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The scattering of sound waves by a vortex: 
numerical simulations and analytical solutions

The scattering of plane sound waves by a vortex is investigated by solving the 
compressible Navier-Stokes equations numerically, and analytically with asymptotic 
expansions. Numerical errors associated with discretization and boundary conditions 
are made small by using high-order-accurate spatial differentiation and time marching 
schemes along with accurate non-reflecting boundary conditions. The accuracy of 
computations of flow fields with acoustic waves of amplitude five orders of magnitude 
smaller than the hydrodynamic fluctuations is directly verified. The properties of the 
scattered field are examined in detail. The results reveal inadequacies in previous vortex 
scattering theories when the circulation of the vortex is non-zero and refraction by the 
slowly decaying vortex flow field is important. Approximate analytical solutions that 
account for the refraction effect are developed and found to be in good agreement with 
the computations and experiments.

1. Introduction

The prediction of the sound produced by turbulent flow requires a detailed 
knowledge of acoustic source terms. Direct computation of both the acoustic sources 
and far-field sound using the unsteady Navier-Stokes equations allows direct 
validation of aeroacoustic theories. In a recent review by Crighton (1988), the 
difficulties involved in direct computations of aeroacoustic fields are discussed. These 
include: the large extent of the acoustic field compared with the flow field; the small 
energy of the acoustic field compared to the flow field; and the possibility that 
numerical discretization may introduce a significant sound source due to the acoustic 
inefficiency of low-Mach-number flows. In order to address these difficulties, Crighton 
proposed that direct computations be performed on elementary model aeroacoustic 
problems whose physics are well understood. For this reason, and to validate our 
numerical scheme for direct computation of aeroacoustic problems, we investigate the 
scattering of sound waves by a compressible viscous vortex. This problem has received 
significant attention, and thus provides a large database of theory, numerics and 
experiment with which detailed comparisons may be made. Yet there is significant 
disagreement amongst the various theories, which has not yet been fully rectified. 
Therefore, the purpose of the current work is twofold: to validate our numerical 
scheme for direct computation of aeroacoustic problems using the unsteady 
Navier-Stokes equations, and to investigate the scattering of sound waves by a 
compressible viscous vortex.
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Figu r e 1. Schematic diagram of flow configuration.

Direct Navier-Stokes computations of both laminar and turbulent hydrodynamic 
fields have been performed for some time. However, little effort has been made to 
resolve the acoustic waves whose energy is many orders of magnitude smaller than the 
hydrodynamic field. In order to accurately resolve these small perturbations to the 
hydrodynamic fields, high-order-accurate numerical differentiation and time marching 
schemes are necessary (Colonius, Lele & Moin 1991 a , 1992). Furthermore, 
aeroacoustic problems are typically defined on an infinite or semi-infinite domain, and 
the numerical solution of the discrete equations therefore requires truncation of the 
infinite domain, and the imposition of 'artificial' numerical boundary conditions at the 
edges of the computational domain. These artificial boundaries must in general not 
only be non-reflecting for acoustic waves, but must also allow inflow and outflow of 
the hydrodynamic mean flow and the passage of hydrodynamic disturbances at 
outflow boundaries. Boundary conditions sufficiently accurate for aeroacoustic 
computations have recently been developed and applied to a variety of test problems 
(Colonius et a l. 1992); these boundary conditions are utilized in the present 
computations.

The scattering of sound waves by vortices is of interest in the prediction of the 
scattering of sound waves by turbulent shear flows where large-scale orderly vortical 
structures can dominate the flow. It has been proposed that the scattering of waves by 
the shear layer may be investigated by the simpler problem of the interaction of an 
incident wave with an isolated vortex (Candel 1979). Vortex scattering is also of 
interest in the detection and ranging of the trailing vortices of large transport aircraft 
(Ferziger 1974).

Figure 1 shows a schematic drawing of the flow configuration. A two-dimensional 
vortex is irradiated with sound waves, which are assumed to be planar at a distance 
- x0 from the vortex centre. The waves propagate in the +.v-direction. The scattered 
field depends on the wavelength, λ, of the incident waves, and the profiles of velocity, 
density and pressure in the vortex. In general, two types of analysis are performed. In 
the limit where the wavelength of the incident sound is very much smaller than a 
characteristic size of the vortex, high-frequency ray-tracing techniques are used (e.g. 
Georges 1972). In the opposite case, where the wavelength of the incident sound is 
much larger than the characteristic lengthscale, then the Born approximation or low- 
frequency approach is used (Muller & Matschat 1959; Ferziger 1974; O’Shea 1975; 
Howe 1975; Yates 1978; Candel 1979). Note that the Born approximation is 
sometimes referred to as the first scattering approximation in the literature.

In applying the high- or low-frequency approximations to the scattering problem, 
the core size of the viscous vortex, L, has typically been assumed to be the characteristic
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lengthscale. However, another lengthscale can be formed using the total circulation of 
the vortex, PONMLKJIHGFEDCBAΓ =  ∫ΩdA (where Ω is the single component of the vorticity in the flow and 
the integration is performed over the infinite plane; hereafter the word circulation will 
always refer to the total circulation), and the sound speed far from the vortex, a ∝. 
When the total circulation of the vortex is non-zero, then the tangential velocity field 
decays like Γ√(2πr) for large r, where r is the distance away from the vortex centre. This 
slowly decaying velocity field causes refraction of the incident waves and therefore the 
lengthscale Γ/ a ∝ controls the amount of refraction away from the vortex core.

The two lengthscales are related by the Mach number, M, of the vortex, defined as 
the maximum vortex velocity relative to the sound speed at infinity, α∝,

where β  is a numerical constant which depends on the specific distribution of tangential 
velocity in the core of the vortex.

In the analyses mentioned above the refraction effect is often neglected. In the 
acoustic analogy analysis of Howe (1975), where the refraction is neglected, a scattered 
field which decays as r -½ away from the vortex core is obtained. (For compact 
scatterers, one expects a r-½ decay since the free-space Green's function for the 
Helmholtz operator decays as r -½ in the far field.) A similar acoustic analogy analysis 
by Yates (1978) indicated that the dipole directivity pattern computed by Howe was 
incorrect, and that the correct scattered field directivity is quadrupole. However, when 
the refraction effect is included, the scattering amplitude was determined by both 
O’Shea (1975) and Yates (1978) to be infinite in the forward scattering direction. This 
was interpreted by O’Shea (1975) to mean that the scattering effect from the slow r-1 
velocity decay cannot be predicted in the Born approximation, and that scattering and 
refraction should be distinguished and treated separately.

