The Scaling and Squaring Method for the Matrix Exponential Revisited

Nick Higham
Department of Mathematics
University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

THE UNIVERSITY
of MANCHESTER

The Matrix Exponential

For $A \in \mathbb{C}^{n \times n}$,

$$
e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots .
$$

- Difficulties in computing e^{x} noted by Stegun \& Abramowitz (1956). They suggested $e^{x}=\left(e^{x / n}\right)^{n}$, $|x / n|<1$.
- Moler \& Van Loan:

Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003).

- 355 citations on Science Citation Index.

Application: Control Theory

Convert continuous-time system

$$
\begin{aligned}
\frac{d x}{d t} & =F x(t)+G u(t) \\
y & =H x(t)+J u(t)
\end{aligned}
$$

to discrete-time state-space system

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B u_{k}, \\
y_{k} & =H x_{k}+J u_{k} .
\end{aligned}
$$

Have

$$
A=e^{F \tau}, \quad B=\left(\int_{0}^{\tau} e^{F t} d t\right) G
$$

where τ is the sampling period.
MATLAB Control System Toolbox: c2d and d2c.

Application: Differential Equations

Nuclear magnetic resonance: Solomon equations

$$
d M / d t=-R M, \quad M(0)=I,
$$

where $M(t)=$ matrix of intensities and $R=$ symmetric relaxation matrix. NMR workers need to solve both forward and inverse problems.

Exponential time differencing for stiff systems (Cox \& Matthews, 2002; Kassam \& Trefethen, 2003)

$$
y^{\prime}=A y+F(y, t) .
$$

Methods based on exact integration of linear part—require one accurate evaluation of $e^{h A}$ and $e^{h A / 2}$ per integration.

Quote

Whenever there is too much talk of applications, one can rest assured that the theory has very few of them.
— GIAN-CARLO ROTA, Indiscrete Thoughts (1997)

Scaling and Squaring Method

To compute $X \approx e^{A}$:

$$
\begin{aligned}
& \text { 1. } A \leftarrow A / 2^{s} \text { so }\|A\|_{\infty} \approx 1 \\
& \text { 2. } r_{m}(A)=[m / m] \text { Padé approximant to } e^{A} \\
& \text { 3. } X=r_{m}(A)^{2^{s}}
\end{aligned}
$$

- Originates with Lawson (1967).
- Ward (1977): algorithm, with rounding error analysis and a posteriori error bound.
- Moler \& Van Loan (1978): give backward error analysis covering truncation error in Padé approximations, allowing choice of s and m.

Padé Approximations r_{m} to e^{x}

$r_{m}(x)=p_{m}(x) / q_{m}(x)$ known explicitly:

$$
p_{m}(x)=\sum_{j=0}^{m} \frac{(2 m-j)!m!}{(2 m)!(m-j)!} \frac{x^{j}}{j!}
$$

and $q_{m}(x)=p_{m}(-x)$. The error satisfies
$e^{x}-r_{m}(x)=(-1)^{m} \frac{(m!)^{2}}{(2 m)!(2 m+1)!} x^{2 m+1}+O\left(x^{2 m+2}\right)$.

Choice of Scaling and Padé Degree

Moler \& Van Loan (1978) show that if $\left\|A / 2^{s}\right\| \leq 1 / 2$ then

$$
r_{m}\left(A / 2^{s}\right)^{2^{s}}=e^{A+E},
$$

where $A E=E A$ and

$$
\begin{equation*}
\frac{\|E\|}{\|A\|} \leq 2^{3-2 m} \frac{(m!)^{2}}{(2 m)!(2 m+1)!} . \tag{*}
\end{equation*}
$$

- For $m=6$, the bound is 3.4×10^{-16}.
- MATLAB's expm takes s so that $\left\|A / 2^{s}\right\| \leq 1 / 2$ and $m=6$.

