>2 \lambda\right\} \leqslant C\left(\frac{1}{\lambda}\right)^{3 p /(3-p)}
$$

Now, using the Marcinkiewicz Theorem, the operator R : $f \mapsto \mathcal{O} * f$ is continuous from $L^{p}\left(\mathbb{R}^{2}\right)$ into $L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)$ and $R_{i}: f \mapsto \partial \mathcal{O} / \partial x_{i} * f$ is continuous from $L^{p}\left(\mathbb{R}^{2}\right)$ into $L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$.

Remark 3.6. i) We can prove that $\mathcal{O} \in L^{3, \infty}\left(\mathbb{R}^{2}\right)$, i.e.

$$
\begin{equation*}
\sup _{\mu>0} \mu^{3} \operatorname{mes}\left\{\boldsymbol{x} \in \mathbb{R}^{2} ;|\mathcal{O}(\boldsymbol{x})|>\mu\right\}<+\infty . \tag{3.34}
\end{equation*}
$$

So that, thanks to the weak Young inequality (cf. Reed and Simon [16]):

$$
\begin{equation*}
\|\mathcal{O} * f\|_{L^{3 p /(3-2 p), \infty}\left(\mathbb{R}^{2}\right)} \leqslant C\|\mathcal{O}\|_{L^{3, \infty}\left(\mathbb{R}^{2}\right)}\|f\|_{L^{p, \infty}\left(\mathbb{R}^{2}\right)} . \tag{3.35}
\end{equation*}
$$

This estimate shows that if $1<p<\frac{3}{2}$, then there exist p_{0} and p_{1} such that $1<p_{0}<$ $p<p_{1}<\frac{3}{2}$ and such that the operator

$$
T: f \mapsto \mathcal{O} * f
$$

is continuous from $L^{p_{0}}\left(\mathbb{R}^{2}\right)$ into $L^{\left(3 p_{0}\right) /\left(3-2 p_{0}\right), \infty}\left(\mathbb{R}^{2}\right)$ as well as from $L^{p_{1}}\left(\mathbb{R}^{2}\right)$ into $L^{\left(3 p_{1}\right) /\left(3-2 p_{1}\right), \infty}\left(\mathbb{R}^{2}\right)$. The Marcinkiewicz interpolation theorem allows again to conclude that the operator $T: L^{p}\left(\mathbb{R}^{2}\right) \longrightarrow L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)$ is continuous.
ii) The same remark is true for $\nabla \mathcal{O}$ which belongs to $L^{3 / 2, \infty}\left(\mathbb{R}^{2}\right)$.

By Theorem 3.5 and the Sobolev embedding we easily obtain the following result.

Theorem 3.7. Let $f \in L^{p}\left(\mathbb{R}^{2}\right)$ with $1<p<\infty$. Then, $\partial^{2} \mathcal{O} / \partial x_{j} \partial x_{k} * f \in$ $L^{p}\left(\mathbb{R}^{2}\right), \partial \mathcal{O} / \partial x_{1} * f \in L^{p}\left(\mathbb{R}^{2}\right)$ and they satisfy the estimate

$$
\begin{equation*}
\left\|\frac{\partial^{2} \mathcal{O}}{\partial x_{j} \partial x_{k}} * f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial \mathcal{O}}{\partial x_{1}} * f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} \tag{3.36}
\end{equation*}
$$

Moreover:

1) i) If $1<p<2$, then $\nabla \mathcal{O} * f \in \boldsymbol{L}^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap \boldsymbol{L}^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|\nabla \mathcal{O} * f\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|\nabla \mathcal{O} * f\|_{L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.37}
\end{equation*}
$$

ii) If $p=2$, then $\nabla \mathcal{O} * f \in \boldsymbol{L}^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 6$ and the following estimate holds

$$
\begin{equation*}
\|\nabla \mathcal{O} * f\|_{L^{r}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} \tag{3.38}
\end{equation*}
$$

iii) If $2<p<3$, then $\nabla \mathcal{O} * f \in \boldsymbol{L}^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap \boldsymbol{L}^{\infty}\left(\mathbb{R}^{2}\right)$ and we have the estimate

$$
\begin{equation*}
\|\nabla \mathcal{O} * f\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|\nabla \mathcal{O} * f\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.39}
\end{equation*}
$$

2) If $1<p<\frac{3}{2}$, then $\mathcal{O} * f \in L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right) \cap L^{\infty}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|\mathcal{O} * f\|_{L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)}+\|\mathcal{O} * f\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.40}
\end{equation*}
$$

Remark 3.8. i) Applying the Young Inequality and (3.16), we verify that if $f \in L^{p}\left(\mathbb{R}^{2}\right)$ with $1<p<\frac{3}{2}$, then $\mathcal{O} * f \in L^{q}\left(\mathbb{R}^{2}\right)$ for all $\left.q \in\right] 3 p /(3-2 p),+\infty[$, a property a little weaker than (3.40).
ii) The same remark is true for $\nabla \mathcal{O} * f$.

By using Theorem 3.7 and Lemma 3.1, it is clear that if $f \in L^{p}\left(\mathbb{R}^{2}\right)$, then the solutions of Equation (3.1) are of the form

$$
\begin{equation*}
u=\mathcal{O} * f+Q, \quad \text { with } Q \in \mathcal{S}_{[2-3 / p]} \tag{3.41}
\end{equation*}
$$

This means that $\mathcal{O} * f$ is the solution of Equation (3.1): unique if $1<p<\frac{3}{2}$, up to a constant if $\frac{3}{2} \leqslant p<3$, and up to an element of \mathcal{S}_{1} if $p \geqslant 3$.

By Theorem 3.7, we have the following result for a given $f \in L^{p}\left(\mathbb{R}^{2}\right)$.

Theorem 3.9. Let $f \in L^{p}\left(\mathbb{R}^{2}\right)$, then Equation (3.1) has at least a solution u of the form (3.41) such that $\nabla^{2} u \in\left(L^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}, \partial u / \partial x_{1} \in L^{p}\left(\mathbb{R}^{2}\right)$, and

$$
\begin{equation*}
\left\|\nabla^{2} u\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.42}
\end{equation*}
$$

Moreover:

1) If $1<p<\frac{3}{2}$, then $u \in L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right) \cap L^{\infty}\left(\mathbb{R}^{2}\right), \nabla u \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap$ $L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ and they satisfy

$$
\begin{align*}
\|u\|_{L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)}+\|u\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} & +\|\nabla u\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)} \tag{3.43}\\
& +\|\nabla u\|_{L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
\end{align*}
$$

2) i) If $\frac{3}{2} \leqslant p<2$, then $\nabla u \in \boldsymbol{L}^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap \boldsymbol{L}^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|\nabla u\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|\nabla u\|_{L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.44}
\end{equation*}
$$

ii) If $p=2$, then $\nabla u \in \boldsymbol{L}^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 6$ and the following estimate holds:

$$
\begin{equation*}
\|\nabla u\|_{L^{r}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} \tag{3.45}
\end{equation*}
$$

iii) If $2<p<3$, then $\nabla u \in \boldsymbol{L}^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap \boldsymbol{L}^{\infty}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|\nabla u\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|\nabla u\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.46}
\end{equation*}
$$

3) If $p \geqslant 3$, then $u \in W_{0}^{2, p}\left(\mathbb{R}^{2}\right)$ and we have the estimate

$$
\begin{equation*}
\inf _{\lambda \in \mathcal{S}_{1}}\|u+\lambda\|_{W_{0}^{2, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{3.47}
\end{equation*}
$$

Remark 3.10. Another demonstration of Theorem 3.9 consists in using the Fourier approach. Let $\left(f_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{D}\left(\mathbb{R}^{2}\right)$ be a sequence converging to f in $L^{p}\left(\mathbb{R}^{2}\right)$. Then the sequence $\left(u_{j}\right)$ given by

$$
\begin{equation*}
u_{j}=\mathcal{F}^{-1}\left(m_{0}(\boldsymbol{\xi}) \hat{f}_{j}\right), \quad m_{0}(\boldsymbol{\xi})=\left(4 \pi|\boldsymbol{\xi}|^{2}+2 \mathrm{i} \pi \xi_{1}\right)^{-1} \tag{3.48}
\end{equation*}
$$

is a solution of Equation (3.1) with the right-hand side f_{j}. Let us recall now the

Lizorkin Theorem (see [12]). Let $D=\left\{\boldsymbol{\xi} \in \mathbb{R}^{2} ;\left|\xi_{1}\right|>0,\left|\xi_{2}\right|>0\right\}$ and $m: D \longrightarrow \mathbb{C}$ be a continuous function such that its derivatives $\partial^{k} m / \partial \xi_{1}^{k_{1}} \partial \xi_{2}^{k_{2}}$ are continuous and satisfy

$$
\begin{equation*}
\left|\xi_{1}\right|^{k_{1}+\beta}\left|\xi_{2}\right|^{k_{2}+\beta}\left|\frac{\partial^{k} m}{\partial \xi_{1}^{k_{1}} \partial \xi_{2}^{k_{2}}}\right| \leqslant M \tag{3.49}
\end{equation*}
$$

where $k_{1}, k_{2} \in\{0,1\}, k=k_{1}+k_{2}$, and $0 \leqslant \beta<1$. Then, the operator

$$
T: g \mapsto \mathcal{F}^{-1}\left(m_{0} \mathcal{F}(g)\right), \quad m_{0}(\boldsymbol{\xi})=\frac{1}{4 \pi^{2}|\boldsymbol{\xi}|^{2}+2 \mathrm{i} \pi \xi_{1}}
$$

is continuous from $L^{p}\left(\mathbb{R}^{2}\right)$ into $L^{r}\left(\mathbb{R}^{2}\right)$ with $1 / r=1 / p-\beta$.
Applying this continuity property with $f_{j} \in L^{p}\left(\mathbb{R}^{2}\right)$ and $\beta=\frac{2}{3}$, we show that $\left(u_{j}\right)$ is bounded in $L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)$ if $1<p<\frac{3}{2}$, so this sequence admits a subsequence still denoted $\left(u_{j}\right)$ which converges weakly to a solution u of Equation (3.1) with right-hand side f. For the derivative of u_{j} with respect to x_{1}, the multiplier which intervenes is of the form $m(\boldsymbol{\xi})=2 \mathrm{i} \pi \xi_{1}\left(4 \pi^{2}|\boldsymbol{\xi}|^{2}+2 \mathrm{i} \pi \xi_{1}\right)^{-1}$, so that (3.49) is satisfied for $\beta=0$, so $r=p$. The same property takes place for the second derivatives with $m(\boldsymbol{\xi})=-4 \pi^{2} \xi_{1} \xi_{2}\left(4 \pi^{2}|\boldsymbol{\xi}|^{2}+2 i \pi \xi_{1}\right)^{-1}$. Finally, we verify, with $\beta=\frac{1}{3}$, that the first derivative of $\left(u_{j}\right)$ with respect to x_{2} is bounded in $L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$, which implies that $\partial u / \partial x_{2} \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$.

