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Abstract— This paper describes a generalisation of the un-

scented transformation (UT) which allows sigma points to be

scaled to an arbitrary dimension. The UT is a method for pre-

dicting means and covariances in nonlinear systems. A set of

samples are deterministically chosen which match the mean and

covariance of a (not necessarily Gaussian-distributed) probabil-

ity distribution. These samples can be scaled by an arbitrary

constant. The method guarantees that the mean and covariance

second order accuracy in mean and covariance, giving the same

performance as a second order truncated filter but without the

need to calculate any Jacobians or Hessians. The impacts of scal-

ing issues are illustrated by considering conversions from polar

to Cartesian coordinates with large angular uncertainties.

Keywords: Kalman filter, non-linear estimation, unscented fil-
tering.

I. Introduction

One of the most fundamental tasks in filtering and estimation
is to calculate the statistics of a random variable which has un-
dergone a transformation. The Kalman filter, for example, uses
two such transformations to predict the state future state of a
system and the measurements which a suite of sensors will make
of that system. When the transformation is nonlinear no general
closed-form solutions exist [1] and many approximations have
been proposed [2–6]. Probably the most widely used estimator
for nonlinear systems is the extended Kalman filter (EKF) [7,
8]. The EKF applies the Kalman filter to nonlinear systems
by simply linearising all the nonlinear models so that the tradi-
tional linear Kalman filter equations can be applied. However,
in practice, the EKF has two well-known drawbacks. First, lin-
earisation can produce highly unstable filters if the assumptions
of local linearity is violated [9]. Second, the derivation of the
Jacobian matrices are nontrivial in most applications and often
lead to significant implementation difficulties.

In [10] and [11] we introduced a new approximate method for
propagating means and covariances through nonlinear transfor-
mations called the unscented transformation. A set of weighted
sigma points are deterministically chosen so that certain prop-
erties of these points (such as their first two moments) match
those of the prior distribution. Each point undergoes the non-
linear transformation and the properties of the transformed set
are calculated. Although this algorithm superficially resembles
a Monte Carlo method, no random sampling is used and, in
consequence, only a small number of points (2n + 1 for an n-
dimensional space)are required. In subsequent work we have
developed other sigma point selection schemes which exploit
more information such as the first three moments of an arbi-
trary distribution [12] or the first four non-zero moments of a
Gaussian distribution [13].

However, all of these sigma point solutions share the property
that as the dimension of the state space increases, the radius of
the sphere that bounds all the sigma points increases as well.
Even though the specified information is still captured correctly
(i.e., the mean and covariance of the sigma points matches the
aprior distribution for all dimensions), it does so at the cost
of sampling non-local effects. For many kinds of nonlinearities

(such as exponents or trigonometric functions) this can lead to
significant difficulties. In [14] we proposed a method for over-
coming these difficulties through the use of negative weights
and a “modified” form of the algorithm to guarantee positive
semidefiniteness. However, the approach was developed from
studying the higher order properties of the system and no phys-
ical intuition was used. Second, it was only developed to study
the problem of point scaling for the specific set introduced in [11]
and its applicability to other sigma point sets was not examined.

This paper re-examines the problem of sigma point scaling
and introduces a new, general framework. Called the scaled

unscented transformation, the method allows any set of sigma
points to be scaled by an arbitrary scaling factor in such a man-
ner that the first two moments of the set are preserved. It is
equivalent to applying the conventional unscented transforma-
tion followed by a simple post-processing step. The storage and
computational costs are exactly the same as a non-scaled ver-
sion of the same transformation. The method can also be used
to partially incorporate contributions higher order information
into the estimates.

The structure of this paper is as follows. The problem is
stated in Section II and the unscented transformation is de-
scribed. Methods for sigma point scaling are examined in Sec-
tion III and two complementary forms are derived. The first
form uses an auxillary random variable — the nonlinear trans-
formation is modified but the sigma point set is not. In this
form it is easy to prove a number of properties including sec-
ond order accuracy in mean and covariance predictions and also
clearly shows the condition underwhich the predicted covari-
ance is guaranteed to be positive semidefinite. We then derive
the scaled unscented transformation which has the same prop-
erties as the auxillary form but modifies the sigma points them-
selves rather than the nonlinear transformation. We also show
how some higher order information can be incorporated into the
scaled transformation [15]. Conclusions are drawn in Section V.

