The Scaling and Squaring Method for the Matrix Exponential Revisited

Nick Higham Department of Mathematics University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

The Matrix Exponential

For $A \in \mathbb{C}^{n \times n}$,

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

- Difficulties in computing e^x noted by Stegun &
 Abramowitz (1956). They suggested $e^x = (e^{x/n})^n$, |x/n| < 1.
- Moler & Van Loan: *Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later*, SIAM Rev., 45 (2003).
 - ► 355 citations on Science Citation Index.

Application: Control Theory

Convert continuous-time system

$$\frac{dx}{dt} = Fx(t) + Gu(t),$$
$$y = Hx(t) + Ju(t),$$

to discrete-time state-space system

$$x_{k+1} = Ax_k + Bu_k,$$

$$y_k = Hx_k + Ju_k.$$

Have

$$A = e^{F\tau}, \qquad B = \left(\int_0^\tau e^{Ft} dt\right)G,$$

where τ is the sampling period. MATLAB Control System Toolbox: c2d and d2c.

Application: Differential Equations

Nuclear magnetic resonance: Solomon equations

 $dM/dt = -RM, \qquad M(0) = I,$

where M(t) = matrix of intensities and R = symmetric relaxation matrix. NMR workers need to solve both *forward* and *inverse* problems.

Exponential time differencing for stiff systems (Cox & Matthews, 2002; Kassam & Trefethen, 2003)

$$y' = Ay + F(y, t).$$

Methods based on exact integration of linear part—require one *accurate* evaluation of e^{hA} and $e^{hA/2}$ per integration.

Quote

Whenever there is too much talk of applications, one can rest assured that the theory has very few of them.

- GIAN-CARLO ROTA, Indiscrete Thoughts (1997)

Scaling and Squaring Method

To compute $X \approx e^A$:

1.
$$A \leftarrow A/2^s$$
 so $||A||_{\infty} \approx 1$
2. $r_m(A) = [m/m]$ Padé approximant to e^A
3. $X = r_m(A)^{2^s}$

- Originates with Lawson (1967).
- Ward (1977): algorithm, with rounding error analysis and a posteriori error bound.
- Moler & Van Loan (1978): give backward error analysis covering truncation error in Padé approximations, allowing choice of s and m.

Padé Approximations r_m to e^x

 $r_m(x) = p_m(x)/q_m(x)$ known explicitly:

$$p_m(x) = \sum_{j=0}^m \frac{(2m-j)!m!}{(2m)!(m-j)!} \frac{x^j}{j!}$$

and $q_m(x) = p_m(-x)$. The error satisfies

$$e^{x} - r_{m}(x) = (-1)^{m} \frac{(m!)^{2}}{(2m)!(2m+1)!} x^{2m+1} + O(x^{2m+2}).$$

Choice of Scaling and Padé Degree

Moler & Van Loan (1978) show that if $||A/2^s|| \le 1/2$ then

$$r_m (A/2^s)^{2^s} = e^{A+E},$$

where AE = EA and

$$\frac{\|E\|}{\|A\|} \le 2^{3-2m} \frac{(m!)^2}{(2m)!(2m+1)!}.$$

- For m = 6, the bound is 3.4×10^{-16} .
- MATLAB's expm takes s so that $||A/2^s|| \le 1/2$ and m = 6.

(*)

Choice of Scaling and Padé Degree

Moler & Van Loan (1978) show that if $||A/2^s|| \le 1/2$ then

$$r_m (A/2^s)^{2^s} = e^{A+E},$$

where AE = EA and

$$\frac{\|E\|}{\|A\|} \le 2^{3-2m} \frac{(m!)^2}{(2m)!(2m+1)!}.$$

• For
$$m = 6$$
, the bound is 3.4×10^{-16} .

• MATLAB's expm takes s so that $||A/2^s|| \le 1/2$ and m = 6.

Why restrict to ||A/2^s|| ≤ 1/2?
 ■ Bound (*) is far from sharp.

(*)

Analysis

Let

$$e^{-A}r_m(A) = I + G = e^H$$

and assume ||G|| < 1. Then

$$||H|| = ||\log(I+G)|| \le \sum_{j=1}^{\infty} ||G||^j / j = -\log(1-||G||).$$

Hence

$$r_m(A) = e^A e^H = e^{A+H}.$$

Rewrite as

$$r_m (A/2^s)^{2^s} = e^{A+E},$$

where $E = 2^{s}H$ satisfies

$$||E|| \le -2^s \log(1 - ||G||).$$

Result

Theorem 1 Let

$$e^{-2^{-s}A} r_m(2^{-s}A) = I + G,$$

where ||G|| < 1. Then the diagonal Padé approximant r_m satisfies

$$r_m (2^{-s}A)^{2^s} = e^{A+E},$$

where

$$\frac{\|E\|}{\|A\|} \le \frac{-\log(1 - \|G\|)}{\|2^{-s}A\|}.$$

▶ Remains to bound ||G|| in terms of $||2^{-s}A||$.