In order to study Equation (3.1) with a right-hand side $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$, we give the following definition of the convolution of f with the fundamental solution \mathcal{O} :

$$
\forall \varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right) \quad\langle\mathcal{O} * f, \varphi\rangle=:\langle f, \breve{\mathcal{O}} * \varphi\rangle_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \times W_{0}^{1, p^{\prime}}\left(\mathbb{R}^{2}\right)},
$$

where $\breve{\mathcal{O}}(\boldsymbol{x})=\mathcal{O}(-\boldsymbol{x})$.
Theorem 3.11. Let $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ satisfy the compatibility condition

$$
\begin{equation*}
\langle f, 1\rangle_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \times W_{0}^{1, p^{\prime}}\left(\mathbb{R}^{2}\right)}=0, \quad \text { when } 1<p \leqslant 2 \tag{3.50}
\end{equation*}
$$

i) If $1<p<3$, then $u=\mathcal{O} * f \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ is the unique solution of Equation (3.1) such that $\nabla u \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$ and $\partial u / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$. Moreover, we have the estimate

$$
\begin{equation*}
\|u\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|\nabla u\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} \tag{3.51}
\end{equation*}
$$

and $u \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ if $1<p<2, u \in L^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 6$ if $p=2$, and $u \in L^{\infty}\left(\mathbb{R}^{2}\right)$ if $2<p<3$.
ii) If $p \geqslant 3$, then Equation (3.1) has a solution $u \in \widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ that is unique up to a constant, and we have

$$
\begin{equation*}
\inf _{k \in \mathbb{R}}\|u+k\|_{\widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} . \tag{3.52}
\end{equation*}
$$

Proof. Let $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ satisfy the condition (3.50). Thanks to Lemma 3.3 and Remark 3.4, if $\varphi \rightarrow 0$ in $\mathcal{D}\left(\mathbb{R}^{2}\right)$, we have $\breve{\mathcal{O}} * \varphi \rightarrow 0$ in $W_{0}^{1, p^{\prime}}\left(\mathbb{R}^{2}\right)$ for all $\left.p \in\right] 1,3[$ which implies that $\mathcal{O} * f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$. We also know, by the isomorphism (2.7), that there exists $\boldsymbol{F} \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$ such that

$$
\begin{equation*}
f=\operatorname{div} \boldsymbol{F} \quad \text { and } \quad\|\boldsymbol{F}\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} \tag{3.53}
\end{equation*}
$$

i) Suppose now that $1<p<3$. Then,

$$
\begin{aligned}
\left\langle\frac{\partial}{\partial x_{j}}(\mathcal{O} * f), \varphi\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) \times \mathcal{D}\left(\mathbb{R}^{2}\right)} & =-\left\langle\mathcal{O} * f, \frac{\partial \varphi}{\partial x_{j}}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) \times \mathcal{D}\left(\mathbb{R}^{2}\right)} \\
& =\left\langle\boldsymbol{F}, \nabla\left(\breve{\mathcal{O}} * \frac{\partial \varphi}{\partial x_{j}}\right)\right\rangle_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right) \times \boldsymbol{L}^{p^{\prime}}\left(\mathbb{R}^{2}\right)} \\
& =\left\langle\boldsymbol{F}, \nabla \frac{\partial}{\partial x_{j}}(\breve{\mathcal{O}} * \varphi)\right\rangle_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right) \times \boldsymbol{L}^{p^{\prime}\left(\mathbb{R}^{2}\right)}} .
\end{aligned}
$$

Moreover, by (3.23),

$$
\begin{aligned}
\left|\left\langle\frac{\partial}{\partial x_{j}}(\mathcal{O} * f), \varphi\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) \times \mathcal{D}\left(\mathbb{R}^{2}\right)}\right| & \leqslant\|\boldsymbol{F}\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)}\left\|\nabla \frac{\partial}{\partial x_{j}}(\breve{\mathcal{O}} * \varphi)\right\|_{\boldsymbol{L}^{p^{\prime}\left(\mathbb{R}^{2}\right)}} \\
& \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}\|\varphi\|_{L^{p^{\prime}\left(\mathbb{R}^{2}\right)}} .
\end{aligned}
$$

That is,

$$
\left\|\frac{\partial}{\partial x_{j}}(\mathcal{O} * f)\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} .
$$

With the same condition on p as in the previous case, for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$, we have

$$
\langle\mathcal{O} * f, \varphi\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) \times \mathcal{D}\left(\mathbb{R}^{2}\right)}=-\langle\boldsymbol{F}, \nabla(\breve{\mathcal{O}} * \varphi)\rangle_{L^{p}\left(\mathbb{R}^{2}\right) \times \boldsymbol{L}^{p^{\prime}}\left(\mathbb{R}^{2}\right)},
$$

and by (3.25)

$$
\begin{aligned}
\left|\langle\mathcal{O} * f, \varphi\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right) \times \mathcal{D}\left(\mathbb{R}^{2}\right)}\right| & \leqslant\|\boldsymbol{F}\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)}\left\|\frac{\partial}{\partial x_{j}}(\breve{\mathcal{O}} * \varphi)\right\|_{\boldsymbol{L}^{p^{\prime}\left(\mathbb{R}^{2}\right)}} \\
& \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}\|\varphi\|_{L^{3 p /(4 p-3)}\left(\mathbb{R}^{2}\right)} .
\end{aligned}
$$

Note that $1<p<3 \Longleftrightarrow 1<3 p /(4 p-3)<3$. Consequently, $\mathcal{O} * f \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ and

$$
\|\mathcal{O} * f\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} .
$$

Moreover, by the Sobolev embedding, $\mathcal{O} * f \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ if $1<p<2, \mathcal{O} * f$ belongs to $L^{r}\left(\mathbb{R}^{2}\right)$ for all $r \geqslant 6$ if $p=2$ and belongs to $L^{\infty}\left(\mathbb{R}^{2}\right)$ if $2<p<3$. We have thus showed that if $1<p<3$, the operator

$$
\begin{align*}
R: W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \perp \mathcal{P}_{\left[1-2 / p^{\prime}\right]} & \longrightarrow W_{0}^{1, p}\left(\mathbb{R}^{2}\right) \cap L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right), \tag{3.54}\\
f & \mapsto \mathcal{O} * f,
\end{align*}
$$

is continuous.
ii) Suppose now that $p \geqslant 3$ and let $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$. Then we have the relation (3.53). Now, since $\mathcal{D}\left(\mathbb{R}^{2}\right)$ is dense in $\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$, there exists a sequence $\boldsymbol{F}_{m} \in$ $\mathcal{D}\left(\mathbb{R}^{2}\right)$ such that $\boldsymbol{F}_{m} \rightarrow \boldsymbol{F}$ in $\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$. Set $f_{m}=\operatorname{div} \boldsymbol{F}_{m}$ and $\psi_{m}=\mathcal{O} * f_{m}$. For all $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$, we have

$$
\left\langle\frac{\partial \psi_{m}}{\partial x_{j}}, \varphi\right\rangle=\left\langle\boldsymbol{F}_{m}, \nabla \frac{\partial}{\partial x_{j}}(\breve{\mathcal{O}} * \varphi)\right\rangle .
$$

Thus, according to the inequality (3.36), we have

$$
\begin{align*}
\left|\left\langle\frac{\partial \psi_{m}}{\partial x_{j}}, \varphi\right\rangle\right| & \leqslant C\left\|\boldsymbol{F}_{m}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}\|\varphi\|_{L^{p^{\prime}\left(\mathbb{R}^{2}\right)}} \tag{3.55}\\
& \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}\|\varphi\|_{L^{p^{\prime}}\left(\mathbb{R}^{2}\right)} .
\end{align*}
$$

Hence, $\nabla \psi_{m}$ is bounded in $\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$. We can apply Theorem 2.1: for each m, there exists a constant C_{m} such that $\psi_{m}+C_{m} \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ and

$$
\left\|\psi_{m}+C_{m}\right\|_{W_{0}^{1, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}
$$

From this it follows that $\psi_{m}+C_{m}$ converges weakly to some function $u \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ and

$$
-\Delta u+\frac{\partial u}{\partial x_{1}}=f
$$

so that Equation (3.1) admits a solution u and, moreover, $u \in \widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)$.
Remark 3.12. i) If $1<p<2$, then, since the solution u of Equation (3.1) given by Theorem 3.11 belongs in particular to $W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$, we deduce that

$$
\lim _{|\boldsymbol{x}| \rightarrow \infty} u(\boldsymbol{x})=0
$$

in the sense of Definition 2.8. Consequently, for any given constant u_{∞}, the distribution $v=u+u_{\infty}$ is the unique solution of Equation (3.1) that is such that $\nabla v \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right), \partial v / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$, and

$$
\lim _{|\boldsymbol{x}| \rightarrow \infty} v(\boldsymbol{x})=u_{\infty}
$$

ii) If $2<p<3$, then, by Lemma 2.10, the same result holds with pointwise convergence.