Choice of Scaling and Padé Degree

Moler \& Van Loan (1978) show that if $\left\|A / 2^{s}\right\| \leq 1 / 2$ then

$$
r_{m}\left(A / 2^{s}\right)^{2^{s}}=e^{A+E}
$$

where $A E=E A$ and

$$
\begin{equation*}
\frac{\|E\|}{\|A\|} \leq 2^{3-2 m} \frac{(m!)^{2}}{(2 m)!(2 m+1)!} \tag{*}
\end{equation*}
$$

- For $m=6$, the bound is 3.4×10^{-16}.
- MATLAB's expm takes s so that $\left\|A / 2^{s}\right\| \leq 1 / 2$ and $m=6$.
- Why restrict to $\left\|A / 2^{s}\right\| \leq 1 / 2$?
- Bound $(*)$ is far from sharp.

Analysis

Let

$$
e^{-A} r_{m}(A)=I+G=e^{H}
$$

and assume $\|G\|<1$. Then

$$
\|H\|=\|\log (I+G)\| \leq \sum_{j=1}^{\infty}\|G\|^{j} / j=-\log (1-\|G\|)
$$

Hence

$$
r_{m}(A)=e^{A} e^{H}=e^{A+H} .
$$

Rewrite as

$$
r_{m}\left(A / 2^{s}\right)^{2^{s}}=e^{A+E},
$$

where $E=2^{s} H$ satisfies

$$
\|E\| \leq-2^{s} \log (1-\|G\|)
$$

Result

Theorem 1 Let

$$
e^{-2^{-s} A} r_{m}\left(2^{-s} A\right)=I+G
$$

where $\|G\|<1$. Then the diagonal Padé approximant r_{m} satisfies

$$
r_{m}\left(2^{-s} A\right)^{2^{s}}=e^{A+E}
$$

where

$$
\frac{\|E\|}{\|A\|} \leq \frac{-\log (1-\|G\|)}{\left\|2^{-s} A\right\|}
$$

- Remains to bound $\|G\|$ in terms of $\left\|2^{-s} A\right\|$.

Bounding $\|G\|$

$$
\rho(x):=e^{-x} r_{m}(x)-1=\sum_{i=2 m+1}^{\infty} c_{i} x^{i}
$$

converges absolutely for $|x|<\min \left\{|t|: q_{m}(t)=0\right\}=: \nu_{m}$. Hence, with $\theta:=\left\|2^{-s} A\right\|<\nu_{m}$,

$$
\begin{equation*}
\|G\|=\left\|\rho\left(2^{-s} A\right)\right\| \leq \sum_{i=2 m+1}^{\infty}\left|c_{i}\right| \theta^{i}=: f(\theta) . \tag{*}
\end{equation*}
$$

Thus $\|E\| /\|A\| \leq-\log (1-f(\theta)) / \theta)$.

- If only $\|A\|$ known, $(*)$ is optimal bound on $\|G\|$.
- Moler \& Van Loan (1978) bound less sharp; Dieci \& Papini (2000) bound a different error.

Finding Largest θ

To obtain

$$
f(\theta)=\sum_{i=2 m+1}^{\infty}\left|c_{i}\right| \theta^{i},
$$

compute c_{i} symbolically, sum series in 250 digit arithmetic.
Use zero-finder to determine largest θ, denoted θ_{m}, such that b'err bound $\leq u=2^{-53} \approx 1.1 \times 10^{-16}$ (IEEE double).

m	1	2	3	4	5	6	7	8	9	10
θ_{m}	$3.7 \mathrm{e}-8$	$5.3 \mathrm{e}-4$	$1.5 \mathrm{e}-2$	$8.5 \mathrm{e}-2$	$2.5 \mathrm{e}-1$	$5.4 \mathrm{e}-1$	$9.5 \mathrm{e}-1$	1.5 e 0	2.1 e 0	2.8 e 0
m	11	12	13	14	15	16	17	18	19	20
θ_{m}	3.6 e 0	4.5 e 0	5.4 e 0	6.3 e 0	7.3 e 0	8.4 e 0	9.4 e 0	1.1 e 1	1.2 e 1	1.3 e 1