II. Background

A. Problem Statement

Let x be an n-dimensional random variable with mean x̄ and
covariance Pxx. A second random variable, y is related to x

through the nonlinear transformation

y = f [x] . (1)

The objective is to calculate the mean ȳ and covariance Pyy

of y.

Throughout this paper, we utilise to the Taylor Series expan-
sion of Equation 1. Let x = δδδx + x̄ where δδδx is a zero mean
random variable with covariance Pxx. Expanding f [·] about x̄,

f [x] = f [x̄ + δδδx] = f [x̄] +∇∇∇fδδδx +
1

2
∇∇∇2

fδδδx
2

+
1

3!
∇∇∇3

fδδδx
3

+ · · · (2)

where, for the sake of simplicity, we use the informal notation
that ∇∇∇ifδδδxi is the ith order term in the multidimensional Taylor
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Box II.1: The Point Selection Algorithm for the Simplex Un-
scented Transform.

Series. Taking expectations, it can be shown that

ȳ = E [y]

= f [x̄] +
1

2
∇∇∇2

f Pxx +
1

6
∇∇∇3

f E
[

δδδx
3
]

+ · · ·
(3)

Pyy = E
[

(y − ȳ) (y − ȳ)
T

]

= ∇∇∇f Pxx(∇∇∇f)
T

+
1

4
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fE
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3
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(∇∇∇f)
T

+
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∇∇∇fE
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] (
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f
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E
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δδδx
4
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δδδx
2
Pxx
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− E
[

Pxxδδδx
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]

+ P
2

xx

)

(∇∇∇2
f)

T

+
1

3!
∇∇∇3

fE
[

δδδx
4
]

(∇∇∇f)
T

+ · · ·
(4)

The Unscented Transform builds on the principle that it is
easier to approximate a probability distribution than it is to
approximate an arbitrary nonlinear function. A set of p + 1
weighted points S = {W〉, X 〉} (such that

∑p
i=0 Wi = 1) are

chosen to reflect certain properties of x [13]. Once the set has
been derived, the prediction method is straightforward. First,
each point is instantiated through the nonlinear function, Y i =
f [X i]. The estimated mean and covariance of y are then

ȳ =

p
∑

i=0

WiYi (5)

Pyy =

p
∑

i=0

Wi {Yi − ȳ} {Yi − ȳ}T
. (6)

The difficulties of higher dimensions are clearly illustrated in
the simplex set of sigma points which were derived in [16] and
are listed in Box II.1. This set utilises the minimum number of
points (n+1) required to match the mean and covariance of an
n-dimensional random variable.

The simplex set of points have two related difficulties. The
first difficulty is that the distance of the ith point from the origin
is a function of 2(n−1/2). Therefore, as n increases, the radius
of the sphere which bounds the sigma points increases as well.
Second, these points are asymmetrically distributed about the
origin. Therefore, higher order effects such as the skew become
more significant as the dimension increases.

III. Sigma Point Scaling Methods

The sigma point scaling methods attempt to overcome di-
mensional scaling effects by calculating the transformation of a
scaled set of sigma points of the form

X
′

i = X 0 + α(X i − X 0), (7)

where α is a positive scaling parameter which can be made arbi-
trarily small to minimise higher order effects. Any permissible
formulation should have the following two properties. First, for
all choices of α the predicted covariance should be guaranteed to
be positive semidefinite. Second, the second order accuracy in
both the mean and covariance are preserved. We now describe
two formulations for achieving this objective.