Corollary 3.13. Assume $1<p<3$. If u is a distribution such that $\nabla u \in$ $\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$ and $\partial u / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$, then there exists a unique constant k such that $u+k \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|u+k\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\left(\|\nabla u\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}\right) . \tag{3.56}
\end{equation*}
$$

Moreover, if $1<p<2$, then $u+k \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ and $u(\boldsymbol{x})$ tends to the constant $-k$ when $|\boldsymbol{x}|$ tends to infinity in the sense of Definition 2.8. If $p=2$, then $u+k$ belongs to $L^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 6$. If $2<p<3$, then u belongs to $L^{\infty}\left(\mathbb{R}^{2}\right)$, is continuous in \mathbb{R}^{2}, and tends to $-k$ pointwise.

Proof. Set $g=-\Delta u+\partial u / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$. Since $\mathcal{P}_{\left[1-2 / p^{\prime}\right]}$ contains at most the constants and according to the density of $\mathcal{D}\left(\mathbb{R}^{2}\right)$ in $\widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right), g$ satisfies the compatibility condition (3.50). By the previous theorem, there exists a unique $v \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ such that $\nabla v \in L^{p}\left(\mathbb{R}^{2}\right)$ and $\partial v / \partial x_{1} \in L^{p}\left(\mathbb{R}^{2}\right)$, and satisfying both $T(u-v)=0(T$ is the Oseen operator, see (3.2)) and the estimate

$$
\begin{align*}
\|v\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)} & \leqslant C\left(\|\Delta u\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}\right) \tag{3.57}\\
& \leqslant C\left(\|\nabla u\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}\right) .
\end{align*}
$$

Setting $w=u-v$, we have for $i=1,2$ that $\partial w / \partial x_{i} \in L^{p}\left(\mathbb{R}^{2}\right)$ and $T\left(\partial w / \partial x_{i}\right)=0$. We deduce then by Lemma 3.1 that $\nabla u=\nabla v$, thus there exists a unique constant k such that $v=u+k$. The last properties are consequences of Lemma 2.6 and Lemma 2.10.

Remark 3.14. Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ be such that $\nabla u \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$.
i) When $1<p<2$, thanks to Proposition 2.2, we know that there exists a unique constant k such that $u+k \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$. Here, by the fact that in addition $\partial u / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$, we have even $u+k \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$.
ii) When $2 \leqslant p<3, u$ is only in $W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ but it is in no space $L^{r}\left(\mathbb{R}^{2}\right)$. But, if moreover $\partial u / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$, then $u+k \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ for some unique constant k, and $u \in L^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 6$ if $p=2$, while $u \in L^{\infty}\left(\mathbb{R}^{2}\right)$ otherwise.

As a consequence of Theorems 3.9 and 3.11 , we solve Equation (3.1) when the data f belongs to the intersection of two weighted spaces. We have then the two following results.

Proposition 3.15. Suppose that $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \cap W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$ with $1<p<q<$ ∞ and that f satisfies the compatibility condition (3.50). Then, Equation (3.1) has a solution $u \in \widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right) \cap \widetilde{W}_{0}^{1, q}\left(\mathbb{R}^{2}\right)$ satisfying

$$
\begin{align*}
\|\nabla u\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)}+\|\nabla u\|_{\boldsymbol{L}^{q}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W_{0}^{-1, p}}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)} \tag{3.58}\\
\leqslant C\left(\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}+\|f\|_{W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)}\right) .
\end{align*}
$$

Moreover:
i) The solution u is unique if $p<3$ and unique up to a constant if $p \geqslant 3$. It is equal to $\mathcal{O} * f$ if $p<3$.
ii) If $p<q<2$, then $u \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap L^{2 q /(2-q)}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|u\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|u\|_{L^{2 q /(2-q)}\left(\mathbb{R}^{2}\right)} \leqslant C\left(\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}+\|f\|_{W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)}\right) . \tag{3.59}
\end{equation*}
$$

iii) If $p<q=2$, then $u \in L^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 3 p /(3-p)$ and

$$
\begin{equation*}
\|u\|_{L^{r}\left(\mathbb{R}^{2}\right)} \leqslant C\left(\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}+\|f\|_{W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)}\right) \tag{3.60}
\end{equation*}
$$

iv) If $p<3$ and $q>2$ then $u \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap L^{\infty}\left(\mathbb{R}^{2}\right)$ with the estimate

$$
\begin{equation*}
\|u\|_{L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)}+\|u\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leqslant C\left(\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}+\|f\|_{W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)}\right) . \tag{3.61}
\end{equation*}
$$

Proof. Let $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \cap W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$ satisfy the compatibility condition (3.50) with $1<p<q<\infty$. We know that there exist $u \in \widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ and $v \in \widetilde{W}_{0}^{1, q}\left(\mathbb{R}^{2}\right)$ which are solutions of (3.1). Moreover, by a uniqueness argument we have necessarily $\nabla u=\nabla v$ and Estimate (3.58) comes from (3.51).
i) If $p \geqslant 3$, then $u-v=k$, where k is an arbitrary constant, so $u=v+k \in$ $\widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right) \cap \widetilde{W}_{0}^{1, q}\left(\mathbb{R}^{2}\right)$. If $p<3$, then $u=\mathcal{O} * f$.
ii) Suppose that $q<2$, then we know that $u=\mathcal{O} * f \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ and $u=v \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)$ and u satisfies Estimate (3.59).
iii) If $q=2$, then, by Theorem 3.11, $u=\mathcal{O} * f \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ and $u=v \in L^{r}\left(\mathbb{R}^{2}\right)$ for any $r \geqslant 3 p /(3-p)$.
iv) If $p<3$ and $q>2$, we know that $u=\mathcal{O} * f \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right)$. Since $\nabla u \in \boldsymbol{L}^{q}\left(\mathbb{R}^{2}\right)$ with $q>2$, it follows that $u \in L^{\infty}\left(\mathbb{R}^{2}\right)$ and we have Estimate (3.61).

Remark 3.16. When $f \in W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$ with $q \geqslant 3$, we have seen that $\mathcal{O} * f$ is not necessarily defined. But if moreover $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ with $p<3$, and satisfies the compatibility condition (3.50), then $\mathcal{O} * f$ makes sense in $\widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ and belongs to $\widetilde{W}_{0}^{1, q}\left(\mathbb{R}^{2}\right)$.

Proposition 3.17. Let $f \in L^{p}\left(\mathbb{R}^{2}\right) \cap W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ satisfy the compatibility condition (3.50). Then Equation (3.1) has a solution $u=\mathcal{O} * f$ such that $\nabla u \in \boldsymbol{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)$, $\partial u / \partial x_{1} \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right) \cap W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|\nabla u\|_{W^{1, p}}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W^{1, p}}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{W^{-1, p}} \leqslant C\left(\|f\|_{L^{p}}+\|f\|_{W_{0}^{-1, p}}\right) . \tag{3.62}
\end{equation*}
$$

Moreover:
i) If $p<\frac{3}{2}$, then u is unique, belongs to $L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right) \cap W^{1,3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ and satisfies the estimate

$$
\begin{equation*}
\|u\|_{L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right)}+\|u\|_{W^{1,3 p /(3-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\left(\|f\|_{L^{p}}+\|f\|_{W_{0}^{-1, p}}\right) \tag{3.63}
\end{equation*}
$$

ii) If $\frac{3}{2} \leqslant p<3$, then u is unique in $W^{1,3 p /(3-p)}\left(\mathbb{R}^{2}\right)$ and satisfies the estimate

$$
\begin{equation*}
\|u\|_{W^{1,3 p /(3-p)}\left(\mathbb{R}^{2}\right)} \leqslant C\left(\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)}\right) . \tag{3.64}
\end{equation*}
$$

iii) If $p \geqslant 3$, then u belongs to $W_{0}^{2, p}\left(\mathbb{R}^{2}\right) \cap \widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)$, is unique up to a constant, and

$$
\begin{equation*}
\inf _{k \in \mathbb{R}}\left(\|u+k\|_{W_{0}^{2, p}\left(\mathbb{R}^{2}\right)}+\|u+k\|_{\widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)}\right) \leqslant C\left(\|f\|_{L^{p}}+\|f\|_{\left.W_{0}^{-1, p}\right)} .\right. \tag{3.65}
\end{equation*}
$$

Proof. The proof is the same as the one given for the previous proposition.
Now we take f more regular, for example $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \cap W_{1}^{0, q}\left(\mathbb{R}^{2}\right)$, and we find what regularity we obtain for the solution u.