Computational Cost

Efficient scheme for r_{8} :

$$
\begin{aligned}
p_{8}(A)= & b_{8} A^{8}+b_{6} A^{6}+b_{4} A^{4}+b_{2} A^{2}+b_{0} I \\
& +A\left(b_{7} A^{6}+b_{5} A^{4}+b_{3} A^{2}+b_{1} I\right) \\
= & : U+V .
\end{aligned}
$$

Then $q_{8}(A)=U-V$.
For $m \geq 12$ a different scheme is more efficient.
Number of mat mults π_{m} to evaluate r_{m} :

m	1	2	3	4	5	6	7	8	9	10
π_{m}	0	1	2	3	3	4	4	5	5	6

m	11	12	13	14	15	16	17	18	19	20
π_{m}	6	6	6	7	7	7	7	8	8	8

Optimal Algorithm

Recall $A \leftarrow 2^{-s} A, s=\left\lceil\log _{2}\|A\| / \theta_{m}\right\rceil$ if $\|A\| \geq \theta_{m}$, else $s=0$. Hence cost of overall algorithm in mat mults is

$$
\pi_{m}+s=\pi_{m}+\max \left(\left\lceil\log _{2}\|A\|-\log _{2} \theta_{m}\right\rceil, 0\right)
$$

For $\|A\| \geq \theta_{m}$ simplify to $C_{m}=\pi_{m}-\log _{2} \theta_{m}$.

m	1	2	3	4	5	6	7	8	9	10
C_{m}	25	12	8.1	6.6	5.0	4.9	4.1	4.4	3.9	4.5
m	11	12	13	14	15	16	17	18	19	20
C_{m}	4.2	3.8	3.6	4.3	4.1	3.9	3.8	4.6	4.5	4.3

Optimal Algorithm

Recall $A \leftarrow 2^{-s} A, s=\left\lceil\log _{2}\|A\| / \theta_{m}\right\rceil$ if $\|A\| \geq \theta_{m}$, else $s=0$. Hence cost of overall algorithm in mat mults is

$$
\pi_{m}+s=\pi_{m}+\max \left(\left\lceil\log _{2}\|A\|-\log _{2} \theta_{m}\right\rceil, 0\right) .
$$

For $\|A\| \geq \theta_{m}$ simplify to $C_{m}=\pi_{m}-\log _{2} \theta_{m}$.

m	1	2	3	4	5	6	7	8	9	10
C_{m}	25	12	8.1	6.6	5.0	4.9	4.1	4.4	3.9	4.5
m	11	12	13	14	15	16	17	18	19	20
C_{m}	4.2	3.8	3.6	4.3	4.1	3.9	3.8	4.6	4.5	4.3

- For IEEE single, $m=7$ is optimal.
- For quad prec., $m=17$ is optimal.

Rounding Errors in Evaluating r_{m}

Can show, improving Ward (1977) bounds,

$$
\left.\left\|p_{m}(A)-\widehat{p}_{m}(A)\right\|_{1} \lesssim \widetilde{\gamma}_{m n}\left\|p_{m}(A)\right\|_{1} e^{\theta_{m}} \quad \text { (ditto for } q_{m}\right)
$$

and

$$
\left\|q_{m}(A)^{-1}\right\| \leq \frac{e^{\theta_{m} / 2}}{1-\sum_{i=2}^{\infty}\left|d_{i}\right| \theta_{m}^{i}}=: \xi_{\mathrm{m}},
$$

where $e^{x / 2} q_{m}(x)-1=\sum_{i=2}^{\infty} d_{i} x^{i}$.

m	1	2	3	4	5	6	7	8	9	10
ξ_{m}	1.0 e 0	1.0 e 0	1.0 e 0	1.0 e 0	1.1 e 0	1.3 e 0	1.6 e 0	2.1 e 0	3.0 e 0	4.3 e 0
m	11	12	13	14	15	16	17	18	19	20
ξ_{m}	6.6 e 0	1.0 e 1	1.7 e 1	3.0 e 1	5.3 e 1	9.8 e 1	1.9 e 2	3.8 e 2	8.3 e 2	2.0 e 3