A. The Auxillary Random Variable

The auxillary random variable formulation considers a trans-
formation which is related to the problem stated in Equation 1.
Specifically, we consider the problem of estimating the mean z̄

and covariance Pzz of the auxillary random variable z. It is
related to x through the nonlinear equation z = g [x, x̄, α, µ]
where

g [x, x̄, α, µ] =
f [x̄ + α(x − x̄)] − f [x̄]

µ
+ f [x̄] . (8)

α is a positive point scaling parameter and µ is a normali-
sation term which scales the transformed point about f [x̄] to
offset the effects of α. Because all sigma points are propagated
through the term f [x̄ + α(x − x̄)], the scaling effect of Equa-
tion 7 is implicitly achieved. To prove the second order accuracy
of this form, we consider the role played by α and µ. Taking a
Taylor Series expansion of g [·, ·, ·, ·] about x̄,

g [x, x̄, α, µ] = f [x̄] +∇∇∇f
α

µ
δδδx +

1

2
∇∇∇2

f
α2

µ
δδδx

2
+

1

3!
∇∇∇3

f
α3

µ
δδδx

3
+ · · · (9)

Taking expectations, the mean of z is

z̄ = f [x̄] +
1

2
∇∇∇2

f
α2

µ
Pxx +

1

6
∇∇∇3

f
α3

µ
E

[

δδδx
3
]

+ · · · (10)

These terms can be related directly to those of the Taylor
Series expansion of y. If µ = α2, the expressions for ȳ and z̄

agree up to the second order. The ratio of the third and higher
order terms of z̄ against ȳ scale geometrically with a commmon
ratio of α. Since α only affects the third and higher orders,
its value can be chosen so that the scaling effects in the higher
order terms are minimised. With a sufficiently small value of α,
the same mean can be calculated as with the modified form of
the unscented transformation.

A similar result holds for the covariance. Let P∗
zz = µPzz.

Taking expectations,

P
∗

zz =
α2

µ
∇∇∇f Pxx(∇∇∇f)

T
+

α3

µ2

1

2
∇∇∇fE

[

δδδx
3
] (

∇∇∇2
f
)T

+
α4

µ2

1

2
∇∇∇2

f

(

E
[

δδδx
4
]

− E
[

δδδx
2
Pyy

]

− E
[

Pyyδδδx
2
]

+ P
2

yy

)

(∇∇∇2
f)

T

+
α4

µ2

1

3!
∇∇∇3

fE
[

δδδx
4
]

(∇∇∇f)
T

+ · · · (11)

When µ = α2, the expansion of P∗
zz agrees with Pyy up to the

second order and the third and higher order terms scale with α.

The auxillary form of the unscented transformation simply
applies the unscented transformation to the problem of estimat-
ing the mean and covariance of the auxillary random variable.
Given an n-dimensional random variable x with mean x̄ and co-
variance Pxx, a set of p+1 sigma points are chosen such that the



mean and covariance of those points are x̄ and Pxx respectively.
The unscented transformation is then

Zi =
f [x̄ + α(X i − x̄)] − f [x̄]

α2
+ f [x̄] (12)

z̄ =

p
∑

i=0

WiZi (13)

P
∗

zz = α
2

p
∑

i=0

Wi {Yi − z̄} {Yi − z̄}T
(14)

From Equations 10 and 11 and given the fact that the sigma
points have mean x̄ and covariance Pxx, z̄ and P∗

zz are correct
to the second order for any value of α. Furthermore, because
P∗

zz is calculated from the weighted outer products of vectors,
positive semidefiniteness is guaranteed if all of the weights Wi

are non-negative. Since the only motive for choosing negative
values of Wi is to scale the points, this incentive is removed.

The auxillary form is able to meet the requirements set out
at the beginning of this section. However, it requires a change
in the fundamental transformation system itself. We now show
that it is possible to leave the original problem in place but
apply a transformation to the sigma points themselves.

B. The Scaled Unscented Transform

The scaled unscented transform yields the same results as
the auxillary form, but without the need to modify the trans-
formation (Equation 1). Rather, an initial set of points are
chosen using a normal sigma point selection algorithm. A spe-
cific transformation is applied to these points. The mean and
covariance are calculated using Equations 5 and 6. A final term
is added to offset the initial transformation which was applied
to the sigma points.

Suppose a set of sigma points S have been constructed with
mean x̄ and covariance Pxx and a positive scaling parameter
α has been chosen. These points are transformed to a new set
S ′ = {〉 = ′,∞, . . . ,√ : X

′
〉,W ′

〉} which has the same mean and

covariance as S but the points now obey the condition of Equa-
tion 7. As a result, the weights of this transformed sequence
are

W
′

i =

{

W0/α2 + (1 − 1/α2) i = 0

Wi/α2 i 6= 0
(15)

The proof can be found in the Appendix. Because S ′ is, itself,
a sigma point set, it is possible with some selection algorithms
to implicitly combine the scaling directly with the original sigma
point selection.

