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Abstract

Purpose In tachymetabolic species, metabolic rate increases disproportionately with body mass, and that inter-specific 
relationship is typically modelled allometrically. However, intra-specific analyses are less common, particularly for healthy 
humans, so the possibility that human metabolism would also scale allometrically was investigated.
Methods Basal metabolic rate was determined (respirometry) for 68 males (18–40 years; 56.0–117.1 kg), recruited across 
five body-mass classes. Data were collected during supine, normothermic rest from well-rested, well-hydrated and post-
absorptive participants. Linear and allometric regressions were applied, and three scaling methods were assessed. Data from 
an historical database were also analysed (2.7–108.9 kg, 4811 males; 2.0–96.4 kg, 2364 females).
Results Both linear and allometric functions satisfied the statistical requirements, but not the biological pre-requisite of 
an origin intercept. Mass-independent basal metabolic data beyond the experimental mass range were not achieved using 
linear regression, which yielded biologically impossible predictions as body mass approached zero. Conversely, allometric 
regression provided a biologically valid, powerful and statistically significant model: metabolic rate = 0.739 * body  mass0.547 
(P < 0.05). Allometric analysis of the historical male data yielded an equivalent, and similarly powerful model: metabolic 
rate = 0.873 * body  mass0.497 (P < 0.05).
Conclusion It was established that basal and resting metabolic rates scale allometrically with body mass in humans from 
10–117 kg, with an exponent of 0.50–0.55. It was also demonstrated that ratiometric scaling yielded invalid metabolic pre-
dictions, even within the relatively narrow experimental mass range. Those outcomes have significant physiological implica-
tions, with applications to exercising states, modelling, nutrition and metabolism-dependent pharmacological prescriptions.
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Abbreviations

AIC  Akaike information criterion
CI  Confidence interval
CV  Coefficient of variance
r2  Coefficient of determination
RMSE  Root-mean-square error
SD  Standard deviation

Introduction

Intra- and inter-specific (species) comparisons of physiologi-
cal and morphological variables often require data scaling 
to help elucidate mechanistic relationships between, or to 
remove the influence of body size on, the dependent vari-
ables of interest. In this communication, the emphasis is 
on the scaling of the basal and resting metabolic rates of 
healthy humans, for which a wide variability is observed 
across the adult population (Harris and Benedict 1919; Que-
nouille et al. 1951; Schofield 1985; Cole and Henry 2005). 
About 70–80% of that variance is attributable to differences 
in body mass (Elia 1992; Johnstone et al. 2005; Müller et al. 
2013), as the possession of more cells comes with obligatory 
energy demands.

In the animal kingdom, there exists theoretical (Brody 
1945; Heusner 1982a; Schmidt-Nielsen 1984; Darveau 
et al. 2002; White and Kearney 2014) and empirical evi-
dence (Sarrus and Rameaux 1838; Kleiber 1932; White 
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and Seymour 2005) which leaves little doubt that resting 
metabolic rates scale allometrically with body mass. How-
ever, the bulk of that modelling was performed using inter-
specific data obtained from species varying in body mass 
over many orders of magnitude (Kleiber 1932; White and 
Seymour 2005; Sieg et al. 2009; White et al. 2012), and 
resulting in an allometric scaling exponent of 0.67 (meta-
bolic rate = constant * body  mass0.67; White and Seymour 
2005). Intra-specific allometric analyses, on the other 
hand, cover considerably smaller mass ranges, are much 
less common (Rubner 1883 [dogs]; Refinetti 1989 [rats]; 
Kvist and Lindström 2001 [birds]) and have rarely included 
humans. Instead, human data are more frequently modelled 
using other scaling approaches (Harris and Benedict 1919; 
Boothby and Sandiford 1922; Durnin 1959; Schofield 1985).

Several groups have used an allometric (power regres-
sion) approach to scale oxygen consumption in humans 
during rest, as well as during steady-state and maximal 
exercise (Nevill et al. 1992; Rogers et al. 1995; Batterham 
and Jackson 2003). To the best of our knowledge, however, 
such analyses have not been applied to homogeneous human 
samples, nor have participants been studied under basal 
conditions. Furthermore, within the exercise domain, linear 
regression has traditionally been used to scale oxygen con-
sumption (Jetté et al. 1990; Hall et al. 2004), with data fre-
quently being reported as a ratio standard. Linear scaling has 
also been applied to basal metabolic data (Harris and Ben-
edict 1919; Schofield 1985; Cole and Henry, 2005). Such 
approaches may reflect a reluctance to apply more rigorous 
analyses, or they may simply mean that, over the relatively 
small mass ranges investigated, those relationships appeared 
linear. Nonetheless, it has resulted in linearly scaled, meta-
bolic and oxygen consumption descriptions dominating the 
human literature, even though the appropriateness of such 
scaling has been vigorously questioned for more than a cen-
tury (Krogh 1916; Sholl 1948; Tanner 1949; Gould 1966; 
Packard and Boardman 1999).

Therefore, the aim of this experiment was to revisit meta-
bolic scaling in humans, and, in so doing, to explore the 
possibility that, even within the narrow adult body-mass 
range, basal metabolism might also scale allometrically. 
The intention was not to investigate the mechanisms through 
which metabolic rate is linked with body mass. Instead, 
the emphasis was on the elimination of that effect, so that 
healthy individuals of different body masses (metabolic 
sizes; Kleiber 1961) might be meaningfully compared. This 
was firstly examined under conditions where oxygen supply 
meets metabolic demand (basal and resting states). Eventu-
ally, that would be expanded to encompass the complete 
metabolic range (aerobic scope) using steady-state ambula-
tion (with and without load carriage) through to maximal 
exercise (unloaded running), during which demand often 
exceeds supply. The ultimate objective was to increase our 

understanding of the metabolic impact that load carriage has 
on adults of varying body mass.

Herein, the first of a series of studies is communicated. 
This investigation involved the scaling of basal metabolic 
rate in a homogeneous, experimental sample of adults. Then, 
in combination with an historical database, scaling was per-
formed across body masses varying by two orders of mag-
nitude. In each case, data were scaled using both linear and 
allometric (non-linear) approaches. It was hypothesised that 
human basal metabolic data would scale allometrically, with 
that method providing the most appropriate normalisation 
method through which the impact of mass-dependent varia-
tions in metabolism might be removed.

Methods

Participants

Three healthy, population samples were used in this pro-
ject; one adult (male) sample was recruited from Univer-
sity students (the experimental participants), and metabolic 
data from separate male and female samples were extracted 
from the literature (historical database participants: Scho-
field 1985). Every experimental subject provided written, 
informed consent prior to participation. All procedures were 
approved by a Human Research Ethics Committee (Univer-
sity of Wollongong, Australia: HE14/469) in accordance 
with national regulations (National Health and Medical 
Research Council), and in compliance with the Declaration 
of Helsinki.

