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Abstract. SCEL (Service Component Ensemble Language) is a new
language specifically designed to rigorously model and program auto-
nomic components and their interaction, while supporting formal rea-
soning on their behaviors. SCEL brings together various programming
abstractions that allow one to directly represent aggregations, behaviors
and knowledge according to specific policies. It also naturally supports
programming interaction, self-awareness, context-awareness, and adap-
tation. The solid semantic grounds of the language is exploited for de-
veloping logics, tools and methodologies for formal reasoning on system
behavior to establish qualitative and quantitative properties of both the
individual components and the overall systems.
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1 Introduction

Nowadays much attention is devoted to software-intensive cyber-physical sys-
tems. These are systems possibly made of a massive numbers of components,
featuring complex intercommunications and interactions both with humans and
other systems and operating in open and unpredictable environments. It is there-
fore necessary that such systems dynamically adapt to new requirements, tech-
nologies and contextual conditions. Such classes of systems include the so-called
ensembles [44]. Sometimes ensembles are explicitly created by design, while some
other other times they are assembled from systems that are independently con-
trolled and managed, while their interaction “mood” may be cooperative or
competitive; then one has to deal with systems coalitions, also called systems
of systems. Due to their inherent complexity, today’s engineering methods and
tools do not scale well to ensembles and new engineering techniques are needed
to address the challenges of developing, integrating, and deploying them [53].
The design of such systems, their implementation and the verification that they
meet the expectations of their users pose big challenges to language designers
and software engineers. It is of paramount importance to devise appropriate ab-
stractions and linguistic primitives to deal with the large dimension of systems,
to guarantee adaptation to (possibly unpredicted) changes of the working envi-
ronment, to take into account evolving requirements, and to control the emergent
behaviors resulting from complex interactions.

It is thus important to look for methodologies and linguistic constructs that
can be used to build ensembles while combining traditional software engineer-
ing approaches, techniques from autonomic, adaptive, knowledge-based and self-
aware systems, and formal methods, in order to guarantee compositionality, ex-
pressiveness and verifiability. It has to be said that most of the basic proper-
ties of the class of systems we have outlined above are already guaranteed by
current service-oriented architectures; the novelties come from the need of self-
awareness and context-awareness. Indeed, self-management is a key challenge of
modern distributed IT infrastructures spanning almost to all levels of comput-
ing. Self-managing systems are designed to continuously monitor their behaviors
in order to select the optimal meaningful operations to match the current status
of affairs. After [30], the term autonomic computing has been used to identify
the self-managing features of computing systems. A variety of inter-disciplinary
proposals has been launched to deal with autonomic computing. We refer to [47]
for a detailed survey.

In this chapter, we propose facing the challenge of engineering autonomic
systems by taking as starting point the notions of autonomic components (ACs)
and autonomic-component ensembles (ACEs) and defining programming ab-
stractions to model their evolutions and their interactions. Building on these
notions, we define SCEL (Software Component Ensemble Language). This is a
kernel language that takes a holistic approach to model and program autonomic
computing systems. SCEL aims at providing programmers with an appropri-
ate set of linguistic abstractions for programming the behavior of ACs and the
formation of ACEs, and for controlling the interaction among different ACs.
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SCEL permits governing the complexity of such systems by providing flexible
abstractions, by enabling transparent monitoring of the involved entities and by
supporting the implementation of self-* mechanisms such as self-adaptation. The
key concepts of the language are those of Behaviors, Knowledge, Aggregations
and Policies that have proved fruitful in modelling autonomic systems from
different application domains such as, e.g., collective robotic systems, cloud-
computing, and cooperative e-vehicles.

One of the distinguishing features of SCEL is the use of flexible, group-
oriented, communication primitives that allows one to implicitly select the set of
components (the ensemble) to communicate with, by evaluating a given predicate
P used as the target. When a communication action has predicate P as a target,
it will involve all components that satisfy P . For example, if a system contains
elements that export attributes such as serviceProvided and QoS and one would
like to program a component willing to interact with the ensemble of all the
components that provide a service s and offer a QoS above q , (s)he can use the
predicate serviceProvided = s ∧QoS > q to select the component’s partners.

We would like to add that SCEL is, somehow, minimal; its syntax fully spec-
ifies only constructs for modeling Behaviors and Aggregations and is parametric
with respect to Knowledge and Policies. This choice permits integrating different
approaches to policies specifications or to knowledge handling within our lan-
guage and to easily superimpose ACEs on top of heterogeneous ACs. Indeed, we
see SCEL as a kernel language based on which different full-blown languages can
be designed. Afterwards, we will present a simple, yet expressive, SCEL’s dialect
that is equipped with a specific language for defining access control policies and
that relies on knowledge repositories implemented as distributed tuple spaces.
The small set of basic constructs and their solid semantic grounds permits us
to develop logics, tools and methodologies for formal reasoning on systems be-
havior in order to establish qualitative and quantitative properties of both the
individual components and the ensembles.

In this chapter, we will present most of the work that has been done within the
ASCENS project on the SCEL language. We shall introduce the main linguistic
abstractions for components specification and interaction together with different
alternatives for modeling knowledge and for the operations for knowledge han-
dling (we refer to Chapter II.3 [54]for more sophisticated forms of knowledge and
to Chapter II.4 [27]for other knowledge-based reasoning techniques). We shall
also discuss different possibilities for describing interaction and authorization
policies. We shall describe a Java runtime environment, to be used for develop-
ing autonomic and adaptive systems according to the SCEL paradigm and thus
for the deployment of SCEL specifications (we refer to Chapter III.5 [1]for other
software tools for supporting the development of this class of systems). Finally,
we shall introduce tools and methodologies for the verification of qualitative and
quantitative properties of SCEL programs (we refer to Chapter I.3 [17]for other
verification techniques and tools).

The main features of SCEL will be presented in a step-by-step fashion by
using, in most of the following sections, a running example from the swarm
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robotics domain described below (we refer to Chapter IV.2 [42]for a comprehen-
sive presentation of the swarm robotics case study). A complete account of the
specification of this scenario is given in Section 5.2.

A swarm robotics scenario. We consider a scenario where a swarm of robots
spreads throughout a given area where some kind of disaster has happened. The
goal of the robots is to locate and rescue possible victims. As common in swarm
robotics, all robots playing the same role execute the same code. According to
the separation of concerns principle fostered by SCEL, this code consists of two
parts: (i) a process, defining the functional behaviour; and (ii) a collection of
policies, regulating the interactions among robots and with their environment
and generating the (adaptation) actions necessary to react to specific (internal
or environmental) conditions. This combination permits a convenient design and
enacts a collaborative swarm behaviour aiming at achieving the goal of rescuing
the victims.

A robot initially plays the explorer role in order to look in the environment
for the victims’ positions. When a robot finds a victim, it changes to the rescuer
role starting the victim rescuing and indicating the victim’s position to the other
robots. As soon as another robot receives the victim’s position, it changes to the
helpRescuer role going to help other rescuers. During the exploration, in case
of critical battery level, a robot changes to the lowBattery role to activate the
battery charging. Notably, the role changes according to the sensors and data
values, e.g. when the robot is close to a victim that needs help.

Outline of the Chapter. The rest of this chapter is structured as follows.
Section 2 introduces the key principles underlying the design of SCEL together
with the syntax and the operational semantics of the language. Section 3 presents
two different knowledge handling mechanisms, i.e. tuple spaces and constraint
stores, and illustrates how components can exploit external reasoners for taking
decisions. Section 4 introduces a language for defining access control, resource
usage and adaptation policies. Section 5 presents a full instantiation of SCEL: it
uses tuple spaces as knowledge handling mechanism and the language presented
in Section 4 as policy language. Section 6 describes a Java runtime environment
that provides an API for using SCEL’s linguistic constructs in Java programs.
Section 7 deals with the issue of enriching SCEL with information about action
duration, by providing a stochastic semantics for the language. Section 8 deals
with verification of qualitative and quantitative properties of SCEL specifica-
tions via the analysis tools provided by the runtime environment illustrated in
Section 6, the Maude framework [16], and the SPIN model checker [28]. Sec-
tion 9 concludes by also touching upon directions for future work.

2 The Parametric Language SCEL

In this section we first introduce the key principles underlying the design of the
SCEL language. Then, we formally present its syntax and operational semantics.
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2.1 Design Principles

Autonomic Components (ACs) and Autonomic-Component Ensembles (ACEs)
are our means to structure systems into well-understood, independent and dis-
tributed building blocks that may interact and adapt.

ACs are entities with dedicated knowledge units and resources; awareness is
guaranteed by providing them with information about their state and behavior
via their knowledge repositories. These repositories can be also used to store and
retrieve information about ACs working environment, and thus can be exploited
to adapt their behavior to the perceived changes. Each AC is equipped with an
interface, consisting of a collection of attributes, describing component’s features
such as identity, functionalities, spatial coordinates, group memberships, trust
level, response time, etc.

Attributes are used by the ACs to dynamically organize themselves into
ACEs. Indeed, one of the main novelties of our approach is the way groups
of partners are selected for interaction and thus how ensembles are formed.
Individual ACs can single out communication partners by using their identities,
but partners can also be selected by taking advantage of the attributes exposed
in the interfaces. Predicates over such attributes are used to specify the targets of
communication actions, thus permitting a sort of attribute-based communication.
In this way, the formation rule of ACEs is endogenous to ACs: members of
an ensemble are connected by the interdependency relations defined through
predicates. An ACE is therefore not a rigid fixed network but rather a highly
flexible structure where ACs’ linkages are dynamically established.

We have identified some linguistic abstractions for uniformly programming
the evolution and the interactions of ACs and the architecture of ACEs. These
abstractions permit describing autonomic systems in terms of Behaviors, Knowl-
edge and Aggregations, according to specific Policies.

– Behaviors describe how computations may progress and are modeled as pro-
cesses executing actions, in the style of process calculi.

– Knowledge repositories provide the high-level primitives to manage pieces
of information coming from different sources. Each knowledge repository is
equipped with operations for adding, retrieving, and withdrawing knowledge
items.

– Aggregations describe how different entities are brought together to form
ACs and to construct the software architecture of ACEs. Composition and
interaction are implemented by exploiting the attributes exposed in ACs’
interfaces.

– Policies control and adapt the actions of the different ACs for guaranteeing
accomplishment of specific tasks or satisfaction of specific properties.

By accessing and manipulating their own knowledge repository or the repos-
itories of other ACs, components acquire information about their status (self-
awareness) and their environment (context-awareness) and can perform self-
adaptation, initiate self-healing actions to deal with system malfunctions, or
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install self-optimizing behaviors. All these self-* properties, as well as self-
configuration, can be naturally expressed by exploiting SCEL’s higher-order
features, namely the capability to store/retrieve (the code of) processes in/from
the knowledge repositories and to dynamically trigger execution of new processes.
Moreover, by implementing appropriate security policies, e.g. limiting informa-
tion flow or external actions, components can set up self-protection mechanisms
against different threats, such as unauthorised access or denial-of-service attacks.

Our aim is to provide a common semantic framework for describing meaning
and interplay of the abstractions above, while minimizing overlaps and incom-
patibilities. In the subsection below we introduce the constructs of SCEL, while
their precise semantics will be presented in the next one.

2.2 Syntax

We present here the syntax of SCEL. We would like to stress that we have taken
a minimal approach and SCEL syntax specifies only constructs for modeling
Behaviors and Aggregations and is parametric with respect to Knowledge and
Policies.

Knowledge

K

Processes

P

I Interface

Π

Policies

Fig. 1. SCEL component

Concretely, an AC in SCEL is ren-
dered as the term I[K, Π, P ]. This is
graphically illustrated in Figure 1 and
consists of:

– An interface I publishing and mak-
ing available information about the
component itself in the form of at-
tributes, i.e. names acting as refer-
ences to information stored in the
component’s knowledge repository. Among them, attribute id is mandatory
and is bound to the name of the component. Component names are not
required to be unique; this allows us to easily model replicated service com-
ponents.

– A knowledge repository K managing both application data and awareness
data, together with the specific handling mechanism. Application data are
used for enabling the progress of ACs’ computations, while awareness data
provide information about the environment in which the ACs are running
(e.g. monitored data from sensors) or about the status of an AC (e.g. its
current location). The knowledge repository of a component stores also the
information associated to its interface, which therefore can be dynamically
manipulated by means of the operations provided by the knowledge reposi-
tories’ handling mechanisms.

– A set of policies Π regulating the interaction between the different parts
of a single component and the interaction between components. Interaction
policies and Service Level Agreement policies provide two standard examples
of policy abstractions. Other examples are security policies, such as access
control and reputation.
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Systems: S ::= C | S1 ‖ S2 | (νn)S

Components:C ::= I[K, Π, P ]

Processes:P ::= nil | a.P | P1 + P2 | P1 | P2 | X | A(p̄)

Actions: a ::= get(T )@c | qry(T )@c | put(t)@c | fresh(n) | new(I,K, Π, P )

Targets: c ::= n | x | self | P | p

Table 1. SCEL syntax (Knowledge K, Policies Π, Templates T , and Items t are
parameters of the language)

– A process P , together with a set of process definitions that can be dynami-
cally activated. Some of the (sub)processes in P execute local computations,
while others may coordinate interaction with the knowledge repository or
perform adaptation and reconfiguration. Interaction is obtained by allowing
ACs to access knowledge in the repositories of other ACs.

SCEL syntax is reported in Table 1. Its basic category is the one defining
Processes that are used to build up Components that in turn are used to
define Systems. Processes specify the flow of the Actions that can be per-
formed. Actions can have a Target to determine the other components that
are involved in that action. As stated in the Introduction, SCEL is paramet-
ric with respect to some syntactic categories, namely Knowledge, Policies,
Templates and Items (with the last two determining the part of Knowledge

to be retrieved/removed or added, respectively).

Systems and components. Systems aggregate components through the
composition operator ‖ . It is also possible to restrict the scope of a name,
say n, by using the name restriction operator (νn) . In a system of the form
S1 ‖ (νn)S2, the effect of the operator is to make name n invisible from within
S1. Essentially, this operator plays a role similar to that of a begin . . . end block
in sequential programming and limits visibility of specific names. Additionally,
restricted names can be exchanged in communications thus enabling the receiv-
ing components to use those “private” names.

Running example (step 1/7) The robotics scenario can be expressed in SCEL

as a system S defined as follows

S , Robot1 ‖ . . . ‖ Robotn

Each robot is rendered as a SCEL component Roboti, which has the form
IRi

[KRi
, ΠR, PR]. These components concurrently execute and interact. Each

interface IRi
specifies the attribute role, which can assume values explorer ,

rescuer , etc. according to the current role played by the robot. ⊓⊔

Processes. Processes are the active computational units. Each process is built
up from the inert process nil via action prefixing (a.P ), nondeterministic choice
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(P1 + P2), controlled composition (P1 | P2), process variable (X), and param-
eterized process invocation (A(p̄)). The construct P1 | P2 abstracts the various
forms of parallel composition commonly used in process calculi. Process vari-
ables support higher-order communication, namely the capability to exchange
(the code of) a process and possibly execute it. This is realized by first adding an
item containing the process to a knowledge repository and then retrieving/with-
drawing this item while binding the process to a process variable. We assume
that A ranges over a set of parameterized process identifiers that are used in
recursive process definitions. We also assume that each process identifier A has
a single definition of the form A(f̄) , P . Lists of actual and formal parameters
are denoted by p̄ and f̄ , respectively.

Running example (step 2/7) The process PR running on a robot has the form
(a1. P1 + a2. P2) | P3 meaning that it is a parallel composition of two sub-
processes, where the one on the left-hand side of the controlled composition
can either execute the action a1 and thereafter continue as P1, or execute the
action a2 and thereafter continue as P2. ⊓⊔

Actions and targets. Processes can perform five different kinds of actions.
Actions get(T )@c, qry(T )@c and put(t)@c are used to manage shared knowl-
edge repositories by withdrawing/retrieving/adding information items from/to
the knowledge repository identified by c. These actions exploit templates T as
patterns to select knowledge items t in the repositories. They heavily rely on the
used knowledge repository and are implemented by invoking the handling oper-
ations it provides. Action fresh(n) introduces a scope restriction for the name
n so that this name is guaranteed to be fresh, i.e. different from any other name
previously used. Action new(I,K, Π, P ) creates a new component I[K, Π, P ].

Action get may cause the process executing it to wait for the expected ele-
ment if it is not (yet) available in the knowledge repository. Action qry, exactly
like get, may suspend the process executing it if the knowledge repository does
not (yet) contain or cannot ‘produce’ the expected element. The two actions dif-
fer for the fact that get removes the found item from the knowledge repository
while qry leaves the target repository unchanged. Actions put, fresh and new
are instead immediately executed (provided that their execution is allowed by
the policies in force).