Muller & Matschat (1959) considered a point vortex, but introduced inner and outer 
cut-off radii outside which the tangential velocity is set to zero. By expanding the 
linearized Euler equations for small values of the parameter
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(1)

(2)

where λ is the wavelength of the incident acoustic waves, they computed scattered waves 
which have intense amplitude in the forward direction, and decay as away from the 
outer radius. They also provided solutions in the limit of the inner radius going to zero, 
but there is some doubt about the validity of their limit process since the velocity field 
at the origin then tends to infinity (O’Shea 1975).

Finally, Candel (1979) solved for the scattered field numerically, using the parabolic 
approximation method, thus obtaining results valid near the forward scattering 
direction. In that case the scattering was found to be most intense in small bands 
located at about ±  15° from the forward direction. His numerical computations were 
limited to a finite distance away from the vortex core, but over a distance of many times 
the core radius there was no apparent decay of the scattered field; he attributed this to 
refraction of the incident waves by the slowly decaying velocity field of the vortex.

A similar problem, that of acoustic destabilization of axisymmetric two-dimensional 
vortices by small azimuthal disturbances, was solved by Broadbent & Moore (1979).

Our own direct Navier-Stokes solutions of the scattering problem gives results 
similar to Candel's (1979). The amplitude of the scattered waves does not decay from 
outside the vortex core to the edge of the computational domain, and peak amplitude 
is found in bands centred about a small angle from the forward scattering direction.
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To study the effect of scattering by the vortex core alone, computations are also 
performed for vortices for which Γ = 0. In that case the velocity field decays 
exponentially fast away from the vortex centre (Colonius, Lele & Moin 1991b), and 
therefore long-range refractive effects are not present. When the circulation is zero, the 
scattered acoustic waves decay as r-½, and can be accurately predicted with a simple 
acoustic analogy. Tanaka & Ishii (1981) considered the scattering of plane sound waves 
by a vortex pair, for which the total circulation is zero, and also found a non-singular 
scattered field using the acoustic analogy of Yates (1978).

In §2 the numerical method for solving the Navier-Stokes equations is described, 
and results of the numerical experiments are presented. In §3 an approximate 
analytical solution is found, which attempts to account for the long-range refraction 
by retaining terms of order Γ∕ (a ∝ Λ) in the inviscid equations of motion. The solution 
is singular in the forward scattering direction, as in the analysis by O’Shea (1975), but 
the solution method gives the correct scattering away from the forward direction for  
all distances from the vortex core, and is correct in the forward direction up to at least 
moderate distances. In §4 a high-frequency approximation is solved to further examine 
the long-range refraction effects. In §5 the results are compared with experiment, and 
conclusions are placed in §6.

2. Direct numerical simulations with Navier-Stokes equations

2.1 . Com pu t a t ion a l m et hod

The two-dimensional compressible, unsteady Navier-Stokes equations are solved 
numerically on the computational domains shown in figure 2, which typically extend 
from 10 to 30 vortex core radii in each direction. To accurately resolve the propagation 
of the acoustic waves, finite difference and time marching schemes that have very low 
numerical dissipation and accurately represent the dispersion relation for the inviscid 
equations are required. To this end, sixth-order-accurate spatial derivatives are 
computed with a modified Padé-type scheme (Lele 1992), and solutions are advanced 
in time using a fourth-order-accurate Runge-Kutta scheme. When spatial derivatives 
near the computational boundary are needed, a third-order-accurate compact scheme 
biased towards the interior nodes is used. A uniform Cartesian mesh is used, with 7 to 
8 grid points per vortex core radius in each direction.

Non-reflecting boundary conditions derived by Colonius et  a l. (1992) are used. These 
boundary conditions are based on a hierarchy of higher-order-accurate non-reflecting 
boundary conditions for the linearized Euler equations developed by Giles (1990). For  
the present problem, the zeroth-order boundary conditions are utilized. The interested 
reader is referred to Colonius et a l. (1992) and Giles (1990) for a detailed derivation of 
these conditions. Both inflow and outflow boundary conditions are needed, since the 
vortex flow field alternates between positive and negative velocity normal to the 
computational boundary shown in figure 2. The boundary conditions rely on a 
decomposition of the flow near the computational boundaries into a steady base flow, 
and a unsteady perturbation field. The steady base flow at the boundaries is taken to 
be an inviscid compressible vortex whose tangential velocity is given by Γ∕(2πr). 
Outside the core the flow is essentially inviscid and steady until the time that the core 
has spread to the computational boundary. The computations are performed in the 
limit where the wavelength of the sound is larger than the core radius of the vortex, and 
therefore the time for viscous spreading of the vortex core is larger than the 
computational time required to compute the scattering of the incident waves, which 
effectively precludes interaction of the viscous core with the boundary.
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Figu r e 2. Computational Domains: ― , Domain 1; ----, Domain 2;― · ― , Domain 3.

The computations are initialized with a homentropic vortex. The tangential velocity 
is chosen to be

(3)

where α ≈ 1.256431 is a constant chosen such that the maximum velocity occurs at 
r / L = 1. If the radial velocity is set to zero, the preceding tangential velocity distribution 
is an exact solution of the incompressible viscous equations (Oseen vortex) where the 
core spreads in time such that α ~  1/ (vt), where v is the kinematic viscosity. Equation 
(3) also satisfies the inviscid compressible equations if the radial velocity is zero. For  
both cases, the pressure satisfies

where

(6)

and where Ei is the exponential integral function (e.g. Abramowitz & Stegun 1972).
The exact solution for a vortex that is both compressible and viscous, and whose 

initial condition is given by (3), (5) and (6) was found by Colonius et  a l. (1991 b) . When 
the Reynolds number (Re = v θmax L∕ v) of the vortex is large and the Mach number is 
small, this exact solution is different from the initial condition only to order M 2 ∕ Re. 
We have used Re = 105 and Mach numbers ranging from 0.0625 to 0.5 in the 
computations, and therefore the numerical solution (without incoming sound waves) 
is well approximated by the initial condition for the duration of the computations.

Plane incident sound waves are generated at the left-hand computational boundary 
(x = -10L for Domains 1 and 2 shown in figure 2, and x = -20L for Domain 3). The 
peak amplitude of the particle velocity of the incident waves is 10-5 of the maximum 
vortex velocity, to ensure that the sound waves are well within the linear disturbance 
regime. The incident waves are allowed to travel through the entire computational 
domain. The scattered waves are directly measured from the computations as follows.