Algorithm

Algorithm 1 Evaluate e^{A}, for $A \in \mathbb{C}^{n \times n}$, using the scaling and squaring method.
for $m=\left[\begin{array}{lll}3 & 59 & 13\end{array}\right]$
if $\|A\|_{1} \leq \theta_{m}$ $X=r_{m}(A)$, return
end
end
$A \leftarrow A / 2^{s}$ with $s \min$ integer s.t. $\left\|A / 2^{s}\right\|_{1} \leq \theta_{13} \approx 5.4$

$$
\left(s=\left\lceil\log _{2}\left(\|A\|_{1} / \theta_{13}\right)\right\rceil\right)
$$

$X=r_{13}(A)$ [increasing ordering]
$X \leftarrow X^{2^{s}}$ by repeated squaring

- May want to add preprocessing to reduce the norm.

Comparison with Existing Algorithms

Method	m	$\max \left\\|2^{-s} A\right\\|$	
Alg 1	13	5.4	
Ward (1977)	8	1.0	$\left[\theta_{8}=1.5\right]$
MATLAB 7's expm	6	0.5	$\left[\theta_{6}=0.54\right]$
Sidje (1998)	6	0.5	

Comparison with Existing Algorithms

Method	m	$\max \left\\|2^{-s} A\right\\|$	
Alg 1	13	5.4	
Ward (1977)	8	1.0	$\left[\theta_{8}=1.5\right]$
MATLAB 7's expm	6	0.5	$\left[\theta_{6}=0.54\right]$
Sidje (1998)	6	0.5	

- $\|A\|_{1}>1$: Alg 1 requires $1-2$ fewer mat mults than Ward, 2-3 fewer than expm.

$$
\|A\|_{1} \in(2,2.1): \begin{array}{lcccc}
& \text { Alg } 1 & \text { Ward } & \text { expm } & \text { Sidje } \\
\hline \text { mults } & 5 & 7 & 8 & 10
\end{array}
$$

- $\|A\|_{1} \leq 1$: Alg 1 requires up to 3 fewer, and no more, mat mults than expm and Ward.

Squaring Phase

- The bound

$$
\left\|A^{2}-f l\left(A^{2}\right)\right\| \leq \gamma_{n}\|A\|^{2}, \quad \gamma_{n}=\frac{n u}{1-n u} .
$$

shows the dangers in matrix squaring.

- Open question: are errors in squaring phase consistent with conditioning of the problem?
- Our choice of parameters uses 1-5 fewer matrix squarings than existing implementations, hence has potential accuracy advantages.

Numerical Experiment

- 668×8 test matrices: 53 from the function matrix in Matrix Computation Toolbox and 13 of dimension 2-10 from e^{A} literature.
- Evaluated 1-norm relative error.
- Used Alg 1 and modified version with max Padé degree a parameter, $m_{\text {max }}$, denoted $\operatorname{Exp}\left(m_{\max }\right)$.
- Notation:
- expm: MATLAB 7 scaling \& squaring $(m=6)$.
- funm: MATLAB 7 Schur-Parlett function.
- padm: Sidje $(m=6)$.
$\triangleright \operatorname{cond}(A)=\lim _{\epsilon \rightarrow 0} \max _{\|E\|_{2} \leq \epsilon\|A\|_{2}} \frac{\left\|e^{A+E}-e^{A}\right\|_{2}}{\epsilon\left\|e^{A}\right\|_{2}}$.

Different $m_{\text {max }}$

Different S\&S Codes and funm

Performance Profiles

Dolan \& Moré (2002) propose a new type of performance profile.