Different entities may be used as the target c of an action. Component names
are denoted by n, n′, . . . , while variables for names are denoted by x, x′, . . . . The
distinguished variable self can be used by processes to refer to the name of the
component hosting them. The possible targets could, however, be also singled
out via predicates expressed as boolean-valued expressions obtained by logically
combining the evaluation of relations between attributes and expressions. Thus
targets could also be an explicit predicate P or the name p of a predicate that is
exposed as an attribute of a component interface whose value may dynamically
change. We adopt the following conventions about attribute names within pred-
icates. If an attribute name occurs in a predicate without specifying (via prefix
notation) the corresponding interface, it is assumed that this name refers to an
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attribute within the interface of the object component (i.e., a component that is
a target of the communication action). Instead, if an attribute name occurring
in a predicate is prefixed by the keyword this, then it is assumed that this name
refers to an attribute within the interface of the subject component (i.e., the
component hosting the process that performs the communication action). Thus,
for example, the predicate this.status = “sending” ∧ status = “receiving” is
satisfied when the status of the subject component is sending and that of the
object is receiving.

In actions using a predicate P to indicate the target (directly or via p), the
predicate acts as a ‘guard’ specifying all components that may be affected by the
execution of the action, i.e. a component must satisfy P to be the target of the
action. Thus, actions put(t)@n and put(t)@P give rise to two different primitive
forms of communication: the former is a point-to-point communication, while
the latter is a sort of group-oriented communication. The set of components
satisfying a given predicate P used as the target of a communication action
are considered as the ensemble with which the process performing the action
intends to interact. Indeed, in spite of the stress we put on ensembles, SCEL

does not have any specific syntactic category or operator for forming ACEs. For
example, the names of the components that can be members of an ensemble
can be fixed via the predicate id ∈ {n,m, o}. When an action has this predicate
as target, it will act on all components named n, m or o, if any. Instead, to
dynamically characterize the members of an ensemble according to the role they
are currently playing in the system, by assuming that attribute role belongs to
the interface of any component willing to be part of the ensemble, one can write
role=“rescuer” ∨ role=“helpRescuer” to refer to the ensemble of components
playing either the role rescuer or helpRescuer .

It is worth noticing that the group-oriented variant of action put is used
to insert a knowledge item in the repositories of all components belonging to
the ensemble identified by the target predicate. Differently, group-oriented ac-
tions get and qry withdraw and retrieve, respectively, an item from one of the
components satisfying the target predicate, non-deterministically selected.

Running example (step 3/7) By specifying actions a1 and a2 as a qry and a get
action, respectively, the process PR becomes

(qry(“victimPerceived”, true)@self. P1

+get(“victim”, ?x, ?y, ?c)@(role=“rescuer” ∨ role=“helpRescuer”). P2) | P3

The sub-process on the left-hand side of the controlled composition allows the
robot to recognise the presence of a victim, by means of the qry action, or to
help other robots to rescue a victim, by means of the get action. In the latter
case, the action binds the victim’s coordinates to variables x and y, and the
number of other robots needed for rescuing the victim to variable c. ⊓⊔
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a.P ↓a P P ↓◦ P

P ↓α P ′

P + Q ↓α P ′
Q ↓α Q′

P + Q ↓α Q′
P{p̄/f̄} ↓α P ′

A(p̄) ↓α P ′
A(f̄) , P

P ↓α P ′ Q ↓β Q′

P | Q ↓α[ β ] P
′ | Q′

bv(α) ∩ bv(β) = ∅
P ′ ↓α P ′′

P ↓α P ′′
P ≡α P ′

Table 2. Semantics of processes

2.3 Operational Semantics

The operational semantics of SCEL is defined in two steps. First, the semantics
of processes specifies commitments, i.e. the actions that processes can initially
perform and the continuation process obtained after each such action; issues like
process allocation, available data, regulating policies are ignored at this level.
Then, by taking process commitments and system configuration into account,
the semantics of systems provides a full description of systems behavior.

Semantics of processes. Process commitments are generated by the following
production rule

α, β ::= a | ◦ | α[β ]

meaning that a commitment is either an action a as defined in Table 1, or the
symbol ◦, denoting inaction, or the composition α[β ] of the two commitments α
and β. We write P ↓α Q to mean that “P can commit to perform α and become
Q after doing so”.

The relation ↓ defining the semantics of processes is the least relation induced
by the inference rules in Table 2.

The first rule says that a process of the form a.P is committed to do a
and then to continue as process P . The second rule allows any process to stay
idle. The third and fourth rules state that P + Q non-deterministically behaves
as P or Q. The fifth rule says that a process invocation A(p̄) behaves as the
invoked process P , where the formal parameters f̄ have been replaced by the
actual parameters p̄. The sixth rule, defining the semantics of P | Q, states
that a commitment α[β ] is exhibited when P commits to α and Q commits
to β. However, P and Q are not forced to actually commit to a meaningful
action. Indeed, thanks to the second rule, which allows any process to commit
to ◦, α and/or β may always be ◦. The semantics of P | Q at the level of
processes is indeed very permissive and generates all possible compositions of
the commitments of P and Q. This semantics is then specialized at the level of
systems by means of interaction predicates that take also policies into account.
Notice that, in general, commutative. Condition bv(α)∩ bv(β) = ∅ ensures that
the variables used by the two processes P and Q are different, to avoid improper
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variable captures. In fact, bv(α) denotes the sets of bound variables occurring in
α, with get and qry being the only binding constructs for variables. Similarly,
the action fresh is a binding construct for names. The last rule states that alpha-
equivalent (≡α) processes, i.e. processes differing only for bound variables and
names, can guarantee the same commitments.

Running example (step 4/7) The process PR running on the robots, apart for
the trivial case PR ↓◦[ ◦ ] PR and the commitments of P3 (not specified here),
produces the following meaningful commitments

PR ↓qry(“victimPerceived”,true)@self[ ◦ ] (P1 | P3)

PR ↓get(“victim”,?x,?y,?c)@(role=“rescuer”∨role=“helpRescuer”)[ ◦ ] (P2 | P3)

⊓⊔

Semantics of systems. The operational semantics of systems is defined in two
steps. First, the possible behaviors of systems without occurrences of the name
restriction operator are defined. This is done in the SOS style [43] by relying
on the notion of Labeled Transition System (LTS). Then, by exploiting this
LTS, the semantics of generic systems is provided by means of a (unlabelled)
Transition System (TS) only accounting for systems’ computation steps. This
approach allows us to avoid the notational intricacies arising when dealing with
name mobility in computations (e.g. when opening and closing the scopes of
name restrictions).

The labeled transition relation of the LTS defining the semantics of systems
without restricted names is induced by the inference rules in Tables 4, 5 and 6. We

write S λ
−→ S′ to mean that “S can perform a transition labeled λ and become

S′ in doing so”. Transition labels are generated by the following production rule

λ ::= τ | I : fresh(n) | I : new(J ,K, Π, P )

| I : t ⊳ γ | I : t ◭ γ | I : t ⊲ γ | I : t ⊳̄J | I : t ◭̄J | I : t ⊲̄J

where γ is either the name n of a component or a predicate P indicating a set
of components, and I and J range over interfaces6. The meaning of labels is
as follows: τ denotes an internal computation step; I : fresh(n) denotes the
willingness of component I to restrict visibility of name n; I : new(J ,K, Π, P )
denotes the willingness of component I to create the new component J [K, Π, P ];
I : t ⊳ γ (resp. I : t ◭ γ) denotes the intention of component I to withdraw

6 The names of the attributes of a component are pointers to the real values contained
in the knowledge repository associated to the component. This amounts to saying
that in terms of the form I[K, Π, P ], I only includes the names of the attributes,
as their corresponding values can be retrieved from K. However, when I is used in
isolation (e.g., within a label), we assume that it also includes the attributes’ values;
we then use, for example, I.id to denote the value associated to the attribute id in
the corresponding repository.
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(resp. retrieve) item t from the repositories at γ; I : t ⊲ γ denotes the intention
of component I to add item t to the repositories at γ; I : t ⊳̄J (resp. I : t ◭̄J )
denotes that component I is allowed to withdraw (resp. retrieve) item t from
the repository of component J ; I : t ⊲̄J denotes that component I is allowed
to add item t to the repository of component J . Moreover, in the rules, we
use I.π to denote the policy in force at the component I, I[Π/I.π] to denote
the update of the policy of the component I with the policy Π, • to denote a
placeholder for the policy of a component and S[Π/•] to denote the replacement
of the placeholder • with a policy Π in a system S.

The labeled transition is parameterised with respect to the following two
predicates:

– The interaction predicate, Π, I : α ≻ λ, σ,Π ′, means that under policy Π
and interface I, process commitment α yields system label λ, substitution σ
(i.e., a partial function from variables to values) and, possibly new, policy
Π ′. Intuitively, λ identifies the effect of α at the level of components, while
σ associates values to the variables occurring in α and is used to capture the
changes induced by communication. The generated system label λ must be
one among τ , I : fresh(n), I : new(J ,K, Π, P ), I : t ⊳ γ, I : t ◭ γ and
I : t ⊲ γ. Π ′ is the policy in force after the transition; in principle it may
differ from the one in force before the transition. This predicate is used to
determine the effect of the simultaneous execution of actions by processes
concurrently running within a component that, e.g., exhibit commitments of
the form α[β ].

– The authorization predicate, Π ⊢ λ,Π ′, means that under policy Π, the
action generating the system label λ (which can be thought of as an autho-
rization request) is allowed and the policy Π ′ is produced. Labels λ taken
as argument by the authorization predicate are system labels of the form
I : fresh(n), I : new(J ,K, Π, P ), I : t ⊳̄J , I : t ◭̄J , or I : t ⊲̄J . This
predicate is used to determine the actions allowed by specific policies, and
the (possibly new) policy to be enforced. The authorization to perform an
action is checked when a computation step can potentially take place, i.e.
when it becomes known which is the component target of the action.

Many different interaction predicates can be defined to capture well-known
process computation and interaction patterns such as interleaving, monitor-
ing, asynchronous communication, synchronous communication, full synchrony,
broadcasting, etc. In fact, depending on the considered class of systems, one can
prefer a communication model with respect to the others.

A specific interaction predicate is given in Table 3; it is obtained by inter-
preting controlled composition as the interleaved parallel composition of the two
involved processes. Notably, this simple predicate does never modify the pol-
icy currently in force. Notice also that process commitments corresponding to
inaction (◦, ◦[ ◦ ], etc.) are disallowed. In the table, function [[ · ]]I denotes the
evaluation of terms with respect to interface I with attributes occurring therein
being replaced by the corresponding value in I. Moreover, match(T, t) denotes
a partial function performing matching between a template T and an item t;
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Π, I : fresh(n) ≻ I : fresh(n), {}, Π

[[ T ]]I = T ′ [[ c ]]I = γ match(T ′, t) = σ

Π, I : get(T )@c ≻ I : t ⊳ γ, σ,Π

[[ T ]]I = T ′ [[ c ]]I = γ match(T ′, t) = σ

Π, I : qry(T )@c ≻ I : t ◭ γ, σ,Π

[[ t ]]I = t′ [[ c ]]I = γ

Π, I : put(t)@c ≻ I : t′ ⊲ γ, {}, Π

Π, I : new(J ,K, Π, P ) ≻ I : new(J ,K, Π, [[ P ]]I), {}, Π

Π, I : α ≻ λ, σ,Π

Π, I : α[ ◦ ] ≻ λ, σ,Π

Π, I : α ≻ λ, σ,Π

Π, I : ◦[α ] ≻ λ, σ,Π

Table 3. The interleaving interaction predicate

when they do match, the function returns a substitution σ for the variables in
T (we use {} to denote the empty substitution), and is otherwise undefined.
We have a rule for each different kind of process action; for example, the third
rule states that, once the target γ of the action and an item t matching the
template T ′ through a substitution σ have been determined (by also exploiting
the interface I for evaluating c and T ), an action qry at the level of processes
corresponds to a proper transition label at the level of systems semantics. The
last two rules ensure that in case of controlled composition of multiple processes
only one process at a time can perform an action (the other stays still).

Like the interaction predicate, many different reasonable authorization pred-
icates can be defined, possibly resorting to specific policy languages. One of such
languages inspired by, but simpler than, the OASIS standard for policy-based
access control XACML [39], will be presented in Section 4. There, we will stress
also how the actual semantics of this policy language is intertwined and inte-
grated with SCEL semantics.

The labeled transition relation also relies on the following three operations
that each knowledge repository’s handling mechanism must provide:

– K ⊖ t = K′: the withdrawal of item t from the repository K returns K′;
– K ⊢ t: the retrieval of item t from the repository K is possible;
– K ⊕ t = K′: the addition of item t to the repository K returns K′.

We now briefly comment the rules in Table 4. Rule (pr-sys) transforms pro-
cess commitments into system labels by exploiting the interaction predicate. As
a consequence, a substitution σ is applied to the continuation P ′ of the process
that committed to α. When α contains a get(T ) or a qry(T ), σ replaces in P ′

the variables occurring in T with the corresponding values. The application of
the rule also replaces, in the generated label, self with the corresponding name.
When α is a fresh, it is checked if the name is not already used in the creating
component, except for the process part that will likely use n as, e.g., an infor-
mation to be added to some knowledge repository (notation n(E) is used here to
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P ↓α P ′ α = I : fresh(n) ⇒ n 6∈ n(I[K, Π,nil]) Π, I : α ≻ λ, σ,Π ′

I[K, Π, P ]
λ[Π′/I.π]

✲ I[K, •, P ′σ]
(pr-sys)

C
I:fresh(n)

✲ C′ I.π ⊢ I : fresh(n), Π ′

C
τ
✲ (νn)C′[Π ′/•]

(freshn)

C
I:new(J ,K,Π,P )

✲ C′ I.π ⊢ I : new(J ,K, Π, P ), Π ′

C
τ
✲ C′[Π ′/•] ‖ J [K, Π, P ]

(newc)

Π ⊢ I : t ⊳̄J , Π ′ K ⊖ t = K′

J [K, Π, P ]
I:t ⊳̄J [Π′/J .π]

✲ J [K′, Π ′, P ]
(accget)

Π ⊢ I : t ◭̄J , Π ′ K ⊢ t

J [K, Π, P ]
I:t ◭̄J [Π′/J .π]

✲ J [K, Π ′, P ]
(accqry)

Π ⊢ I : t ⊲̄J , Π ′ K ⊕ t = K′

J [K, Π, P ]
I:t ⊲̄J [Π′/J .π]

✲ J [K′, Π ′, P ]
(accput)

S1
λ
✲ S′1 λ /∈ {I : t ⊲ P , I : t ⊲̄J }

S1 ‖ S2
λ
✲ S′1 ‖ S2

(async)

Table 4. Systems’ labeled transition relation (1/3): base rules

denote the sets of names occurring in a syntactic term E); this condition can be
always made true by exploiting alpha-equivalence among processes. Moreover, as
a consequence of the evaluation of the interaction predicate, the policy in force
at the component performing the action may change; this update is registered
in the produced system label by applying [Π ′/I.π] to the label λ generated by
the interaction predicate. Notably, the component generated by this transition
contains a placeholder • in place of the policy; it will be replaced by a (possibly
new) policy during the rest of the derivation (see, e.g., the use of [Π ′/•] in rule
(freshn)).

The possibility of executing actions fresh and new is decided by using the
information within a single component. However, since these actions affect the
system, as they either create a name restriction or a new component, their ex-
ecution by a process is indicated by a specific system label I : fresh(n) or
I : new(J ,K, Π, P ) (generated by rule (pr-sys)) carrying enough information
for the authorization request to perform the action to be checked according to
the local policy and for the modification of the system to take place (rules (freshn)
and (newc)). Notably, the authorization predicate is evaluated under the policy
produced by the interaction predicate (rule (pr-sys)); thus, the component per-
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forming the action will enforce the (possibly new) policy so generated. Notably,
rule (freshn) relies on the condition checked in rule (pr-sys), about the freshness
of the new name n in the creating component, in order to put in place its scope.

The successful execution of the remaining three actions requires, at system
level, appropriate synchronization. For this reason, we have a pair of complemen-
tary labels corresponding to each action. Rules (accget), (accqry) and (accput) are
used to generate the labels denoting the willingness of components to accept the
execution of an action. More specifically, rule (accget) generates the label I : t ⊳̄J
indicating the willingness of component J to provide the item t to component
I. Notably, the label is generated only if such willingness is authorized by the
policy in force at the component J (by means of the authorization predicate
Π ⊢ I : t ⊳̄J , Π ′) and if withdrawing item t from the repository of J is possible
(K ⊖ t = K′). An effect of this transition is also the update of policy Π in Π ′

(both in the resulting component and in the produced label). Rules (accqry) and
(accput) are similar to (accget), the only difference being that they invoke the
retrieval (K ⊢ t) and the addition (K ⊕ t = K′) operations of the repository’s
handling mechanism, respectively, rather than the withdrawal one. Finally, rule
(async) states that all actions different from a put for group-oriented communi-
cation and an authorization for a put can be performed by involving only some
of the system’s components. Therefore, if there is a system component able to
perform the authorization for a put, there is no way to infer that such compo-
nent in parallel with any other one (hence the system as a whole) can perform
the action. This ensures that when a system component is going to execute a put
for group-oriented communication all potential receivers are taken into account.