(4)
where p and p are the pressure and density of the vortex, respectively. For an 
homentropic vortex, the density and pressure are related by

(5)
where γ  is the ratio of specific heats (taken to be 1.4 for air in what follows). For  
completeness, the pressure that satisfies (4) and (5) is given by:

(7)
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Recall that the scattered wave field is defined as the difference between the fields that 
result from the interaction of the incident waves with the disturbance (vortex) flow field 
and the field that results with no incident disturbance. Thus, computationally, the 
scattered waves are obtained by subtracting the results of the computations with no 
incident sound waves from identical computations performed with incident sound and 
further subtracting the plane incident wave. Thus the slow viscous evolution of the 
vortex is effectively removed from the scattered field. The amplitude and phase of the 
scattered field computed by averaging over as many as four periods of the incident 
waves are identical to those computed over  just one period, and thus the scattered field 
is monochromatic to a very high degree of accuracy. In other words the sound 
produced by initial transients and/ or viscous effects is negligible. Also note that the 
Reynolds number relevant to the wave propagation, Rew aυ e = ω λ 2 ∕ v ≈ 107 (where ω is 
the frequency of the waves) and thus viscous attenuation of the waves is entirely 
negligible.

2.2. Valida t ion of  bou n dary con dit ion s

A useful test of non-reflecting boundary conditions is a comparison of computations 
that are identical, except for the size of the computational domain. If the boundary 
conditions were perfectly non-reflecting, then the solution on the smaller domain 
would agree perfectly with the solution on the larger domain. The difference between 
the solutions gives an estimate of the error of the boundary conditions. The scattering 
from a vortex with finite circulation was computed on Domain 1 which extended to 10 
core radii in each direction, and also on Domain 2, which extended to 30 core radii in 
the +x-direction. The root-mean-square pressure amplitude of the scattered waves is 
plotted versus the angle from the forward ( + x) direction, at r = 10L in figure 3 for  
both computations. The r.m.s. pressure is normalized with the pressure amplitude 
(peak to peak) of the incident waves, pI . The agreement between the two curves is good, 
the maximum difference between the scattering amplitudes for the smaller and larger 
domains being about 5%. For this particular flow, the zeroth-order boundary 
conditions, which are tantamount to assuming that the acoustic waves strike the 
boundary with normal incidence, appear to give sufficiently accurate results. We note 
that the zeroth-order boundary conditions are not adequate in more general flows, 
owing to both non-normal incidence of acoustic waves, and possible convection of 
large flow disturbances (such as a vortex) through the computational boundary 
(Colonius et a l. 1992).

Figu r e 3. Comparison of root-mean-square pressure level of scattered wave, normalized by the
amplitude of the incident waves, between simulations on different-sized domains: ― , Domain 1;
----, Domain 2. See figure 2 for domain sizes.
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Figu r e 4. Iso-contours of the root-mean-square pressure level of the scattered wave, normalized 
by the amplitude of incident wave. Contour levels: Minimum = 0.08; Maximum = 1.12; 
Increment = 0.04. (ϵ  = 0.27, λ ∕ L = 4, M  = 0.125).

Figu r e 5. Root-mean-square pressure level of the scattered wave at r = 2.5λ. (a ) ϵ  = 0.14 
(M = 0.0625); (b) ϵ  = 0.27 (M  = 0.125); (c) ϵ  = 0.55 (M = 0.25); (d) ϵ  = 1.1 (M = 0.5).

2.3. Sim u la t ion resu lt s

The scattered waves are directly computed as discussed above. Figure 4 shows contours 
of the root-mean-square pressure level of the scattered waves normalized by p I for the 
conditions e = 0.27 and λ ∕ L = 4 (M = 0.125). There is preferred scattering in the 
forward direction, and the scattering is asymmetrical with respect to the direction of 
incident propagation. The maximum scattering occurs at about 30° from the direction 
of incident propagation. Note that the contours shown in figure 4 are for a 
counterclockwise-spinning vortex; they should be reflected about y = 0 for a vortex 
that spins clockwise. Scattering in the backward direction is at least an order of 
magnitude smaller than in the forward direction.

In figure 5, the root-mean-square pressure scattering amplitude at r = 2 .5λ is plotted 
versus the angle with the direction of incident propagation, for λ ∕ L = 4 and e ranging
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Figu r e 6. Root-mean-square pressure level at r = 2.5λ normalized by the right-hand side of
(8): ― , ϵ  = 1.1, λ ∕ L = 4 (M = 0.5); ----, ϵ  = 0.55, λ / L = 4 (M = 0.25);  . . . . . . . . , ϵ  = 0.27,
λ ∕ L = 4 (M = 0.125); ― · ― , ϵ  = 0.14, λ ∕ L = 4 (M = 0.0625); ― · ― , ϵ  = 0.27, λ ∕ L = 8 (M = 0.25).

from 0.14 to 1.1 (M = 0.0625 to 0.5). A trend towards more asymmetrical distributions 
is clearly discernible as e is increased, and in the top half-plane (0° < θ  < 180°) the 
amplitude becomes oscillatory. For the lowest value of ϵ , figure 5(a), the distribution 
is more nearly symmetric about θ  = 0°, and as e is reduced, the scattering at θ  = 0° 
appears to go to zero.

According to the low-frequency theories (e.g. O’Shea 1975) the root-mean-square 
pressure level should scale as

Figu r e 7. Root-mean-square pressure level normalized by right-hand side of (8); ϵ  = 0.14, 
λ ∕ L = 4(M  = 0.0625): ― , r/ λ = 1; ----, r/ λ =1.5; . . . . . . . , r/ λ = 2;― · ― , r ∕ λ = 2.5.

(8)

in the far-field, where p I is the amplitude of the incident wave. In figure 6, the root- 
mean-square scattered pressure is normalized by the quantity on the right-hand side of 
(8), and plotted at r ∕ λ = 2.5 for various values of ϵ  and λ ∕ L. As ϵ  is reduced and λ ∕ L 
is increased, the curves collapse and the scaling with e appears to hold.

In figure 7, the scattered pressure level is plotted for different values of r ∕λ, with ϵ  
and λ ∕ L fixed. Near the forward scattering direction (θ  = 0°) the peak scattering does 
not scale like (λ∕r)½. The same curves are plotted in figure 8, but the pressure is not
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Figu r e 8. Root-mean-square pressure level normalized by p I ϵ ; ϵ  = 0.14, λ ∕  L = 4 (M = 0.0625): 
― , r ∕ λ = 1; ----, r ∕ λ =1.5; . . . . . . . . , r ∕ λ = 2; ― · ― , r ∕λ = 2.5.

Figu r e 9. Scattering in the forward direction versus Mach number: ● , data from computations; 
― , line with slope 2.

normalized by the factor (λ∕r)½. In fact, figure 8 shows that the peak scattering is more 
nearly constant in r ∕ λ . This lack of scaling with λ ∕ r is attributed to refractive effects 
by the mean flow field, as will be discussed in the next section.