Experimental participants

Intra-specific investigations of metabolic scaling require data 
to be collected from the largest possible body-mass range. 
For humans, that has been achieved for resting states by 
investigating children and adults of both genders (Boothby 
and Sandiford 1922; Schofield 1985; Rogers et al. 1995). 
However, since inter-individual variability influences experi-
mental power independently of the sample size (White and 
Seymour 2005), then recruitment criteria become critical 
design considerations. In the first instance, the impact of 
sexual dimorphism was eliminated using a single-gender 
sample for the experimental participants. Secondly, to elimi-
nate disproportionate and aged-dependent variations in the 
masses of the most metabolically active organs (Holliday 
et al. 1967; Holliday 1971; Müller et al. 2011), children and 
adolescents (< 18 years), as well as older adults (> 40 years), 
were excluded, resulting in a generally homomorphic experi-
mental sample (Heusner 1982b). For the Australian popula-
tion, those recruitment restrictions resulted in a probable 
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mass range from 55–110 kg (5th–95th percentiles: Austral-
ian Bureau of Statistics 2012).

Participants were recruited with approximately equal 
numbers within each of five body-mass classifications (extra 
small, 55–65 kg; small, 66–76 kg; medium, 77–87 kg; large, 
88–98 kg; extra large,  > 99 kg), each of which was sepa-
rated by a 1-kg interval. That approach minimised bias that 
can occur when distributions favour either end of the mass 
spectrum (White and Seymour 2005). An a priori power 
test showed that 50–60 participants were required for the 
linear modelling of metabolic data (Green 1991). Explora-
tory analyses were performed using an arbitrary exponent 
 (mass0.67), with bootstrapping used to predict means and 
standard errors of those means for sub-group sample sizes 
of 5–30, in increments of five. Sample sizes of 10–15 indi-
viduals halved the predicted standard error of the exponent, 
relative to a sample of five, but adding more subjects had 
minimal further impact. Therefore, the sample size for each 
mass classification was set at 10–15 (i.e., 50–75 individuals 
overall).

Sixty-eight healthy, physically-active men, who engaged 
in endurance exercise at least three times per week, com-
pleted this investigation (18–34 years; Table 1). Each was 
screened to eliminate cardiovascular, respiratory or mus-
culoskeletal pathologies that might affect subsequent load 
carriage trials. To standardise body-fat content and to mini-
mise body-size bias, subcutaneous adiposity was estimated 
and normalised to a stature of 170.18 cm (Ross and Wil-
son 1974). That method was used because individuals with 
similar subcutaneous adiposity, but of varying stature, will 
have a different relative adiposity (Ross and Marfell-Jones 
1991). Moreover, since the adipose-free body mass accounts 
for ~ 80% of the resting metabolic rate (Müller et al. 2018), 
then variations in body composition would increase the inter-
individual variance in basal metabolic rate (Holliday et al. 
1967; Holliday 1971; Müller et al. 2013). Therefore, recruit-
ment was also based on subjects having an average-to-low 

subcutaneous adiposity, as defined by the height-adjusted 
sum of six skinfold thicknesses being ≤ 88 mm. Six of the 
68 participants exceeded that threshold, but only three were 
potential outliers. When closely evaluated (Analysis of 
Covariance), those individuals did not significantly influence 
either the proposed linear or allometric modelling outcomes 
(P > 0.05), so their data were retained.

Historical participants

Resting metabolic rates for two additional (independent) 
population samples were extracted from the literature (one 
male and one female dataset). Arguably the most extensive, 
and perhaps also the most carefully filtered compilations 
of such data are contained within Schofield (1985; Appen-
dix 3). Those data were extracted from literature published 
over the preceding 60 years, although the level of experi-
mental control would vary across time and laboratories. The 
reasons for using those datasets were two-fold. In the first 
instance, a cross-validation of the scaling model derived 
using the experimental participants would be undertaken 
by applying that model to data from an independent and 
very large (male) population sample. That sample included 
4811 males, aged between 0.02 and 52.3 years, and covered 
a body-mass range from 2.7–108.9 kg. A second historical 
sample was also used, which contained 2364 females (body 
mass, 2.0–96.4 kg; age, 0.14–64.0 years). Now the objective 
was to evaluate the gender-independence of scaling models 
obtained using the male data. For both datasets, morpho-
logical and resting metabolic means (with standard devia-
tions and sample sizes) were provided in increments of 1 kg 
(bins), with 101 and 93 body-mass classifications (class 
intervals), respectively.

In all such data-retrieval exercises, just as there is with 
meta-analyses, there is a reliance upon the skill and preci-
sion of the original investigators, and the validity of those 
data. Schofield (1985) was particularly careful with regard 

Table 1  Physical characteristics of the experimental participants

Data are presented as means with standard deviations in parentheses, and ranges

The height-adjusted measures are anthropological data adjusted to a stature of 170.18 cm (Ross and Wilson 1974), as described in the “Meth-
ods”. Skinfold thicknesses are the sum of values measured at six sites (see “Methods”)

Participant size 
classifications

Sample sizes Age (years) Height (cm) Body mass (kg) Height-adjusted 
body mass (mm)

Sum of skinfolds (mm) Height-adjusted 
adiposity (mm)

All participants 68 22.5 (3.1) 181.6 (8.7) 80.9 (14.7) 66.2 (7.7) 61.6 (28.6) 56.6 (25.3)
Ranges 18–34 163.0–201.5 56.0–117.1 50.2–91.0 28.0–158.0 28.5–151.5
Extra small 12 21.8 (3.2) 172.7 (5.2) 61.3 (2.2) 58.7 (5.6) 42.1 (10.5) 41.6 (10.8)
Small 16 21.6 (2.1) 174.5 (4.5) 71.5 (3.1) 66.4 (4.8) 55.6 (18.6) 51.8 (16.6)
Medium 19 22.6 (3.8) 184.1 (3.5) 81.4 (2.4) 64.4 (5.0) 54.3 (16.9) 50.4 (16.2)
Large 13 23.6 (2.6) 187.6 (6.2) 93.8 (2.7) 70.4 (7.7) 67.8 (20.4) 61.7 (19.3)

Extra large 8 23.3 (3.7) 193.0 (8.2) 107.4 (5.1) 74.2 (9.8) 109.4 (43.2) 94.4 (41.9)
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to data rejection, and only included data “judged to be scien-
tifically sound and which provided complete reports on the 
relevant data” (P 11). Nevertheless, some noise was inevi-
table and, although those data were reported as basal, the 
definition applied herein would classify those data as resting 
metabolic rates.

Procedures

Experimental overview

On presentation, the experimental participants changed 
into standardised clothing (pre-fitted long trousers, long-
sleeved shirt and thick socks) and consumed 150 mL of 
warm water (37 °C), whereupon a deep-body temperature 
sensor, a heart rate monitor and an oronasal mask were fit-
ted. Subjects adopted a supine position on a firm bed and 
pillow for 60 min. When comfortable, a thin blanket was 
positioned over the abdomen, legs and feet. Participants 
were instructed to remain stationary, but awake, and were 
supervised throughout to ensure adherence.

Experimental standardisation

Rigid pre-experimental procedures were implemented, and 
universally followed, thus ensuring that energy exchanges 
between each subject and the environment were minimal, 
and that truly basal conditions were established. Participants 
presented in a post-absorptive state, they were well rested 
and normally hydrated, and data were collected under nor-
mothermic conditions. This required a 12-h, overnight fast 
that followed the consumption of a high-carbohydrate, low-
fat evening meal, but with normal (water-only) fluid intakes 
over that duration. Subjects avoided strenuous physical 
activity within the previous 24 h, then presented at 07:00 h 
following adequate sleep (~ 8 h). Testing was conducted 
within a locked, air-conditioned laboratory (~ 23 °C; ~ 50% 
relative humidity) with low-level lighting and minimal noise. 
Laboratory through traffic was prevented. The clothing and 
blanket ensured the attainment of a consistent thermal state 
across participants, as confirmed from deep-body tempera-
tures. Finally, external stimuli were minimised, with subjects 
wearing an eye mask and ear protectors.