The rules in Table 5 model the variants of the three communication actions
implementing point-to-point interaction, while the rules for group-oriented com-
munication are shown in Table 6.

In case of point-to-point interaction, action get can withdraw an item ei-
ther from the local repository (lget) or from a specific repository with a point
to point access (ptpget). In any case, this transition corresponds to an internal
computation step. The transition labelled by I : t ⊳̄ I in the premise of (lget) can
only be produced by rule (accget); it ensures that the component I authorizes
the local access to item t and that the component’s knowledge and policy are
updated accordingly. When the target of the action denotes a specific remote
repository (ptpget), the action is only allowed if n is the name of the component J
simultaneously willing to provide the wanted item and if the request to perform
the action at J is authorized by the local policy (identified by notation I.π).
Of course, if there are multiple components with the same name, one of them
is non-deterministically chosen as the target of the action. Action qry behaves
similarly to get, the only difference being that, if the action succeeds, after the
computation step all repositories remain unchanged. Its semantics is modeled
by rules (lqry) and (ptpqry). Finally, action put adds item t to a repository. Its
behavior is modeled by rules (lput) and (ptpput), that are similar to those of ac-
tions get and qry, with the major difference being that, if the action succeeds,
after the computation step an item is added to the target repository.
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C
I:t⊳n
✲ C′ n = I.id C′[I.π/•]

I:t ⊳̄ I
✲ C′′

C
τ
✲ C′′

(lget)

S1
I:t⊳n
✲ S′1 S2

I:t ⊳̄J
✲ S′2 J .id = n I.π ⊢ I : t ⊳̄J , Π ′

S1 ‖ S2
τ
✲ S′1[Π

′/•] ‖ S′2

(ptpget)

C
I:t◭n

✲ C′ n = I.id C′[I.π/•]
I:t ◭̄ I

✲ C′′

C
τ
✲ C′′

(lqry)

S1
I:t◭n

✲ S′1 S2
I:t ◭̄J

✲ S′2 J .id = n I.π ⊢ I : t ◭̄J , Π ′

S1 ‖ S2
τ
✲ S′1[Π

′/•] ‖ S′2

(ptpqry)

C
I:t⊲n
✲ C′ n = I.id C′[I.π/•]

I:t ⊲̄ I
✲ C′′

C
τ
✲ C′′

(lput)

S1
I:t⊲n
✲ S′1 S2

I:t ⊲̄J
✲ S′2 J .id = n I.π ⊢ I : t ⊲̄J , Π ′

S1 ‖ S2
τ
✲ S′1[Π

′/•] ‖ S′2

(ptpput)

Table 5. Systems’ labeled transition relation (2/3): point-to-point communication rules

Let us now comment the rules for group-oriented communication that are
shown in Table 6. When the target of action get denotes a set of repositories
satisfying a given predicate (grget), the action is only allowed if one of these
repositories, say that of component J , is willing to provide the wanted item and
if the request to perform the action at J is authorized by the policy in force at
the component performing the action. Relation J |= P states that the attributes
of J satisfy predicate P ; the definition of such relation depends on the kind of the
used predicates. In any case, if the action succeeds, this transition corresponds
to an internal computation step (denoted by τ) that changes the repository of
component J . Rule (grqry) is similar, but in the case of action qry the item
is not removed from the repository. Differently from the two previous actions
that only capture the interaction with one target component arbitrarily chosen
among those satisfying the predicate P and willing to provide the wanted item,
put(t)@P can interact with all components satisfying P and willing to accept
the item t. In fact, rule (grput) permits the execution of a put for group-oriented
communication when there is a parallel component, say J , satisfying the target
of the action and whose policy authorizes this remote access. Of course, the
action must be authorized to use J as a target also by the policy in force at the
component performing the action (which is updated after each evaluation of the
authorization predicate). Notably, the resulting action is still a put for group-
oriented communication, thus further authorization actions performed by other
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S1
I:t⊳P
✲ S′1 S2

I:t ⊳̄J
✲ S′2 J |= P I.π ⊢ I : t ⊳̄J , Π ′

S1 ‖ S2
τ
✲ S′1[Π

′/•] ‖ S′2

(grget)

S1
I:t◭P
✲ S′1 S2

I:t ◭̄J
✲ S′2 J |= P I.π ⊢ I : t ◭̄J , Π ′

S1 ‖ S2
τ
✲ S′1[Π

′/•] ‖ S′2

(grqry)

S1
I:t⊲P
✲ S′1 S2

I:t ⊲̄J
✲ S′2 J |= P I.π ⊢ I : t ⊲̄J , Π ′

S1 ‖ S2
I[Π′/I.π]:t⊲P

✲ S′1 ‖ S′2

(grput)

S
I:t⊲P
✲ S′ (J 6|= P ∨ Π 6⊢ I : t ⊲̄J , Π ′ ∨ I.π 6⊢ I : t ⊲̄J , Π ′)

S ‖ J [K, Π, P ]
I:t⊲P
✲ S′ ‖ J [K, Π, P ]

(engrput)

Table 6. Systems’ labeled transition relation (3/3): group communication rules

parallel components satisfying the target of the action can be simultaneously
executed.

The capability of a component to perform a put for group-oriented commu-
nication is not affected by those system components not satisfying predicate P ,
i.e. not belonging to the ensemble, or not authorising the action according to the
policy in force at the sending component or at the target ones (rule (engrput)).
Therefore, when there is a system component able to perform a put for group-
oriented communication, by repeatedly applying rules (grput) and (engrput) it is
possible to infer that the whole system can perform such an action (which in
fact means that a component produces an item which is added to the repository
of all the ensemble components that simultaneously are willing to receive the
item).

Running example (step 5/7) Let us suppose that IR2
.role=“rescuer” and

IR3
.role=“helpRescuer”, while IRi

.role=“explorer” for 4 ≤ i ≤ n. Suppose also
that KR3

contains an item indicating that the victim has position (3, 5) and that
3 additional robots are needed for rescuing it.

Now, by exploiting the operational rule (accget), the third component can
generate the following labelled transition

IR3
[KR3

, ΠR, PR]
IR1

:〈“victim”,3,5,3〉 ⊳̄ IR3
✲ IR3

[KR3
⊖ 〈“victim”, 3, 5, 3〉, ΠR, PR]

Recall that KR3
⊖〈“victim”, 3, 5, 3〉 means that the information about the victim

is withdrawn from the knowledge repository KR3
.

Instead, by exploiting the operational rule (pr-sys), the first component can
generate the following labelled transition

IR1
[KR1

, ΠR, PR]
λ
✲ IR1

[KR1
, •, (P2{3/x, 5/y, 3/c} | P3)]
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S
τ
✲ S′

(tau)
(νn̄)S ≻−→ (νn̄)S′

S
I:t⊲P
✲ S′

(put)
(νn̄)S ≻−→ (νn̄)S′[I.π/•]

(νn̄, n′′)(S1 ‖ S2{n
′′/n′}) ≻−→ S′ n′′ fresh

(top)
(νn̄)(S1 ‖ (νn′)S2) ≻−→ S′

(νn̄)(S2 ‖ S1) ≻−→ S′

(comm)
(νn̄)(S1 ‖ S2) ≻−→ S′

(νn̄)((S1 ‖ S2) ‖ S3) ≻−→ S′

(assoc)
(νn̄)(S1 ‖ (S2 ‖ S3)) ≻−→ S′

Table 7. Systems’ transition relation

where λ is

IR1
[Π ′

R/ΠR] : 〈“victim”, 3, 5, 3〉 ⊳ (role=“rescuer” ∨ role=“helpRescuer”) .

Hence, by exploiting the operational rule (grget) and assuming Π ′
R ⊢ λ,Π ′′

R, the
overall system can perform the transition

S
τ
✲ IR1

[KR1
, Π ′′

R, (P2{3/x, 5/y, 3/c} | P3)] ‖ Robot2

‖ IR3
[KR3

⊖ 〈“victim”, 3, 5, 3〉, ΠR, PR] ‖ Robot4 ‖ . . . ‖ Robotn , S′

⊓⊔

The unlabeled transition relation (≻−→) of the TS providing the semantics
of generic systems is defined on top of the labeled one by the inference rules
in Table 7. As a matter of notation, n̄ denotes a (possibly empty) sequence
of names and n̄, n′ is the sequence obtained by composing n̄ and n′. (νn̄)S
abbreviates (νn1)((νn2)(· · · (νnm)S · · · )), if n̄ = n1, n2, · · · , nm with m > 0,
and S, otherwise. S{n′/n} denotes the system obtained by replacing any free
occurrence in S of n with n′. When considering a system S, a name is deemed
fresh if it is different from any name occurring in S.

Rule (tau) of Table 7 accounts for the computation steps of a system where all
(possible) name restrictions are at top level. Rule (put) states that, besides those
labeled by τ , computation steps may additionally be labeled by I : t ⊲ P , cor-
responding to group-oriented communication triggered by an action put(t)@P

performed by component I, and thus transforms them into transitions of the
form ≻−→. This rule also takes care of updating the policy in force at the sending
component with the policy produced by the last evaluation of the authorization

predicate in the inference of transition S I:t⊲P
✲ S′. Rule (top) permits to ma-

nipulate the syntax of a system, by moving all name restrictions at top level,
thus putting it into a form to which one of the first two rules can be possibly
applied. This manipulation may require the renaming of a restricted name with
a freshly chosen one, thus ensuring that the name moved at top level is differ-
ent both from the restricted names already moved at top level (to avoid name
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clashes) and from the names occurring free in the other (sub)systems in parallel
(to avoid improper name captures). Rules (comm) and (assoc) state that systems’
composition is a commutative and associative operator. Notably, by exploiting
these two rules, we can manipulate systems and avoid adding analogous rules to
those defining the labeled transition relation.

Running example (step 6/7) The robotics system can thus evolve by performing
the reduction S ≻−→ S′. ⊓⊔

3 Knowledge Management

As we have seen in the previous section, the SCEL language definition abstracts
from a few ingredients of the language. In this section, we show two different
knowledge mechanisms that can be used to instantiate the knowledge parame-
ter. We start presenting the simplest, yet effective, instantiation of knowledge
repositories based on multiple distributed tuple spaces à la Klaim [20]. Then, we
consider constraints, which are suitable to represent partial knowledge, to deal
with multi-criteria optimization, to express preferences, fuzziness, and uncer-
tainty. Finally, we show how knowledge can be exploited by external reasoners
for taking decisions according to (a partial perception of) the context.

3.1 Tuple Spaces

Table 8 shows how to instantiate knowledge repositories, items and templates
to deal with tuple spaces. Knowledge items are tuples, i.e. sequences of values,
while templates are sequences of values and variables. Knowledge reposito-
ries are then tuple spaces, i.e. (possibly empty) multisets of stored tuples 〈t〉. We
use ∅ to denote an empty ‘place’ and the operator ‖ to aggregate items in
multisets. Values within tuples can either be targets c, or processes P or, more
generally, can result from the evaluation of some given expression e. We assume
that expressions may contain attribute names, boolean, integer, float and string
values and variables, together with the corresponding standard operators. To
pick a tuple out from a tuple space by means of a given template, the pattern-
matching mechanism is used: a tuple matches a template if they have the same
number of elements and corresponding elements have matching values or vari-
ables; variables match any value of the same type (?x and ?X are used to bind
variables to values and processes, respectively), and two values match only if they
are identical. If more tuples match a given template, one of them is arbitrarily
chosen.

This form of knowledge representation has been already used in the run-
ning examples shown in the previous section. For instance, the template
(“victim”, ?x, ?y, ?c) is used as argument of a get action to withdraw a 4-element
tuple from the repository of one of the robots that knows the victim position.
The first element of such a tuple must be the string “victim”; the other three
values will be bound to variables x, y, and c, respectively.

20



Knowledge: Items: Templates:

K ::= ∅ | 〈t〉 | K1 ‖ K2 t ::= e | c | P | t1, t2 T ::= e | c | ?x | ?X | T1, T2

Table 8. Tuple space syntax (e is an expression)

〈t〉 ⊖ t = ∅

K1 ⊖ t = K′

(K1 ‖ K2)⊖ t = K′ ‖ K2

K2 ⊖ t = K′

(K1 ‖ K2)⊖ t = K1 ‖ K′

〈t〉 ⊢ t

K1 ⊢ t

(K1 ‖ K2) ⊢ t

K2 ⊢ t

(K1 ‖ K2) ⊢ t K ⊕ t = K ‖ 〈t〉

Table 9. Tuple space operations (⊖, ⊢, ⊕)

The three operations provided by the knowledge repository’s handling mech-
anism, namely withdrawal (K ⊖ t), retrieval (K ⊢ t) and addition (K ⊕ t) of an
item t from/to repository K, are inductively defined by the inference rules shown
in Table 9. Notably, when a matching tuple is withdrawn from K, it is replaced
by the empty place ∅.

3.2 Constraints

In this section, we report some basic definitions concerning the concept of (soft)
constraints. Among the many available formalizations, hereafter we refer to the
one based on c-semirings [7, 45], which generalizes many of the others.

Intuitively, a constraint is a relation that gives information on the possible
values that the variables of a specified set may assume. We adopt a functional
formulation. Hence, given a set V of variables and a domain D of values that
the variables may assume, assignments and constraints are defined as follows.

Definition 1 (Assignments). An assignment η of values to variables is a
function η : V → D.

Definition 2 (Constraints). A constraint χ is a function χ : (V → D) →
{true, false}.

A constraint is then represented as a function that, given an assignment η,
returns a truth value indicating if the constraint is satisfied by η. An assignment
that satisfies a constraint is called a solution.

When SCEL’s knowledge repositories are instantiated as multiple distributed
constraint stores,D could be taken as the set of SCEL basic values (e.g., integers
and strings). Variables in V , that we call constraint variables to take them
apart from those of SCEL processes, could be written as pairs of names of the
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form n@n′ (e.g., batteryLevel@roboti), where n is the variable name and n′ the
name of the component that owns the variable. Different components may own
variables with the same name; such variables are distinct and may thus store
different values.

We denote an assignment as a collection of pairs of the form n@n′ 7→ v,
where n@n′ and v range over variables and values, respectively. Such pairs
explicitly specify the associations for only the variables relevant for the con-
sidered constraint; these variables form the so-called support [8] of the con-
straint, which is assumed to be finite. For example, given the constraints
batteryLevel@roboti ≥ 20% and lifetime@roboti = batteryLevel@roboti · 3000,
the assignment {batteryLevel@roboti 7→ 25%, lifetime@roboti 7→ 1000} satisfies
the first constraint (i.e., returns true) but does not satisfy the second one (i.e.,
returns false).

The constraints introduced above are called crisp in the literature, because
they can only be either satisfied or violated. A more general notion is represented
by the soft constraints. These constraints, given an assignment, return an element
of an arbitrary constraint semiring (c-semiring [7]). C-semirings are partially
ordered sets of ‘preference’ values equipped with two suitable operations for
comparison (+) and combination (×) of (tuples of) values and constraints.

Definition 3 (C-semiring). A c-semiring is an algebraic structure
〈S,+,×, 0, 1〉 such that: S is a set and 0, 1 ∈ S; + is a binary operation
on S that is commutative, associative, idempotent, 0 is its unit element and
1 is its absorbing element; × is a binary operation on S that is commutative,
associative, distributes over +, 1 is its unit element and 0 is its absorbing
element. Operation + induces a partial order ≤ on S defined by a ≤ b iff
a + b = b, which means that a is more constrained than b or, equivalently, that
b is better than a. The minimal element is thus 0 and the maximal 1.

Definition 4 (Soft constraints). Let 〈S,+,×, 0, 1〉 be a c-semiring. A soft
constraint χ is a function χ : (V → D)→ S.

In particular, crisp constraints can be understood as soft constraints on the
c-semiring 〈{true, false},∨,∧, false, true〉.

By lifting the c-semiring operators to constraints, we get the operators

(χ1 + χ2)(η) = χ1(η) + χ2(η) (χ1 × χ2)(η) = χ1(η)× χ2(η)

(their n-ary extensions are straightforward). We can formally define the notions
of consistency and entailment. The consistency condition χ 6= 0 stands for

∃ η : χ(η) 6= 0

i.e. a constraint is consistent if it has at least a solution; the entailment condition
χ1 ≤ χ2 stands for

∀ η, χ1(η) ≤ χ2(η)
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K ⊖ χ =

{

K′ if K ≡ K′ ‖ χ
K otherwise

K ⊢ χ if K ≡ (χ1 ‖ . . . ‖ χm) and (χ1 × . . .× χm) ≤ χ

K ⊕ χ = K ‖ χ if K ≡ (χ1 ‖ . . . ‖ χm) and (χ1 × . . .× χm × χ) 6= 0

Table 10. Constraint store operations (⊖, ⊢, ⊕)

When constraints are used as the argument of actions put, qry and get,
these actions play the role of actions tell, ask and retract, respectively, com-
monly used in the CCP paradigm [48] to add a constraint to a store, to check
entailment of a constraint by a store and to remove a constraint from a store.
These constraints may only involve constraint variables whose owner is the com-
ponent target of the action. This ensures that all the constraints stored in the
same repository only involve variables owned by the same component, which is
the owner of the repository. Thus, for example, it will never happen that the
robot2’s repository stores a constraint like batteryLevel@robot1 < 100%.