The compressible vortex has additional scattering effects due to the local change in 
the speed of sound, produced by the density inhomogeneity associated with the core. 
The scattering due to this effect should be symmetric about the direction of incident 
propagation, and when the Mach number is small (i.e. when ϵ  is small) (5) and (6) imply 
that the density changes for the homentropic vortex are zero to O(M2). The finite 
scattering at θ  = 0 apparent in figure 5(a-d) is evidently the result of this effect, 
since the amplitude of the scattering at θ = 0 scales very well with M 2 , as indicated by 
figure 9.

2.4. Com parison w it h aeroacou st ic t heory

Although the amplitude of the scattered wave is found to scale with the amplitude of 
the incident wave and the factor ϵ in accord with the aeroacoustic theories, the 
directivity pattern and far-field decay of the scattered field do not agree with any of the 
low-frequency predictions. The scattering amplitude goes to zero in the forward and 
reverse directions (in the limit as e goes to zero), but the peak scattering angles are
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much closer to the forward direction (±  30°) than the dipole pattern predicted by Howe 
(1975), where the maximum would occur at (±90o). According to Yates (1978) the 
proper directivity is quadrupole, which is also not observed in the computations. The 
scattering is peaked about the forward direction, but in contrast to the far-field result 
of O’Shea (1975) it fails to obey the far-field scaling away from the vortex core. The 
stimulation results are qualitatively similar to the computations of Candel (1979) which 
indicate peak scattering to be at about ±  15° from the forward direction. Moreover, the 
interference pattern and asymmetries evident in figure 5 (a-d) are also present in his 
computations.

When refraction effects are neglected in the theories, the incident waves generated as 
x →  -∞ in the analysis remain planar until interacting with the core. Since in the 
computations the waves are assumed to be planar at x = — 2.5λ, and λ∕L is always 
larger than 1, we conclude that generating the waves at a finite distance from the core 
cannot be responsible for the discrepancy with the results of previous theories. We also 
ruled out the role of different velocity distributions in the vortex core as the source of 
the discrepancy by performing a computation with a vorticity distribution similar to 
the ' top hat ' distribution used in Howe (1975). Since a discontinuity in the vorticity is 
not permissible in the computations, we simulate the top-hat distribution with a 
vorticity that decays as exp(-rn). For large n , this distribution approaches the top-hat 
distribution, while for n = 2 it gives the distribution corresponding to the velocity 
distribution used in the current computations. The scattering was also computed for  
n = 6, and it was found that the root-mean-square scattered pressure levels for n = 6  
and n = 2 agreed to within less than 1 %. Apparently core effects cannot explain the 
discrepancy between the analysis of Howe and the computations.

Candel (1979) attributes the disagreement between his computations and the 
aeroacoustic theories to the long-range refraction effect of the slowly decaying mean 
flow field. Theories that include the long-range refractive effects of the mean flow 
predict singular results in the forward direction. This is interpreted by O’Shea (1975) 
to mean that the Born approximation is not valid in the forward scattering direction. 
To further investigate refraction effects, a computation was conducted on a larger 
domain which extended to 20 vortex core radii in each direction, including the back 
scattering direction (labelled as Domain 3 in figure 2). Thus the incident sound waves 
generated at the boundary refract over distances twice as long as in the previous 
computations, before impinging on the vortex core. The scattering amplitude is plotted 
versus the observation angle at r = 2.5λ in figure 10 for both the larger and smaller 
domains. The scattering amplitude is everywhere substantially greater for the larger 
domain, especially in the back scattering direction. In §3 we develop analytical 
solutions that account for the refraction effect.

2.5. Sca t t erin g  from  vort ices w it h z ero circu la t ion  

Since the apparent cause of the discrepancy between the computations and theories is 
the long-range refractive effect of the r-1 vortex flow field, it is of interest to compute 
the scattering from a compact vortex flow field. In two dimensions, when the 
circulation of the vortex is zero, the tangential velocity field decays exponentially fast 
for axisymmetric flow. We thus consider the scattering of sound waves by the swirling 
flow given by

(9a)
(9b)

(9c)

(9d)
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Figu r e 10. Comparison of root-mean-square pressure level of scattered wave between simulations on
different sized domains. ϵ  = 0.55, λ ∕ L = 4 (M = 0.25): ― , Domain 1; . . . . . . . . , Domain 3. See
figure 2 for domain sizes.

This inviscid solution is due originally to Taylor (1918). Except for the initial 
conditions, computations are performed in an identical manner as described for the 
finite-circulation vortex.

The root-mean-square density of the scattered waves is plotted as a function of the 
observation angle for increasing values of r ∕λ in figure 11. The density has been 
normalized by the amplitude of the incident waves, and the factor (λ∕r)½ The collapse 
of the curves for the larger values of λ ∕ r plotted indicates that the far-field asymptotic 
behaviour has been reached by about r ∕ λ > 1. This is in contrast to the finite- 
circulation scattering, which did not decay for r ∕ λ > 1. The directivity pattern is 
similar to that of the finite-circulation vortex, with peak scattering occurring at about 
±  30° from the forward direction. The directivity pattern is significantly smoother than 
for the finite-circulation case, due apparently to the lack of refraction outside the 
vortex core. Again, a slight asymmetry about θ = 0 is evident.

2.6. Com parison of  z ero-circu la t ion sca t t erin g w it h acou st ic an a logy  

Since the scattering amplitude decays like r -½ away from the vortex core, we expect the 
acoustic analogy approach to accurately predict the scattering amplitude for the zero- 
circulation vortex. In this subsection we develop such an analogy. In §3 we modify the

Figu r e 11. Root-mean-square pressure level of scattered waves, normalized by amplitude of incident
wave and (λ∕r)½, M  = 0.125, λ/ L = 4: ― , r/ λ = 0.5; ----, r/ λ = 1.0; ········, r/ A = 1.5;
― · ― , r/ λ = 2.0;― · ― , r/ λ = 2.5.
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analysis to account for the long-range refractive effects that dominate the scattering 
amplitude for the finite-circulation vortex.