Proposition 3.18. Let p and q be two real numbers such that $1<p<\infty$, $q>2$, and $\frac{1}{p}=\frac{1}{q}+\frac{1}{2}$. Suppose that $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \cap W_{1}^{0, q}\left(\mathbb{R}^{2}\right)$ and satisfies the compatibility condition (3.50). Then the unique solution of Equation (3.1) given by Proposition 3.15 possesses the additional properties

$$
\nabla^{2} u \in\left(W_{1}^{0, q}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2} \quad \text { and } \quad \frac{\partial u}{\partial x_{1}} \in W_{1}^{0, q}\left(\mathbb{R}^{2}\right)
$$

Proof. From the relation $\frac{1}{p}=\frac{1}{q}+\frac{1}{2}$ we have $1<p<2$, and since $q>2$,

$$
\mathcal{P}_{\left[1-2 / q^{\prime}\right]}=\mathcal{P}_{[1-2 / p]}=\{0\}
$$

Since $W_{1}^{0, q}\left(\mathbb{R}^{2}\right) \subset W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$, it follows that $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \cap W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$ and satisfies the compatibility condition (3.50) for p and q.
i) If $2<q<3$, then Equation (3.1) has a unique solution $u \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap$ $L^{3 q /(3-q)}\left(\mathbb{R}^{2}\right)$ such that $\nabla u \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right) \cap \boldsymbol{L}^{q}\left(\mathbb{R}^{2}\right)$ and $\partial u / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \cap$ $W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$. Further,

$$
-\Delta\left(\varrho \frac{\partial u}{\partial x_{j}}\right)+\frac{\partial}{\partial x_{1}}\left(\varrho \frac{\partial u}{\partial x_{j}}\right)=\varrho \frac{\partial f}{\partial x_{j}}-2 \nabla \varrho \nabla\left(\frac{\partial u}{\partial x_{j}}\right)-\frac{\partial u}{\partial x_{j}} \Delta \varrho+\frac{\partial u}{\partial x_{j}} \frac{\partial \varrho}{\partial x_{1}}=: F .
$$

Since $\nabla u \in L^{q}\left(\mathbb{R}^{2}\right)$, in view of (2.3), (2.2), and (2.4), the terms $\varrho \partial f / \partial x_{j}$, $\nabla \varrho \nabla\left(\partial u / \partial x_{j}\right)$, and $\partial u / \partial x_{j} \Delta \varrho$ belong to $W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$. On the other hand, since $\nabla u \in L^{p}\left(\mathbb{R}^{2}\right)$, the term $\partial u / \partial x_{j} \cdot \partial \varrho / \partial x_{1}$ belongs to $L^{p}\left(\mathbb{R}^{2}\right)$. By the Sobolev embedding and the relation between p and $q, L^{p}\left(\mathbb{R}^{2}\right) \subset W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$ because $W_{0}^{1, q^{\prime}}\left(\mathbb{R}^{2}\right) \subset L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$, and we deduce that $F \in W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$. Thus, by Theorem 3.11, there exists a unique $v_{j} \in L^{3 q /(3-q)}\left(\mathbb{R}^{2}\right)$, such that $\nabla v_{j} \in \boldsymbol{L}^{q}\left(\mathbb{R}^{2}\right)$ and $\partial v_{j} / \partial x_{1} \in W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$, satisfying

$$
-\Delta\left(v_{j}-\varrho \frac{\partial u}{\partial x_{j}}\right)+\frac{\partial}{\partial x_{1}}\left(v_{j}-\varrho \frac{\partial u}{\partial x_{j}}\right)=0 .
$$

We deduce that $w_{j}=v_{j}-\varrho \partial u / \partial x_{j}$ is a polynomial. Since $\nabla v_{j} \in \boldsymbol{L}^{q}\left(\mathbb{R}^{2}\right)$ and $q>2$, we have, by Proposition 2.2, $v_{j} \in W_{0}^{1, q}\left(\mathbb{R}^{2}\right) \subset W_{-1}^{0, q}\left(\mathbb{R}^{2}\right)$. We have also $\varrho \partial u / \partial x_{j} \in W_{-1}^{0, q}\left(\mathbb{R}^{2}\right)$, so $w_{j} \in \mathcal{P}_{[1-2 / q]}=\mathcal{P}_{0}$. Thus, there exists a constant k such that $\varrho \partial u / \partial x_{j}=v_{j}+k \in W_{0}^{1, q}\left(\mathbb{R}^{2}\right)$, which implies $\partial u / \partial x_{j} \in W_{1}^{1, q}\left(\mathbb{R}^{2}\right)$ and so $\nabla^{2} u \in\left(W_{1}^{0, q}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$. The same argument proves that $\partial u / \partial x_{1} \in W_{1}^{0, q}\left(\mathbb{R}^{2}\right)$.
ii) If $q \geqslant 3$, then Equation (3.1) has, in view of Proposition 3.15 ii), a unique solution $u \in \widetilde{W}_{0}^{1, q}\left(\mathbb{R}^{2}\right) \cap \widetilde{W}_{0}^{1, p}\left(\mathbb{R}^{2}\right)$. The right-hand side F also belongs to $W_{0}^{-1, q}\left(\mathbb{R}^{2}\right)$ and we proceed as previously.

4. Study in anisotropic weighted spaces

In this section we consider the case when the weight is anisotropic, of the form $r^{\alpha}(1+s)^{\beta}$ or $\eta_{\beta}^{\alpha}=(1+r)^{\alpha}(1+s)^{\beta}$. Note that the behavior at infinity of these weights is not uniform. In fact, in the parabola $s=1$ we have $r^{\alpha}(1+s)^{\beta} \sim \eta_{\beta}^{\alpha} \sim r^{\alpha}$ and out of a sector $\mathcal{S}_{\lambda, R}=\left\{x \in \mathbb{R}^{2} ; x_{1}>\lambda r, 0<\lambda<1\right\}$ we have $r^{\alpha}(1+s)^{\beta} \sim \eta_{\beta}^{\alpha} \sim r^{\alpha+\beta}$. It is for this reason that these functions are called anisotropic weights. For $R>0$, we denote by B_{R} the ball centered at the origin with the radius $R, B_{R}^{\prime}=\mathbb{R}^{2} \backslash \overline{B_{R}}$, and we define the space

$$
L_{\alpha, \beta}^{p}(\Omega)=\left\{v \in \mathcal{D}^{\prime}(\Omega) ; \eta_{\beta}^{\alpha} v \in L^{p}(\Omega)\right\},
$$

where $\Omega=\mathbb{R}^{2}$ or any open domain of \mathbb{R}^{2}. We begin by studying the problem

$$
\begin{gather*}
-\Delta z+\frac{\partial z}{\partial x_{1}}+a_{0} z=g \quad \text { in } B_{R}^{\prime} \tag{4.1}\\
z=0 \quad \text { on } \partial B_{R}^{\prime}
\end{gather*}
$$

where $g \in L_{1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$ and

$$
\begin{equation*}
a_{0}=\frac{1}{8 r} \frac{2 s^{2}+s+2}{(1+s)^{2}} . \tag{4.2}
\end{equation*}
$$

First we have the following.
Lemma 4.1. Let p be such that $2<p<\frac{32}{11}$ and let $g \in L_{1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$. There exists $R^{*}>0$ such that if $R>R^{*}$, then Problem (4.1) has a unique solution $z \in L_{-1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$ such that $\nabla^{2} z \in\left(L^{p}\left(B_{R}^{\prime}\right)\right)^{2 \times 2}$ and $\partial z / \partial x_{1} \in L^{p}\left(B_{R}^{\prime}\right)$. Moreover, there exists $C>0$ such that

$$
\begin{equation*}
\|z\|_{L_{-1 / 2,0}^{p}\left(B_{R}^{\prime}\right)}+\left\|\frac{\partial z}{\partial x_{1}}\right\|_{L^{p}\left(B_{R}^{\prime}\right)}+\left\|\nabla^{2} z\right\|_{L^{p}\left(B_{R}^{\prime}\right)} \leqslant C\|g\|_{L_{1 / 2,0}^{p}\left(B_{R}^{\prime}\right)} . \tag{4.3}
\end{equation*}
$$

Proof. For all $\varepsilon>0$, since $g \in L_{1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$ and $a_{0}>0$, the problem

$$
\begin{gather*}
-\Delta z_{\varepsilon}+\frac{\partial z_{\varepsilon}}{\partial x_{1}}+a_{0} z_{\varepsilon}+\varepsilon z_{\varepsilon}=g \text { in } B_{R}^{\prime} \tag{4.4}\\
z_{\varepsilon}=0 \quad \text { on } \partial B_{R}^{\prime}
\end{gather*}
$$

has a unique solution $z_{\varepsilon} \in W^{2, p}\left(B_{R}^{\prime}\right)$. By multiplying the first equation of (4.4) by $r^{1-p / 2}\left|z_{\varepsilon}\right|^{p-2} z_{\varepsilon}$ and since in two dimensions $\Delta\left(r^{1-p / 2}\right)=\left(1-\frac{1}{2} p\right)^{2} r^{-1-p / 2}$, we get after integration by parts in B_{R}^{\prime}

$$
\begin{aligned}
&(p-1) \int_{B_{R}^{\prime}} r^{1-p / 2}\left|z_{\varepsilon}\right|^{p-2}\left|\nabla z_{\varepsilon}\right|^{2} \mathrm{~d} \boldsymbol{x}+\int_{B_{R}^{\prime}} a_{0} r^{1-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x}+\varepsilon \int_{B_{R}^{\prime}} r^{1-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x} \\
&= \frac{1}{p}\left(1-\frac{1}{2} p\right)^{2} \int_{B_{R}^{\prime}} r^{-1-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x}+\left(\frac{1}{p}-\frac{1}{2}\right) \int_{B_{R}^{\prime}}\left|z_{\varepsilon}\right|^{p} \frac{x_{1}}{r} r^{-p / 2} \mathrm{~d} \boldsymbol{x} \\
&+\int_{B_{R}^{\prime}} r^{1-p / 2}\left|z_{\varepsilon}\right|^{p-2} z_{\varepsilon} g \mathrm{~d} \boldsymbol{x}
\end{aligned}
$$

Note that $a_{0} \geqslant \frac{5}{32 r}$, thus

$$
\begin{gather*}
\left(\frac{5}{32}-\left|\frac{1}{p}-\frac{1}{2}\right|\right) \int_{B_{R}^{\prime}} r^{-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x} \tag{4.5}\\
\leqslant \frac{1}{p}\left(1-\frac{1}{2} p\right)^{2} \int_{B_{R}^{\prime}} r^{-1-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x}+\int_{B_{R}^{\prime}} r^{1-p / 2}\left|z_{\varepsilon}\right|^{p-1}|g| \mathrm{d} \boldsymbol{x} .
\end{gather*}
$$

Moreover, since $r>R$,

$$
\begin{equation*}
\frac{1}{p}\left(1-\frac{1}{2} p\right)^{2} \int_{B_{R}^{\prime}} r^{-1-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x} \leqslant \frac{1}{p R}\left(1-\frac{1}{2} p\right)^{2} \int_{B_{R}^{\prime}} r^{-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x} \tag{4.6}
\end{equation*}
$$