The three operations provided by the knowledge repository’s handling mech-
anism, namely withdrawal (K ⊖ χ), retrieval (K ⊢ χ) and addition (K ⊕ χ) of a
constraint χ from/to repository K, are inductively defined by the inference rules
shown in Table 10. We use K1 ≡ K2 to denote that K1 and K2 are equal up to
commutation of items. In the definition of K ⊢ χ and K ⊕ χ, if the constraint
store is empty (i.e. m = 0), then it suffices to verify that χ is a tautology (i.e.,
it is a constant function returning the c-semiring value 1 for any assignment)
and that χ has at least a solution (i.e., it differs from the c-semiring value 0),
respectively.

As an example of use in our robotics scenario of the constraint-based in-
teraction, robot1 could perform the action qry(lifetime@robot2 > 1000)@robot2
to check if the lifetime of robot2 is at least 1000 seconds (which could be,
e.g., the minimum time to transport the victim to a safe area). Assuming
that the robot2’s repository stores the constraints batteryLevel@robot2 = 50%
and lifetime@robot2 = batteryLevel@robot2 · 3000, the entailment of constraint
lifetime@robot2 > 1000 is satisfied and, hence, the execution of the robot be-
haviour can proceed with the continuation process of the qry action.

3.3 External Reasoners

As discussed, SCEL is sufficiently powerful for dealing with coordination and
interaction issues. However, it does not provide explicit machineries for specify-
ing components that take decisions about the action to perform based on their
context. Obviously, the language could be extended in order to encompass such
possibilities, and one could have specific reasoning phases, or dedicated SCEL

components, triggered by the perception of changes in the context.
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The general perspective. In our view, it is however preferable to have separate
reasoning components specified in another language, that SCEL programs can
invoke at need. Having two different languages for computation and coordination,
and for reasoning, does guarantee separation of concerns, a fundamental property
to obtain reliable and maintainable specifications. Also, it may be beneficial to
have a methodology for integrating different reasoners designed and optimised
for specific purposes.

What we envisage is having SCEL programs that whenever have to take
decisions have the possibility of invoking an external reasoner by providing it
information about the relevant knowledge they have access to, and receiving in
exchange informed suggestions about how to proceed. In a scenario like the robot
rescue one, reasoners could for example be exploited by robots to “improve”
their random walk phase, e.g. trying to minimise collisions in an environment
densely populated by robots moving in an unexpected way. Intuitively, the cur-
rent robot’s perception of the surrounding environment should be provided to
a reasoner, which would return the “best” movement direction according to the
probability of colliding with other robots and, possibly, to other criteria.

As a matter of fact, in [5] we provided a general methodology to enrich SCEL

components with reasoning capabilities by resorting to explicit reasoner integra-
tors, we instantiated the methodology for MISSCEL7, a SCEL interpreter, and
we discussed the integration of MISSCEL with the Pirlo reasoner [4]. This per-
mits to specify reasoning service component ensembles, and also paves the way
towards the exploitation of tools and techniques for analysing their behaviour,
allowing thus to reason on reasoning service component ensembles. An example
is the collision avoidance scenario considered in [5], which has been analysed ex-
ploiting MultiVeStA [51], a recently proposed statistical model checker. More
details about the scenario and its analysis are provided in Section 8.2.

In the following we present our approach to enrich SCEL components with
external reasoning capabilities, in particular focusing on a SCEL instance where
repositories are implemented as multisets of tuples (as in Section 3.1), while we
refer to [5] for details about its instantiation for MISSCEL.

The methodology. We aim at enriching SCEL components with an external
reasoner to be invoked when necessary (e.g. by a robot before performing a
movement). Ideally, this should be done by minimally extending SCEL. In Fig-
ure 1 we depicted the constituents of a SCEL component: interfaces, policies,
processes and repositories. Interfaces will not be involved in the extension, as
they only expose the local knowledge to other components. Moreover, we cur-
rently restrict ourselves to not explicitly consider policies in the extension. Since,
in the considered dialect, processes store and retrieve tuples in repositories, the
interaction between a process and its local repository is a natural choice where
to plug-in a reasoner: we can use special data (reasoning request tuples) whose
addition to the local knowledge (i.e. via a put at self) triggers the reasoner.
For example, assuming we have a reasoner offering the capability of computing

7 http://sysma.lab.imtlucca.it/tools/misscel/
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Fig. 2. Enriched SCEL component

the best direction where to move so as to minimize the probability of collisions,
a robot may invoke the reasoner before performing a movement by resorting to
an action like put(“reasoningRequest”, “computeDirection”, perceivedEnv)@self,
where perceivedEnv is the current perception that the robot has of the surround-
ing environment (e.g. the number and position of robots within a certain range).
Reasoning results can then be stored in the knowledge as reasoning result tu-
ples, allowing local processes to access them as any other data (e.g. via a get
from self). For example, the direction “dir” generated by the reasoner can be
accessed by resorting to an action like get(“reasoningResult”, dir)@self.

Figure 2 depicts such an enriched SCEL component, together with a generic
external reasoner R. With respect to Figure 1, now local communications are
filtered by RI, a reasoner integrator. As depicted by the grey arrow between RI
and R, in case of reasoning requests RI invokes R, which evaluates the request
and returns back the result of the reasoning phase. RI then stores the obtained
result in the knowledge, allowing the local processes to access it via common get
or qry. In case of normal data the flow goes instead directly to the knowledge.
Note that only local put of reasoning request tuples trigger a reasoner.

Actually, RI has the further fundamental role of translating data among the
internal representations used by SCEL and by the reasoner, acting hence as
an adapter between them. For example, the reasoner may use a different rep-
resentation for the space (and thus for the positions of the other robots) with
respect to SCEL. To sum up, RI performs three tasks: it translates the parame-
ters of the reasoning requests from SCEL’s representation to the reasoner’s one
(scel2reasoner), it invokes the reasoner (invokeReasoner), and finally it trans-
lates back the results (reasoner2scel). Clearly, each reasoner requires its own
implementation of the three operations. Hence, as depicted in Figure 3, we sep-
arate the RI component into an Abstract Reasoning Interface and a Concrete
Adapter. The former is given just once and contains the definition of the three
operations, while the latter is reasoner- and domain-specific, and provides the ac-
tual implementation of the three operations. In [5] we discussed the instantiation
for MISSCEL of the Abstract Reasoning Interface, together with an example
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Fig. 3. An architectural perspective of the reasoner integrator

of a concrete adapter for the reasoner Pirlo in the context of the mentioned
collision avoidance robotic scenario.

Note that the presented methodology is not restricted to a particular rea-
soner. Moreover, many reasoners could be used at the same time, each performing
particular reasoning tasks for which they are best suited. To this end, particular
reasoning services (like e.g. the computeDirection one) can be requested by a
SCEL process according to the task at hand.

Finally, it may be worth to remark that, as mentioned, we did not investigate
yet the role of policies in extending SCEL’s components with reasoning capa-
bilities. However, they already play an important role in our methodology, as
they can manipulate the flow of data among processes and local repositories, and
thus can intercept, modify or generate reasoning requests and results. Moreover,
we can easily foresee a scenario in which complicated policies, possibly involving
reasoning tasks, resort to a reasoner as well, following the proposed methodology.
For example, in case of a group get like, e.g. the second action of the process
presented in the step 3/7 of our running example, which is used to help other
robots for rescuing a victim, it may be useful to allow policies to use reasoners
in order to select the best tuple among the many matching ones present in a
distributed repository (e.g. different help requests) according to some specific
criteria (e.g. the one regarding the nearest robot, or the most urgent one).

4 A Policy Language

The SCEL programming constructs presented in Section 2 define the computa-
tional behaviour of components in a procedural style. According to the SCEL

design principles, the interaction and adaptation logics are defined separately
by means of behavioural policies. These policies have to be intuitive and easy-
to-maintain, therefore the use of a declarative paradigm for their specification
is advocated. Recently, policy languages (see e.g. [18, 31, 29]) are receiving much
attention in different research fields, varying, e.g., from access control to network
management. In fact, policies can regulate multiple system’s aspects and, by us-
ing a declarative approach, can be easily integrated with other programming
languages.
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Policies: π ::= 〈α target : τ? rules : r+ obl : o∗ 〉

| {α target : τ? policies :π+ obl : o∗ }

Combining algorithms: α ::= deny-overrides | permit-overrides

| deny-unless-permit | permit-unless-deny

| first-applicable | only-one-applicable

Rules: r ::= (d target : τ? condition : be? obl : o∗ )

Decisions: d ::= permit | deny

Targets: τ ::= f(pv ,sn) | τ ∧ τ | τ ∨ τ

Matching functions: f ::= equal | not-equal | greater-than

| less-than | greater-than-or-equal

| less-than-or-equal | . . .

Obligations: o ::= [ d s ]

Obligation actions: s ::= ǫ | a.s

Table 11. Policy constructs

Here, we present a simplified version8 of FACPL (Formal Access Control Pol-
icy Language) [36], a simple, yet expressive, language for defining access control,
resource usage and adaptation policies, which is inspired by the XACML [39]
standard for access control. We refer the interested reader to [35] for a presen-
tation of the full version of FACPL, which contains additional aspects that are
not exploited in the integration with SCEL. Syntax and semantics of policy
abstractions are presented in Section 4.1 and Section 4.2, respectively.

4.1 Policies and their Syntax

Policies are sets of rules that specify strategies, requirements, constraints, guide-
lines, etc. about the behaviour of a controlled system. The syntax is presented
in Table 11. As a matter of notation, symbol ? stands for optional elements, ∗
for (possibly empty) sequences, and + for non-empty sequences. For the sake
of readability, whenever an element is missing, we also omit the possibly re-
lated keyword; thus, e.g., rule (d target : τ condition : obl : ) will be written as
(d target : τ ).

A Policy is either an atomic policy 〈. . .〉 or a policy set {. . .}. An atomic
policy (resp. policy set) is made of a target, a non-empty sequence of rules (resp.
policies) combined through one of the combining algorithms, and a sequence of
obligations.

8 In the rest of the paper, unless when explicitly mentioned, we use the acronym
FACPL for referring to this simplified version.
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A target indicates the authorisation requests to which a policy/rule applies.
It is either an atomic target or a pair of simpler targets combined using the
standard logic operators ∧ and ∨. An atomic target f(pv ,sn) is a triple denoting
the application of a matching function f to policy values9 pv from the policy and
to policy values from the evaluation context identified by attribute (structured)
names10 sn. In fact, an attribute name refers to a specific attribute of the request
or of the environment, which is available via the evaluation context. In this way,
an authorisation decision can be based on some characteristics of the request,
e.g. subjects’ or objects’ identity, or of the environment, e.g. CPU load. For
example, the target greater-than(90%,subject/CPUload) matches whenever 90%
is greater then the CPU load of the subject component. Similarly, the structured
name action/action-id refers to the identifier of the action to be performed (such
as get, qry, put, etc.) and, thus, the target equal(get, action/action-id) matches
whenever such action is the withdrawing one.

Rules are the basic elements for request evaluation. A rule defines the tests
that must be successfully passed by attributes for returning a positive or neg-
ative decision — i.e. permit or deny — to the enclosing policy. This decision
is returned only if the target is ‘applicable’, i.e. the request matches the target;
otherwise the evaluation of the rule returns not-applicable. In fact, as shown in
Section 4.2, the semantics of the policies is defined over a three-valued decision
δ that, in addition to permit and deny, can also assume the value not-applicable.
Rule applicability can be further refined by the condition expression be, which
permits more complex calculations than those in target expressions. be is a
boolean expression which acts on policy values and structured names. Notably,
these expressions, as well as the matching functions, can be extended in order
to properly deal with specific data types.

A combining algorithm computes the authorisation decision correspond-
ing to a given request by combining a set of rules/policies’ evaluation results.
The language provides the following algorithms:

– deny-overrides: if any rule/policy in the considered list evaluates to deny, then
the result of the combination is deny. In other words, deny takes precedence,
regardless of the result of evaluating any of the other rules/policies in the list.
Instead, if at least a rule/policy evaluates to permit and all others evaluate
to not-applicable or permit, then the result of the combination is permit. If
all policies are found to be not-applicable to the decision request, then the
policy set evaluates to not-applicable.

– permit-overrides: this algorithm is the dual of the previous one, i.e. this time
permit takes precedence over the other results.

9 The set of policy values depends on the system where the policies are enforced. In
case of SCEL systems, this set contains action identifiers (i.e., get, qry, put, fresh
and new), items and templates, and all the other knowledge values that can be used
within the evaluation.

10 A structured name has the form name/name, where the first name stands for a
category name and the second one for an attribute name.

28



– deny-unless-permit: this algorithm is similar to permit-overrides, because it
is intended for those cases where a permit decision takes precedence over
deny decisions; differently from permit-overrides, this algorithm never returns
not-applicable, i.e. it is converted to deny.

– permit-unless-deny: this algorithm is the dual of the previous one, i.e. deny
takes precedence over permit decisions and not-applicable is never returned.

– first-applicable: rules/policies are evaluated in the order of appearance in the
considered list of rules/policies and the combined result is the same as the
result of evaluating the first rule/policy in the list that is applicable to the
decision request, if such result is either permit or deny. If all rules/policies
evaluate to not-applicable, then the overall result is not-applicable.

– only-one-applicable: if one and only one rule/policy in the considered list is
applicable by virtue of its target, the result of the combining algorithm is the
result of evaluating the single applicable rule/policy. Otherwise, the result
is not-applicable.

An obligation is a sequence (ǫ denotes the empty one) of actions that should
be performed in conjunction with the enforcement of an authorisation decision.
It is returned when the authorisation decision for the enclosing element, i.e. rule,
policy or policy set, is the same as the one attached to the obligation. An obli-

gation action is a generic action that can be used for enforcing additional
behaviours in the controlled system and whose arguments may also contain ex-
pressions and structured names that are fulfilled during request evaluation. Like
policy values, the set of obligation actions depends on the system where the
policies are enforced. For example, w.r.t. a given request, the obligation

[ deny put(“goTo”, env/station.x, env/station.y)@self ]

returned when the authorisation decision for the enclosing element is deny, could
be fullfilled as follows

put(“goTo”, 5.45, 3.67)@self

and could be used to set the robot movement’s direction with respect to the
coordinates of the closest (charging) station. Notably, the coordinates are re-
trieved at evaluation-time through the context, as indeed obligation actions can
use context-dependent arguments.

4.2 Semantics of the Policy Language

Before presenting the semantics, we introduce the key notion of authorisation
requests. They are functions, ranged over by ρ, mapping structured names to
policy values and are written as collections of pairs of the form (sn, pv). As an
example, consider the following request:

ρ = {(subject/subject-id, “cmp”), (subject/attr, 4), . . .
(action/action-id, “act”), . . .
(object/resource-id, “res”), (object/attr, 3), . . . }
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Here, the subject identified by the string “cmp” requires the authorisation to
execute the action “act” on the object identified by string “res”. Notably, au-
thorisation requests contain all attributes needed to evaluate them, forming the
so-called evaluation context, including environmental properties.

The language semantics permits, given a policy π and a request ρ, to obtain
a decision δ ∈ {permit, deny, not-applicable} and a (possibly empty) sequence s
of (fulfilled) obligation actions. This is expressed by the judgement π, ρ ⊢ δ, s.
When we only consider permit and deny as resulting decisions, we use d instead
of δ. The semantics is defined by the inference rules for the evaluation of policy
elements, reported in Table 12, and of policy combining algorithms, reported in
Table 13. In the next two subsections we comment the rules of the two tables,
respectively.

Semantics of policies’ elements. The inference rules of Table 12 are grouped
according to the type of element they refer to. Thus, from top to bottom, we
have the inference rules concerning policies, rules, targets and obligations. To
save space, we do not show the inference rules of policy sets, as they are similar
to those of atomic policies, and of some matching functions.

Some inference rules use the evaluation function [[ · ]]ρ that first replaces each
attribute occurring in its argument expression with the corresponding value re-
trieved from the request ρ and then makes possible (boolean, integer, float,
string, etc.) calculations. For example, given the request shown before, the arith-
metic expression subject/attr + object/attr is evaluated as follows

[[ subject/attr + object/attr ]]ρ = ρ(subject/attr) + ρ(object/attr) = 3 + 4 = 7

In case of occurrence of run-time errors, e.g. a function is not defined for argu-
ments of a certain type, the expression evaluation halts and the policy evaluation
does not complete.