Ignoring viscous effects, we start with the Euler equations for a perfect gas in 
cylindrical coordinates. The equations are linearized about a homentropic axi
symmetric vortex with no radial velocity. The flow quantities are given by

where s is the entropy, cv and cp are the constant specific heats at constant volume and 
pressure respectively and the superscript d  is used to denote dimensional quantities. 
Length and time have been normalized with respect to the frequency and wavelength 
of the incident sound :

(12a)

and

(12d)

where a2(r ) is the non-dimensional local speed of sound squared, a 1 = yp / ρ . Equations 
(12) can be rewritten as a wave equation for p  , by taking ∂/ ∂t of (12c) and subtracting 
∂∕∂r+ 1/ r of (12a) and (1 ∕r)∂∕∂θ of (12b), and adding and subtracting the Laplacian 
of p ' to both sides of the equation (as in Lighthill (1952)). The resulting equation is

(13)

The particular form of S is algebraically complicated and not written here for brevity. 
It is of interest to note, however, that when the solution for the base vortex flow 
(equations (9)) are substituted into the source term S, and the result is expanded in 
powers of Mach number M, that the lowest-order terms in S are of order M, and that 
the entire term S thus decays exponentially fast for large r . When M = 0 (i.e. there is 
no vortex), (13) reduces to the homogeneous wave equation, which is satisfied by the 
plane incident sound waves. Thus if we set

(10a)

(10b)

(10c)

(10d)

(10c)

(11a, b)

The linearized equations are

(12b)

(12c)

(12c)

(14)

where the subscript I refers to the incident wave, and sc refers to the scattered wave, 
and note that incident wave satisfies (13) with S = 0, it follows that (13) applies if ρ ' 
is substituted with ρ 'sc on the left-hand side.
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Figu r e 12. Comparison of root-mean-square density of scattered wave.― , Direct simulation
results; ·········, computed from (18) with S measured from computations. (M  = 0.125).

If S is evaluated using the computed flow field, then the wave equation (13) can be 
inverted to give a prediction for the scattered waves. Since the computation results are 
monochromatic with the frequency of the incident waves, it is natural to set

(15a, b)

from which it follows that
(16)

The solution to (16) which obeys the Sommerfield radiation condition at infinity (i.e. 
that there are no incoming waves aside from the incident sound waves already 
accounted for by (14)) is well known (e.g. Crighton 1975):

(17)

The source term S  is evaluated from the results of the computations, and the integral 
in (17) is performed numerically, over the computational domain. The resulting root- 
mean-square density of the scattered waves is given by

(18)

and is plotted versus the observation angle in figure 12 for r = 2λ . Also plotted is the 
value of ρ rm s measured directly from the computations, which was given in figure 11. 
The curves agree to within a few percent. The excellent agreement between the directly 
computed and aeroacoustic analogy results indicate that the difficulties in direct 
computations of aeroacoustic fields mentioned in the introduction may be overcome. 
Evidently numerical discretization is not acting as a source of sound in the present 
computations, and the numerical accuracy is high enough to represent a wave field 
whose amplitude is five orders of magnitude smaller than the hydrodynamic field.

The source term S can also be evaluated in the Born approximation. In that case, S 
is expanded in powers of M, retaining only terms of O(M). S then takes on the simpler 
form

(19)

where r0 = 2π L∕ λ . The presence of a dipole and quadrupole-type sources is indicated 
by the sin  θ and sin  θ cos θ terms respectively in (19).

The scattered wave amplitude evaluated in the Born approximation with source term 
(19) is compared in figure 13 to that computed with the source term measured from the
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Figu r e 13. Comparison of root-mean-square density of scattered wave.― , Computed from (16)
with S measured from computations; ·········, computed with analytical source term given by (19).
(M  = 0.125).

computations. The difference between the two curves represents effects that are of 
higher order in M. The directivity pattern in the first scattering approximation is 
symmetrical, and is exactly zero in the forward direction. Hence the asymmetry in the 
directivity pattern, as well as the finite scattering in the forward direction are attributed 
to higher-order effects.

3. Analytical solution for finite-circulation vortices with small values of ϵ

When the circulation of the vortex is non-zero, the computations indicate that the 
scattering amplitude does not decay like r-½ far from the vortex core. Long-range 
refraction by the slowly (r-1) decaying mean flow field is apparently important. We 
now analyse the scattering of plane sound waves by a vortex with non-zero circulation. 
As in Müller & Matschat (1959), we express the Born, or low-frequency, approximation 
by demanding

(21)

where r0 = 2πL/ λ, and L is the core radius of the vortex, as previously defined. As 
shown in the last section, the scattering of waves by (21) is not likely to be significantly 
different from the more realistic profile (3).

Solving (4) gives for the base pressure

(22)

(20)

We then expand the Euler equations linearized about the vortex flow field in a power 
series in e for small values of e.

To simplify the analysis, the tangential velocity of the vortex flow field is represented 
by a core in solid-body rotation surrounded by the flow field of an irrotational point 
vortex. The tangential velocity is



We now suppose that ϵ  ≪ 1. Expanding f in a Taylor series about ϵ  = 0, where f is 
any of ρ', PONMLKJIHGFEDCBAp ', u 'r, u 'θ, or s' we write

(25)

Note that the requirement ϵ  ≪ 1 also places a restriction on the wavelength of the 
incident sound compared to the vortex core radius since it implies that

(26)

Plane incident waves identically satisfy (25), and so we take the solution to zeroth 
order to be

Retaining terms of order e in (12) gives

(28 a)

(29 a)

As before, (29) can be transformed to

(30)

(31)

where (30) has been used and where

(32)

Equation (31) is the Helmholtz equation written in cylindrical coordinates. Note the 
part of the source term (32) that decays as 1/ r  for large r is the result of the 1/ r  decay

10 FLM 260
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(23)

It is assumed that there are no incoming entropy disturbances, so that s' = 0; then 
(12e) implies

(24 a, b)

and expanding (12) using (23) gives, to zeroth order in e,

(27)

The particle velocities of the incident waves in the (r , θ) coordinate system are

(28 b)

(29 b)

(29 c)

We seek solutions of (29) that are monochromatic with the frequency of the incident 
waves, 2πα∞ / λ. Thus let
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of the base velocity field outside the vortex core. Convolution of the source term S with 
the free-space Green's function

(33)

may produce a divergent integral, at least for some values of θ . If the solution for φ

diverges, then the scattered field is not well defined in the Born approximation. O’Shea 
(1975) evaluates a similar integral asymptotically and finds an infinite scattering 
amplitude in the forward direction, θ  = 0, but claims that the result is valid in 
directions far from the forward direction, where he obtains a quadrupole scattering 
amplitude which decays as in contrast to our numerical experiments. Instead, we 
try to solve the integral exact ly , but in a different form. Note that the coefficients on 
the left-hand side of (31) do not depend on θ , and therefore it is natural to expand (31) 
in terms of its Fourier coefficients in the azimuthal direction. The Fourier expansion 
is

(34 a)

(34b)

which transforms (31) into an inhomogeneous second-order ordinary differential 
equation,

(35)

where (36)

in which Jm is the mth-order Bessel Function of the first kind and the prime denotes 
differentiation with respect to r .

Note that the source term for each Fourier mode, m, decays in r one power faster 
than does the source term in the physical space for r  > r0 . Thus there is no problem in 
writing down the general solution to (35). However, we should keep in mind that the 
Fourier sum (34b) may not converge for certain values of θ , where the original integral 
diverges.