Given this set of points, the scaled unscented transform cal-
culates its statistics as follows:

Y
′

i = f
[

X
′

i

]

. (16)

ȳ
′

=

p
∑

i=0

W
′

i Y
′

i. (17)

P
′

yy =

p
∑

i=0

W
′

i

{

Y
′

i − ȳ
} {

Y
′

i − ȳ
}T

+ (1 − α
2
)
{

Y
′

0
− ȳ

} {

Y
′

0
− ȳ

}T
.

(18)

In the Appendix we prove that, for any sigma point distribu-
tion, ȳ′ = z̄ and P′

yy = P∗
zz when µ = α2. This has a number of

important consequences. First, the scaled unscented transfor-
mation possesses all of the properties of the auxillary form. The
predicted mean and covariance are accurate to the second order
and P′

yy is guaranteed to be positive semidefinite if all of the
untransformed weights are non-negative. Second, the numerical
costs of this form are the same as with the unscaled unscented
transform. Comparing Equation 18 to Equation 6, the only dif-
ference is that a term (1 − α2) is added to the weight on the
zeroth sigma point. Finally this form provides a very simple

interpretation for α. When α = 1, this gives Equation 6. When
α = 0, this form gives the modified form of the covariance equa-
tion which was used in [14].

C. Incorporating Higher Order Information

Although the sigma points only capture the first two moments
of the sigma points (and so the first two moments of the Taylor
Series expansion), the scaled unscented can be extended to in-
clude partial higher order information of the fourth order term
in the Taylor Series expansion of the covariance [15]. The fourth
order term of Equation 4 is

A =
1

4
∇∇∇2

f

(

E
[

δδδx
4
]

− E
[

δδδx
2
Pyy

]

− E
[

Pyyδδδx
2
]

+ P
2

yy

)

(∇∇∇2
f)

T

+
1

3!
∇∇∇3

fE
[

δδδx
4
]

(∇∇∇f)
T

.

(19)

The term 1
2
∇∇∇2fP2

yy(∇∇∇2f)T can be calculated from the same
set of sigma points which match the mean and covariance. From
Equations 2 and 3,

Y0 − ȳ =
1

2
∇∇∇2

f Pxx +
1

6
∇∇∇3

f E
[

δδδx
3
]

+ · · · .

Taking outer products,
(ȳ − Y0) (ȳ − Y0)

T
=

1

4
∇∇∇2

fP
2

yy(∇∇∇2
f)

T
+ · · ·

Therefore, adding extra weighting to the contribution of the
zeroth point, further higher order effects can be incorporated at
no additional computational cost by rewriting Equation 18 as

P
′

yy =

p
∑

i=0

W
′

i

{

Y
′

i − ȳ
} {

Y
′

i − ȳ
}T

+(β+1−α
2
)
{

Y
′

0
− ȳ

} {

Y
′

0
− ȳ

}T
.

In this form, the error in the fourth order term is

∆A =
1

4
∇∇∇2

f

(

E
[

δδδx
4
]

− E
[

δδδx
2
Pyy

]

− E
[

Pyyδδδx
2
]

+ (1 − β)P
2

yy

)

(∇∇∇2
f)

T

+
1

3!
∇∇∇3

fE
[

δδδx
4
]

(∇∇∇f)
T

.

(20)

In the special case that x Gaussian-distributed, E
[

δδδx4
]

=

3P2
xx and so the error is

∆A = (2 − β)∇∇∇2
fP

2

yy(∇∇∇2
f)

T
+

1

3!
∇∇∇3

fE
[

δδδx
4
]

(∇∇∇f)
T

. (21)

Under the assumption that no information about f [·] is used,
this term is minimised when β = 2.