The judgement π, ρ ⊢ δ, s defines the semantics of policies and is inferred via
the inference rules for targets, obligations and rules, combined together using
the inference rules for the combining algorithms. Specifically, when a policy π is
applied to a request ρ, first it is checked if the policy’s target matches the request.
If this is the case the evaluation proceeds by applying the policy’s combining
algorithm to the (sequence of) enclosed rules, thus obtaining a policy decision d
and a sequence of obligation actions s. The decision d is then used to fulfill the
sequence of policy’s obligations thus obtaining a sequence s′ of obligation actions
that, in the resulting authorisation statement, is appended to s. If the target is
empty then it matches any request. Finally, if the target does not match the
request or the decision obtained by the combining algorithm is not-applicable,
the policy does not apply and the decision not-applicable is returned together
with an empty sequence of obligations. A policy set is evaluated like a policy,
the only difference is that the combining algorithm is applied to a sequence of
policies and/or policy sets, rather than rules.

When a rule r is applied to a request ρ, first it is checked if the rule’s target
matches the request. Additionally, in this case, a condition expression, if present,
is evaluated. If its evaluation returns true, the rule applies, otherwise the deci-
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Policies

τ, ρ ⊢ applicable α(r+), ρ ⊢ d, s o∗, ρ, d ⊢ s′

〈α target : τ rules : r+ obl : o∗ 〉, ρ ⊢ d, s.s′

α(r+), ρ ⊢ d, s o∗, ρ, d ⊢ s′

〈α rules : r+ obl : o∗ 〉, ρ ⊢ d, s.s′
α(r+), ρ ⊢ not-applicable, ǫ

〈α rules : r+ obl : o∗ 〉, ρ ⊢ not-applicable, ǫ

τ, ρ ⊢ not-applicable ∨ (τ, ρ ⊢ applicable ∧ α(r+), ρ ⊢ not-applicable, ǫ)

〈α target : τ rules : r+ obl : o∗ 〉, ρ ⊢ not-applicable, ǫ

Rules

τ, ρ ⊢ applicable [[ be ]]ρ = true o∗, ρ, d ⊢ s

(d target : τ condition : be obl : o∗ ), ρ ⊢ d , s

τ, ρ ⊢ applicable o∗, ρ, d ⊢ s

(d target : τ obl : o∗ ), ρ ⊢ d , s

[[ be ]]ρ = true o∗, ρ, d ⊢ s

(d condition : be obl : o∗ ), ρ ⊢ d , s

o∗, ρ, d ⊢ s

(d obl : o∗ ), ρ ⊢ d , s

τ, ρ ⊢ not-applicable

(d target : τ condition : be? obl : o∗ ), ρ ⊢ not-applicable, ǫ

[[ be ]]ρ = false

(d condition : be obl : o∗ ), ρ ⊢ not-applicable, ǫ

τ, ρ ⊢ applicable [[ be ]]ρ = false

(d target : τ condition : be obl : o∗ ), ρ ⊢ not-applicable, ǫ

Targets

τ1, ρ ⊢ applicable ∨ τ2, ρ ⊢ applicable

(τ1 ∨ τ2), ρ ⊢ applicable

τ1, ρ ⊢ applicable τ2, ρ ⊢ applicable

(τ1 ∧ τ2), ρ ⊢ applicable

τ1, ρ ⊢ not-applicable τ2, ρ ⊢ not-applicable

(τ1 ∨ τ2), ρ ⊢ not-applicable

τ1, ρ ⊢ not-applicable ∨ τ2, ρ ⊢ not-applicable

(τ1 ∧ τ2), ρ ⊢ not-applicable

f([[ pv ]]ρ, ρ(sn)) ⊢ true

f(pv,sn), ρ ⊢ applicable

sn /∈ dom(ρ) ∨ f([[ pv ]]ρ, ρ(sn)) ⊢ false

f(pv,sn), ρ ⊢ not-applicable

pv > pv′

greater-than(pv,pv) ⊢ true

pv ≯ pv′

greater-than(pv,pv′) ⊢ false

. . .

Obligations

ǫ, ρ, d ⊢ ǫ

d′ = d [[ s ]]ρ = s′ o∗, ρ, d ⊢ s′′

[ d ′ s ] o∗, ρ, d ⊢ s′.s′′
d′ 6= d o∗, ρ, d ⊢ s′

[ d ′ s ] o∗, ρ, d ⊢ s′

Table 12. Semantics of policies’ elements
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sion not-applicable is returned. If the condition expression is absent, then it is
considered true. When the rule’s target matches the request and the condition
expression returns true, the rule’s effect, i.e. permit or deny, is returned, together
with the sequence of obligation actions resulting from fulfilling the sequence of
rule’s obligations.

A target τ matches a request ρ, i.e. its evaluation returns applicable, if the
combination of its atomic targets matches ρ. A composed target of the form
(τ1 ∨ τ2) matches ρ, if one between τ1 and τ2 matches the request, while in
case of target (τ1 ∧ τ2), both τ1 and τ2 must match the request. An atomic
target of the form f(pv ,sn) matches a request ρ if the matching function f ,
applied to (the evaluation of) the policy value pv and the value identified by
the structured name sn in the request, i.e. ρ(sn), returns true. Before applying
the matching function, the policy value must be evaluated, since it may be a
template containing expressions. This is not necessary for the structured name;
indeed, although it may be an item, it will not contain expressions since it has
been retrieved from the request. Instead, the evaluation of an atomic target
returns not-applicable either if the structured name does not identify any value
in the request, i.e. it does not belong to the request’s domain (sn /∈ dom(ρ)),
or if the matching function returns false. The rules for matching functions are
straightforward. For example, greater-than(pv,pv′) returns true only when pv is
greater than pv′.

The last three rules account for fulfilment of a sequence of policy’s obliga-
tions when the decision for the enclosing element is d, i.e. permit or deny. If the
sequence is empty, then an empty sequence of obligation actions is returned.
Otherwise, the obligations in the sequence are fulfilled sequentially and the re-
sulting sequences of obligation actions are linked together preserving the same
order. The fulfilment of an obligation with attached effect equal to the decision d
of the enclosing element consists in evaluating all argument expressions by using
function [[ · ]]ρ. Instead, if the attached effect differs from d, the last rule permits
to continue the fulfilment while ignoring the current obligation.

Semantics of policy combining algorithms. The rules of Table 13 rewrite
formally the combining algorithms descriptions presented in Section 4.1. For
each algorithm, we have separate, but quite similar, rules that deal with the
case that the algorithm is applied to a sequence of rules or of policies. Therefore,
to save space, we only report and comment the first type of rules and, for dual
algorithms (e.g. permit-overrides and deny-overrides), we avoid to report both set
of rules.

In the inference rules, given a non-empty sequence r+ of rules, notation
∃ r, ρ ⊢ δ, s (∄ r, ρ ⊢ δ, s, resp.) means that there is (not, resp.) a rule in the
sequence satisfying the judgement. The variants with universal quantifier or
where the index of rules is explicitly considered have a similar meaning.

The rules for the algorithm permit-overrides (resp. deny-overrides) are straight-
forward: if there is a rule in the sequence to which the algorithm is applied
returning decision permit (resp. deny) then the algorithm returns permit; in-
stead, if all rules in the sequence are not-applicable, then the algorithm returns
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Permit-Overrides

∃ r, ρ ⊢ permit, s

permit-overrides(r+), ρ ⊢ permit, s

∄ r′, ρ ⊢ permit, s′ ∃ r, ρ ⊢ deny, s

permit-overrides(r+), ρ ⊢ deny, s

∀ r, ρ ⊢ not-applicable, ǫ

permit-overrides(r+), ρ ⊢ not-applicable, ǫ

Deny-Unless-Permit

∃ r, ρ ⊢ permit, s

deny-unless-permit(r+), ρ ⊢ permit, s

∄ r′, ρ ⊢ permit, s′ ∃ r, ρ ⊢ deny, s

deny-unless-permit(r+), ρ ⊢ deny, s

∀ r, ρ ⊢ not-applicable, ǫ

deny-unless-permit(r+), ρ ⊢ deny, ǫ

First-Applicable i ∈ {1, 2, . . . , |r|}

ri, ρ ⊢ d, s ∀ 1 ≤ j < i : rj , ρ ⊢ not-applicable, ǫ

first-applicable(r+), ρ ⊢ d, s

∀ i : ri, ρ ⊢ not-applicable, ǫ

first-applicable(r+), ρ ⊢ not-applicable, ǫ

Only-One-Applicable i ∈ {1, 2, . . . , |r|}

ri, ρ ⊢ d, s ∀ j 6= i : rj , ρ ⊢ not-applicable, ǫ

only-one-applicable(r+), ρ ⊢ d, s

∃ i, j : i 6= j ∧ ri, ρ ⊢ di, si ∧ rj , ρ ⊢ dj , sj

only-one-applicable(r+), ρ ⊢ not-applicable, ǫ

Table 13. Semantics of policy combining algorithms

not-applicable; otherwise, i.e. no rule returns permit and there is at least one rule
returning deny (resp. permit), then the algorithm returns deny.

The rules for the algorithm deny-unless-permit (resp. permit-unless-deny) are
similar to those for permit-overrides (resp. deny-overrides) but in this case the
decision not-applicable is never returned. Thus, the algorithm returns permit
(resp. deny) if there is a rule in the sequence returning it; otherwise, it returns
deny (resp. permit).

In the previous inference rules, the sequence of obligation actions returned
by an algorithm together with a decision d is any of those returned by one of
the rules, in the sequence to which the algorithm is applied, returning the same
decision d (if there is no such rule, then it is the empty sequence). However,
no assumption is made about the evaluation order of the rules in the sequence.
Thus, when more rules return permit or deny, the returned sequence of obligation
actions is somehow nondeterministically chosen. Namely, id the execution halts
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match(T, t) = σ

pattern-match(T ,t) ⊢ true

6 ∃σ : match(T, t) = σ

pattern-match(T ,t) ⊢ false

Table 14. pattern-match function

at the first permit or deny result, the resulting obligation sequence s is composed
by only the actions returned together with such a result.

Differently from the previous cases, the inference rules for the algorithm
first-applicable ensure that the rules to which the algorithm is applied are eval-
uated sequentially. The decision returned is then the first one differing from
not-applicable, if any, or not-applicable, otherwise.

Finally, the rules for the algorithm only-one-applicable check if only one of
the rules to which the algorithm is applied returns a decision differing from
not-applicable: if this is the case, then such decision is returned (together with the
associated sequence of obligation actions), otherwise not-applicable is returned.

To sum up, policies, and their evaluation, are hierarchically structured as
trees: the evaluation of leaf nodes, i.e. rules, return a ‘starting’ decision, permit,
deny or not-applicable, while the intermediate nodes, i.e. policies, combine the
decisions and obligations returned by the evaluation of their child nodes through
the chosen combining algorithm. Policy evaluation terminates when the root
is reached producing a decision and a sequence of obligations. This sequence
consists of fulfilled actions that will enforce the consequences resulting from the
authorisation process.

5 A Full-fledged SCEL Instance

In this section, we present a full instantiation of the SCEL language, called
PSCEL (Policed SCEL). PSCEL uses as knowledge the tuple spaces presented
in Section 3.1 and as policy language the version of FACPL presented in Sec-
tion 4.1. Therefore, each PSCEL component has its own tuple repository and a
collection of policies controlling the behaviour of such a component and conse-
quently the interactions with others.

Section 5 introduces the formal integration of FACPL with SCEL by out-
lining the integration steps which must be followed in order to obtain fully-
interoperable abstractions. Then, Section 5.2 shows PSCEL at work on the
considered swarm robotics scenario.

5.1 PSCEL: Policed SCEL

We present the syntax refinement, followed by the formal integration in the
SCEL operational semantics.
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Syntax. FACPL policies are specialised by instantiating the obligation actions
as the set of SCEL actions reported in Table 1, and by defining the matching
function pattern-match, which aims at comparing knowledge values with policy
ones. In particular, this function defines, by using the pattern-matching mech-
anism presented in Section 3.1, the matching of a template with a knowledge
item. The formal rules for the new comparison function are reported in Table 14.

To explicitly represent the fact that the policies in force at any given com-
ponent can dynamically change while the component evolves, we use a sort of
automata somehow reminiscent of security automata [49]. Thus, a policy au-

tomaton Π is a pair 〈A, π 〉, where

– A is an automaton of the form 〈Policies,Targets, T 〉 where the set of states
Policies contains all the policies that can be in force at different times,
the set of labels Targets contains the security relevant events (expressed as
the targets in Table 11) that can trigger policy modification and the set of
transitions T ⊆ (Policies×Targets×Policies) represents policy replacement.

– π ∈ Policies is the current state of A.

Dynamically changing policies is a powerful mechanism that permits controlling,
in a natural and clear way, the evolution of adaptive systems having a very high
degree of dynamism, which in principle would be quite difficult to manage. In
Section 5.2 a full application of such an automaton is provided.

Semantics. PSCEL specialises the SCEL operational semantics by connecting
the evaluation of the authorization predicate with the inference rules of Tables 12
and 13. More specifically, the authorization predicate in PSCEL also considers
the outcome of policy evaluation; this is an authorization decision δ and a se-
quence of actions s. The authorization predicate takes the form Π ⊢δs λ,Π ′

meaning that the action generating the label λ is evaluated with respect to
the policy automaton Π to a decision δ (i.e., permit, deny or not-applicable),
along with a (possibly empty) sequence s of actions to perform, and a (possibly
adapted) policy automaton Π ′ to enforce. To calculate an authorization deci-
sion, we need first to generate a request ρ from label λ and then to evaluate it
with respect to the current policy state π of Π.

The authorization request is produced on demand when an action that needs
to be authorised is going to be performed. The production is done by function
λ2ρ(·) that maps (a subset of) the SCEL labels to requests and is defined as
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follows:

λ2ρ(I : fresh(n)) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/action-id, fresh)}
∪ {(object/attr, val) | (attr, val) ∈ I}

λ2ρ(I : new(J ,K, Π, P )) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/action-id,new)}
∪ {(object/attr, val) | (attr, val) ∈ J }

λ2ρ(I : t ⊲̄J ) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/item, t), (action/action-id,put)}
∪ {(object/attr, val) | (attr, val) ∈ J }

λ2ρ(I : t ⊳̄J ) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/item, t), (action/action-id,get)}
∪ {(object/attr, val) | (attr, val) ∈ J }

λ2ρ(I : t ◭̄J ) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/item, t), (action/action-id,qry)}
∪ {(object/attr, val) | (attr, val) ∈ J }

Each value for subject and object, retrieved from I and J , respectively, is bound
to an attribute identifier, e.g. the identifier of the subject component is bound
to subject/subject-id. Notably, the item attribute identifies the exchanged item
in a communication action, thus it is undefined in the case of fresh and new.

Finally, if we let Π , 〈A, π〉, Π ′′ , 〈A, π′〉 and ρ , λ2ρ(λ), the authorization
predicate can be formally defined in terms of the semantics of policies by the
following rule:

π, ρ ⊢ δ, s Π ′ =

{

Π ′′ if 〈π, τ, π′〉 ∈ A ∧ τ, ρ ⊢ applicable
Π otherwise

Π ⊢δs λ,Π ′

Intuitively, an action λ is allowed if the corresponding request ρ satisfies π, ρ ⊢
permit, s; moreover, if for some target τ ∈ Targets, such that τ, ρ ⊢ applicable,
the automaton A has a transition 〈π, τ, π′〉, then the state of A after the request
evaluation becomes π′. On the other hand, if we get π, ρ ⊢ deny, s, then the action
is disallowed but, as a consequence of evaluation of the authorization predicate,
and similarly to the previous case, the policy in force within the component can
change. Notably, the current policy in Π does not change unless there is a target
τ matching the request ρ and producing a transition in the policy automaton.
Of course, if the automaton has a single state or an empty set of transitions, the
policy in force at a component never changes.

The refinement of the authorization predicate forces a slight modification
of the SCEL operational semantics, for appropriately dealing with the autho-
rization decisions permit and deny, and the discharge of obligation actions. For
the sake of simplicity, the PSCEL operational semantics does not take into ac-
count the decision not-applicable. This means that the rules do not explicitly
deal with situations where none of the policies is applicable to a given request,
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or the combining algorithms do not convert not-applicable into permit or deny.
These situations are handled as runtime errors that induce the executing process
to get stuck. They could be easily avoided by using an appropriate combining
algorithm, as e.g. permit-unless-deny, at top level of each state of the policy
automaton Π.

PSCEL operational rules are similar to those presented in Section 2.3, there-
fore in Table 15 we only report some significant ones11. As a matter of notation,
I.p indicates the process part of component I and, when s = ǫ, s.P stands
for P . Notably, all labels taken as argument by the authorization predicate,
i.e. I : fresh(n), I : new(J ,K, Π, P ), I : t ⊳̄J , I : t ◭̄J and I : t ⊲̄J , have a
counterpart corresponding to decision deny which is obtained by application of
functional notation �(·) to the label. Thus, label �(I : t ⊳̄J ) indicates that
action get is denied. Some comments on the rules in Table 15 follow.

The interaction predicate, used in rule (pr-sys), is instantiated by the inter-
leaving interaction predicate of Table 3. Moreover, the rule here is tailored for
taking into account the discharge of the obligation actions generated by the in-
ference. To this aim, the component obtained after the transition contains the
placeholder ∗ in place of the process part; it will be replaced by the continuation
of process P , possibly prefixed by a sequence of obligations, during the rest of the
derivation (see, e.g., the use of [s.(I.p)/∗] in the rule (ptpget-p-p)). Notably, this
mechanism permits to apply the substitution σ also to the obligation actions, so
that the variables possibly contained get instantiated.