Measurements on the experimental sample

Anthropometric measures and six skinfold thicknesses 
were recorded (triceps, subscapular, supraspinale, abdomi-
nal, anterior thigh and medial calf: Eiken skinfold calliper, 
Meikosha, Tokyo, Japan) and summed. Two measurements 
from each site were averaged, unless differing by > 5 mm, 
in which case a third measurement was performed, with the 
mode then used. Body masses (MS3200, Medical Scale, 

Charder, Taichung, Taiwan) and the summed skinfold data 
were then height adjusted using the method of Ross and 
Wilson (1974): mass [kg] * (170.18/height [cm])3; and 
skinfold sum [cm] * 170.18/height [cm]. Those indices 
formed part of the subject-selection criteria.

Basal oxygen consumption (open-circuit respirometry), 
heart rate and deep-body temperature (insulated auditory 
canal) were measured continuously (60 min). The implicit 
assumption of respirometry was that the steady-state ratio 
of carbon dioxide produced to oxygen consumed can be 
approximated using data collected at the mouth (respira-
tory exchange ratio), and that it provides a valid reflection 
of cellular gas exchanges, the respiratory quotient and met-
abolic rate (Shephard 2017; Taylor et al. 2018). Standardi-
sation procedures were aimed at satisfying the conditions 
necessary for those assumptions to be valid. To minimise 
the impact of respiratory artefacts, a correctly fitted oro-
nasal mask was worn for 60 min, with oxygen consump-
tion recorded throughout. Data from the first 15 min were 
discarded, as were values from the last 5 min, and at any 
time when a participant moved. Those data reflected non-
basal states. Thus, data-collection periods were ~ 40 min. 
The mean oxygen consumption over that period was con-
verted to a metabolic rate (Weir 1949), with the thermal 
equivalent of oxygen for the non-protein respiratory quo-
tient determined on an individual basis. That procedure 
has an error of < 1% under basal conditions (Mansell and 
MacDonald 1990). The resulting data represented basal 
metabolism (megajoules [MJ]), and are reported as daily 
metabolic rates (MJ day−1).

Expired gas fractions and expiratory flows were sampled 
from a two-way valve (7400 series, Hans Rudolph, Kansas, 
USA), and analysed continuously (TrueOne 2400, Parvo-
Medics Inc. Utah, USA). Those data were used to derive 
oxygen consumption, carbon dioxide production and min-
ute ventilation as 15-s averages. Two-point gas (room air 
plus alpha standard gases [16.00% oxygen, 4.00% carbon 
dioxide, 80% nitrogen]) and a range of flow calibrations (50 
to > 300 L min−1) preceded data collection. Heart rate was 
monitored from ventricular depolarisation (15-s intervals; 
Polar Electro, Kempele, Finland).

Since metabolic reactions are temperature dependent, 
deep-body temperature was measured so that normothermia 
could be verified and sustained. Measurements were taken 
from the auditory canal using a thermistor embedded into 
a moulded plug, and protruding 1 cm (Edale instruments 
Ltd. Cambridge, UK). The ear was insulated to minimise 
the affects of a cooler laboratory, and that method provides 
a dynamically responsive index of oesophageal (Todd et al. 
2014) and intra-thoracic blood temperatures (Taylor et al. 
2014). Data were sampled at 15-s intervals (Grant Instru-
ments Ltd. 1206 Series Squirrel, UK). Thermistors were 
calibrated across the physiological range against a certified 
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reference thermometer (Dobros total immersion, Dobbie 
Instruments, Sydney, Australia).

Design and analysis

Several stages of data analysis were used. Firstly, the homo-
geneity of the sample was evaluated, with raw and height-
adjusted morphological data compared across the body-mass 
classes (One-way Analysis of Variance). Tukey’s HSD post 
hoc procedure was used to isolate significant differences. If 
inter-class differences existed, Analysis of Covariance was 
performed to identify significant interactions and to evaluate 
the need to include such variables as covariates when scal-
ing. Alpha was set at 0.05 for all analyses. Data for metabolic 
scaling are reported as means with standard deviations (SD) 
and 95% confident intervals (CI).

The assumptions underlying linear and allometric scaling 
have both statistical and biological requirements. From a 
statistical perspective, distribution normality and linearity 
of both the raw (linear model) and log-linear or transformed 
data (allometric model), the variance of the residuals (home-
oscedasticity) and first-order correlations (auto-correlations) 
were evaluated. Tests of normality were used with both the 
dependent variables (to evaluate the validity of the assump-
tions for linear regression) and the model residuals (to evalu-
ate adherence to the assumptions of Analysis of Covariance). 
Those tests included: skewness and kurtosis z-scores, and 
the Shapiro–Wilk test (Shapiro and Wilk 1965). For the cur-
rent sample size, z scores within the range − 3.29 to + 3.29 
corresponded with a normal distribution at the 5% probabil-
ity level (Kim 2013). Scatter and residual plots were used to 
assess linearity and homeoscedasticity (respectively), and 
first-order correlations were investigated using the Durbin-
Watson test. The primary biological scaling criterion was 
the presence of an origin intercept, and that was evaluated 
using t-tests.

Two further analyses were performed before scaling, 
to minimise errors within the models. Firstly, Cook’s dis-
tance test was used to evaluate apparently outlying observa-
tions that might disproportionately influence scaling. If the 
removal of those data significantly affected a scaling model 
(Analysis of Covariance), then those data were omitted. 
Secondly, bootstrapping was used to predict the most-likely 
coefficients for each of the regressions. Each regression was 
generated 1000 times using a re-sampling approach, from 
which the coefficient means and 95% confidence intervals 
could be derived and evaluated. Those confidence intervals 
were determined using Bias Corrected and Accelerated anal-
yses, which accounts for imbalances either side of the mean, 
and provides a more likely confidence range.

Prior to scaling, the raw data were log transformed using 
a  log10 base (log linear), enabling the non-linear model to be 

assessed using robust statistical comparisons that assumed 
linearity. The validity of that approach was determined using 
the coefficient of determination (r2) of the log-linear format. 
However, unless stated otherwise, allometric scaling was 
performed using untransformed data, as is the convention, 
and because errors can be introduced when applying an 
equation generated using transformed data to scale untrans-
formed data, or to predict metabolic rate from body mass 
(Packard et al. 2011; Xiao et al. 2011).