The general solution to (35) is

where Ym is the mth-order Bessel Function of the second kind. The arbitrary constants 
C1m and C2m (or alternatively the lower limits of integration) in (37) must be 
determined from suitable boundary conditions. At the origin, the solution is required

(37)
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where the Bessel functions are to be evaluated at r. 
For r →  0 the solution must be bounded and thus

(39)

Taking the limit in (37) gives a relation between the constants:

(40)

The remaining constants, C-1m and C+1m are determined by forcing the solutions to 
match at r = r0 . This yields

(42)

The solution for each mode m is thus determined, and the scattered field can be 
found by summing the Fourier series. Noting that

(44)

The sum in (44) is performed numerically by summing over a finite number of modes, 
and is converged to computer roundoff. The resulting scattering amplitude is shown in 
figure 14(a) for the same radii and values of the parameters as in figure 8. A qualitative 
agreement between the analytical result (figure 14) and the computational result (figure 
8) is observed. The scattering amplitude continues to grow outside vortex core region, 
the maximum scattering occurring at angles nearer the forward scattering direction as 
r is increased. This is contrasted with the r-½ scaling of the zero-circulation vortex 
observed in the previous section. In figure 14(b) the analytical scattering amplitude is 
plotted for larger values of r , where the maximum scattering amplitude continues to 
grow.

10-2

to be bounded. As r → ∞ , there should no incoming waves, except for the incident 
sound waves, which are already accounted for in the zeroth-order solution. Thus a 
radiation condition may be applied to each azimuthal mode. That is, as r  → ∞

(38)

Performing the integrations in (37), the general solution is

(41)

(43)

the root-mean-square scattered wave amplitude is given by
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Figu r e 14. Root-mean-square density level from analysis, (44). (a) λ ∕ L = 4: ― ― ― , r ∕ λ = 1; ----,
r ∕λ = 1.5; · · · · · · · · , r ∕ λ = 2; ― · ― , r ∕λ = 2.5. (b) λ ∕ L = 4 . ― ― ― , r ∕ λ = 3;----, r ∕ λ = 4.5;
 · · · · · · · · , r ∕ λ = 6.0; ― · ― , z√λ = 7.5.

Figu r e 15. Maximum scattering amplitude versus r ; r0 = ½π.

The scattering amplitude away from θ = 0 apparently becomes constant as r is 
increased, with an increasing number of oscillations of progressively smaller amplitude.

The maximum scattering amplitude is plotted versus r  in figure 15. It is not possible 
to plot the values for larger values of r , owing to accumulation of roundoff errors in 
the summation of the series. We have tried to determine from the available data if the
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Figu r e 16. Angle where maximum scattering amplitude occurs versus r ; rθ = ½π.

curve asymptotes to a constant value or diverges, but it is impossible to draw a firm 
conclusion. If the curve diverges, it is apparently more slowly than logarithmically. At 
any rate, the result is undoubtedly singular for θ = 0, since the angle where the 
maximum scattering occurs continues to decrease towards θ = 0 as r is increased. In 
figure 16 the angle where the maximum occurs is plotted versus r in log-log 
coordinates, indicating that the angle decreases towards zero at a rate of r -½.

Evidently a far-field scaling (a r -½ decay of the amplitude) is never reached. This 
would seem to indicate the presence of a plane wave component of the scattered waves, 
as was found by O’Shea, far from the vortex core - evidently due to the long-range 
refraction by the slowly decaying vortex flow field.

We have not been able to determine exactly why there is a discrepancy between 
O’Shea’s result away from the singular directions and the above result and the 
computations. However, note that if we replace the Bessel functions in (39) by their 
asymptotic expansions and (incorrectly) retain only the most slowly decaying powers 
of r , then the sum (44) can be written

Now, the first sum in (46) can be found analytically:

(46)

This is exactly the singular term found by O’Shea. However, it is not the proper 
asymptotic expansion of (44). Since the constants C+1m remain finite for large m, there 
are always terms in the series for which the asymptotic expansion of the Bessel 
functions for large argument will not hold.

Although the analytical result agrees fairly well with the computations, for small to 
moderate values of r , it is still singular (and possibly divergent) in the forward direction 
for large values of r. If it diverges, then the original expansion given by (23) cannot hold

(45)

For the case shown in figure 14, the values of ( -i)mC+1m are equal to -½iπ for m  greater 
than 3. Split the sum (45) into two parts:

(47)
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in that region. This would indicate that the problem may not be physically well-posed,† 
and that one cannot require the incident and refracted waves to travel over very large 
distances through the r -1 velocity field without becoming significantly distorted. 
However, away from the forward direction, the amplitude becomes constant as r is 
increased, and therefore the analytical result should be valid for large away from the 
forward direction. The agreement with the computational results would seem to 
indicate the result is also valid in the forward direction, at least for small to moderate 
values of r .

Finally, note that the lack of a strict quantitative agreement between the 
computational result (figure 8) and the analytical result (figure 14), especially in the 
backward scattering direction, is likely because the incident waves are generated at a 
finite distance from the vortex core in the computations, which is confirmed by the 
high-frequency analysis presented in the next section.

4. High-frequency solution for finite-circulation vortices

In order to confirm the scaling with f  of the long-wavelength approximation, and to 
understand the lack of quantitative agreement between the long-wavelength ap
proximation and the Navier-Stokes computations, we now analyse the refraction of 
plane incident waves by the finite-circultation vortex using the high-frequency 
approximation. When the frequency of the incident sound is large, the refraction of the 
waves through the flow field can be determined by the technique of ray tracing. In the 
notation of §3, we require that

The Navier-Stokes computations reported in §2 used r0 = ½π.
Georges (1972) computed the ray paths through a viscous vortex represented by (3) 

in the high-frequency limit, but did not determine the amplitude of the waves. We will 
extend the analysis to determine the amplitude and phase of the waves as they travel 
through the viscous vortex. The details of the analysis are in the Appendix, since 
standard methods are used. The waves are again considered to be monochromatic, and 
they are initiated as plane waves at some finite distance -x0 from the vortex centre. 
The distance x0 can be increased to very large values to compare with the analytical 
solutions of §3, or set equal to 10L to compare with the Navier-Stokes computations 
(it would be too expensive to extend the Navier-Stokes computations to large values 
of x0). The problem configuration is the same as shown in figure 1 .

The ray paths through the vortex are shown in figure 17, for the four values of e 
shown in figure 5, for x0 = 10L. The axes are normalized such that the core radius is 
1. The ray paths are independent of r0, for r0 ≫ 1. The ray paths are in good agreement 
with those reported by Georges (see, for example, Georges’ figure 2). A pair of caustics 
is formed by the rays which travel through the upper half of the vortex core, separating 
the diffraction into two regions. In between the two caustic lines there are three paths 
crossing any given point, while outside the lines there is only one. The location of the 
caustic is shown in figure 18, for the e = 0.55 case. The area between the caustics 
decreases as e is decreased, the region approaching (at large distances) a small wedge 
around θ = 0.