D. Summary

The scaled unscented transformation can be written as

X
′

i = X 0 + α(X i − X 0) (22)

Y
′

i = f
[

X
′

i

]

(23)

W
′

i =

{

W0/α2 + (1/α2 − 1) i = 0

Wi/α2 i 6= 0
(24)

ȳ =

p
∑

i=1

W
′

i Y
′

i (25)

Pyy =

p
∑

i=0

W
′

i

{

Y
′

i′ − ȳ
} {

Y
′

i′ − ȳ
}T

(26)

+ (W0 + 1 + β − α
2
)
{

Y
′

0
− ȳ

} {

Y
′

0
− ȳ

}T
. (27)

IV. Example

Suppose a mobile robot detects a beacon in its environment
using a range-optimised sonar sensor. The sensor returns polar
information (range r and bearing θ) and this is to be converted
to estimate to Cartesian coordinates. The transformation is:

(

x

y

)

=

(

r cos θ

r sin θ

)

with ∇∇∇f =

[

cos θ −r sin θ

sin θ r cos θ

]

.
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(c) α = 10−3

Fig. 1. ȳ and Pyy calculated using the simplex unscented algorithm and

20 different orientations of the sigma points. In all of these plots,

β = 0.

The simplex points for a two-dimensional space consists of an
isoceles triangle and a further point at the origin. Rotating the
points about the origin by an angle φ does not affect their first
or second moments. However, the rotation affects the third and
higher moments which, through the nonlinear transformation,
affect the predicted mean and covariance. The effect is illusrated
in Figure 1(a) which shows the mean and the 1σ contours for
ȳ and Pyy calculated for 20 different orientations of the sigma
points. For this plot, α (the scaled unscented scaling parameter
defined in Equation 22) has the value 10−1. As can be seen, the
value of ȳ is hardly affected by the point orientation. However,
the covariance does show significant variation, confirming the
statement in [17]. These higher order effects can be greatly
reduced by decreasing the value of α. Figures 1(b) and 1(c) show
the results of the same trials when α = 10−2 and α = 10−3. In
the last value, the effects of sigma point orientation are minimal
(the maximum change in the covariance is less than 0.09%).
Therefore, this study has shown that the scaled sigma points
directly contributes to the use of the simplex by eliminating
higher order orientation dependent effects.

To investigate the accuracy of the simplex method, its results
were compared with the true results (calculated by a Monte
Carlo of 3.5 × 106 randomly drawn samples) and the results
calculated through linearisation. The means and covariance el-
lipses for these three approaches are shown in Figure 2. The lin-
earised estimate contains significant errors. Its mean is biased in
the x–direction and, furthermore, its covariance is “too small”.
Whenever the filter updates with this estimate, it introduces
unmodelled biases and correlations that can undermine filter
stability. The simplex transform yields better results. When
β = 0, its mean is unbiased. However, its covariance is similar
to that calculated by linearisation. This is a direct consequence
of the fact that the simplex only captures the first two moments
of the mean and covariance correctly. However, the performance
of this algorithm can be significantly improved by exploiting
the fact that additional higher order information can be read-
ily incorporated into the estimate. Because the distributions
are Gaussian, the analysis from [16] shows that the information
gained by the scaled unscented weight parameter β (defined in
Equation 27) is optimised when β = 2. This is confirmed in
Figure 2 where it can be seen that the resulting estimate is, in
fact, slightly conservative.

V. Discussion and Conclusions

This paper has presented and analysied the scaled unscented
transform. This new parameterisation permits a set of sigma
points to be scaled using an arbitrary scaling parameter α. Sec-
ond order accuracy is maintained and the algorithm is guar-
anteed to give a positive semi-definite covariance if all of the
weights on the sigma points are non-negative. Furthermore, its
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Fig. 2. The means and 1σ contours calculated by different prediction al-

gorithms. The Monte Carlo “true” solution has a mean + at (0.965,0)

and its covariance is the solid ellipse. Linearisation yields the esti-

mate + at (1,0) with the dotted ellipse. The simplex transform with

β = 0 gives the mean ◦ with the dot-dashed ellipse. The simplex

transform with β = 2 has mean × and covariance the dashed line.

computational costs are exactly the same as those of the original
formulation of the uscented transform.

This parameterisation provides a framework which can be
applied with any sigma point distribution.