Bounding ||G||

$$\rho(x) := e^{-x} r_m(x) - 1 = \sum_{i=2m+1}^{\infty} c_i x^i$$

converges absolutely for $|x| < \min\{ |t| : q_m(t) = 0 \} =: \nu_m$. Hence, with $\theta := ||2^{-s}A|| < \nu_m$,

$$||G|| = ||\rho(2^{-s}A)|| \le \sum_{i=2m+1}^{\infty} |c_i|\theta^i =: f(\theta).$$
 (*)

Thus $||E||/||A|| \le -\log(1 - f(\theta))/\theta)$.

- ▶ If only ||A|| known, (*) is optimal bound on ||G||.
- Moler & Van Loan (1978) bound less sharp; Dieci & Papini (2000) bound a different error.

Finding Largest θ

To obtain

$$f(\theta) = \sum_{i=2m+1}^{\infty} |c_i| \theta^i,$$

compute c_i symbolically, sum series in 250 digit arithmetic. Use zero-finder to determine largest θ , denoted θ_m , such that b'err bound $\leq u = 2^{-53} \approx 1.1 \times 10^{-16}$ (IEEE double).

	1									
$ heta_m$	3.7e-8	5.3e-4	1.5e-2	8.5e-2	2.5e-1	5.4e-1	9.5e-1	1.5e0	2.1e0	2.8e0
m	11	12	13	14	15	16	17	18	19	20
$ heta_m$	3.6e0	4.5e0	5.4e0	6.3e0	7.3e0	8.4e0	9.4e0	1.1e1	1.2e1	1.3e1

Computational Cost

Efficient scheme for r_8 :

$$p_8(A) = b_8 A^8 + b_6 A^6 + b_4 A^4 + b_2 A^2 + b_0 I + A(b_7 A^6 + b_5 A^4 + b_3 A^2 + b_1 I) =: U + V.$$

Then $q_8(A) = U - V$. For $m \ge 12$ a different scheme is more efficient.

Number of mat mults π_m to evaluate r_m :

m	1	2	3	4	5	6	7	8	9	10
π_m	0	1	2	3	3	4	4	5	5	6
m	11	12	13	14	15	16	17	18	19	20
π_m	6	6	6	7	7	7	7	8	8	8

Optimal Algorithm

Recall $A \leftarrow 2^{-s}A$, $s = \lceil \log_2 ||A|| / \theta_m \rceil$ if $||A|| \ge \theta_m$, else s = 0. Hence cost of overall algorithm in mat mults is

 $\pi_m + s = \pi_m + \max\left(\left\lceil \log_2 \|A\| - \log_2 \theta_m \right\rceil, 0\right).$

For $||A|| \ge \theta_m$ simplify to $C_m = \pi_m - \log_2 \theta_m$.

		2								
C_m	25	12	8.1	6.6	5.0	4.9	4.1	4.4	3.9	4.5
m	11	12	13	14	15	16	17	18	19	20
C_m	4.2	3.8	3.6	4.3	4.1	3.9	3.8	4.6	4.5	4.3

Optimal Algorithm

Recall $A \leftarrow 2^{-s}A$, $s = \lceil \log_2 ||A|| / \theta_m \rceil$ if $||A|| \ge \theta_m$, else s = 0. Hence cost of overall algorithm in mat mults is

 $\pi_m + s = \pi_m + \max\left(\left\lceil \log_2 \|A\| - \log_2 \theta_m \right\rceil, 0\right).$

For $||A|| \ge \theta_m$ simplify to $C_m = \pi_m - \log_2 \theta_m$.

		2								
C_m	25	12	8.1	6.6	5.0	4.9	4.1	4.4	3.9	4.5
		12								
C_m	4.2	3.8	3.6	4.3	4.1	3.9	3.8	4.6	4.5	4.3

- For IEEE single, m = 7 is optimal.
- For quad prec., m = 17 is optimal.