Inequalities (4.5) and (4.6) give

$$
\left(\frac{5}{32}-\left|\frac{1}{p}-\frac{1}{2}\right|-\frac{1}{p R}\left(1-\frac{1}{2} p\right)^{2}\right) \int_{B_{R}^{\prime}} r^{-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x} \leqslant \int_{B_{R}^{\prime}} r^{1-p / 2}\left|z_{\varepsilon}\right|^{p-1}|g| \mathrm{d} \boldsymbol{x}
$$

Since $2<p<\frac{32}{11}$, we have $\frac{5}{32}-\left|\frac{1}{p}-\frac{1}{2}\right|-\frac{1}{p R}\left(1-\frac{1}{2} p\right)^{2}>0$, if $R>R^{*}$, with R^{*} sufficiently large. Thus, from the previous inequality we obtain

$$
\begin{aligned}
\int_{B_{R}^{\prime}} r^{-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x} & \leqslant C_{1} \int_{B_{R}^{\prime}} r^{1-p / 2}\left|z_{\varepsilon}\right|^{p-1}|g| \mathrm{d} \boldsymbol{x} \\
& \leqslant C_{1}\left(\int_{B_{R}^{\prime}} r^{p / 2}|g|^{p} \mathrm{~d} \boldsymbol{x}\right)^{1 / p}\left(\int_{B_{R}^{\prime}} r^{-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x}\right)^{(p-1) / p}
\end{aligned}
$$

Thus

$$
\int_{B_{R}^{\prime}} r^{-p / 2}\left|z_{\varepsilon}\right|^{p} \mathrm{~d} \boldsymbol{x} \leqslant C \int_{B_{R}^{\prime}} r^{p / 2}|g|^{p} \mathrm{~d} \boldsymbol{x}
$$

where the constant C is independent of R and ε. The sequence $\left(z_{\varepsilon}\right)$ is thus bounded in $L_{-1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$, which is a reflexive space, so $z_{\varepsilon} \rightharpoonup z$ in $L_{-1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$, and

$$
\|z\|_{L_{-1 / 2,0}^{p}\left(B_{R}^{\prime}\right)} \leqslant \liminf _{\varepsilon \rightarrow 0}\left\|z_{\varepsilon}\right\|_{L_{-1 / 2,0}^{p}\left(B_{R}^{\prime}\right)} \leqslant C\|g\|_{L_{1 / 2,0}^{p}\left(B_{R}^{\prime}\right)},
$$

where z satisfies the equation

$$
-\Delta z+\frac{\partial z}{\partial x_{1}}=g-a_{0} z \quad \text { in } B_{R}^{\prime}
$$

Let us show that $\nabla^{2} z \in\left(L^{p}\left(B_{R}^{\prime}\right)\right)^{2 \times 2}$ and $\partial z / \partial x_{1} \in L^{p}\left(B_{R}^{\prime}\right)$. Now, the fact that the function $g-a_{0} z_{\varepsilon}$ is bounded in $L_{1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$ implies that it is bounded in $L^{p}\left(B_{R}^{\prime}\right)$. Since $\nabla^{2} z_{\varepsilon}$ remains bounded in $L^{p}\left(B_{R}^{\prime}\right)$, it follows that $\nabla^{2} z \in\left(L^{p}\left(B_{R}^{\prime}\right)\right)^{2 \times 2}$ and

$$
\begin{equation*}
\left\|\nabla^{2} z\right\|_{\boldsymbol{L}^{p}\left(B_{R}^{\prime}\right)} \leqslant \liminf _{\varepsilon \rightarrow 0}\left\|\nabla^{2} z_{\varepsilon}\right\|_{\boldsymbol{L}^{p}\left(B_{R}^{\prime}\right)} \leqslant C\|g\|_{L_{1 / 2,0}^{p}\left(B_{R}^{\prime}\right)} \tag{4.7}
\end{equation*}
$$

Thus, $\partial z / \partial x_{1} \in L^{p}\left(B_{R}^{\prime}\right)$ and we have Estimate (4.3). It remains to prove that $z=0$ on ∂B_{R}^{\prime}. Since $\nabla^{2} z_{\varepsilon}$ is bounded in $L^{p}\left(B_{R}^{\prime}\right)$, if Ω is a bounded domain such that $\overline{B_{R}} \subset \Omega$, setting $\Omega=\Omega \cap B_{R}^{\prime}$, we have

$$
z_{\varepsilon} \rightharpoonup v \quad \text { in } W^{2, p}(\Omega)
$$

Since $z_{\varepsilon}=0$ on ∂B_{R}^{\prime}, it follows that $v=0$ on ∂B_{R}^{\prime}. Moreover, since $z_{\varepsilon} \rightharpoonup z$ in $L_{-1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$, it follows that $v=\left.z\right|_{\bar{\Omega}}$ and so $z=0$ on ∂B_{R}^{\prime}.

We know, according to Proposition 3.18, that for f given in $W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \cap W_{1}^{0, q}\left(\mathbb{R}^{2}\right)$, where p and q satisfy the relation $\frac{1}{p}=\frac{1}{q}+\frac{1}{2}$, we obtain that $\nabla^{2} u$ and $\partial u / \partial x_{1}$ belong to $W_{1}^{0, q}\left(\mathbb{R}^{2}\right)$. But if f is only given in $W_{1}^{0, p}\left(\mathbb{R}^{2}\right)$, we cannot find the same regularity on $\nabla^{2} u$ and $\partial u / \partial x_{1}$. Then we look at f in $L_{\alpha, \beta}^{p}$, with $\alpha+\beta$ close to 1 . Moreover, taking account of the conditions put by Kračmar, Novotný, and Pokorný in [10] on α and β, one takes $\alpha=\frac{1}{2}$ and $\beta=\frac{1}{4}$.

Theorem 4.2. Assume $2<p<\frac{32}{11}$ and $f \in L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$. Then, $\mathcal{O} * f \in$ $L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right), \partial / \partial x_{2}(\mathcal{O} * f) \in L_{0,1 / 4}^{p}\left(\mathbb{R}^{2}\right), \partial / \partial x_{1}(\mathcal{O} * f) \in L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$, and $\nabla^{2}(\mathcal{O} *$ $f) \in\left(L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$. Moreover, we have the estimate

$$
\begin{align*}
\|\mathcal{O} * f\|_{L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial}{\partial x_{2}}(\mathcal{O} * f)\right\|_{L_{0,1 / 4}^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial}{\partial x_{1}}(\mathcal{O} * f)\right\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} \tag{4.8}\\
+\left\|\nabla^{2}(\mathcal{O} * f)\right\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)}
\end{align*}
$$

Proof. From [10], we have $\mathcal{O} * f \in L_{-1 / 2-\varepsilon, 1 / 4}^{p}\left(\mathbb{R}^{2}\right), \partial / \partial x_{2}(\mathcal{O} * f) \in L_{0,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$, $\partial / \partial x_{1}(\mathcal{O} * f) \in L_{1 / 2-\varepsilon, 1 / 4}^{p}\left(\mathbb{R}^{2}\right)$, for all $\varepsilon>0$. It remains to prove that $\mathcal{O} * f \in$ $L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$ and $\partial / \partial x_{1}(\mathcal{O} * f) \in L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$. For $R>R^{*}$, we use the following partition of unity

$$
\begin{gathered}
\varphi_{1}, \varphi_{2} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right), \quad 0 \leqslant \varphi_{1}, \varphi_{2} \leqslant 1, \quad \varphi_{1}+\varphi_{2}=1 \text { in } \mathbb{R}^{2} \\
\varphi_{1}=1 \text { in } B_{R} \quad \text { and } \quad \operatorname{Supp} \varphi_{1} \subset B_{R+1}
\end{gathered}
$$

We set $u=\mathcal{O} * f$ and we split u into $u=u_{1}+u_{2}$, where $u_{1}=\varphi_{1} u$ and $u_{2}=\varphi_{2} u$. Since Supp $u_{1} \subset B_{R+1}, u_{1} \in L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$ and

$$
\left\|u_{1}\right\|_{L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)}
$$

Furthermore, u_{2} is a solution of the following problem

$$
-\Delta u_{2}+\frac{\partial u_{2}}{\partial x_{1}}=\tilde{f} \quad \text { in } \mathbb{R}^{2}
$$

where $\tilde{f}=\varphi_{2} f+u \Delta \varphi_{1}+2 \nabla u \nabla \varphi_{1}-u\left(\partial \varphi_{1} / \partial x_{1}\right)$. Since the regularity of $\varphi_{2} f$ determines that of \widetilde{f}, it follows that $\widetilde{f} \in L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$. Setting $v=(1+s)^{1 / 4} u_{2}$, we have $v \in L_{-1 / 2-\varepsilon, 0}^{p}\left(\mathbb{R}^{2}\right)$, and v satisfies the equation
$-\Delta v+\frac{\partial v}{\partial x_{1}}=(1+s)^{1 / 4} \tilde{f}-2 \nabla u_{2} \cdot \nabla(1+s)^{1 / 4}-u_{2}\left[\Delta(1+s)^{1 / 4}-\frac{\partial}{\partial x_{1}}(1+s)^{1 / 4}\right]$.