Two regression models were used to evaluate the body-mass 
dependency of the metabolic data; linear regression (first-order 
polynomial regression; Eq. 1a) and non-linear (allometric) 
regression of the untransformed (raw) data (Eq. 2a). When 
the scaling exponent (k) of Eq. 2a equals one, the relationship 
is linear (isometric); for all other exponents, the relationship is 
allometric. The possibility was explored (but not reported) that 
a more complex allometric model (the addition of an ordinate 
intercept into Eq. 2a: metabolic rate = b *  massk + c) might 
yield superior curve fitting. However, that approach yielded a 
significant, and biologically invalid, negative ordinate intercept 
(− 4.570 MJ day−1). To permit a statistical evaluation of data 
used within Eq. 2a, non-linearity was removed using a log-
linear transformation (Eq. 3a). Differences between the linear 
coefficients (slopes) within the linear and log-linear models 
were compared using Analysis of Covariance. The presence 
of a significant interaction effect indicated that the two models 
could not be scaled using the same coefficient (non-linear: 
exponent). Where appropriate, differences in the goodness of 
fit between the linear and non-linear models were compared 
using the root-mean-square error (RMSE), the Akaike Infor-
mation Criterion (AIC), r2 and F-tests (Motulsky and Rans-
nas 1987). The resulting human, allometric exponent was 
then compared (using t tests) with exponents determined for 
other mammals, both within and well beyond the human body-
mass range: dogs  (mass0.885; Heusner 1991), pigs < 140 kg 
 (mass0.60; Noblet et al. 1994) and a very large inter-specific 
sample  (mass0.67; White and Seymour 2005). The following 
general equations appear again within the results, bearing the 
same numerical codes, but different alphabetical qualifiers to 
signify changes in their use, and the resulting coefficients or 
exponents.

 where a, ordinate intercept [MJ day−1]; b, linear coefficient 
[slope; MJ kg−1 day−1].

 where b, linear coefficient [MJ kg−1 day−1]; k, coefficient of 
allometry (scaling exponent) for body mass [kg].

(1a)
Linear regression ∶ Metabolic rate = a + b ∗ mass

[

MJ day−1
]

(2a)
Allometric regression ∶ Metabolic rate = b ∗ massk

[

MJ day−1
]
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 where b, linear coefficient [MJ kg−1 day−1]; k, scaling expo-
nent for body mass [kg].

Results

Homogeneity of the experimental sample

Despite more than a two-fold range in body mass 
(56.0–117.1 kg), the experimental participants were not 
significantly different in either their height-to-mass propor-
tionality or their subcutaneous adiposity (Table 1; P > 0.05), 
except when the two classification extremes were compared 
(P < 0.05; extra-small versus extra-large). That is, both 
height-adjusted body mass and adiposity tended to overlap 
across those groups (Table 1), and that was interpreted to 
indicate that, to a very large extent, and within the limita-
tions of those methods, the influence of variations in body 
composition on basal metabolism would be minimal. Moreo-
ver, there were no significant covariant influences on the 
scaling relationships (P > 0.05).

Integrity of the experimental basal conditions

Absolute, basal oxygen consumption data for five experi-
mental participants (one from each mass class) are shown 
in Fig. 1, revealing within-subject stability and a body-mass 

(3a)

Log-linear ∶ Log10(metabolic rate)

= Log10(b) + k ∗ Log10(mass)
[

MJ day−1
]

bias. Across all subjects, the intra-individual coefficient of 
variance (CV) for basal oxygen consumption was 12% (SD 
0.04), for heart rate it was 7% (SD 0.03) and for deep-body 
temperature 0.001% (SD 0.001). Since the oxygen con-
sumption variance was < 20%, it was interpreted that those 
data reflected stable and valid estimations of metabolic 
rate (McClave et al. 2003). Moreover, the mean respira-
tory exchange ratio was 0.87, with a CV of 5% (SD 0.02), 
indicating normal breathing patterns and mixed-substrate 
oxidation consistent with the post-absorptive state. Those 
outcomes validated use of the Weir (1949) formula, with the 
basal metabolic rate of the experimental sample averaging 
8.065 MJ day−1 (SD 0.971; mean body mass 81.6 kg [SD 
14.7]). Furthermore, inter-class differences in the CV were 
not observed for either oxygen consumption (extra small, 
11% [SD 0.02]; small, 13% [SD 0.05]; medium, 12% [SD 
0.04]; large, 13% [SD 0.05]; extra large, 13% [SD 0.04]) 
or deep-body temperatures (all < 0.5%), demonstrating con-
sistency of the impact of that thermoneutral environment, 
regardless of the thermal inertia of those individuals.

The assumptions of metabolic scaling

The ability to normalise metabolic data from the experi-
mental dataset was assessed using two linear scaling meth-
ods: ratiometric (arithmetic) analysis and linear regression 
(Eq. 1a). The latter model was used to normalise data using 
both intercept and slope adjustments (after Albrecht et al. 
1993). Linear regression relies on four statistical assump-
tions, which could also be evaluated for allometric scaling 
using log-linear (transformed) data.

Distributions of basal metabolic rate and body mass were 
assessed for normality and linearity using both raw (untrans-
formed; linear regression; Fig. 2a) and log-linear data for-
mats (Fig. 2c; logarithmic scale). Skewness and kurtosis 
z scores were well inside the acceptable range (P > 0.05; 
Table 2), and the Shapiro–Wilk test was not significant 
(P > 0.05; Table 2), confirming those data were normally 
distributed. Residual plots were used to assess homeoscedas-
ticity, with both the raw and log-linear data satisfying that 
requirement (Fig. 2b and d, respectively). Finally, first-order 
correlations were not observed within the residuals (Durbin-
Watson test P > 0.05; Table 2). Therefore, despite metabolic 
rate and body mass being inherently related, they were not 
inter-dependent. Consequently, the application of both the 
linear and allometric scaling methods to those experimental 
data was statistically justified.

Perhaps the most prevalent form of physiological nor-
malisation involves ratiometric analysis (division by body 
mass; the ratio standard). That method frequently converts 
a mass-dependent bias (positive; Fig. 2a; r = 0.82) into a 
systematic negative bias (Fig. 3a; r = − 0.75), invalidating its 
use for the experimental participants (Albrecht et al. 1993). 

Fig. 1  Continuous, basal oxygen consumption data from five experi-
mental participants taken from each of the five body-mass classifi-
cations. Data are 15-s averages collected over 60 min of supine rest 
under normothermic conditions (see “Methods”). The first 15 min of 
data were discarded (i.e., time zero starts at 16 min), as well as the 
last 5 min
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Fig. 2  Scatter plots used to assess the linearity of the basal metabolic 
rates of the experimental participants (N = 68), with absolute values 
presented on both linear (a) and logarithmic scales (c). Also pre-
sented are the corresponding residual plots used to assess the home-

oscedasticity of linear and non-linear scaling (b and d [log trans-
formed data], respectively). Those residuals are differences between 
the measured metabolic rates and values derived using predictions 
applied to data from a and c (respectively)

Table 2  Tests of normality and first-order correlations (auto-correlation) between the dependent (basal metabolic rate) and independent variables 
(body mass) for the experimental dataset (N = 68)

Data were analysed in both raw and  log10-transformed formats. None of those tests revealed significant differences at the 5% probability level

A perfect, normal distribution would have a Shapiro–Wilk test statistic of 1.00 (Shapiro and Wilk 1965), while the complete absence of auto-
correlation between the dependent and independent variables would have a Durbin-Watson test statistic of 2.00 (Durbin and Watson 1950, 1951)

Dependent and independent variables Regression model residuals

Basal metabolic rate Body mass Linear Log10-transformed

Raw (MJ day−1) Transformed  (Log10 
[MJ day−1])