Rounding Errors in Evaluating r_m

Can show, improving Ward (1977) bounds,

 $||p_m(A) - \widehat{p}_m(A)||_1 \lesssim \widetilde{\gamma}_{mn} ||p_m(A)||_1 e^{\theta_m}$ (ditto for q_m)

and

$$||q_m(A)^{-1}|| \le \frac{e^{\theta_m/2}}{1 - \sum_{i=2}^{\infty} |d_i| \theta_m^i} =: \xi_{\mathbf{m}},$$

where $e^{x/2}q_m(x) - 1 = \sum_{i=2}^{\infty} d_i x^i$.

			3							
$\xi_{\mathbf{m}}$	1.0e0	1.0e0	1.0e0	1.0e0	1.1e0	1.3e0	1.6e0	2.1e0	3.0e0	4.3e0
	_		13							
$\xi_{\mathbf{m}}$	6.6e0	1.0e1	1.7e1	3.0e1	5.3e1	9.8e1	1.9e2	3.8e2	8.3e2	2.0e3

Algorithm

Algorithm 1 Evaluate e^A , for $A \in \mathbb{C}^{n \times n}$, using the scaling and squaring method.

for
$$m = [3 \ 5 \ 7 \ 9 \ 13]$$

if $||A||_1 \le \theta_m$
 $X = r_m(A)$, return
end

end

 $A \leftarrow A/2^s \text{ with } s \text{ min integer s.t. } \|A/2^s\|_1 \le \theta_{13} \approx 5.4$ $(s = \lceil \log_2(\|A\|_1/\theta_{13}) \rceil)$

 $X = r_{13}(A)$ [increasing ordering]

 $X \leftarrow X^{2^s}$ by repeated squaring

May want to add preprocessing to reduce the norm.

Comparison with Existing Algorithms

Method	m	$\max \ 2^{-s}A\ $	
Alg 1	13	5.4	
Ward (1977)	8	1.0	$[\theta_8 = 1.5]$
MATLAB 7's expm	6	0.5	$[\theta_6 = 0.54]$
Sidje (1998)	6	0.5	

Comparison with Existing Algorithms

Method	m	$\max \ 2^{-s}A\ $	
Alg 1	13	5.4	
Ward (1977)	8	1.0	$[\theta_8 = 1.5]$
MATLAB 7's expm	6	0.5	$[\theta_6 = 0.54]$
Sidje (1998)	6	0.5	

► ||A||₁ > 1: Alg 1 requires 1–2 fewer mat mults than Ward, 2–3 fewer than expm.

$$||A||_1 \in (2, 2.1)$$
: Alg 1 Ward expm Sidje
mults 5 7 8 10

▶ $||A||_1 \le 1$: Alg 1 requires up to 3 fewer, and no more, mat mults than **expm** and Ward.

Squaring Phase

The bound

$$||A^2 - fl(A^2)|| \le \gamma_n ||A||^2, \qquad \gamma_n = \frac{nu}{1 - nu}.$$

shows the dangers in matrix squaring.

- Open question: are errors in squaring phase consistent with conditioning of the problem?
- Our choice of parameters uses 1–5 fewer matrix squarings than existing implementations, hence has potential accuracy advantages.