The amplitude of the waves long the rays was also computed, by carrying the 
analysis to the second order. Again the details can be found in the Appendix. Near the 
caustics, the linear ray theory breaks down since adjacent rays converge, giving an

† We would like to thank one of the Referees for pointing this out.

(48)
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Figu r e 17. Ray paths through finite-circulation vortex. (a ) ϵ  = 0.14, (b) ϵ  = 0.27, (c) ϵ  = 0.55, 
(d ) ϵ  = 1.1.

Figu r e 18. Location of caustic for ϵ  = 0.55.
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Figu r e 19. Root-mean-square pressure level of scattered wave at r = 2.5λ. (a) ϵ  = 0.14, (b) ϵ  = 0.27,
(c) ϵ  = 0.55, (d) ϵ  = 1.1 ― ― ― , Navier-Stokes solutions with r0 = ½π; ----, high-frequency
approximation.

Figu r e 20. High-frequency scattering amplitude for ϵ  = 0.55. ― ― ― , x0 = 10; ----, x0 = 20;
· · · · · · · · · , x0 = 40; ― · ― , x0 = 100.

infinite amplitude. The correct amplitude near the caustics must be determined by 
patching the solution with the Airy function across the caustic, which we have not 
attempted. The amplitude of the waves is plotted in figure 19 for the four values of e 
plotted in figures 5 and 17, for r = 5π (r ∕λ = 2.5). The amplitude of the plane wave has 
been subtracted to facilitate comparison with the scattering computations of §2, which 
are replotted in figure 19. The large spikes in the curves indicate the angle where the 
caustics cross the measurement arc, where the solution is invalid. Away from the 
caustics, the agreement is good, especially in the backward scattering direction. In the 
forward direction the high-frequency solution does not exhibit the interference pattern 
to the same degree as seen in the Navier-Stokes solution. This is likely due to the
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relatively small value of r0 = ½π, given that the high-frequency solution is most accurate 
for r0 ≫ 1 .

Figure 20 shows the wave amplitude for ϵ  = 0.55 as x0, the distance from the vortex 
centre where the plane waves are initiated, is increased. As the waves are initiated at 
larger distances from the vortex, the scattering increases everywhere and the curves 
look more and more like the analytical solution for small ϵ  given in §3. For x0 = 100, 
the amplitude away from forward direction varies more or less linearly with θ , as does 
the analytical solution for small ϵ  (see figure 14).

The high-frequency solution is compared directly with the long-wavelength 
analytical solution in figure 21: r0 is again taken as ½π, but the waves are started even 
farther from the vortex core, with x0 = 200. The scattering at four different values of 
r is plotted in figure 21, the agreement being good for each, except near the forward 
direction where the caustics cause the high-frequency solution to be invalid. The 
conclusion from the plot is that the high-frequency solution gives the same scaling with 
r as does the analytical solution, lending further evidence that the analytical solution 
is correct, at least for small to moderate values of r. It also confirms that the lack of 
quantitative agreement between the Navier-Stokes computations and the analytical 
solution is due to the difference in the location where the plane incident waves are 
generated.

5. Comparison with experiments

The scattered field arising from the incidence of monochromatic plane sound waves 
on a steady vortex has been measured experimentally by Horne (1983). In the 
experiment, a vortex is formed between two parallel disks 30.5 cm in diameter spaced 
5.1 cm apart. The vortex is created by three tangential air jets located on each disk at 
a radius of 10.2 cm. The vortex is made steady by removing 0.0047 m3 s-1 of air from 
the vortex core through suction ports at the centre of each disk. Plane sound waves 
were generated with a rectangular horn radiator with an opening of 15.2 cm by 5.1 cm, 
which is located at a radius just beyond the tangential air  jets and the acoustic field was 
measured with a 1.27 cm condenser microphone traversed along a circular arc of

Figu r e  21. High-frequency scattering amplitude compared with long-wavelength analytical solution.
Lines are from long-wavelength analysis, r0 = ½π: ― ― ― , r ∕λ = 3; ----, r ∕λ = 4.5; · · · · · · · ,
r ∕ λ = 6.0; ― · ― , r ∕ λ = 7.5. Symbols are from high-frequency approximation with ϵ  = 0.30: ◯ ,
r ∕ λ = 3; ×, r ∕ λ = 4.5; ◊ , r ∕λ = 6.0; Δ, r ∕ λ = 7.5. x0 = 200.



294 T. Colon iu s, S. K. Lele an d P. Moin

Figu r e 22. Comparison of predicted scattering amplitude with experimentally measured result 
(Horne 1983): ― ― ― , analysis, ◯ , experiment.

20.3 cm. The velocity field of the vortex was assumed two-dimensional and inferred 
from static pressure measurements at the disk surface.

The experiments indicate that the amplitude of the scattered field varies linearly with 
the circulation of the vortex and inversely with the wavelength of the incident waves, 
as predicted by (44) and by the various theories mentioned above, and in agreement 
with the present numerical computations and those of Candel (1979). Figure 22 shows 
the amplitude of the experimentally measured scattered wave, for a vortex circulation 
of 2.7 m2 s-1, and an incident frequency of 5000 Hz. This gives a value of Γ∕ (a ∞  λ) of 
0.12, and is thus in the range where the first-order approximation, (44), should apply. 
The value of r ∕λ is about 3. The location of the maximum tangential velocity is not 
known from the experiments, but is approximately the location of the tangential air 
jets. This gives a value of r0 of 9.0. Qualitatively, the amplitude of the scattered waves 
shown in figure 22 is similar to the computational result and the analytical theory. 
Scattering is peaked at about ± 35°, which is near the value predicted by the 
computations, ± 30° at a comparable value of r ∕ λ . The scattering is close to zero in the 
forward direction. The measured back scattering is somewhat larger than the 
computations, but since the radius of the traverse arc is greater than the radius where 
the sound source is located, measurements at angles far from the forward direction are 
not reliable, since the incident sound field is not planar in those regions (Horne 1983). 
Also plotted in figure 22 is the analytical result for r0 = 9 at r ∕λ = 3. The location of 
the peak scattering is well predicted by the analysis. The peak scattering level is 
underpredicted by about 50%. Such a numerical agreement is probably fortuitous in 
the light of the approximate nature of the value for r0 from the experiments, three- 
dimensional effects present in the experiments, and the relatively close proximity of the 
plane wave source to the vortex core. The main point is that there is a good qu a lit a t ive 
similarity between the computed results, the analysis, and the experiments.