The rules denoting the willingness of components to accept the execution of
an action operating on their local repository are now split in two rules: one rule,
e.g. (accget-p), corresponding to the fact that the action is authorised, and one
rule, e.g. (accget-d), corresponding to the the fact the action is denied. In the
former rule, the label of the transition is updated with the new policy (as in the
SCEL corresponding rule) and with the the obligation actions s that have to be
performed before the continuation process. In the latter rule, the transition label
is updated similarly, although the action on the repository, i.e. the withdrawing
of item t, is not performed.

When considering the transitions that a single component can perform, the
main difference is that we have one rule, e.g. (lget-p), for the case the action is
allowed by the authorization predicate, and one rule, e.g. (lget-d), for the case it
is denied. Notably, in this latter case, even though the action is not performed
(indeed the last premise of (lget-d) starts from C and not from C ′), the new
policies and the obligation actions produced by evaluation of the authorisation
predicate are installed (indeed, in the conclusion of the rule, C evolves to C ′′);
they in fact may adapt the system to allow a subsequent successful execution of
the action or to enable an alternative execution path.

Similarly, in case of synchronisation between two components, for each dif-
ferent type of action we have four cases to consider, corresponding to the pairs
consisting of the values permit and deny. For example, the action get can with-

11 We refer the interested reader to the technical report [37] for a complete account of
the operational rules.
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P ↓α P ′ α = I : fresh(n) ⇒ n 6∈ n(I[K, Π,nil]) Π, I : α ≻ λ, σ,Π ′

I[K, Π, P ]
λ[Π′/I.π , P ′/I.p]

✲ I[K, •, ∗σ]
(pr-sys)

Π ⊢p
s I : t ⊳̄J , Π ′ K ⊖ t = K′

J [K, Π, P ]
I:t ⊳̄J [Π′/J .π , s.P/J .p]

✲ J [K′, Π ′, s.P ]
(accget-p)

Π ⊢d
s I : t ⊳̄J , Π ′

J [K, Π, P ]
�(I:t ⊳̄J [Π′/J .π , s.P/J .p])

✲ J [K, Π ′, s.P ]
(accget-d)

C
I:t⊳n
✲ C′ n = I.id C′[I.π/•, I.p/∗]

I:t ⊳̄ I
✲ C′′

C
τ
✲ C′′

(lget-p)

C
I:t⊳n
✲ C′ n = I.id C

�(I:t ⊳̄ I)
✲ C′′

C
τ
✲ C′′

(lget-d)

S1
I:t⊳n
✲ S′1 S2

I:t ⊳̄J
✲ S′2 J .id = n I.π ⊢p

s I : t ⊳̄J , Π ′

S1 ‖ S2
τ
✲ S′1[Π

′/•, s.(I.p)/∗] ‖ S′2

(ptpget-p-p)

S1
I:t⊳n
✲ S′1 S2

�(I:t ⊳̄J )
✲ S′2 J .id = n I.π ⊢p

s I : t ⊳̄J , Π ′

S1 ‖ S2
τ
✲ S1 ‖ S′2

(ptpget-p-d)

S1
I:t⊳n
✲ S′1 S2

I:t ⊳̄J
✲ S′2 J .id = n I.π ⊢d

s I : t ⊳̄J , Π ′

S1 ‖ S2
τ
✲ S1[Π

′/•, s.(I.p)/∗] ‖ S2

(ptpget-d-p)

S1
I:t⊳n
✲ S′1 S2

�(I:t ⊳̄J )
✲ S′2 J .id = n I.π ⊢d

s I : t ⊳̄J , Π ′

S1 ‖ S2
τ
✲ S1[Π

′/•, s.(I.p)/∗] ‖ S2

(ptpget-d-d)

Table 15. PSCEL (excerpt of) operational semantics (p stands for permit in ⊢p
s, while

d stands for deny in ⊢d
s)

draw an item from a specific repository with a point to point access according to
the rule (ptpget-p-p) of Table 15. The label I : t ⊳̄J , generated by rule (accget-p),
denotes the willingness of component J to provide the item t to component I.
The label is generated only if such willingness is authorised by the authoriza-
tion predicate in force at component J and if withdrawing an item t from the
repository of J is possible (K ⊖ t = K′). The target component J is modified
by removing t from the repository and by installing the policy and the sequence
of obligation actions produced by the evaluation of the authorization predicate.
Thus, when the target of the action denotes a specific remote repository (ptpget-p-
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p), the action is only allowed if n is the name of the component J simultaneously
willing to provide the wanted item, and if the request to perform the action at
J is authorised by the policy at the source component I (identified by notation
I.π). The authorization to perform the action could be denied by the local pol-
icy (rule (ptpget-d-p) for remote ones) or by the policy of the target component
(rules (accget-d) and (ptpget-p-d)) or by both policies (rule (ptpget-d-d)). Note that
the policy and the sequence of obligation actions produced by evaluation of the
authorisation predicate are always installed on the source component, except
when the action is authorised by the local policy but not by the policy of the
target component, i.e. as in the case of rule (ptpget-p-d). In the target component,
the installation occurs only when the action has been authorised by the source
component.

The rules for group-oriented communication rely on the same basic ideas
described above (i.e., there are four rules for each kind of action). Thus, due to
space limitations, they are not reported here.

5.2 PSCEL at Work

We show here the effectiveness of the PSCEL approach by providing a complete
model of the robot swarm scenario used as a running example in the previous
sections and informally presented in Section 1. Notably, this model exploits the
fact that a process, which represents the behaviour of a robot, can read tuples
produced by sensors, e.g. the tuple 〈“collision”, true〉 indicating that an imminent
collision with a wall of the arena has been detected, and can add tuples that
trigger the activation of actuators, e.g. the tuple 〈“goTo”, 4.34, 3.25〉 forcing the
robot to reach a specific position. Therefore, as these tuples are produced (resp.,
consumed) by sensors (resp., actuators), no additional data/assumptions on the
initial state are needed. It is also worth noticing that sensors and actuators are
not explicitly modelled in PSCEL, as they are robot’s internal devices while
the PSCEL model represents the programmable behaviour of the robot, i.e. its
running code. We clarify the practical role of sensors and actuators in Section 6.

The scenario is modelled as a set of components (Robot1 ‖ . . . ‖ Robotn )
where each Roboti has the form IRi

[KRi
, ΠR, PR]. The behaviour of a single

robot corresponds to the following PSCEL process

PR , (qry(“victimPerceived”, true)@self.
put(“victim”, x, y, 3)@self.put(“rescue”)@self

+get(“victim”, ?xv, ?yv, ?count)@(role=“rescuer”∨role=“helpRescuer”).
HelpingRescuer )

| RandomWalk | IsMoving

A robot follows a random walk to explore the disaster area. To this aim, the
process RandomWalk randomly selects a direction that is followed until either
a wall is hit or a stop signal is sent to the wheels actuator. The robot recognises
the presence of a victim by means of the qry action, while it helps other robots
to rescue a victim by means of the get action and according to the HelpingRes-
cuer process definition. When a victim is found, information about his position
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(retrieved by the attributes x and y of the robot’s interface) and the number of
other robots needed for rescuing him (3 robots in our case, but a solution with
a varying number can be easily accommodated) is locally published. Then, the
tuple 〈“rescue”〉 is locally inserted to start the rescuing procedure.

The RandomWalk process calculates the random direction followed by the
robot to explore the arena. The robot starts moving as soon as the first di-
rection is calculated. When the proximity sensor signals a possible collision, by
means of the tuple 〈“collision”, true〉, a new random direction is calculated. This
behaviour corresponds to the following PSCEL process

RandomWalk , put(“direction”, 2πrand())@self.
qry(“collision”, true)@self.RandomWalk

The process defines only the direction of the motion and not the will of moving.
The HelpingRescuer process is defined as follows

HelpingRescuer , if (count > 1) then { put(“victim”, xv, yv, count-1)@self }.
put(“goTo”, xv, yv)@self.
qry(“position”, xv, yv)@self. put(“rescue”)@self

This process is triggered by a victim tuple retrieved from the rescuers ensemble
(see PR). The tuple indicates that additional robots (whose number is stored
in count) are needed at position (xv, yv) to rescue a victim. If more than one
robot is needed, a new victim tuple is published (with decremented counter).
Then, the robot, which becomes a helper of the rescuer, goes towards the victim
position. Once it reaches him (i.e., its current position coincides with the victim’s
one), it becomes a rescuer and starts the rescuing procedure. It is worth noting
that, if more victims are in the scenario, different groups of rescuers will be
spontaneously organised to rescue them. To avoid that more than one group
is formed for the same victim, we assume that the sensor used to perceive the
victims is configured so that a victim that is already receiving assistance by
some rescuers is not detected as a victim by further robots. This assumption
is also feasible in a real scenario, where a light-based message communication
among robots can be used [40]. Thus, once a robot has reached the victim, by
using a specific light color, it signals not to “discover” the victim next to it (see
Chapter IV.2 [42]).

Notably, the effectiveness of this approach relies on the assumption that
robots cannot fail. In fact, when a robot that knows the victim’s position fails,
it cannot be ensured that such position is correctly communicated. Specific han-
dling can be used in such a case, e.g. by enabling the perception of a victim if
the robots already taking care of the victim are not active.

Finally, in order to check the level of the battery during the exploration,
and possibly halting the robot when the battery is low, we need to capture the
movement status. This information is represented by the tuple 〈“isMoving”〉,
which is produced by the wheels sensor, and monitored by the following process

IsMoving , qry(“isMoving”)@self.IsMoving
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Explorer Rescuer

LowBattery HelpRescuer

τvictimPerceived

τbatteryLow

τreqForHelpReceived
τbatteryCharged τvictimReached

Fig. 4. Swarm robotics scenario: policy automaton

Condition PSCEL action Additional Constraint

τvictimPerceived qry(“victimPerceived”, true)@self -

τvictimReached qry(“position”, , )@self -

τreqForHelpReceived get(“victim”, , , )@(role=“rescuer”∨. . .) -

τbatteryLow qry(“isMoving”)@self subject/batteryLevel<20%

τbatteryCharged qry(“charged”)@self -

Table 16. Conditions of the Policy Automaton Transitions

The reading of this datum is exploited by a rule of the authorisation policy.

Each robot dynamically adapts its role, as well as the enforced policies, ac-
cording to external conditions and stimuli. Thus, each role corresponds to a
different enforced policy. The transitions triggering the policy changes are de-
fined by the policy automaton shown in Figure 4.

Before presenting the policies of some of the automaton states, we briefly
outline the conditions of the policy automaton transitions, whose details are re-
ported in Table 16. These transitions, which mimic the role changing previously
described, define the conditions on the action the process wants to execute,
and (if needed) some additional constraints on environmental values. For in-
stance, the Explorer state evolves to the Rescuer one when the condition
τvictimPerceived holds, that is as soon as the perception of a victim has to be
authorised (i.e., the action qry(“victimPerceived”, true)@self can complete). To
move from Explorer to LowBattery, it is required that the robot is moving
(i.e., the action qry(“isMoving”)@self can complete), and the battery level is
less then 20%. All the other conditions are defined in the same way.
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In the explorer state, to stop the robot as soon as a victim is perceived
and to diagnose a critical level of the battery, we define the following policy

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ pattern-match((“victimPerceived”, true),action/item))
obl : [ permit put(“stop”)@self] )

(deny target : equal(qry,action/action-id)
∧ pattern-match((“isMoving”),action/item)
∧ greater-than(20%,subject/batteryLevel)

obl : [ deny put(“goTo”, env/station.x, env/station.y)@self] )〉

The first positive rule has the only purpose of returning the obligation action
put(“stop”)@self when the corresponding qry is executed. This obligation in-
structs the wheels actuator to stop the movement. The negative rule checks
the battery level of the robot, and when the level is critical (i.e., lower then or
equal to 20%), the obligation put(“goTo”, env/station.x, env/station.y)@self is
returned in order to change the robot direction. Notably, the position of the
charging station is provided by the evaluation context during the obligation
fulfilment.

The policy enforced in the HelpRescuer state is defined similarly: it con-
trols the robot movement towards the previously received victim’s position. In
particular, the policy halts the robot as soon as the victim’s position is reached
and forbids unexpected direction changes during the movement.

In the case of LowBattery state, we define instead the following policy

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ pattern-match((“position”, , ),action/item))
obl : [ permit put(“stop”)@self.put(“charge”)@self.

qry(“charged”)@self])
(deny target : equal(qry,action/action-id)

∧ (pattern-match((“victim”, , ),action/item)
∨ pattern-match((“victimPerceived”, true),action/item)))

(deny target : equal(put,action/action-id)
∧ pattern-match((“direction”, ),action/item))〉

When the position of the charging station is reached, the first rule halts the
movement and returns the actions needed for enacting the charging behaviour.
In particular, the battery charging process is started by the put(“charge”)@self
action, while the qry(“charged”)@self blocks the robot until the end of the
charging process. Note that the transition condition τbatteryCharged holds when
the latter action requests for authorisation, and therefore in the continuation
the robot will play the Explorer state.

Finally, the policy enforced in the Rescuer state is as follows

〈 permit-unless-deny
rules : (permit target : equal(put,action/action-id)

∧ pattern-match((“rescue”),action/item))
∧ less-than(40%,subject/batteryLevel)

obl : [ permit put(“camera”, “on”)@self] ) 〉
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This policy does not forbid any actions, it is only used for turning on the robot’s
camera if there is enough battery; other functionalities could be activated as
well.

As shown in this section, the design of a PSCEL specification involves
processes, policies, and obligations. In order to decide which design approach,
e.g. defining a process action or an obligation, is more appropriate, we can follow
the separation of concerns principle. According to it, we decouple the functional
aspects of the components behaviour from the adaptation ones. Thus, the appli-
cation logic generating the computational behaviour of components is defined in
a procedural style, in the form of processes, while the adaptation logic is defined
in a declarative style, in the form of policies enclosing obligations. Processes and
policies have indeed different features:

– a process contains the actions that should be executed. Thus, when an action
is not authorised, the process is blocked until a positive authorisation for such
action is received;

– a policy decides whether to authorise a process action and can force processes
to perform additional actions which can depend on contextual information
or on the authorisation of remote actions.

Of course, a process could decide by itself whether to execute an action or not,
without resorting to a policy. However, this would lead to a specification where
application and adaptation logics are mixed up, which is more difficult to de-
velop and maintain. Moreover, it would require, at least, some additional efforts
to introduce: (i) conditional choices for checking contextual information; (ii) ac-
tions monitoring the knowledge items for, e.g., discovering when a remote get
is performed. These additional tasks significantly affect the burden of specifying
a process. Indeed, the use of policies and obligations is advocated not only to
decide the authorisation of process actions but also to define actions that are not
executed all the times. Furthermore, by means of the policy automaton, policies
can dynamically change to react to external conditions, while processes cannot.
On the other hand, policy evaluation is triggered by a process action, therefore
additional demon processes, such as the isMoving process, could be needed.

6 A Runtime Environment for SCEL

In this section we present jRESP12, a Java runtime environment providing a
framework for developing autonomic and adaptive systems according to the
SCEL paradigm. Specifically, jRESP provides an API that permits using in
Java programs the SCEL’s linguistic constructs for controlling the computation
and interaction of autonomic components, and for defining the architecture of
systems and ensembles.

The implementation of jRESP fully relies on the SCEL’s formal semantics.
The close correspondence between the two languages enhances confidence on the

12 jRESP (Java Run-time Environment for SCEL Programs) website: http://jresp.
sourceforge.net/.
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behaviour of the jRESP implementation of SCEL programs, once the latter
have been analysed via formal methods, which is possible given there is a formal
operational semantics.

The SCEL language, as explained in Section 2, is parametric with respect to
some aspects, e.g. knowledge representation and policy language, that may be
tailored to better fit different application domains. For this reason, also jRESP

is designed to accommodate alternative instantiations of the above mentioned
features. Indeed, thanks to the large use of design patterns, the integration of
new features in jRESP is greatly simplified.

SCEL’s operational semantics abstracts from a specific communication in-
frastructure. A SCEL program typically consists of a set of (possibly heteroge-
neous) components, each of which is equipped with its own knowledge reposi-
tory. These components concur and cooperate in a highly dynamic environment
to achieve a set of goals. In this kind of systems the underlying communication
infrastructure can change dynamically as the result of local component interac-
tions. To cope with this dynamicity, the jRESP communication infrastructure
has been designed to avoid centralized control. Moreover, to facilitate interoper-
ability with other tools and programming frameworks, jRESP relies on JSON13.
This is an open data interchange technology that permits simplifying the inter-
actions between heterogeneous network components and provides the basis on
which SCEL programs can cooperate with external services or devices.

The overall environment and the programming constructs are presented in
Section 6.1, while the integration of FACPL is detailed in Section 6.2. Finally,
Section 6.3 reports the jRESP implementation of the robot swarm scenario.