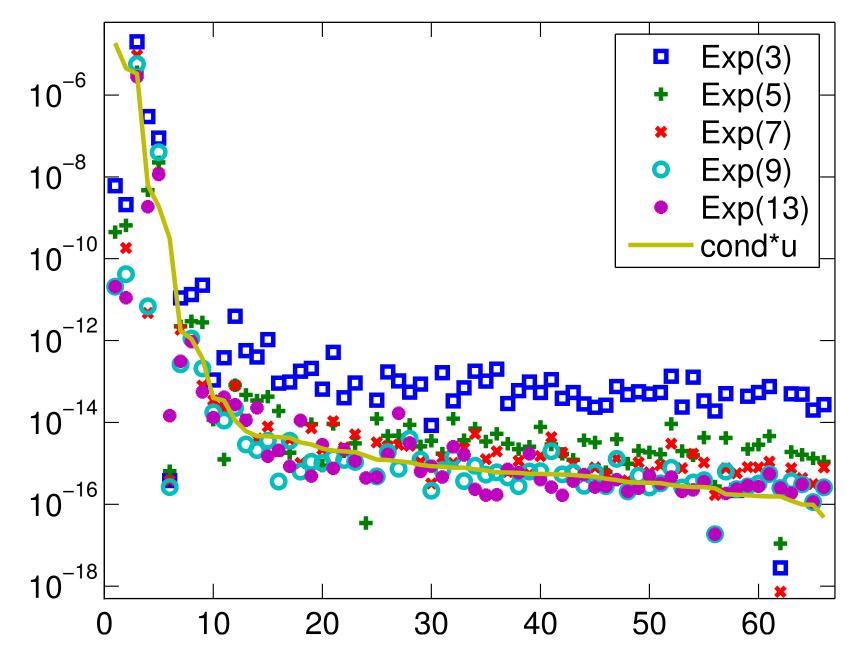
Numerical Experiment

- 66 8 × 8 test matrices: 53 from the function matrix in Matrix Computation Toolbox and 13 of dimension 2–10 from e^A literature.
- Evaluated 1-norm relative error.
- ► Used Alg 1 and modified version with max Padé degree a parameter, m_{max} , denoted $\text{Exp}(m_{\text{max}})$.
- ► Notation:
 - ▶ expm: MATLAB 7 scaling & squaring (m = 6).
 - **funm**: MATLAB 7 Schur–Parlett function.

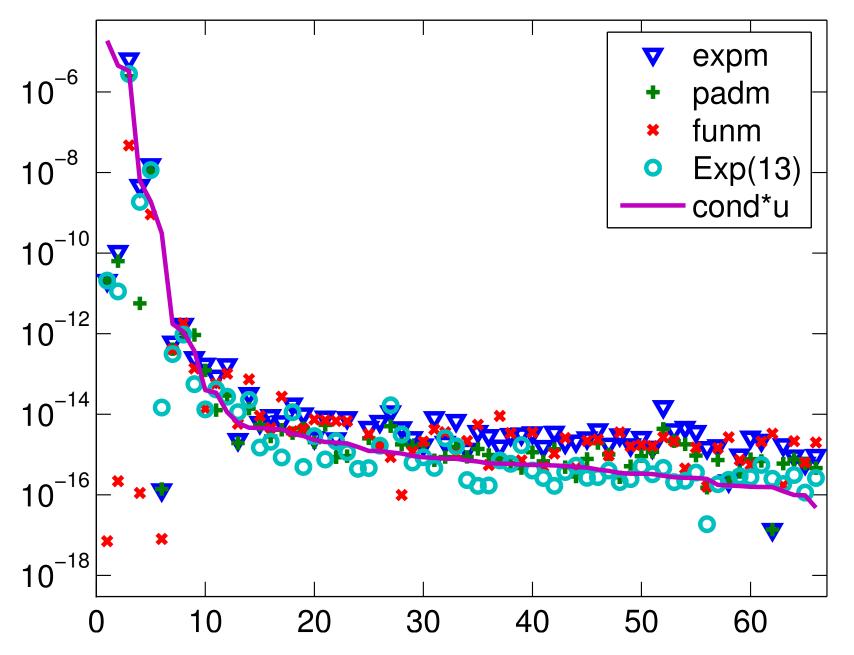
▶ padm: Sidje (m = 6).

•
$$\operatorname{cond}(A) = \lim_{\epsilon \to 0} \max_{\|E\|_2 \le \epsilon \|A\|_2} \frac{\|e^{A+E} - e^A\|_2}{\epsilon \|e^A\|_2}$$

Different m_{\max}



Different S&S Codes and funm



Performance Profiles

Dolan & Moré (2002) propose a new type of performance profile.

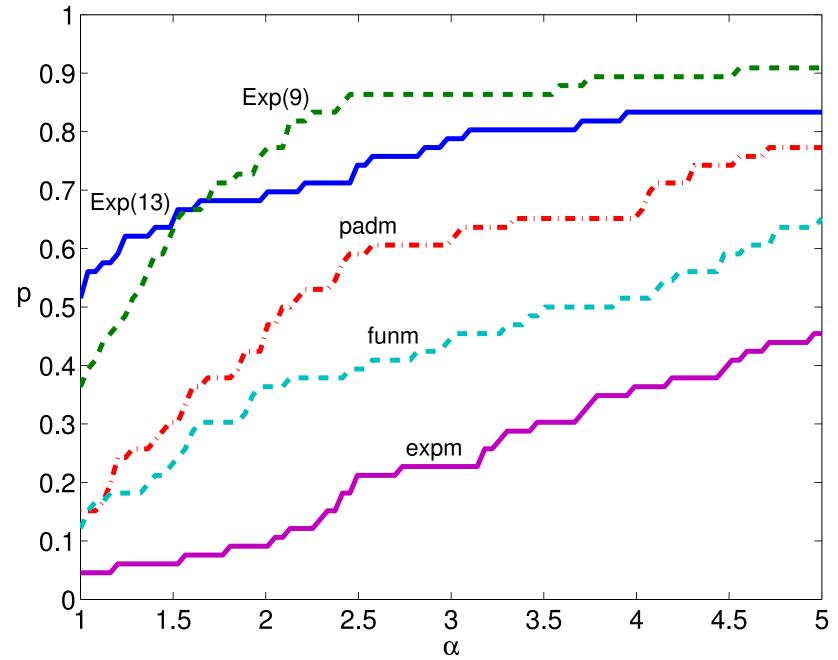
- Let $t_s(p)$ measure cost or accuracy of solver $s \in S$ on problem $p \in P$.
- Performance ratio