Raw (kg) Transformed 
 (Log10 [kg])

Skewness statistic − 0.06 − 0.37 0.40 0.07 − 0.19 − 0.33
z score − 0.21 − 1.27 1.36 0.24 − 0.67 − 1.12
Kurtosis statistic 0.42 − 0.16 − 0.56 − 0.79 − 0.77 − 0.73
z score 0.47 − 0.16 − 0.97 − 1.60 − 0.35 − 1.27
Shapiro–Wilk statistic 0.99 0.98 0.97 0.98 0.98 0.97

Durbin-Watson statistic – – – – 1.63 1.68
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On the other hand, that method satisfied the biological 
assumption (origin intercept), but it provided an inferior fit 
(RMSE = 0.849, AIC = 174.72), with significant metabolic 
over-predictions beyond 95 kg, and under-predictions for 
masses < 55 kg (Fig. 4). To highlight that problem, ratiomet-
ric mass-specific metabolic rates were compared between 
two sub-groups; the ten smallest (60.7 kg [SD 2.1]) and the 
ten largest individuals (105.3 kg [SD 6.4]). That comparison 
revealed significantly different mass-specific metabolic rates 
(87.7 kJ kg−1 [SD 2.5] and 108.9 kJ kg−1 [SD 2.4], respec-
tively; P < 0.05), verifying that, even across the adult mass 
range, basal metabolic rates were body-mass dependent and 
non-linear. Accordingly, ratiometric scaling of the experi-
mental data was unacceptable, and not considered further. 

A consequence of applying linear scaling to non-linear data 
is that the ordinate intercept infrequently passes through the 
origin. Non-zero metabolic intercepts are biologically impos-
sible within healthy individuals. When least-squares, linear 
regression analysis was applied to the experimental data, 
that biological impossibility occurred (Fig. 4), resulting in 
an ordinate intercept of 3.659 MJ day−1 (confidence interval: 
2.879–4.482), and thereby invalidating linear modelling for 
data beyond the experimental body-mass range. Nonethe-
less, within the body-mass range investigated, that method 
provided both a visually appropriate and statistically strong 
correlation between the variables of interest (Fig. 4; r2 = 0.68 
[coefficient of determination]; P < 0.05, RMSE = 0.549; 
AIC = 117.45; Eq. 1b). Moreover, it removed the mass bias 
from the measured metabolic data [see: Albrecht et al. (1993) 
Eq. 3], as demonstrated by the correlation coefficient for the 
residuals (Fig. 2b, r = 0.03; P > 0.05). However, the capacity 
to predict (and normalise) metabolic rates beyond that body-
mass range remained limited and produced over-predictions 
of progressively increasing magnitude as mass decreased 
(Fig. 4). Accordingly, linear regression was also considered 
to be unacceptable.

(1b)

Metabolic rate = 3.659{2.879 − 4.482}

+ 0.054{0.044 − 0.064} ∗ mass

Fig. 3  Relationships between basal metabolic rate and body mass 
within the experimental participants, arranged from lightest (left-
most) to heaviest across the abscissae (N = 68). In a, the absolute 
metabolic rate for each individual was converted to its mass-specific 
equivalent using ratiometric scaling (r = − 0.75; P < 0.05). b Contains 
residuals derived from differences between the measured and pre-
dicted absolute metabolic rates, with those predictions derived using 
allometric scaling (Eq. 2B; r = 0.02; P > 0.05). These plots provide a 
visual evaluation of the extent to which that procedure removed the 
mass bias from the basal metabolic data

Fig. 4  Modelling the relationship between absolute, basal meta-
bolic rate and body mass within the experimental subjects (N = 68) 
using three scaling methods: linear regression (least-squares, first-
order polynomials), ratiometric analysis and allometric regression 
(Eq. 2b). The absence of an origin intercept (3.659 MJ day−1) for the 
linear model is thermodynamically impossible, violating the biologi-
cal assumption underpinning all scaling models, even though it pro-
vided a strong correlation over the mass range investigated (r2 = 0.68; 
P < 0.05). For body masses < 55 kg, that model would yield metabolic 
over-predictions of progressively increasing magnitude. Ratiometric 
modelling would produce over-predictions for body masses > 95  kg, 
and under-predictions for masses < 55 kg
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 where metabolic rate units are MJ day−1 and body mass is 
in kg, 95% confidence intervals are shown within the braces.

Allometric scaling of basal metabolic rate: 
experimental data

Having satisfied the statistical pre-requisites using log-linear 
data, two non-linear methods were applied to the basal meta-
bolic data of the experimental subjects; simple allometric 
(power) scaling of the untransformed (raw) data and lin-
ear scaling of the log-linear data. The latter was performed 
to facilitate statistical analyses. The former yields a curve 
that passes through the origin, with the resulting prediction 
equation (Eq. 2b; a power standard) providing a biologi-
cally valid, powerful and statistically significant description 
of the relationship between basal metabolic rate and body 
mass (P < 0.05; RMSE = 0.538, AIC = 114.76). Not surpris-
ingly, when presented graphically (Fig. 3b), those data had 
the lowest correlation with body mass (r = 0.02; P > 0.05). 
For inter-individual comparisons of previously meas-
ured metabolic rates, Eq. 2b can simply be rearranged to 
adjust absolute values (Y) to their mass-specific equivalents 
(Yadjusted = Y/massk).

where metabolic rate units are MJ day−1 and body mass is in 
kg, 95% confidence intervals are shown within the braces.

Plotting those data on logarithmic scales (Fig. 2c), and 
using linear modelling (Eq. 3b), provided a valid evaluation 
of the goodness of fit of the allometric model (r2 = 0.70). It 
also facilitated subsequent statistical comparisons between 
the experimental allometric model and similar models gener-
ated using the historical datasets. From this evidence, it was 
apparent that both linear regression and the allometric model 
provided similar visual and statistical fits for the experimen-
tal data (P > 0.05).

 where metabolic rate units are MJ day−1 and body mass is 
in kg, 95% confidence intervals are shown within the braces.

Allometric scaling of resting metabolic rate: 
historical database

Ratiometric, linear regression and allometric regression 
analyses were now applied to the historical database (males), 
using the 101 body-mass classes contained therein. Firstly, 
those methods were used to predict the absolute metabolic 
rate for each body-mass class. The ratiometric prediction was 
obtained from the product of body mass and the bootstrapped 

(2b)
Metabolic rate = 0.739{0.489 − 1.061} ∗ mass

0.547{0.461−0.639}

(3b)

Log10(metabolic rate) = − 0.181{− 0.370 to − 0.002}

+ 0.570{0.474 − 0.668} ∗ Log10(mass)

linear coefficient (slope) obtained from those historical data. 
For the linear modelling, absolute metabolic rate was pre-
dicted using the bootstrapped intercept and slope computed 
using least-squares, best-fit linear regression (Eq. 1a). Simi-
larly, an allometric prediction of absolute metabolic rate was 
derived using the bootstrapped allometric coefficient and 
scaling exponent calculated from those data (Eq. 2a). Sec-
ondly, to evaluate the validity of each metabolic prediction, 
those values were subtracted from the measured metabolic 
rates, with the resulting residuals presented in Fig. 5. As 
expected, the ratiometric predictions displayed a body-mass 
bias for masses > 20–30 kg (Fig. 5a). The linear metabolic 
predictions were much less mass dependent (Fig. 5b), but 
considerably more variable than the allometric predictions 
(Fig. 5c). Accordingly, those linear methods were not fur-
ther considered. Nevertheless, for body masses < 10 kg, the 
allometric predictions were unreliable and revealed a sys-
tematic bias with predictive errors between 150 and 300%. 
The cause of that bias remains uncertain. It could reflect 
reality, but it may be associated with smaller sample sizes 
within the body-mass bins < 10 kg (average size: 15) or with 
reduced experimental control within the infants and children. 
For instance, the coefficient of variation (CV) of the rest-
ing metabolic rate was 21.2% across those individuals. For 
individuals between 50 and 70 kg, the average sample size 
was 141 and the CV was 9.8%. Beyond 85 kg, bias was not 
evident, but there was much greater inter-individual noise. 
Now the sample sizes averaged less than three individuals, 
and the CV was 7.0%.