Appendix

This Appendix shows that the any scaling strategy of the
form of Equation 8 can be written as an application of the
straightforward method plus a post-processing term. This
means that the equation has exactly the same number of calcu-
lations as conventional unscented. We proceed by showing the
equivalence of the weights, means and covariances respectively.

Theorem 1: The weights of the S ′ are related to those of S
by Equation 15.

Proof: The normalisation and covariance conditions
obeyed by S are

p
∑

i=0

Wi = 1 (28)

p
∑

i=1

Wi(X i − x̄)(X i − x̄)
T

= Pxx (29)

where the fact that X 0 = x̄ has been used. The conditions
obeyed by S ′ are

p
∑

i=0

W
′

i = 1 (30)

p
∑

i=1

W
′

i (X
′

i − x̄)(X
′

i − x̄)
T

= Pxx (31)

Comparing Equations 29 with 31 and substituting from Equa-
tion 7, it can be seen that Wi = W ′

i α
2 for i > 0. W0 is found

from Equations 28 and 30,

1 =

p
∑

i=0

Wi = W0 +

p
∑

i=1

Wi

= W0 + α
2

p
∑

i=1

W
′

i

= W0 + α
2
(1 − W

′

0
)

(32)



Each scaled unscented sigma point is Y
′
i = f [X ′

i], whereas
Z i is given by Equation 8,

Zi = g [X i, x̄, α, µ]

=

(

1 − 1

µ

)

f
[

X
′

0

]

+
1

µ
f

[

X
′

i

]

=

(

1 − 1

µ

)

Y0 +
1

µ
Y

′

i.

(33)

Theorem 2: Let

z̄ =

p
∑

i=0

WiZi, ȳ
′

=

p
∑

i=0

W
′

i Yi

Then

z̄ =
µ − α2

µ
Y0 +

α2

µ
ȳ
′

.

Proof: Substituting from Equations 15 and 33 and using
the fact that

∑p
i=0 Wi = 1,

z̄ =

(

1 − 1

µ

)

Y0 +
1

µ

p
∑

i=0

WiYi

=

(

µ − 1

µ

)

Y0 +
1 − α2

µ
Y0 +

α2

µ

p
∑

i=0

W
′

i Yi

=
µ − α2

µ
Y0 +

α2

µ
ȳ
′

(34)

Theorem 3: Let

P
∗

zz = µ

p
∑

i=0

Wi (Zi − z̄) (Zi − z̄)
T

, P
′

yy =

p
∑

i=0

W
′

i

(

Y
′

i − ȳ
′
) (

Yi − ȳ
′
)T

.

Then

P
∗

zz =
α2

µ

{

P
′

yy + (1 − α
2
)(Y0 − ȳ

′

)(Y0 − ȳ
′

)
T

}

.

Proof: Substituting from Equations 33 and 34,

Zi − z̄ =
1

µ
(Yi − ȳ

′

) +
(α2 − 1)

µ
(Y0 − ȳ

′

) (35)

Therefore,

P
∗

zz = µ

p
∑

i=0

Wi

{

1

µ
(Yi − ȳ

′

) +
(α2 − 1)

µ
(Y0 − ȳ

′

)

}

×
{

1

µ
(Yi − ȳ

′

) +
(α2 − 1)

µ
(Y0 − ȳ

′

)

}T

=
1

µ

p
∑

i=0

Wi

{

(Yi − ȳ
′

)(Yi − ȳ
′

)
T

+ (α
2 − 1)(Yi − ȳ

′

)(Y0 − ȳ
′

)
T

+

(α
2 − 1)(Y0 − ȳ

′

)(Yi − ȳ
′

)
T

+ (α
2 − 1)

2
(Y0 − ȳ

′

)(Y0 − ȳ
′

)
T

}

(36)

From Equation 15,

p
∑

i=0

Wi(Yi − ȳ
′

)(Yi − ȳ
′

)
T

= α
2
Pyy + (1 − α

2
)(Y0 − ȳ

′

)(Y0 − ȳ
′

)
T

(37)

p
∑

i=0

Wi(Yi − ȳ
′

)(Y0 − ȳ
′

)
T

= (1 − α
2
)(Y0 − ȳ

′

)(Y0 − ȳ
′

)
T

(38)

p
∑

i=0

Wi(Y0 − ȳ
′

)(Y0 − ȳ
′

)
T

= (Y0 − ȳ
′

)(Y0 − ȳ
′

)
T

(39)

Substituting Equations 37 to 39 into Equation 36,

P
∗

zz =
α2

µ

(

P
′

yy + (1 − α
2
)(Y0 − ȳ

′

)(Y0 − ȳ
′

)
T

)

.