$$r_{p,s} := \frac{t_s(p)}{\min\{t_\sigma(p) : \sigma \in S\}} \ge 1.$$

Plot α against

 $P(r_{p,s} \leq \alpha \text{ for all } s).$

Performance Profile



Indirect Padé Approximation

Najfeld & Havel (1995) suggest using Padé approx. to

$$\tau(x) = x \coth(x) = x(e^{2x} + 1)(e^{2x} - 1)^{-1}$$
$$= 1 + \frac{x^2}{3 + \frac{x^2}{5 + \frac{x^2}{7 + \cdots}}},$$

for which

$$e^{2x} = \frac{\tau(x) + x}{\tau(x) - x}.$$

For example, [2m/2m] Padé approximant to τ is

$$\widetilde{r}_8(x) = \frac{\frac{1}{765765}x^8 + \frac{4}{9945}x^6 + \frac{7}{255}x^4 + \frac{8}{17}x^2 + 1}{\frac{1}{34459425}x^8 + \frac{2}{69615}x^6 + \frac{1}{255}x^4 + \frac{7}{51}x^2 + 1}.$$

Najfeld & Havel Algorithm

Error in r_{2m} has form

$$\tau(x) - \widetilde{r}_{2m}(x) = \sum_{k=1}^{\infty} d_k x^{4m+2k} = \sum_{k=1}^{\infty} d_k (x^2)^{2m+k}$$
$$\Rightarrow \quad \|\tau(A) - \widetilde{r}_{2m}(A)\| \le \sum_{k=1}^{\infty} d_k \|A^2\|^{2m+k} =: \omega_{2m}(\|A^2\|).$$

Let θ_{2m} be largest θ such that $\omega_{2m}(\theta) \leq u$.

•
$$\widetilde{A} \leftarrow A/2^{s+1}$$
 with $s \ge 0$ s.t. $\|\widetilde{A}^2\| = \|A^2\|/2^{2s+2} \le \theta_{2m}$.

- Evaluate $\widetilde{r}_{2m}(\widetilde{A})$ then $(\widetilde{r}_{2m} + \widetilde{A})(\widetilde{r}_{2m} \widetilde{A})^{-1}$.
- ► Square result *s* times.
- \blacktriangleright m = 8 leads to most efficient algorithm.

Equivalence

Theorem 2 The [2m/2m] Padé approximant $\tilde{r}_{2m}(x)$ to $x \coth(x)$ is related to the [2m + 1/2m + 1] Padé approximant $r_{2m+1}(x)$ to e^x by

$$r_{2m+1}(x) = \frac{\widetilde{r}_{2m}(x/2) + x/2}{\widetilde{r}_{2m}(x/2) - x/2} \,.$$

- ▶ N & H alg (m = 8) implicitly uses same Padé approximant to e^x as Alg 1 with m = 9.
- N & H derivation bounds error ||τ(A) − r̃_{2m}(A)|| for scaled A. What does this imply about ||e^{2A} − (r̃_{2m} + A)(r̃_{2m} − A)⁻¹||?
- \blacktriangleright $\widetilde{r}_{2m} A$ can be arbitrarily ill conditioned.
- No backward error bound analogous to that for Alg 1.

Conclusions

- New scaling & squaring implementation up to 1.6 times faster than expm and significantly more accurate.
- ★ Improvement comes by replacing mathematically elegant error bound by sharper bound, which is evaluated symbolically/numerically.
- High degree Padé approximants are numerically
 viable. (Error analysis guarantees stable evaluation.)
- \star Another example where **faster** \Rightarrow **more accurate**!
- ★ No example of instability of new alg seen in the tests. Open question: Is S&S method stable?
- ★ Performance profiles—a useful tool in numerical linear algebra, not just optimization.