A simple calculation yields

$$
\left(\Delta-\frac{\partial}{\partial x_{1}}\right)(1+s)^{1 / 4}=\frac{1}{8 r}\left(2 s^{2}+s+2\right)(1+s)^{-7 / 4}
$$

thus $u_{2}\left[\Delta(1+s)^{1 / 4}-\partial / \partial x_{1}(1+s)^{1 / 4}\right]=a_{0} v$, where a_{0} is defined in (4.2). Hence, v satisfies Problem (4.1), where $g=(1+s)^{1 / 4} \tilde{f}-2 \nabla u_{2} \cdot \nabla(1+s)^{1 / 4} \in L_{1 / 2,0}\left(B_{R}^{\prime}\right)$. Applying Lemma 4.1, there exists a unique solution $w \in L_{-1 / 2,0}^{p}\left(B_{R}^{\prime}\right)$ of this problem. Setting $z=v-w$, we have $z \in L_{-1 / 2-\varepsilon, 0}^{p}\left(\mathbb{R}^{2}\right)$, and z satisfies

$$
-\Delta z+\frac{\partial}{\partial x_{1}}+a_{0} z=0 \quad \text { in } \mathbb{R}^{2}
$$

Then $z=0$, which implies that $v \in L_{-1 / 2,0}^{p}\left(\mathbb{R}^{2}\right)$ and

$$
\|v\|_{L_{-1 / 2,0}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|g\|_{L_{1 / 2,0}^{p}\left(B_{R}^{\prime}\right)} \leqslant C\|f\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} .
$$

Hence $u_{2} \in L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$ and

$$
\left\|u_{2}\right\|_{L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)},
$$

which proves that $u \in L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|u\|_{L_{-1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} . \tag{4.9}
\end{equation*}
$$

Now, using the fact that u_{2} satisfies

$$
-\Delta\left(\eta_{1 / 4}^{1 / 2} u_{2}\right)+\frac{\partial}{\partial x_{1}}\left(\eta_{1 / 4}^{1 / 2} u_{2}\right)=: F,
$$

where

$$
F=\eta_{1 / 4}^{1 / 2} f-u \Delta\left(\eta_{1 / 4}^{1 / 2} \varphi_{2}\right)-2 \nabla u \cdot \nabla\left(\eta_{1 / 4}^{1 / 2} \varphi_{2}\right)+u \frac{\partial}{\partial x_{1}}\left(\eta_{1 / 4}^{1 / 2} \varphi_{2}\right) \in L^{p}\left(\mathbb{R}^{2}\right)
$$

we obtain by Theorem 3.9 that there exists a function v such that $\nabla^{2} v \in\left(L^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$ and $\partial v / \partial x_{1} \in L^{p}\left(\mathbb{R}^{2}\right)$, satisfying

$$
-\Delta v+\frac{\partial v}{\partial x_{1}}=-\Delta\left(\eta_{1 / 4}^{1 / 2} u_{2}\right)+\frac{\partial}{\partial x_{1}}\left(\eta_{1 / 4}^{1 / 2} u_{2}\right)
$$

Moreover,

$$
\begin{equation*}
\left\|\nabla^{2} v\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial v}{\partial x_{1}}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|F\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} . \tag{4.10}
\end{equation*}
$$

We set $w=\nabla^{2} v-\nabla^{2}\left(\eta_{1 / 4}^{1 / 2} u_{2}\right)$; since $\nabla^{2} u \in \bigcap_{\varepsilon>0}\left(L_{1 / 2-\varepsilon, 1 / 4}^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$, we have

$$
w \in \bigcap_{\varepsilon>0} L_{-\varepsilon, 0}^{p}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad-\Delta w+\frac{\partial w}{\partial x_{1}}=0 \quad \text { in } \mathbb{R}^{2}
$$

Thus $w=0$, which implies that

$$
\nabla^{2}\left(\eta_{1 / 4}^{1 / 2} u\right) \in\left(L^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}
$$

We thus obtain

$$
\nabla^{2} u \in\left(L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}, \quad \frac{\partial u}{\partial x_{1}} \in L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)
$$

and the estimate

$$
\begin{equation*}
\left\|\nabla^{2} u\right\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,1 / 4}^{p}\left(\mathbb{R}^{2}\right)} . \tag{4.11}
\end{equation*}
$$

This finishes the proof.
Let us set

$$
K_{\alpha, \beta}^{p}(\Omega)=\left\{v \in \mathcal{D}^{\prime}(\Omega) ; r^{\alpha}(1+s)^{\beta} \in L^{p}(\Omega)\right\}
$$

which is a reflexive Banach space when it is equipped with its natural norm. With the same arguments as above we can prove the following result. The case $\beta=\frac{1}{4}$ corresponds to Theorem 4.2.

Theorem 4.3. Assume $2 \leqslant p<8 /(3-\beta)$ and $0<\beta<\frac{1}{4}$. Then, for $f \in$ $K_{1 / 2, \beta}^{p}\left(\mathbb{R}^{2}\right)$, we have $\mathcal{O} * f \in K_{-1 / 2, \beta}^{p}\left(\mathbb{R}^{2}\right), \partial / \partial x_{2}(\mathcal{O} * f) \in K_{0, \beta}^{p}\left(\mathbb{R}^{2}\right), \partial / \partial x_{1}(\mathcal{O} * f) \in$ $K_{1 / 2, \beta}^{p}\left(\mathbb{R}^{2}\right)$, and $\nabla^{2}(\mathcal{O} * f) \in\left(K_{1 / 2, \beta}^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$. Moreover, we have the estimates

$$
\begin{align*}
\|\mathcal{O} * f\|_{K_{-1 / 2, \beta}^{p}\left(\mathbb{R}^{2}\right)} & +\left\|\frac{\partial}{\partial x_{2}}(\mathcal{O} * f)\right\|_{K_{0, \beta}^{p}\left(\mathbb{R}^{2}\right)}+\left\|\frac{\partial}{\partial x_{1}}(\mathcal{O} * f)\right\|_{K_{1 / 2, \beta}^{p}\left(\mathbb{R}^{2}\right)} \tag{4.12}\\
& +\left\|\nabla^{2}(\mathcal{O} * f)\right\|_{K_{1 / 2, \beta}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{K_{1 / 2, \beta}^{p}\left(\mathbb{R}^{2}\right)} .
\end{align*}
$$

For $\alpha, \beta \in \mathbb{R}$ we denote

$$
L_{\alpha, \beta\left(s^{\prime}\right)}^{p}\left(\mathbb{R}^{2}\right)=\left\{v \in \mathcal{D}^{\prime}(\Omega) ; \varrho^{\alpha}\left(1+s^{\prime}\right)^{\beta} v \in L^{p}\left(\mathbb{R}^{2}\right)\right\}
$$

which is a reflexive Banach space when it is equipped with its natural norm

$$
\|v\|_{L_{\alpha, \beta\left(s^{\prime}\right)}^{p}\left(\mathbb{R}^{2}\right)}=\left\|\varrho^{\alpha}\left(1+s^{\prime}\right)^{\beta} v\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} .
$$

Proposition 4.4. For any given $f \in L_{1 / 2,((\delta-1) / 2)\left(s^{\prime}\right)}^{2}\left(\mathbb{R}^{2}\right)$, with $\delta>0$ close to zero, Equation (3.1) has a unique solution $u \in K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right)$ such that $\nabla u \in$ $\boldsymbol{L}_{\delta / 4-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)$. Moreover, there exists a constant $C>0$ such that

$$
\begin{equation*}
\|u\|_{K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right)}+\|\nabla u\|_{L_{\delta / 4-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,((\delta-1) / 2)\left(s^{\prime}\right)}^{2}\left(\mathbb{R}^{2}\right)} \tag{4.13}
\end{equation*}
$$

Proof. By the density of $\mathcal{D}\left(\mathbb{R}^{2}\right)$ in $L_{1 / 2,((\delta-1) / 2)\left(s^{\prime}\right)}^{2}\left(\mathbb{R}^{2}\right)($ see $[2])$, there exists a sequence $\left(f_{k}\right)$ of $\mathcal{D}\left(\mathbb{R}^{2}\right)$ such that $f_{k} \rightarrow f$ in $L_{1 / 2,((\delta-1) / 2)\left(s^{\prime}\right)}^{2}\left(\mathbb{R}^{2}\right)$. Since $f_{k} \in \mathcal{D}\left(\mathbb{R}^{2}\right)$, we have $f_{k} \in K_{1 / 2, \beta}^{2}\left(\mathbb{R}^{2}\right), 0<\beta<\frac{1}{4}$. Thus, from Theorem 4.2, the equation

$$
\begin{equation*}
-\Delta u_{k}+\frac{\partial u_{k}}{\partial x_{1}}=f_{k} \quad \text { in } \mathbb{R}^{2} \tag{4.14}
\end{equation*}
$$

has a solution $u_{k}=\mathcal{O} * f_{k} \in K_{-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)$ such that $\nabla u_{k} \in K_{0, \beta}^{2}\left(\mathbb{R}^{2}\right), \nabla^{2} u_{k} \in$ $\left(K_{1 / 2, \beta}^{2}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$ and $\partial u_{k} / \partial x_{1} \in K_{1 / 2, \beta}^{2}\left(\mathbb{R}^{2}\right)$. Multiplying Equation (4.14) by $h u_{k}$ where $h=\breve{\mathcal{O}} * r^{\delta-2}$ with $\delta>0$ and $\breve{\mathcal{O}}$ is the fundamental solution of the operator $-\Delta-\partial / \partial x_{1}$, we obtain after two integrations by parts

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|\nabla u_{k}\right|^{2} h \mathrm{~d} \boldsymbol{x}+\frac{1}{2} \int_{\mathbb{R}^{2}} u_{k}^{2}\left(-\Delta h-\frac{\partial h}{\partial x_{1}}\right) \mathrm{d} \boldsymbol{x}=\int_{\mathbb{R}^{2}} f_{k} h u_{k} \mathrm{~d} \boldsymbol{x} . \tag{4.15}
\end{equation*}
$$