Remark 1: When µ = α2,

z̄ = ȳ
′

P
∗

zz = P
′

yy + (1 − α
2
)(Y0 − ȳ

′

)(Y0 − ȳ
′

)
T

.

References

[1] H. J. Kushner, “Dynamical Equations For Optimum Non-linear Filtering,”

Journal of Differential Equations, vol. 3, pp. 179–190, 1967.

[2] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press,

San Diego, CA, 1970.

[3] P. S. Maybeck, Stochastic Models, Estimation, and Control, vol. 2, Academic

Press, 1982.

[4] N. J. Gordon, D. J. Salmond and A. F. M. Smith, “Novel Approach to

Nonlinear/non-Gaussian Bayesian State Estimation,” IEE Proceedings-F,

vol. 140, no. 2, pp. 107–113, April 1993.

[5] H. W. Sorenson and A. R. Stubberud, “Non-linear Filtering by Approxi-

mation of the a posteriori Density,” International Journal of Control, vol.

8, no. 1, pp. 33–51, 1968.

[6] F. E. Daum, “New Exact Nonlinear Filters,” in Bayesian Analysis of Time

Series and Dynamic Models, J. C. Spall, Ed., chapter 8, pp. 199–226. Marcel

Drekker, Inc., 1988.

[7] J. K. Uhlmann, “Algorithms for multiple target tracking,” American Sci-

entist, vol. 80, no. 2, pp. 128–141, 1992.

[8] H. W. Sorenson, Ed., Kalman filtering: theory and application, IEEE Press,

Piscataway NJ, USA, 1985.

[9] D. Lerro and Y. K. Bar-Shalom, “Tracking with Debiased Consistent Con-

verted Measurements vs. EKF,” IEEE Transactions on Aerospace and Elec-

tronics Systems, vol. AES-29, no. 3, pp. 1015–1022, July 1993.

[10] S. J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter

to Nonlinear Systems,” in The Proceedings of AeroSense: The 11th Interna-

tional Symposium on Aerospace/Defense Sensing, Simulation and Controls,

Orlando FL, USA, 1997, SPIE, Multi Sensor Fusion, Tracking and Re-

source Management II.

[11] S. J. Julier, J. K. Uhlmann and H. F. Durrant-Whyte, “A New Approach

for Filtering Nonlinear Systems,” in The Proceedings of the American Con-

trol Conference, Seattle, Washington., 1995, pp. 1628–1632.

[12] S. J. Julier, “A Skewed Approach to Filtering,” in The Proceedings of

AeroSense: The 12th International Symposium on Aerospace/Defense Sens-

ing, Simulation and Controls, Orlando FL, USA, April 1998, vol. 3373, pp.

54–65, SPIE, Signal and Data Processing of Small Targets.

[13] S. J. Julier and J. K. Uhlmann, “A Consistent, Debiased Method for

Converting Between Polar and Cartesian Coordinate Systems,” in The

Proceedings of AeroSense: Acquisition, Tracking and Pointing XI. 1997, vol.

3086, pp. 110–121, SPIE.

[14] S. J. Julier, J. K. Uhlmann and H. F. Durrant-Whyte, “A New Approach

for the Nonlinear Transformation of Means and Covariances in Linear Fil-

ters,” IEEE Transactions on Automatic Control, vol. 5, no. 3, pp. 477–482,

March 2000.

[15] J. K. Uhlmann, “A real time algorithm for simultaneous map building and

localization,” 1995.

[16] S. J. Julier and J. K. Uhlmann, “Simultaneous Localisation and Map

Building Using Split Covariance Intersection,” Submitted to IROS 2001,

2001.

[17] J. K. Uhlmann, Dynamic Map Building and Localization for Autonomous

Vehicles, Ph.D. thesis, University of Oxford, 1995.