The emphasis now turns wholly to the allometric scal-
ing (Eq. 2a) of the historical dataset, which is presented 
in Fig. 6 in two forms. Firstly, the complete dataset was 
independently scaled (Fig. 6a: males), yielding a powerful 
prediction (Eq. 2c; P < 0.05). Secondly, to evaluate how well 
the basal metabolic rates of the 68 experimental partici-
pants compared with those historical data, the former were 
overlayed (Fig. 6b), and included within another allomet-
ric analysis (179 data points). The experimental data were 
individual data points, rather than group means, and were 
therefore more variable. Nevertheless, they conformed with 
those data, producing a powerful overall prediction (Eq. 2d; 
P < 0.05), with Eqs. 2c and 2d not differing significantly 
(P > 0.05). That is, although those equations were numeri-
cally different, they were statistically equivalent, contained 
the same information and would yield small, non-significant 
differences in predicted metabolic rate. This was impor-
tant because a single exponent (0.55) could now be used 
to describe the intra-specific relationship between basal 
and resting metabolic rates and body mass within healthy 
humans. Nonetheless, when compared with data obtained 
from other mammals, that exponent was statistically smaller 
than the exponents derived from the inter-specific scaling 
of mammalian metabolic rates (body  mass0.67 [P < 0.05]; 
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White and Seymour 2005), and also from the intra-specific 
scaling of canine metabolism  (mass0.885 [P < 0.05]; Heusner 
1991). However, it did not differ significantly from another 
intra-specific (porcine) scaling model  (mass0.60 [P > 0.05]; 

Noblet et al. 1994). These observations are consistent with 
the evidence that a universal (allometric) scaling exponent 
does not exist (Heusner 1982a; White and Seymour 2003; 
Sieg et al. 2009).

 where metabolic rate units are MJ day−1 and body mass is 
in kg, 95% confidence intervals are shown within the braces.

To evaluate the robustness of Eq. 2c, two samples were 
randomly extracted from the historical (male) database (ran-
dom-number generator), yielding unique sub-sets containing 

(2c)
Metabolic rate = 0.873{0.790 − 0.956} ∗ mass

0.497{0.474−0.520}

(2d)
Metabolic rate = 0.804{0.730 − 0.878} ∗ mass

0.521{0.499−0.544}

Fig. 5  Relationships between the measured and predicted absolute, 
resting metabolic rate and body mass for males (N = 4811) from the 
historical database (Schofield 1985). Data are residuals (measured 
minus predicted) presented in 1-kg, body-mass classes (101 means). 
Three scaling methods are illustrated: ratiometric (a; r = −  0.77; 
P < 0.05), linear (b; r = 0.07; P > 0.05) and allometric scaling (c; 
Eq. 2B; r = 0.03; P > 0.05)

Fig. 6  Allometrically scaled resting, absolute metabolic rates (males; 
N = 4811) from the historical database (Schofield 1985; a; P < 0.05). 
Those data were pooled into 1-kg, body-mass classes (grey symbols), 
and are presented as 101 means with standard deviations (where 
available). The solid (black) line is the allometric curve for those data 
(Eq. 2C), with 95% confidence intervals (dotted curves). In addition, 
the mean, basal metabolic rates of each experimental subject were 
overlayed onto the historical data (b; open, black circles; N = 68), and 
both datasets were collectively scaled (Eq. 2D; P < 0.05; 179 means 
representing 4879 individuals)
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50 (N = 2099) and 51 (N = 2712) of the original 101 (1-kg) 
mass classifications. Each sub-set was separately scaled 
(Fig. 7), generating two equally powerful predictions (Eq. 2e 
[P < 0.05; Fig. 7a] and Eq. 2f [P < 0.05; Fig. 7b]), which did 
not differ significantly from Eq. 2c (P > 0.05). Consequently, 
Eq. 2c was deemed to be both a valid and robust predictive 
model suitable for use within the wider population of males 
within the body-mass range of 10–85 kg.

where metabolic rate units are MJ day−1 and body mass is 
in kg, 95% confidence intervals are shown within the braces.

As the historical dataset also contained resting metabolic 
data for an independent sample of females (N = 2364; Scho-
field, 1985), the opportunity was taken to explore gender 
dependency within the relationship describing body mass 
and metabolic rate. The separately generated male (Fig. 6A; 
Eq. 2c) and female (Eq. 2g; P < 0.05) scaling models, both of 
which were derived using the complete datasets, did not dif-
fer significantly (P > 0.05; Fig. 8b), supporting the possibil-
ity of gender independence across those body-mass ranges. 
Nevertheless, above 40 kg, data divergence was apparent. 
That possibility was explored by applying allometric scal-
ing only to data from the body-mass classifications from 
40 kg through to 96 kg within each dataset (Fig. 8c; 54 
classes from each gender; N = 3871 [males] and N = 1443 
[females]). The lowest average ages for those mass classes 
were 17.6 and 18.4 years (respectively), closely approximat-
ing that of the experimental sample. The resulting equa-
tions now differed significantly (P < 0.05; females Eq. 2h 
and males Eq. 2i), confirming a gender-dependent difference 
within the resting metabolic rate of adults with the same 
body mass.

where metabolic rate units are MJ day−1 and body mass is in 
kg, 95% confidence intervals are shown within the braces.