6.1 Programming Constructs

Components. SCEL components are implemented via the class Node. The
architecture of a node is shown in Figure 5. Nodes are executed over virtual
machines or physical devices providing access to input/output devices and net-
work connections. A node aggregates a knowledge repository, a set of running
processes, and a set of policies. Structural and behavioral information about a
node are collected into an interface via attribute collectors. Nodes interact via
ports supporting both point-to-point and group-oriented communications (whose
implementation is described in the Network Infrastructure paragraph below).

Knowledge. The interface Knowledge identifies a generic knowledge repository
and indicates the high-level primitives to manage pieces of relevant information
coming from different sources. This interface contains the methods for withdraw-
ing/retrieving/adding a piece of knowledge from/to a repository. Currently, a
single implementation of the Knowledge interface is available in jRESP, which
relies on the notion of tuple space presented in Section 3.1.

External data can be collected into a knowledge repository via sensors. Each
sensor can be associated to a logical or physical device providing data that can

13 JSON (JavaScript Object Notation) website: http://www.json.org/.
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be retrieved by processes and that can be the subject of adaptation. Similarly,
actuators can be used to send data to an external device or service attached to
a node. This approach allows SCEL processes to control exogenous devices that
identify logical/physical actuators.

The interface associated to a node is computed by exploiting attribute col-
lectors. Each one of these collectors is able to inspect the local knowledge and to
compute the value of the attributes. This mechanism equips a node with reflec-
tive capabilities allowing a component to self-project the image of its state on the
interface. Indeed, when the local knowledge is updated the involved collectors
are automatically activated and the node interface is modified accordingly14.

Network Infrastructure. Each Node is equipped with a set of ports for in-
teracting with other components. A port is identified by an address that can
be used to refer to other jRESP components. Indeed, each jRESP node can be
addressed via a pair composed of the node name and the address of one of its
ports.

The abstract class AbstractPort implements the generic behaviour of a port.
It implements the communication protocol used by jRESP components to inter-
act with each other. Class AbstractPort also provides the instruments to dispatch
messages to components. However, in AbstractPort the methods used for send-
ing messages via a specific communication network/media are abstract. Also the
method used to retrieve the address associated to a port is abstract in Abstract-
Port. The concrete classes defining specific kinds of ports extend AbstractPort
to provide concrete implementations of the above outlined abstract methods,
so as to use different underlying network infrastructures (e.g., Internet, Ad-hoc
networks, . . . ).

14 This mechanism is implemented via the Observer/Observable pattern.
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Currently, four kinds of port are available: InetPort, P2PPort, ServerPort and
VirtualPort. The first one implements point-to-point and group-oriented interac-
tions via TCP and UDP, respectively. In particular, InetPort implements group-
oriented interactions in terms of a UDP broadcast. Unfortunately, this approach
does not scale when the size of involved components increases. To provide a more
efficient and reliable support to group-oriented interactions, jRESP provides the
class P2PPort. This class realises interactions in terms of the P2P and multicast
protocols provided by Scribe15 [14] and FreePastry16 [46]. A more centralized
implementation is provided by ServerPort. All messages sent along this kind of
port pass through a centralized server that dispatches all the received messages
to each of the managed ports. Finally, VirtualPort implements a port where in-
teractions are performed via a buffer stored in memory. A VitualPort is used
to simulate nodes in a single application without relying on a specific network
infrastructure.

Behaviors. SCEL processes are implemented as threads via the abstract class
Agent, which provides the methods implementing the SCEL actions. In fact,
they can be used for generating fresh names, for instantiating new components
and for withdrawing/retrieving/adding information items from/to shared knowl-
edge repositories. The latter methods extend the ones provided by Knowledge
with another parameter identifying either the (possibly remote) node where the
target repository is located or the group of nodes whose repositories have to be
accessed. As previously mentioned, group-oriented interactions are supported by
the communication protocols defined in the node ports and by attribute collec-
tors.

Policies. In jRESP, like in SCEL, policies can be used to authorise local ac-
tions and to regulate the interactions among components. When a method of
an instance of class Agent is invoked, its execution is delegated to the policy in
force at the node where the agent is running. The policy can authorise or not
the execution of the action (e.g., according to some contextual information) and,
possibly, adapt the agent behaviour by returning additional actions to be exe-
cuted. The interface IPolicy permits to easily integrate different kinds of policies
in jRESP Nodes. When a Node is instantiated, if no policy is provided, a default
policy is used, which allows any operation to be executed.

6.2 Policing Constructs

The interface IPolicy is currently implemented by two different classes: Default-
PermitPolicy and PolicyAutomaton. The former is the default policy of each node;
it allows any action by directly delegating its execution to the corresponding
node. The latter policy implements a generic policy automaton Π (like the
one presented in Section 5) which triggers policy changes according to the ex-
ecution of agent actions. In particular, a PolicyAutomaton consists of a set of

15 Scribe is a generic, scalable and efficient system for group communication and noti-
fication.

16 FreePastry is a substrate for peer-to-peer applications.
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IPolicyAutomatonStates, each of which identifies the possible policies enforced in
the node, and of a reference to the current state, which is used to authorise agent
actions with respect to the current policies.

When a PolicyAutomaton receives a request for the execution of a given ac-
tion, first of all an AutorisationRequest representing the action (like the request
ρ introduced in Section 5) is created. This request identifies the action an agent
wants to perform, thus it provides the action name, its argument, its target and
the list of attributes currently published in the node interface. The created Autho-
rizationRequest is then evaluated with respect to the current policy state via the
(abstract) method evaluate(AutorisationRequest r) defined in the class IPolicyAu-
tomatonState. The request evaluation can trigger an update of the current state
of the PolicyAutomaton. Indeed, for each state, a sequence of transitions is stored
in the automaton. The transitions are instances of the class PolicyAutomaton-
Transition which provides two methods: apply(AutorisationRequest r): boolean and
nextState(): IPolicyAutomatonState. A transition is enabled if the first method re-
turns true, while the next state is then obtained by invoking nextState() on the
enabled transition. If no transitions are enabled, the current state is not changed.

Therefore, the full PSCEL implementation can be now achieved by
defining the class FacplPolicyState, which extends IPolicyAutomatonState and
wraps the Java-translated FACPL policies17. The overwritten method evalu-
ate(AutorisationRequest r) delegates the authorisation to the referred FACPL

policies, which return an instance of the class AuthorisationResponse containing
a decision, i.e. permit or deny, and a set of obligations. The latter ones are ren-
dered as a sequence of Actions that must be performed just after the completion
of the requested action. Hence, if the decision is permit, the corresponding agent
can continue as soon as all the obligations are executed. Instead, if the decision
is deny, the requested action cannot be performed and the obligations possi-
bly returned must be executed. After their completion, the action previously
forbidden can be further evaluated.

6.3 Exploitation

We report here the code18 of the jRESP implementation of the specification,
presented in Section 5.2, of the robot swarm scenario.

In the previous sections we saw that jRESP, like SCEL, is parametric with
respect to the knowledge representation and the policy language. The default
implementations of these components provided with jRESP, i.e. the knowledge
represented via tuple space and policies regulated according to the classes de-
scribed in Section 6.2, allow a programmer to execute PSCEL specifications. The
Java classes reported in this section permit appreciating how close the SCEL

(resp. PSCEL) processes are to their implementation in jRESP.

17 The Java-translated policies can be automatically obtained by using the FACPL

Eclipse IDE available from the FACPL website [55].
18 The complete source code for the scenario, together with a simulation environment,

can be downloaded from http://jresp.sourceforge.net/.
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For the considered scenario, in jRESP we have a Node for each robot
operating in the arena19. Each node is equipped with the appropriate sen-
sors and actuators that provide the machinery for interacting with the robots
circuits/components. Sensors include the ones used to detect a victim, to check
the battery level, to detect possible collisions, to access the robot position and
to verify if a robot is moving. Actuators are used to set robot direction, to stop
the movement and to start the battery recharging activity.

The current state of a robot is modelled via a tuple of the form ( ”role” , r ),
where r can be explorer, rescuer, help rescuer or low battery. This values corre-
spond to the states of the policy automaton considered in Figure 4. The tuple
identifying the robot state is stored in the local tuple space of each node and, to-
gether with the values read from the sensors, is used to infer the node interface.
In the interface of each node, besides the role and the id of the correspond-
ing robot, the current position is also published. The latter is identified by the
attributes x and y.

Running at a node there are four agents: Explorer, HelpingRescuer, Ran-
domWalk and isMoving. Agents Explorer and HelpingRescuer represent respec-
tively the two branches of the non-deterministic choice20 in process PR defined
in Section 5.2. Since there is almost a one-to-one correspondence between the
class implementing an agent and its definition in PSCEL, here we only present
the code of agent Explorer that is reported below. The interested reader can refer
to the jRESP web site for a detailed description of the other classes.

1 public class Explorer extends Agent {
2 public Explorer () {
3 super (" Explorer ");
4 }
5 protected void doRun () throws Exception {
6 query(
7 new Template(
8 new ActualTemplateField (" VICTIM_PERCEIVED "),
9 new ActualTemplateField(true)

10 ),
11 Self.SELF
12 );
13 // Pass to RESCUER state
14 put(new Tuple ("role", Scenario.RESCUER), Self.SELF);
15 double x = getAttributeValue( "x" , Double.class );
16 double y = getAttributeValue( "y" , Double.class );
17 put(
18 new Tuple(
19 "victim",
20 x,
21 y,
22 3
23 ),
24 Self.SELF
25 );
26 }
27 }

19 These nodes could be executed directly on physical robots assuming that these are
able to execute java code

20 Non-deterministic choice is rendered in jRESP in terms of concurrent execution of
agents (which are implemented as Java threads) regulated by checks on the current
status of the robot (corresponding to the state of the policy automaton).
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When an instance of class Agent is executed, the method doRun() is invoked.
This method defines the agent behaviour. In the case of Explorer, it consists of
the sequence of steps needed to detect a victim and to broadcast its position to
the other robots. The method query(), used to retrieve data from a knowledge
repository, is defined in the base class Agent and implements the SCEL’s action
qry21. The method takes as parameters an instance of class Template and a
target, and returns a matching tuple. In the code above, the target is the local
component (referred by Self.SELF) while the retrieved tuple is one consisting of
two fields: the first field is the constant “VICTIM PERCEIVED” while the second
field is the boolean value true. This tuple is not retrieved from the local knowledge
but from the victim sensor when the robot is able to perceive the victim. After
that, the agent retrieves the actual robot position via the attributes x and y
stored in the node interface. To perform this operation method getAttributeValue
is used. This method takes as parameter the name of the attribute to evaluate
and its expected types and returns the collected value; null is obtained when
the requested attribute is not published in the interface or when its value has
not the requested type. Finally, method put is invoked to publish in the local
knowledge repository the tuple witnessing that a victim has been perceived at
position (x,y) and 3 robots are needed to rescue it.

The policies in force at each node are managed by an instance of the class
PolicyAutomaton that implements the automaton reported in Figure 4. This au-
tomaton is instantiated as a list of FacplPolicyState, each of which contains the
reference to a particular FACPL policy, and a list of transitions. For the sake
of simplicity, the, straightforward, Java translation of the transition’s conditions
defined in Table 16 is not reported. In the following code, we show, instead, the
Java implementation of the policy in page 42 that defines the automaton state
Rescuer.

1 public class Policy_Rescuer extends Policy {
2
3 public Policy_Rescuer () {
4 addCombiningAlg(PermitUnlessDeny.class);
5 addRule(new RuleCameraOn ());
6 }
7
8 class RuleCameraOn extends Rule{
9

10 RuleCameraOn (){
11 addEffect(RuleEffect.PERMIT);
12
13 addTarget(new TargetTreeRepresentation(TargetConnector.AND ,
14 new TargetTreeRepresentation(new TargetExpression(
15 Equal.class , ActionID.PUT ,
16 new StructName (" action", "action -id"))),
17 new TargetTreeRepresentation(new TargetExpression(
18 PatternMatch.class , new Template(
19 new ActualTemplateField (" rescue "),
20 new FormalTemplateField(Double.class),
21 new FormalTemplateField(Double.class)),

21 Class Agent also provides methods put() and get() that implement actions put and
get, respectively.
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22 new StructName (" action", "item"))),
23 new TargetTreeRepresentation(new TargetExpression(
24 LessThan.class , 40,
25 new StructName (" object", "battery_level ")))
26 ));
27
28 // The PUT for adapting the process
29 addObligation(new ScelObligationExpression(RuleEffect.PERMIT ,
30 ActionID.PUT , new Tuple (" cameraOn "), Self.SELF));
31 }
32 }
33 }

The policy is formed by the combining algorithm permit-unless-deny, which
is passed as class reference, and the rule CameraOn. This rule is implemented as
an inner class containing an authorization effect, which is RuleEffect.PERMIT,
a target and an obligation. The target contains checks on: (i) the action’s
identifier (i.e., ActionID.PUT); (ii) the action’s template (i.e., a tuple start-
ing with the string “rescue” and followed by two formal double values;
(iii) the battery level (i.e., more than 40). Finally, the instance of the class
ScelObligationExpression defines the put action that triggers the activation
of the robot’s camera.

7 Quantitative Variants of SCEL

In this section we address the issue of enriching SCEL with information about
action duration, by providing a stochastic semantics for the language. There
exist various frameworks that support the systematic development of stochastic
languages [22]. However, the main challenge in developing a stochastic semantics
for SCEL is in making appropriate modeling choices, both taking into account
the specific application needs and allowing to manage model complexity and size.
Our contribution in this work is the proposal of four variants of StocS, a Marko-
vian extension of a significant fragment of SCEL, that can be used to support
quantitative analysis of adaptive systems composed of ensembles of cooperating
components [32]. In this chapter, we focus on only one of the four variants, the
so called Network oriented one (net-or, for short). The reader interested in the
full spectrum of StocS semantics and their complete formal definition is re-
ferred to [32] and to the technical report [33]. In summary, StocS is essentially
a modeling language which inherits the purpose and focus of SCEL. StocS ex-
tends SCEL by modeling the time of state-permanence as a random variable
(r.v.) with negative exponential distribution and by replacing non-determinism
by a probability distribution over outgoing transitions, thus adopting an opera-
tional semantics based on continuous time Markov chains (CTMC) [21]. Finally,
an important aspect in a modelling language concerns the need of devising an
appropriate syntax to express the environment model. In StocS, like in SCEL,
the only point of contact with the environment is the knowledge base, which
contains both internal information and externally-sensed events.
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7.1 StocS: Stochastic SCEL

The syntax of StocS is essentially a subset of that of SCEL. In the presenta-
tion that follows, we deliberately omit to incorporate certain advanced features
of SCEL, such as the presence and role of policies; we focus mainly on action
durations and their stochastic modelling. Furthermore for the sake of simplicity,
we consider only put, get, and qry actions and in get(T )@c, qry(T )@c and
put(t)@c we restrict targets c to the distinguished variable self and to compo-
nent predicates p. In order to be able to obtain a CTMC from a StocS model
specification, all sources of non-determinism must be given a probabilistic in-
terpretation. This is true also for knowledge repositories, where patterns may
match different values. We push the probabilistic view a bit further, assuming
that all repository operations have probabilistic behaviour, thus providing more
flexibility to modellers (e.g. the possibility to model faulty/error outcomes and
related probabilities). Letting K, I and T denote the classes of all possible knowl-
edge states, knowledge items and knowledge templates respectively, we require
that the operator ⊕ : K× I→ Dist(K) for adding an item to a repository returns
a probabilistic distribution over repositories as a result. Similarly, the withdraw
operator ⊖ : K×T →֒ Dist(K× I) and the infer operator ⊢: K×T →֒ Dist(I) are
assumed to return a probability distribution over repositories paired with items,
and over items, respectively. Functions ⊖ and ⊢ are partial: if no matching item is
found the result is undefined. No further assumptions are required on knowledge
repositories and, in fact, StocS is parametric w.r.t. to knowledge repository, like
SCEL. Finally, it is assumed that an assignment of appropriate r.v. parameters
is given which characterises the transmission and processing durations of the
several phases of StocS action execution, as sketched below.

The semantics of SCEL does not consider any time related aspect of com-
putation. More specifically, the execution of an action of the form act(T )@p . P
(for put/get/qry actions) is described by a single transition of the underlying
SCEL LTS semantics. In the system state reached by such a transition it is
guaranteed that the process which executed the action is in its local state P and
that the knowledge repositories of all components involved in the action execu-
tion have been modified accordingly. In particular, SCEL abstracts from details
concerning: (a) when the execution of the action starts; (b) when the possible
destination components are required to satisfy p; and (c) when the process exe-
cuting the action resumes execution (i.e. becomes P ); and their consequent time
relationship. If we want to extend SCEL with an explicit notion of (stochas-
tic) time, we need to take into account the time-related issues mentioned above.
These issues can be addressed at different levels of abstraction, reflecting a dif-
ferent choice of details that are to be considered in modelling pobabilistic/timed
aspects of SCEL actions.