6. Summary

The scattering of sound waves by a compressible vortex in the low-frequency limit 
has been studied using direct computation with the Navier-Stokes equations, 
analytically with asymptotic expansions when the wavelength of the incident sound is 
long, and with a high-frequency ray-tracing computation.
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The accuracy of the numerical computations is verified by comparing the results for  
zero-circulation vortices to the results predicted by an acoustic analogy. The excellent 
agreement between the two results computed in fundamentally different ways indicates 
that numerical discretization did not act as a source of sound in the computations, and 
that an accurate acoustic field can be computed along with a hydrodynamic field whose 
amplitude is five orders of magnitude larger. We assert that such computations, 
however, require highly accurate differentiation and time-marching schemes, and 
effective non-reflecting boundary conditions. The accuracy of the boundary conditions 
used for the present computations was verified by ensuring that the scattering 
computed on different-sized computational domains converged to the same result.

The Navier-Stokes solutions, the long-wavelength analytical solution, the high- 
frequency solution, and the experiments of Horne (1983) all give essentially the same 
picture of the scattering from the finite-circulation vortex. Since the tangential velocity 
of the vortex decays slowly, as 1/ r for large r, solutions from acoustic analogies 
proposed by many investigators fail to capture the correct directivity and scaling with 
r of the scattered field, owing to the slow decay of the source terms, and/ or neglecting 
of terms that relate to long-range refraction effects. The current results show that the 
scattered wave amplitude is greatest in the forward scattering direction, where it is 
peaked in bands on either side of the forward direction. The scattered field directivity 
is symmetric about θ = 0 for small values of the parameter PONMLKJIHGFEDCBAT ∕ (a ∝ λ). The angle where 
the maximum occurs is found to decrease with increasing distance from the vortex core, 
going to zero as r→  ∞. When the incident waves are generated far from the core, the 
peak scattering level becomes constant with r away from the forward direction, in both 
the long-wavelength analytical solutions and by the high-frequency ray tracing. In the 
long-wavelength approximation, where the incident waves are only assumed planar as 
their distance from the core approaches infinity, the scattering amplitude is singular in 
the forward direction, indicating that the waves are refracted very significantly by the 
flow field in that direction.

The computations and analysis for the circulating-vortex case lead us to assert that 
direct computations, which resolve both the near-field hydrodynamic sources and the 
far-field sound, are an effective means with which to verify the accuracy and robustness 
of various acoustic analogy approaches. In flows of practical interest such as those 
involving jets, mixing layers, wakes and boundary layers the flow field is not compact, 
and, as in vortex scattering, the rearrangement of the equations leading to 
differentiation of acoustic sources from wave propagation and refraction effects is 
ambiguous. Direct computations, in addition to experimental evidence when available, 
provide a means of removing the ambiguity by evaluating any proposed rear
rangements and the associated acoustic analogies.

The authors are indebted to Professor J. B. Keller for suggesting the high-frequency 
analysis and for his assistance in carrying it out. The authors would also like to thank 
Dr Cliff Horne for bringing his experiments to their attention and for his helpful 
discussions, and Dr M. E. Goldstein for his helpful remarks. This work was supported 
by the Office of Naval Research under contract numbers ONR-N00014-88-K-0592 and 
ONR-N00014-92-J-1626. The computer time was provided by NASA-Ames Research 
Center. Some of this work was presented in AIAA Paper-9 1 -0494.
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Appendix. High-frequency approximation for the refraction of plane waves 
in the finite-circulation vortex

In the limit where the frequency of the incident waves is large, the high-frequency, 
or geometrical-acoustics, approximation can be used. Starting with the Euler equations 
in Cartesian coordinates:

(A 1a)

(A 1b)

(A 1c)

(A 1d)

(A 1e)

where the subscripts indicate differentiation. Now, linearizing about (time-invariant) 
vortex flow, (u,v ,ρ ,ρ ) , and noting that s = 0, we obtain

(A 2a)

(A 2b)

(A 2c)

(A 2d)

(A 2e)
Now a solution of the form

(A 3a, b)

(A 3 c, d)

(A 3e)

is assumed. Inserting (A 3) into (A 2) and retaining the terms of highest order in ω gives

(A 4a)

(A 4b)

(A 4c)

(A 4d )

In order for a solution to (A 4) to exist, the determinant of the system must be equal 
to zero. Enforcing this condition yields

(A 5)

where f   = φ x and g = φ y . Note that the solution u f  + vg  - 1 = 0 does not correspond 
to an acoustic wave, but to a convecting disturbance. Therefore we must have 
u f  + vg  - 1 ≠  0, which implies that 5 = 0 from (A 4d). To solve (A 5), we use the 
method of characteristics. Let z parameterize the characteristic curves. Their 
trajectories (x(z), y(z)), and phase function φ (z ) are given by the solution of

(A 6a , b)

(A 6c)

(A 6d)

(A 6e)

where the dot indicates differentiation with respect to z .
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To determine the amplitude of the wave along each ray, say the density amplitude, 
the terms of next highest order in ω must be retained in (A 2). We need only solve for  
one of R, U, or V, since each can be written as a function of only one of them by solving 
the system of equations (A 4) once the phase function is determined. Carrying out the 
algebra gives, for the density amplitude function,

The sca t t erin g of  sou n d  w aves by a vort ex

(A 7)

where (A 6) have been used to simplify the final result. Equation (A 7) can be 
integrated in z along with (A 6) to give the desired solution. However, the terms f x , 
f y, g x and g y in (A 7) cannot be found from the solutions to (A 6) alone, since we only 
know the derivatives of the functions f and g along the rays. One way of overcoming 
this difficulty is to integrate additional equations for derivatives of f  and g normal to 
the ray paths, thus providing the information to determine their derivatives in any 
direction. Let α denote the direction normal to the plane waves at z = 0, the initial 
location of the plane incident wave. The following equations can be found by 
differentiating (A 6) with respect to α. First rewrite A 6(a-d) using vector notation:

(A 8)

where X = (x, y, f, g ) , and F is a vector function whose individual elements are given by 
the right-hand sides of (A 6). Differentiating with respect to α gives

(A 9)

Now there are ten ordinary differential equations in all to integrate in z. The initial 
conditions corresponding to a plane wave at some distance -x0 form the vortex core 
are

(A 10a-d)

(A 10c,∕)

where the amplitude is normalized by the amplitude of the plane wave, and

(A 10g-y)

The equations are advanced using a fourth-order Runge-Kutta scheme with 
adaptive step size. The step size is modified to attempt to keep the local error in the 
solution from exceeding one part in 1000. The vortex flow field, (u , v, ρ, p) , is given by 
(3)-(7) in §2. The solution for the rays that form the caustic is modified to integrate 
across the singularity exactly, and correct the amplitude by the factor of i. The program 
was checked by comparing the ray trajectories with those found by Georges (1972), 
which were identical. The results of several runs can be found in §4.
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