Since $-\Delta h-\partial h / \partial x_{1}=r^{\delta-2}$, we have

$$
\int_{\mathbb{R}^{2}}\left|\nabla u_{k}\right|^{2} h \mathrm{~d} \boldsymbol{x}+\frac{1}{2} \int_{\mathbb{R}^{2}} u_{k}^{2} r^{\delta-2} \mathrm{~d} \boldsymbol{x}=\int_{\mathbb{R}^{2}} f_{k} h u_{k} \mathrm{~d} \boldsymbol{x}
$$

and as $h \geqslant 0$ we then get the two inequalities

$$
\begin{align*}
& \int_{\mathbb{R}^{2}} u_{k}^{2} r^{\delta-2} \mathrm{~d} \boldsymbol{x} \leqslant 2 \int_{\mathbb{R}^{2}} f_{k} h u_{k} \mathrm{~d} \boldsymbol{x}, \tag{4.16}\\
& \int_{\mathbb{R}^{2}}\left|\nabla u_{k}\right|^{2} h \mathrm{~d} \boldsymbol{x} \leqslant \int_{\mathbb{R}^{2}} f_{k} h u_{k} \mathrm{~d} \boldsymbol{x} . \tag{4.17}
\end{align*}
$$

A simple calculation yields

$$
\left(-\Delta-\frac{\partial}{\partial x_{1}}\right)(1+r)^{\delta / 2-1}=\frac{2-\delta}{4}(1+r)^{\delta / 2-2}\left(\frac{4-\delta}{1+r}-\frac{1}{r}-\frac{x_{1}}{r}\right)
$$

thus

$$
\left(-\Delta-\frac{\partial}{\partial x_{1}}\right)\left(h-M(1+r)^{\delta / 2-1}\right) \geqslant \frac{1}{r^{2-\delta}}-M \frac{2-\delta}{2 r}(1+r)^{\delta / 2-1} \geqslant 0
$$

for $0<M \leqslant 2^{2+\delta / 2} /(2-\delta) \cdot((1-\delta) /(2+\delta))^{1+\delta / 2}$. Thus, there exists $M>0$ such that $h(x) \geqslant M(1+r)^{\delta / 2-1}$, so from the inequality (4.17), we obtain

$$
\begin{equation*}
M \int_{\mathbb{R}^{2}}(1+r)^{\delta / 2-1}\left|\nabla u_{k}\right|^{2} \mathrm{~d} \boldsymbol{x} \leqslant \int_{\mathbb{R}^{2}} f_{k} h u_{k} \mathrm{~d} \boldsymbol{x} . \tag{4.18}
\end{equation*}
$$

The Cauchy-Schwarz inequality gives

$$
\int_{\mathbb{R}^{2}} f_{k} h u_{k} \mathrm{~d} \boldsymbol{x} \leqslant\left(\int_{\mathbb{R}^{2}} f_{k}^{2} h^{2} r^{2-\delta} \mathrm{d} \boldsymbol{x}\right)^{1 / 2}\left(\int_{\mathbb{R}^{2}} r^{\delta-2} u_{k}^{2} \mathrm{~d} \boldsymbol{x}\right)^{1 / 2}
$$

Hence, from the inequalities (4.16) we get

$$
\int_{\mathbb{R}^{2}} r^{\delta-2} u_{k}^{2} \mathrm{~d} \boldsymbol{x} \leqslant 4 \int_{\mathbb{R}^{2}} f_{k}^{2} h^{2} r^{2-\delta} \mathrm{d} \boldsymbol{x}=4 \int_{\mathbb{R}^{2}} f_{k}^{2} \frac{1+r}{\left(1+s^{\prime}\right)^{1-\delta}} h^{2} r^{1-\delta}\left(1+s^{\prime}\right)^{1-\delta} \mathrm{d} \boldsymbol{x} .
$$

We adapt the result of Theorem 3.5 obtained in [10]: we have $h^{2} r^{1-\delta}\left(1+s^{\prime}\right)^{1-\delta} \in$ $L^{\infty}\left(\mathbb{R}^{2}\right)$, thus $u_{k} \in K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right)$ and there exists $C>0$ such that

$$
\begin{equation*}
\left\|u_{k}\right\|_{K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right)} \leqslant C\left\|f_{k}\right\|_{L_{1 / 2,(\delta / 2-1 / 2)\left(s^{\prime}\right)}^{2}} \leqslant C\|f\|_{L_{1 / 2,(\delta / 2-1 / 2)\left(s^{\prime}\right)}^{2}} \tag{4.19}
\end{equation*}
$$

Now, using the inequalities (4.18) and (4.19), we deduce that $\nabla u_{k} \in \boldsymbol{L}_{\delta / 4-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\left\|\nabla u_{k}\right\|_{L_{\delta / 4-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)} \leqslant C\left\|f_{k}\right\|_{L_{1 / 2,(\delta / 2-1 / 2)\left(s^{\prime}\right)}^{2}} \leqslant C\|f\|_{L_{1 / 2,(\delta / 2-1 / 2)\left(s^{\prime}\right)}^{2}} \tag{4.20}
\end{equation*}
$$

So, the sequences u_{k} and $\boldsymbol{v}_{k}=\nabla u_{k}$ remain bounded in $K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right)$ and in $\boldsymbol{L}_{\delta / 4-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)$, respectively. These spaces are reflexive, therefore extracting a subsequence if necessary, we have

$$
u_{k} \rightharpoonup u \text { in } K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad \nabla u_{k} \rightharpoonup \nabla u \text { in } L_{\delta / 4-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)
$$

with the estimates

$$
\begin{equation*}
\|u\|_{K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right)} \leqslant \liminf _{k \rightarrow \infty}\left\|u_{k}\right\|_{K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,(\delta / 2-1 / 2)\left(s^{\prime}\right)}^{2}}, \tag{4.21}
\end{equation*}
$$

$$
\begin{equation*}
\|\nabla u\|_{L_{\delta / 4-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)} \leqslant \liminf _{k \rightarrow \infty}\left\|\nabla u_{k}\right\|_{L_{\delta / 4-1 / 2,0}^{2}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L_{1 / 2,(\delta / 2-1 / 2)\left(s^{\prime}\right)}^{2}} \tag{4.22}
\end{equation*}
$$

We get then Estimate (4.13) and we verify easily that u is a solution of Equation 3.1. The uniqueness of u follows from the fact that the space $K_{\delta / 2-1,0}^{2}\left(\mathbb{R}^{2}\right)$ contains no polynomials.

5. BEHAVIOUR OF u_{λ} WHEN $\lambda \rightarrow 0$

Assume $1<p<2, f \in L^{p}\left(\mathbb{R}^{2}\right)$, and, for $\lambda>0$, consider the equation

$$
\begin{equation*}
-\Delta u_{\lambda}+\lambda \frac{\partial u_{\lambda}}{\partial x_{1}}=f \quad \text { in } \mathbb{R}^{2} \tag{5.1}
\end{equation*}
$$

If we set

$$
\boldsymbol{y}=\lambda \boldsymbol{x}, \quad u_{\lambda}(\boldsymbol{x})=v(\boldsymbol{y}), \quad \text { and } \quad f(\boldsymbol{x})=\lambda^{2} g(\boldsymbol{y}),
$$

then v satisfies the equation

$$
\begin{equation*}
-\Delta v(\boldsymbol{y})+\frac{\partial v}{\partial y_{1}}(\boldsymbol{y})=g(\boldsymbol{y}) \quad \text { in } \mathbb{R}^{2} \tag{5.2}
\end{equation*}
$$

where, clearly, $g \in L^{p}\left(\mathbb{R}^{2}\right)$. We know by Theorem 3.9 that, if $1<p<2$, Equation (5.2) has a solution v such that, in particular, $\nabla v \in L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right), \nabla^{2} v \in$ $\left(L^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}, \partial v / \partial x_{1} \in L^{p}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\|\nabla v\|_{L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)}+\left\|\nabla^{2} v\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|g\|_{L^{p}\left(\mathbb{R}^{2}\right)} . \tag{5.3}
\end{equation*}
$$

By a simple calculation we obtain from Inequality (5.3) the estimate

$$
\begin{equation*}
\left\|\nabla u_{\lambda}\right\|_{L^{2 p /(2-p)}\left(\mathbb{R}^{2}\right)}+\left\|\nabla^{2} u_{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} \tag{5.4}
\end{equation*}
$$

where C does not depend on λ. We deduce that the sequences ∇u_{λ} and $\nabla^{2} u_{\lambda}$ remain bounded in $L^{p}\left(\mathbb{R}^{2}\right)$ and $\left(L^{p^{*}}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$, with $p^{*}=2 p /(2-p)$, respectively. Now, setting

$$
\begin{equation*}
-\Delta u_{\lambda}=f_{\lambda} \quad \text { in } \mathbb{R}^{2} \tag{5.5}
\end{equation*}
$$

then the sequence f_{λ} is bounded in $L^{p}\left(\mathbb{R}^{2}\right) \cap W_{0}^{-1, p^{*}}\left(\mathbb{R}^{2}\right)$. These spaces are reflexive, so extracting a subsequence if necessary, also denoted f_{λ}, we have

$$
f_{\lambda} \rightharpoonup f \text { in } L^{p}\left(\mathbb{R}^{2}\right) \quad \text { and } \quad f_{\lambda} \rightharpoonup f \text { in } W_{0}^{-1, p^{*}}\left(\mathbb{R}^{2}\right)
$$

Further, note that $p^{*}>2$, so there exist $z \in W_{0}^{1, p^{*}}\left(\mathbb{R}^{2}\right)$ and $w \in W_{0}^{2, p}\left(\mathbb{R}^{2}\right)$ such that

$$
-\Delta z=-\Delta w=f \quad \text { in } \mathbb{R}^{2}
$$

Since $\nabla z \in \boldsymbol{L}^{p^{*}}\left(\mathbb{R}^{2}\right), \nabla w \in \boldsymbol{L}^{p^{*}}\left(\mathbb{R}^{2}\right)$ by Sobolev embedding and $\nabla z-\nabla w$ is harmonic, it follows that $\nabla z-\nabla w=0$ in \mathbb{R}^{2}. Hence there exists $k \in \mathbb{R} \subset W_{0}^{2, p}\left(\mathbb{R}^{2}\right)$ such that $z=w+k$, thus $z \in W_{0}^{2, p}\left(\mathbb{R}^{2}\right) \cap W_{0}^{1, p^{*}}\left(\mathbb{R}^{2}\right)$. Now, since the norm in $W_{0}^{2, p}\left(\mathbb{R}^{2}\right) / \mathbb{R}$
is equivalent to its semi-norm, we deduce from the inequality (5.4) that there exist $k_{\lambda} \in \mathbb{R}$ and $u \in W_{0}^{2, p}\left(\mathbb{R}^{2}\right) \cap W_{0}^{1, p^{*}}\left(\mathbb{R}^{2}\right)$ such that

$$
u_{\lambda}+k_{\lambda} \rightharpoonup u \text { in } W_{0}^{2, p}\left(\mathbb{R}^{2}\right) \text { and in } W_{0}^{1, p^{*}}\left(\mathbb{R}^{2}\right)
$$

Since $-\Delta u=f$ in \mathbb{R}^{2}, there exists $k \in \mathbb{R}$ such that $z=u+k$. We have thus recovered the result obtained by Amrouche, Girault, and Giroire in [1] for $f \in L^{p}\left(\mathbb{R}^{2}\right)$. The following proposition is thus acquired.