(2e)
Metabolic rate = 0.906{0.795 − 1.024} ∗ mass

0.487{0.458−0.518}

(2f)
Metabolic rate = 0.807{0.713 − 0.960} ∗ mass

0.506{0.473−0.544}

(2g)

Metabolic rate (all females)

= 0.961{0.837 − 1.084} ∗ mass
0.435{0.405−0.468}

(2h)

Metabolic rate (female 40 − 96 kg)

= 1.094{0.922 − 1.286} ∗ mass0.402{0.362−0.444}

(2i)

Metabolic rate (male 40 − 96 kg)

= 1.012{0.873 − 1.168} ∗ mass0.461{0.426−0.497}

Discussion

This descriptive experiment has revealed several novel and 
important outcomes. Firstly, it has established, perhaps 
unequivocally, that basal and resting metabolic rates scale 
allometrically with body mass in healthy humans. Sec-
ondly, when combined with the extensive (resting) meta-
bolic data for healthy males and females contained within 
an historical database (Schofield 1985), and extending down 
to masses < 3 kg, that scaling method effectively removed 
the mass bias from those data for masses between 10 and 
85 kg. Thirdly, when independent analyses were applied to 
two unique and randomly chosen (male) sub-groups from 
that database, statistically equivalent allometric outcomes 
were produced, establishing the robustness of that allometric 

Fig. 7  Allometric scaling of the resting, absolute metabolic rates 
(males) for two sample sub-sets, randomly extracted from the his-
torical database (Schofield 1985), and analysed separately. a Con-
tains 50 body-mass classes (N = 2099; Eq. 2E) whilst b shows another 
(unique) 51 mass classes (N = 2712; Eq.  2F]). Data are means with 
standard deviations (where available), with the black curves showing 
the resulting allometric relationships (both P < 0.05)



 European Journal of Applied Physiology

1 3

model. Those outcomes justified acceptance of the work-
ing hypothesis; both the basal and resting metabolic rates 
of healthy humans scale allometrically with body mass. 
Fourthly, the resulting mass exponents were consistently 
between 0.50 and 0.55, whereas inter-specific exponents 
(typically 0.67; White and Seymour 2005) are 20–30% larger 
(P < 0.05). Finally, when males and females from those his-
torical data (Schofield 1985) were compared over the adult 
age range (> 18 years), as well as across an equivalent body-
mass range (40–96 kg), statistically significant differences in 
the mass exponents resulted  (mass0.46 [males] and  mass0.40 
[females]), implying a gender-dependent difference in the 
mass-specific, resting metabolic rate of adults.

Linear or non‑linear: that is the question

Two opposing scaling methods have been used to describe 
human metabolic data: linear (Harris and Benedict 1919; 
Schofield 1985; Cole and Henry 2005) and allometric 
scaling (Boothby and Sandiford 1922; Rogers et al 1995; 
Markovic et al. 2007). In many cases, linear models were 
more expedient, and, as demonstrated above, can be used to 
adequately model data over a limited mass range. Beyond 
that range, however, such models are predictably unreliable 
when applied to data that is inherently non-linear (Fig. 4), 
and “the cost of ‘simplicity’ would need to be estimated” 
(Schofield 1985; P12). Two of those costs are immediately 
apparent; an inability to attain a truly mass-independent rela-
tionship and the lack of precision for metabolic predictions 
outside the experimental body-mass range. Let us firstly 
consider mass independence. To determine whether linear 
or allometric scaling might be superior, it was necessary to 
evaluate both the statistical justification and the biological 
validity of those methods.

It is insufficient to address only mathematical precision, 
since an inability to reflect biological reality invalidates any 
model, regardless of its closeness of fit; best fit does not 
necessarily equate with the correct solution (Sholl 1948; 
Motulsky and Ransnas 1987; Nevill et al. 1992). This is 
exemplified in Fig. 4, where best-fit lines for the linear and 
allometric regression solutions were effectively superim-
posed over the mass range of the experimental subjects, 
whilst the ratiometric relationship was appreciably different. 
Consequently, when the ratiometric, mass-specific relation-
ship was illustrated for individuals of increasing body mass 
(Fig. 3a), it was not horizontal, the mass bias was retained 
and the scaling was inadequate (Albrecht et al. 1993). Such 
non-horizontal lines demonstrate that the relationship was 
in fact, non-linear (Packard and Boardman 1988). Further-
more, both linear solutions yielded increasingly greater 
errors when predicting absolute metabolic rates for masses 
progressively further away from the mass range of the par-
ticipants (Fig. 4).

Fig. 8  Allometric scaling of the resting, absolute metabolic rates of 
females (N = 2364) from the historical database (a; Eq.  2g; P < 0.05; 
Schofield 1985). Data were pooled into 94 body-mass classes, each of 
which represented a 1-kg mass increase (black triangles), and are pre-
sented as means with standard deviations (where available). The grey 
curve shows the allometric relationship, with 95% confidence intervals 
(dotted curves). b Contains the corresponding male data from Fig.  6a 
(grey circles) with the female data from a (black triangles). Collectively, 
those 196 means represent 7175 individuals, which were combined and 
scaled to produce a single allometric model (black curve with 95% confi-
dence intervals [dotted curves]). In c, gender-specific data were extracted 
for masses between 40 and 96 kg, and separately modelled. The resulting 
allometric curves are shown (Eq. 2h [females: triangles with grey curve] 
and Eq. 2i [males: circles with black curve]), along with 95% confidence 
intervals (dotted curves)
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The pivotal assumption of linear scaling is that both the 
independent and dependent variables change isometrically, 
as occurs within geometrically similar objects, although 
such relationships are infrequently found in biology (Pack-
ard and Boardman 1988). Indeed, metabolic isometry exists 
only when a straight line that adequately describes the rela-
tionship between metabolism and body mass, also passes 
through the origin (Packard and Boardman 1988). Thus, the 
primary biological criterion for scaling is the presence of an 
origin intercept, since non-zero intercepts violate the First 
Law of Thermodynamics, and are biologically impossible 
(Krogh 1916; Kleiber 1950). That criterion excluded linear 
regression (Fig. 4). Ratiometric scaling satisfied that require-
ment (Fig. 4), but retained a significant mass-specific bias 
(Fig. 3a), with that limitation representing the second cost 
of simplicity; an inability to predict metabolic rates beyond 
the range of the experimental data.

“[T]he true test of any method for the reduction of the 
metabolism of individuals of different size and shapes to 
comparable terms is its capacity for predicting unknown 
metabolism” (Harris and Benedict 1919; P182). Indeed, 
for mathematical generalisations to be valid and broadly 
applicable, their robustness must be established for values 
of the independent variable (body mass) beyond the experi-
mental range (Kleiber 1961). Consider the complications 
of administering a life-saving, metabolism-dependent drug 
to a 200-kg individual. From Fig. 3a, it is apparent that an 
overestimation of the therapeutic concentration would result 
if ratiometric analysis had been used, so that method was not 
further considered, leaving the linear and allometric scaling 
options.

The former often represent more complex solutions. 
Indeed, such linear models are available in the literature, 
and use unique combinations of body mass, height, age, fat-
free body mass, gender and even menopausal status (e.g. 
Harris and Benedict 1919; Owen et al. 1987; Fedrix et al. 
1990). Notwithstanding the apparent preferential use of such 
models, they have long been criticised as physiologically 
meaningless (Krogh 1916; Sholl 1948; Kleiber 1961), even 
though they can be quite precise when applied within the 
body-mass ranges over which data were collected. Such 
criticisms are not directed at the mathematical precision, 
but the physiological relevance of each coefficient, and its 
justification; “… it is unlikely that such a polynomial will 
serve any useful function as a description of the mechanism 
underlying our experimental results since we shall have to 
find a biological interpretation inductively for each param-
eter …” (Sholl 1948, P244). For the current experiment, a 
much less complex linear equation was derived (Eq. 1b), 
which was biologically valid and adequately removed the 
mass bias.