- Let $t_{s}(p)$ measure cost or accuracy of solver $s \in S$ on problem $p \in P$.
- Performance ratio

$$
r_{p, s}:=\frac{t_{s}(p)}{\min \left\{t_{\sigma}(p): \sigma \in S\right\}} \geq 1 .
$$

- Plot α against

$$
P\left(r_{p, s} \leq \alpha \text { for all } s\right) .
$$

Performance Profile

Indirect Padé Approximation

Najfeld \& Havel (1995) suggest using Padé approx. to

$$
\begin{aligned}
\tau(x) & =x \operatorname{coth}(x)=x\left(e^{2 x}+1\right)\left(e^{2 x}-1\right)^{-1} \\
& =1+\frac{x^{2}}{3+\frac{x^{2}}{5+\frac{x^{2}}{7+\cdots}}},
\end{aligned}
$$

for which

$$
e^{2 x}=\frac{\tau(x)+x}{\tau(x)-x}
$$

For example, $[2 m / 2 m]$ Padé approximant to τ is

$$
\widetilde{r}_{8}(x)=\frac{\frac{1}{66565} x^{8}+\frac{4}{9945} x^{6}+\frac{7}{255} x^{4}+\frac{8}{17} x^{2}+1}{\frac{1}{34459425} x^{8}+\frac{2}{69615} x^{6}+\frac{1}{255} x^{4}+\frac{7}{51} x^{2}+1} .
$$

Najfeld \& Havel Algorithm

Error in $r_{2 m}$ has form

$$
\begin{aligned}
& \tau(x)-\widetilde{r}_{2 m}(x)=\sum_{k=1}^{\infty} d_{k} x^{4 m+2 k}=\sum_{k=1}^{\infty} d_{k}\left(x^{2}\right)^{2 m+k} \\
& \Rightarrow \quad\left\|\tau(A)-\widetilde{r}_{2 m}(A)\right\| \leq \sum_{k=1}^{\infty} d_{k}\left\|A^{2}\right\|^{2 m+k}=: \omega_{2 m}\left(\left\|A^{2}\right\|\right) .
\end{aligned}
$$

Let $\theta_{2 m}$ be largest θ such that $\omega_{2 m}(\theta) \leq u$.

- $\widetilde{A} \leftarrow A / 2^{s+1}$ with $s \geq 0$ s.t. $\left\|\widetilde{A}^{2}\right\|=\left\|A^{2}\right\| / 2^{2 s+2} \leq \theta_{2 m}$.
- Evaluate $\widetilde{r}_{2 m}(\widetilde{A})$ then $\left(\widetilde{r}_{2 m}+\widetilde{A}\right)\left(\widetilde{r}_{2 m}-\widetilde{A}\right)^{-1}$.
- Square result s times.
- $m=8$ leads to most efficient algorithm.

Equivalence

Theorem 2 The $[2 m / 2 m]$ Padé approximant $\widetilde{r}_{2 m}(x)$ to $x \operatorname{coth}(x)$ is related to the $[2 m+1 / 2 m+1]$ Padé approximant $r_{2 m+1}(x)$ to e^{x} by

$$
r_{2 m+1}(x)=\frac{\widetilde{r}_{2 m}(x / 2)+x / 2}{\widetilde{r}_{2 m}(x / 2)-x / 2} .
$$

- $\mathbf{N} \& \mathbf{H}$ alg $(m=8)$ implicitly uses same Padé approximant to e^{x} as Alg 1 with $m=9$.
- $\mathrm{N} \& \mathrm{H}$ derivation bounds error $\left\|\tau(A)-\widetilde{r}_{2 m}(A)\right\|$ for scaled A. What does this imply about $\left\|e^{2 A}-\left(\widetilde{r}_{2 m}+A\right)\left(\widetilde{r}_{2 m}-A\right)^{-1}\right\|$?
- $\widetilde{r}_{2 m}-A$ can be arbitrarily ill conditioned.
- No backward error bound analogous to that for Alg 1.

Conclusions

\star New scaling \& squaring implementation up to 1.6 times faster than expm and significantly more accurate.

* Improvement comes by replacing mathematically elegant error bound by sharper bound, which is evaluated symbolically/numerically.
\star High degree Padé approximants are numerically viable. (Error analysis guarantees stable evaluation.)
\star Another example where faster \Rightarrow more accurate!
\star No example of instability of new alg seen in the tests. Open question: Is S\&S method stable?
\star Performance profiles-a useful tool in numerical linear algebra, not just optimization.