Proposition 5.1. Assume that $1<p<2$ and let $f \in L^{p}\left(\mathbb{R}^{2}\right)$. Then Equation (5.1) has at least a solution u_{λ} of the form (3.41) such that $\nabla u_{\lambda} \in$ $\boldsymbol{L}^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap \boldsymbol{L}^{2 p /(2-p)}\left(\mathbb{R}^{2}\right), \nabla^{2} u_{\lambda} \in\left(L^{p}\left(\mathbb{R}^{2}\right)\right)^{2 \times 2}$, and $\partial u_{\lambda} / \partial x_{1} \in L^{p}\left(\mathbb{R}^{2}\right)$. Moreover, if $1<p<\frac{3}{2}$, then $u_{\lambda} \in L^{3 p /(3-2 p)}\left(\mathbb{R}^{2}\right) \cap L^{\infty}\left(\mathbb{R}^{2}\right)$. Furthermore, there exists $k_{\lambda} \in \mathbb{R}$ such that, when $\lambda \rightarrow 0$,

$$
u_{\lambda}+k_{\lambda} \rightharpoonup u \text { in } W_{0}^{2, p}\left(\mathbb{R}^{2}\right) \text { and in } W_{0}^{1, p^{*}}\left(\mathbb{R}^{2}\right)
$$

where u is the unique solution of Poisson's Equation

$$
\begin{equation*}
-\Delta u=f \quad \text { in } \mathbb{R}^{2}, \tag{5.6}
\end{equation*}
$$

with the estimate

$$
\begin{equation*}
\|\nabla u\|_{L^{p^{*}}\left(\mathbb{R}^{2}\right)}+\left\|\nabla^{2} u\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} \tag{5.7}
\end{equation*}
$$

For $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ we have the following result.
Proposition 5.2. Assume $1<p<2$ and let $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$ satisfy the compatibility condition

$$
\begin{equation*}
\langle f, 1\rangle_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \times W_{0}^{1, p^{\prime}}\left(\mathbb{R}^{2}\right)}=0 . \tag{5.8}
\end{equation*}
$$

Then Equation (5.1) has a unique solution $u_{\lambda} \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap L^{p^{*}}\left(\mathbb{R}^{2}\right)$ such that $\nabla u_{\lambda} \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$ and $\partial u_{\lambda} / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$. Moreover,

$$
u_{\lambda} \rightharpoonup u \text { in } W_{0}^{1, p}\left(\mathbb{R}^{2}\right) \text { as } \lambda \rightarrow 0
$$

where u is the unique solution of Poisson's Equation

$$
\begin{equation*}
-\Delta u=f \quad \text { in } \mathbb{R}^{2}, \tag{5.9}
\end{equation*}
$$

and the following estimate holds

$$
\begin{equation*}
\|u\|_{L^{p^{*}}\left(\mathbb{R}^{2}\right)}+\|\nabla u\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} \tag{5.10}
\end{equation*}
$$

Proof. By Isomorphism (2.7), there exists $\boldsymbol{F} \in \boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)$ such that $f=\operatorname{div} \boldsymbol{F}$ and

$$
\begin{equation*}
\|\boldsymbol{F}\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} . \tag{5.11}
\end{equation*}
$$

Setting

$$
\boldsymbol{y}=\lambda \boldsymbol{x}, \quad u_{\lambda}(\boldsymbol{x})=v(\boldsymbol{y}), \quad \boldsymbol{F}(\boldsymbol{x})=\lambda \boldsymbol{G}(\boldsymbol{y}), \quad \text { and } \quad g=\operatorname{div} \boldsymbol{G}
$$

v satisfies Equation (5.2) where $g \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right) \perp \mathbb{R}$. By Theorem 3.11, this equation has a unique solution $v \in L^{3 p /(3-p)}\left(\mathbb{R}^{2}\right) \cap L^{p^{*}}\left(\mathbb{R}^{2}\right)$ such that $\nabla v \in L^{p}\left(\mathbb{R}^{2}\right)$ and $\partial v / \partial x_{1} \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$, with the estimate

$$
\begin{equation*}
\|v\|_{L^{p^{*}\left(\mathbb{R}^{2}\right)}}+\|\nabla v\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|g\|_{W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)} \leqslant C\|\boldsymbol{G}\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)} . \tag{5.12}
\end{equation*}
$$

As previously, we get the estimate

$$
\begin{equation*}
\left\|u_{\lambda}\right\|_{L^{p^{*}}\left(\mathbb{R}^{2}\right)}+\left\|\nabla u_{\lambda}\right\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|\boldsymbol{F}\|_{\boldsymbol{L}^{p}\left(\mathbb{R}^{2}\right)} \tag{5.13}
\end{equation*}
$$

The sequences u_{λ} and ∇u_{λ} remain bounded in $L^{p^{*}}\left(\mathbb{R}^{2}\right)$ and $L^{p}\left(\mathbb{R}^{2}\right)$, respectively. These spaces are reflexive, so there exists $u \in L^{p^{*}}\left(\mathbb{R}^{2}\right)$ such that $u_{\lambda} \rightharpoonup u$ in $L^{p^{*}}\left(\mathbb{R}^{2}\right)$ and $\nabla u_{\lambda} \rightharpoonup \nabla u$ in $L^{p}\left(\mathbb{R}^{2}\right)$. We easily verify that u is a solution of Poisson's Equation (5.9) and satisfies Estimate (5.10). The uniqueness of u follows by the fact that the space $L^{p^{*}}\left(\mathbb{R}^{2}\right)$ contains no polynomials. We deduce that $u \in W_{0}^{1, p}\left(\mathbb{R}^{2}\right)$ and we have also recovered the result obtained in [1] for $f \in W_{0}^{-1, p}\left(\mathbb{R}^{2}\right)$.

References

[1] C. Amrouche, V. Girault, J. Giroire: Weighted Sobolev spaces for Laplace's equation in \mathbb{R}^{n}. J. Math. Pures Appl., IX. Sér. 73 (1994), 579-606.
[2] C. Amrouche, U. Razafison: Weighted Sobolev spaces for a scalar model of the stationary Oseen equation in \mathbb{R}^{3}. J. Math. Fluids Mech. To appear.
[3] R. Farwig: A variational approach in weighted Sobolev spaces to the operator $-\Delta+\partial / \partial x_{1}$ in exterior domains of \mathbb{R}^{3}. Math. Z. 210 (1992), 449-464.
[4] R. Farwig: The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211 (1992), 409-448.
[5] R. Farwig, H. Sohr: Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains. Proc. 3rd International Conference on the Navier-Stokes

Equations: Theory and Numerical Methods, Oberwolfach, Germany, June 5-11, 1994 (J. G. Heywood, ed.). World Scientific, Ser. Adv. Math. Appl. Sci. Vol. 47, Singapore, 1998, pp. 11-30.
zbl
[6] R. Finn: On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19 (1965), 363-406.
zbl
[7] R. Finn: Estimates at infinity for stationary solutions of the Navier-Stokes equations. Bull. Math. Soc. Sci. Math. Phys. R. P. R. 51 (1960), 387-418.
[8] G. P. Galdi: An introduction to the mathematical theory of the Navier-Stokes equations.
Vol. I: Linearized steady problems. Springer Tracts in Natural Philosophy, Vol. 38. Springer, New York, 1994.
[9] B. Hanouzet: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1972), 227-272.
[10] S. Kračmar, A. Novotný, M. Pokorný: Estimates of Oseen kernels in weighted L^{p} spaces. J. Math. Soc. Japan 53 (2001), 59-111.
[11] A. Kufner: Weighted Sobolev spaces. Wiley-Interscience, New York, 1985.
[12] P. I. Lizorkin: $\left(L^{p}, L^{q}\right)$-multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR 152 (1963), 808-811.
[13] C. W. Oseen: Über die Stokessche Formel und über eine verwandte Aufgabe in der Hydrodynamik. Arkiv fór Mat. Astron. och Fys. 7 (1911), 1-36.
[14] C. W. Oseen: Neuere Methoden und Ergebnisse in der Hydrodynamik. Akadem. Verlagsgesellschaft, Leipzig, 1927.
zbl
[15] C. Pérez: Two weighted norm inequalities for Riesz potentials and uniform L^{p} - weighted Sobolev inequalities. Indiana Univ. Math. J. 39 (1990), 31-44.
[16] M. Reed, B. Simon: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York-San Francisco-London, 1975.
zbl
[17] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. University Press, Princeton, 1970.

Authors' addresses: C. Amrouche, Laboratoire de Mathématiques Appliquées, UMRCNRS 5142, Université de Pau et des Pays de l'Adour, France, e-mail: cherif.amrouche @univ-pau.fr; H. Bouzit, Département de Mathématiques, Université de Mostaganem, Algérie, e-mail: hamidbouzit@yahoo.fr.