However, since we know that mammalian basal metab-
olism scales allometrically with body mass (White and 

Seymour 2003), then why would humans not follow the 
same general pattern? Figures 6, 7 and 8 show that the rest-
ing (historical) metabolic rates were not linearly related 
to  body mass. Therefore, linear  scaling of  those data 
must result in either overtly, or potentially, erroneous pre-
dictions, leading to spurious interpretations. Accordingly, 
it is recommended that allometric scaling be adopted, and 
separate male (Eqs. 2c and 2i) and female (Eqs. 2g and 2h) 
predictive equations have been derived. It is intriguing to 
note that, when Kleiber (1932) modelled the entire meta-
bolic dataset of Harris and Benedict (1919), he also reported 
an allometric relationship, but with an exponent  (mass0.6) 
that was distinctly different from his inter-specific value 
derived for mammals  (mass0.74), and closer to the exponents 
determined within the current analyses  (mass0.50–0.55).

Whilst the experimental data are both unique and impor-
tant, the power of this experiment comes through the com-
bination of those data with the historical data. On its own, 
allometric scaling of the experimental data provided a strong 
predictive tool (Eq. 2b;  mass0.55), although it might be dif-
ficult to convince some of the validity of that prediction for 
masses lower than 56 kg (Fig. 4). But when those data were 
analysed with the historical male data, the resulting allomet-
ric equation (Eq. 2d; Fig. 6b) did not differ significantly from 
either Eq. 2b or 2c (Fig. 6a), supporting the interpretation 
that those equations provide valid, mass-independent models 
of human basal and resting metabolic rates.

Such information is essential to those who model human 
metabolism, as it adds another layer of precision to those 
calculations, as well as increasing the mass range over which 
predictions can reliably be performed. Furthermore, those 
who prescribe metabolic rate-dependent pharmaceutical 
preparations will now have a more biologically valid means 
through which those doses can be administered. Dieticians, 
who typically base dietary recommendations on surface-area 
or mass-ratio standards, will have another, perhaps supe-
rior, means through which to make recommendations. Other 
applications exist within the exercise domain, within which 
mass-dependent physiological responses are frequently com-
pared during steady-state and maximal exercise. Finally, 
there exist workplace applications. For example, such knowl-
edge allows one to determine the appropriate load distribu-
tions among workers of varying body mass, such that all 
workers might be exposed to metabolically equivalent work-
place demands (Bowes et al. 2017).

It is prudent, however, to offer cautionary comments con-
cerning the historical data (Schofield 1985). Indeed, a poten-
tially significant limitation associated with using those data 
is that no effort was made to ensure data were drawn from 
individuals of the same developmental state, although that 
could not reasonably have been expected. The inclusion of 
infants is both fortuitous, since it extended the mass ranges 
down to 2.7 kg (males) and 2.0 kg (females), and potentially 
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misleading, since age-dependent variations exist for the 
separate and combined masses of the most metabolically 
active organs (Holliday et al. 1967; Holliday 1971; Müller 
et al. 2011). For example, exponents for the mass-dependent 
metabolic rate of some of those organs vary considerably in 
adults:  mass0.26 (brain) to  mass0.70 (liver; Müller et al. 2011). 
The possibility exists that such differences might contribute 
to predictive errors for metabolic rates in individuals < 10 kg 
(Figs. 6a and 8a). That possibility should not be overlooked, 
although it occurs within all intra-specific metabolic predic-
tions that include both adolescent and mature individuals.

A human allometric contribution

The theoretical (Brody 1945; Heusner 1982a; Schmidt-
Nielsen 1984; Darveau et al. 2002; White and Kearney 
2014) and inter-specific experimental evidence (Sarrus and 
Rameaux 1838; Kleiber 1932; White and Seymour 2005) 
overwhelmingly supports using allometric analyses for scal-
ing metabolic rate, whether those data were collected under 
basal (White and Seymour 2003) or exercising states (Nevill 
et al. 1992). In addition, we now also know that a univer-
sal, inter-specific scaling exponent does not exist (Heusner 
1982a; White and Seymour 2003; Sieg et al. 2009), although 
that was once thought to be the case (Rubner 1883;  mass0.67; 
Kleiber 1932;  mass0.75). Instead, the mass exponent varies 
across species, ranging between  mass0.5 and  mass1.0, with 
its magnitude increasing with the inclusion of larger spe-
cies (White et al. 2009; White and Kearney 2014). Within 
mammals, that species-dependency shows some evidence of 
an inverse relationship with body mass (e.g.  mass0.97 [rats], 
 mass0.885 [dogs],  mass0.60 [pigs],  mass0.547 [humans]), which 
may be related to variations in the sizes of the metabolically 
active organs, relative to the overall body mass. It is perhaps 
not unreasonable to suggest that natural selection was also 
instrumental in that diversification, and the current authors 
favour a heat-loss mechanism to explain that relationship.

Within normothermic conditions, human deep-body tem-
peratures are remarkably stable, and similar across individu-
als (Taylor et al. 2014). Those temperatures are most com-
monly higher than ambient conditions, as in this experiment, 
with the consequence being an inexorable and unidirectional 
heat exchange (loss). That thermal energy passes through 
the skin and respiratory membranes. Smaller individuals, 
regardless of gender, have a larger mass-specific surface 
area through which heat is lost (Notley et al. 2016, 2017). 
However, when heat loss is not required, metabolic heat pro-
duction must match its dissipation rate so that a thermoneu-
tral body temperature can be regulated. Smaller individuals 
tend to cool faster, due to their larger mass-specific surface 
area and the greater thermal inertia of larger individuals. 
Consequently, under basal conditions, metabolic rate varies 

allometrically with body mass, with progressively larger 
individuals displaying an exponentially smaller metabolic 
response per unit mass (Taylor and Gordon 2019). That is, 
heavier individuals require less mass-specific metabolic heat 
to regulate their body temperatures.

Embedded within these allometric observations, there 
was an apparent gender dependency (Fig. 8b and c), with 
a significantly lower scaling exponent for females (Eq. 2h; 
 mass0.40) than males (Eq. 2i;  mass0.46) for body masses rang-
ing from 40 to 96 kg. It is beyond the scope of this research 
to speculate on either the reality of those observations or 
their mechanistic explanation. In the first instance, whilst 
every attempt was made to eliminate flawed data (Schofield 
1985), and while the current authors endeavoured to elimi-
nate individuals who were not physically mature, neither 
party had any capacity to influence either data collection 
precision or experimental errors. It is, therefore, assumed 
that the filtration processes were not flawless. Nevertheless, 
the observed gender difference is consistent with the litera-
ture (Garn et al. 1953; Arciero et al. 1993; Buchholz et al. 
2001), and it would seem that difference widens with body-
mass increments.

Conclusion

To the best of our knowledge, the current observations rep-
resent the first verification that human basal metabolic rate 
scales allometrically with body mass within a homogeneous 
sample of healthy, adult males with standardised physical 
characteristics. In line with existing evidence from other 
mammals, a unique scaling exponent was observed, with the 
resulting mass exponents being between  mass0.50 (resting) 
and  mass0.55 (basal). Finally, when healthy males  (mass0.46) 
and females  (mass0.40) from the historical database were 
compared over the adult age and body-mass ranges (> 18 
years and 40–96 kg), statistically significant differences in 
the mass exponents were observed. Collectively, these obser-
vations have significant physiological implications, and they 
are applicable to exercise and work physiologists, as well as 
to dieticians and those who prescribe metabolism-dependent 
pharmacological preparations.
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