Point (a) above does not require particular comments.
Point (b) requires to define when a component satisfies p with respect to

a process executing an action, when time and possibly space are taken into
consideration. We assume that source components are not aware of which are the
components satisfying predicate p. Therefore, we define the notion of observation
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of the component by the process, the result of which allows to establish whether
the component satisfies the predicate or not. In the context of distributed systems
this is very often realised by means of a message sent by the process to the
component. According to this view, the check whether a component satisfies
predicate p is performed when the message reaches the component. This means
that a StocS action may require broadcast communication to be executed, even
if its effect involves a few (and possibly no) components. In distributed systems,
different components may have different response times depending on different
network conditions and one can model explicitly the message delivery, taking
into account the time required to reach the component.

Finally, point (c) raises the issue of when source component execution is
to be resumed. In particular, it is necessary to identify how the source com-
ponent is made aware that its role in the communication has been completed.
Get/query actions are blocking and they terminate when the source receives a
knowledge item from any component. A reasonable choice is that further re-
sponses received are ignored. We assume appropriate mechanisms that ensure
no confusion arises between distinct actions and corresponding messages. Put
actions are non-blocking, so it is sufficient that the source component is aware
that the observation procedure of all components has started. Our choice is to
make the source side set-up the transmission of one request of predicate evalu-
ation for each component and then resume the execution of the source process
immediately. The evaluation of the predicate against each component and the
corresponding (possible) knowledge repository modification will take place at
the target side(s).

In a network-oriented view of the system, the execution of the various phases
sketched above is explicitly modelled in detail by the operational semantics,
which entails that actions are non-atomic. Indeed, they are executed through
several intermediate phases, or activities, each of which requires appropriate
time duration modeling, as we illustrate by means of the following simple exam-
ple. Let us consider three components, as illustrated in Fig. 6: C1 = I1 [K1, P1 ],
C2 = I2 [K2, P2 ], and C3 = I3 [K3, P3 ] and let us assume process P1 is de-
fined as put(v)@p . Q. Note that different components may be in different lo-
cations. The interaction we illustrate starts with process P1 executing the first
phase of put(v)@p, i.e. creating two22 copies of the special “envelope” message

{v@p}, one for component C2 and one for component C3, and sending these
messages; they play the role of observers: each of them travels in the system
and reaches the component it is associated with. The special message creation
and message-component association phase has a duration, denoted in grey in the
figure, which is determined by rate λ: this value is computed as a (given) func-
tion of several factors, among which (the size of) v. After message creation, P1

can proceed without waiting for their arrival at the destination components—
since put actions are non-blocking—behaving like Q (the light-grey stripe in

22 For the sake of notational simplicity, here we assume that predicate p in process
actions implicitly refers only to the other components, excluding the one where the
process is in execution.
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Fig. 7. Actual model of put

the figure illustrates the resumed execution of C1). Each special message has to
reach its destination component (in the figure this is illustrated by two dashed
arrows), which checks whether its own interface satisfies p, and if so, it delivers
v in its own knowledge repository. Observer delivery to C2 (C3 respectively) is
performed with rate µ2 (µ3, respectively), which may depend on v and other
parameters like the distance between C1 where P1 resides and the target com-
ponent C2 (C3 respectively). Therefore, a distinct rate µj is associated to each
target. In practice, one can be interested in modelling also the event of failed
delivery of the observers. This is interesting both for producing more realistic
models (with unreliable network communication), and for allowing the applica-
tion of advanced analysis techniques based on fluid approximation [10], such as
fluid model-checking [9]. Therefore, we add an error probability to the observers
delivery, which we denoted perr (or simply err, in Fig. 7). This more detailed
semantics of the put(v)@p action is described below in more detail. The exe-
cution of get/qry actions is a little bit more complicated because the executor
must remain blocked as long as a value matching the required pattern is sent
back from one of the potential target components. This is realised by exploiting
the race condition which arises from multiple competing potential target com-
ponents and sophisticated use of interleaving semantics; the interested reader is
referred to [33] for details.

7.2 Semantics of a StocS Fragment

In this section we present the fragment of the formal semantics definition for the
put action in the Network oriented variant of StocS.

We recall that the interface I of a component makes information about the
component available in the form of attributes, i.e. names acting as references to
information stored in the components knowledge repository. It is convenient to
make this dependency of the interface on the current knowledge K explicit. We do
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this by using the notation I(K) for the evaluation of the interface I in the knowl-
edge state K. The set of possible interface evaluations is denoted by E. Interface
evaluations are used within the so-called rate function R : E× Act × E→ R≥0,
which defines the rates of actions depending on the interface evaluation of the
source of the action, the action itself (where Act denotes the set of possible
actions), and the interface evaluation of the destination. For this purpose, in-
terface evaluations will be embedded within the transition labels to exchange
information about source/destination components in a synchronisation action.
We will conventionally use σ (δ, respectively) for the interface evaluation of a
source (destination, respectively) component. The rate function is not fixed but
instead is a parameter of the language. Considering interface evaluations in the
rate functions, together with the executed action, allows us to take into account,
in the computation of actions rates, various aspects depending on the component
state such as the position/distance, as well as other time-dependent parameters.
We also assume to have a loss probability function ferr : E × Act × E → [0, 1]
computing the probability of an error in message delivery.

As briefly sketched in Section 7.1, in the net-or semantics of StocS, several
phases, or activities, are identified during the execution of an action. It is con-
venient to distinguish between output activities (those issued by a component)
and input activities (those accepted by a component). To simplify the synchro-
nisation of input and output activities , we assume input activities are “passive”
and probabilistic, i.e. described by (discrete) probability distributions, and out-
put activities have durations which are stochastic, therefore the composition of
output and related input activities yields stochastic durations with parameters
(i.e. rates) computed directly through multiplication.

The operational semantics rules of StocS are given in the FuTSs style [22]
and, in particular, using its Rate Transition Systems (RTS) instantiation [21].
In RTSs a transition is a triple of the form (P, α,P), where the first and second
components are the source state and the transition label, as usual, and the third
component, P, is the continuation function that associates a real non-negative
value with each state P ′. A non-zero value represents the rate of the exponen-
tial distribution characterising the time needed for the execution of the action
represented by α, necessary to reach P ′ from P via the transition. Whenever
P P ′ = 0, this means that P ′ is not reachable from P via α23. RTS continu-
ation functions are equipped with a rich set of operations that help to define
these functions over sets of processes, components, and systems, as we will see.

Let FTF(S,R≥0) denote the class of total functions from set S to R≥0

with finite support24. Given countable, non-empty sets S (of states) and A
(of transition labels), an A-labelled RTS is a tuple (S,A,R≥0,) where ⊆
S ×A× FTF(S,R≥0) is the A-labelled transition relation.

As for the standard SOS definition, also FuTS-based semantics are fully char-
acterised by the smallest relation induced by a set of axioms and deduction

23 We use Currying for continuation function application.
24 A function F has finite support if and only if there exists finite {s1, . . . , sm} ⊆ S,

the support of F , such that F si 6= 0 for i = 1 . . .m and F s = 0 otherwise.
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rules [22]. The operational semantics of StocS is the FuTS induced by the rules
for systems, which in turn are defined using those for processes and components.
In Table 17 (18, 19, respectively) we show only the rules for put actions per-
formed by processes (components and systems, respectively). It is worth noting
that the rules in the tables use a structure for the transition labels which is sim-
pler than that of the labels used in Section 2, due to the fact that we consider
only a fragment of the language. Furthermore, for the sake of readability and
given that our labels are simpler, we prefer to use explicit action names (e.g.
put) instead of symbols (e.g. ⊲). Finally, we typically use annotated transition
labels α for output activities α, while input activities are used as labels without
annotations; labels for activities α which are not intended for synchronisation,
i.e. internal activities, are denoted by ←→α .

Rule (env) models the delivery of the envelope message, with delivery-time
rate µ. The notation [nil 7→ µ] states that the only process which can be reached
by {t@p}µ via activity {t@p} is nil and the relevant rate is µ. This is a special
case of the general notation [d1 7→ γ1, . . . , dm 7→ γm] for the function which asso-
ciates γi with di and 0 with the other elements; [] denotes the 0 constant function
in FTF(X,R≥0) and is used in Rule (envB), which in fact states that {t@p} is the
only activity {t@p}µ can perform. A process of the form put(t)@c . P lounches

the execution of an output activity put(t)@c, as postulated by Rule (put). Note
that the process transition is parameterized with respect to the evaluation σ of
the interface of the specific component which the process will be running within,
in the specific knowledge repository (state), as we will see when discussing Rule
(c-puto). Similarly, the rate λ for the execution time of the local activity of the
put action is given by the (global) rate function R which takes σ as parameter,
besides (a description of) the action itself. Note that λ does not depend on any
specific destination.

{t@p}µ
{t@p}
−−−−⇁ [nil 7→ µ]

(env) α 6= {t@p}

{t@p}µ
α
−⇁ []

(envB)

λ = R(σ,put(t)@c, )

put(t)@c . P
put(t)@c
−−−−−−⇁σ [P 7→ λ]

(put) α 6= put(t)@c

put(t)@c.P
α
−⇁ []

(putB)

Table 17. Operational semantics of put actions (processes, net-or)

Rule (c-putl) makes put actions internal, when they are targeted to self. The
rule uses the notation I[π,P]; for interface I and continuation functions F1

and F2, function I[F1,F2] returns (F1 K) · (F2 P ) when applied to component
I [K, P ], and 0 otherwise. Rule (c-puto) lifts the (start of the) execution of a non-
local put at the source component level; the (Curried) characteristic function X ,
with X K =[K 7→ 1], is used in the obvious way. The output label σ : put(t)@p is
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σ = I(K) P
put(t)@self
−−−−−−−⇁σ P K ⊕ t = π

I [K, P ]
←−−−−−−−−→
σ:put(t)@self
−−−−−−−−→ I[π,P]

(c-putl)

σ = I(K) P
put(t)@p
−−−−−−⇁σ P

I [K, P ]
σ :put(t)@p
−−−−−−−→ I[(X K),P]

(c-puto)

δ = I(K) µ = R(σ, {t@p}, δ) perr = ferr(σ, {t@p}, δ)

I [K, P ]
σ :put(t)@p
−−−−−−−→ [ I [K, P ] 7→ perr, I[K, P |{t@p}µ] 7→ (1− perr) ]

(c-puti)

P
{t@p}
−−−−⇁ P I(K) |= p K ⊕ t = π

I [K, P ]
{t@p}
−−−−→ I[π,P]

(c-enva)
P
{t@p}
−−−−⇁ P I(K) 6|= p

I [K, P ]
{t@p}
−−−−→ I[(XK),P]

(c-envr)

Table 18. Operational semantics of put actions (components, net-or)

S1
σ :put(t)@p
−−−−−−−→ S

o
1 S1

σ :put(t)@p
−−−−−−−→ S

i
1 S2

σ :put(t)@p
−−−−−−−→ S

o
2 S2

σ :put(t)@p
−−−−−−−→ S

i
2

S1 ‖ S2
σ :put(t)@p
−−−−−−−→ S

o
1 ‖ S

i
2 + S

i
1 ‖ S

o
2

(s-po)

S1
σ :put(t)@p
−−−−−−−→ S1 S2

σ :put(t)@p
−−−−−−−→ S2

S1 ‖ S2
σ :put(t)@p
−−−−−−−→ S1 ‖ S2

(s-pi)

S1

←−−−−−−−−→
σ :put(t)@self
−−−−−−−−−→ S1 S2

←−−−−−−−−→
σ :put(t)@self
−−−−−−−−−→ S2

S1 ‖ S2

←−−−−−−−−→
σ :put(t)@self
−−−−−−−−−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-spl)

Table 19. Operational semantics of put actions (systems, net-or)
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used for launching a broadcast; note, in the transition label, the indication of the
source σ which is the evaluated interface of the component at hand and which
is required to be the same as the parameter of the process transition used in the
premiss. As established by Rule (c-puti), every (potentially target) component
can perform an activity with the dual input label σ : put(t)@p. The result is
the instantiation of the envelope process {t@p}µ in the component. In this way,
a specific instance of the envelope is associated with the specific component. The
transmission of the envelope will be modelled by the execution of {t@p}µ, with
transmission time characterized by rate µ (see Rule (env) again). Note that rate µ
may depend both on the source (σ) and on the specific destination components
(δ); furthermore, the successful transmission of the envelope is subject to the
absence of errors (with probability 1 − perr). Rules (c-enva) and (c-envr) ensure
that the repository is updated if the interface evaluation satisfies the predicate.
Finally, Rules (s-po) and (s-pi) together realise the broadcast communication
a component uses for sending the envelope to all the other components, while
(s-spl) takes care of local, consequently internal, put actions. For continuation
functions F1 and F2, function F1 ‖ F2 returns (F1 S1) · (F2 S2) when applied
to a system S1 ‖ S2 and 0 otherwise, whereas function F1+F2 is the point-wise
extension of +, i.e. (F1 + F2)S = (F1 S) + (F2 S).

8 Verification

In this section we present the verification approaches developed so far for guaran-
teeing properties of systems modelled in SCEL. Currently, rather than develop-
ing new ad-hoc verification tools for SCEL, we have exploited existent tools. In
particular, for verifying qualitative properties we use the well-established model
checker Spin, while for verifying quantitative ones we use a statistical model-
checking approach relying on either the simulation environment provided by
jRESP or the Maude-based interpreter of SCEL specifications MISSCEL.

8.1 Simulation and Analysis via jRESP

To support analysis of autonomic systems specified in SCEL, the jRESP pro-
vides a set of classes that permits simulating jRESP programs. These classes
enable the execution of virtual components over a simulation environment that
can control component interactions and collect relevant simulation data. In fact,
although in principle jRESP code could be directly executed in real robots (pro-
vided that a Java Virtual Machine is running on them and that jRESP’s sensors
and actuators invoke the API of the corresponding robots’ devices), this may
not be always feasible. Therefore, jRESP also provides simulation facilities.

The simulation environment integrated in jRESP is based on a discrete event
simulator and on a specialised variant of class Node, named SimulationNode, that
allows the execution of SCEL programs in the simulated environment.

jRESP agents can be also directly executed on a SimulationNode (which
shares the same interface of class Node). In this case, agents are rendered as spe-
cific simulation processes instead that Java threads. The discrete event simulator
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Fig. 8. Simulation and analysis of the robot swarm scenario in jRESP

is responsible for scheduling the execution of SCEL actions. Actions execution
time is computed by an instance of class DelayFactory. This class, following the
same approach considered in Section 7, computes the execution time of a SCEL

action by considering the type of action performed, its arguments and the inter-
faces of the involved components. Notice that, StocS semantics can be easily
obtained when DelayFactory computes the action execution time via the appro-
priate sampling of exponential distributed random variables.

To set-up the simulation environment in jRESP one has also to define a class
that provides the machinery to manage the physical data of the scenario. This
data includes, e.g., robots positions, direction and speed. Sensors and actuators
installed in a SimulationNode are used to collect data from the scenario and to
update the state of the simulation. This mechanism, for instance, can be used
to stop the movement of a robot or to regulate its direction. In our case, we
consider the class ScenarioArena that, in addition to the above mentioned data,
also provides the methods for updating robots position and computing collisions.
These methods are periodically executed by the jRESP simulation environment.
For the sake of simplicity, in the simulation, only collisions with the borders of
the arena are considered, while collisions among robots are ignored.

By relying on the jRESP simulation environment, a prototype framework
for statistical model-checking has been also developed. A randomised algorithm
is used to verify whether the implementation of a system satisfies a specific prop-
erty with a certain degree of confidence. Indeed, the statistical model-checker is
parameterized with respect to a given tolerance ε and error probability p. The
algorithm guarantees that the difference between the computed value and the
exact one is greater than ε with a probability that is less than p.

The model-checker included in jRESP can be used to verify reachability prop-
erties. These permit evaluating the probability to reach, within a given deadline,
a configuration where a given predicate on collected data is satisfied. In the con-
sidered scenario, this analysis technique is used to study how the number of
robots affects the probability to reach the victim within a given deadline.
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In Figure 8, we report a screenshot of the simulation simulation (left-hand
side) and the results of the analysis (right-hand side) of the robot swarm scenario.
In the screenshot, red semi-circles represent the locations of the victims, while
squares represent robots, whose color is used to show their current state. Robots
in the explorer state are blue, rescuers are green, help rescuers are light blue
while the ones with low battery are yellow. The analysis results are represented
as a chart showing the probability of rescuing the victims within a given time
according to different numbers of robots (i.e., 10, 30 and 50). In the performed
analyses we consider two victims each of which needs a swarm of three robots to
be rescued. Notably, the victims can be rescued only after 100 time steps and,
beyond a certain threshold, increasing the number of robots is not worthwhile
(in fact, the difference in terms of rescuing time between 50 and 30 robots is
marginal with respect to the cost of deploying a double number of robots).

8.2 Maude-based Verification

SCEL comes equipped with solid semantics foundations laying the basis for
formal reasoning. This is exploited in MISSCEL (Maude Interpreter and Sim-
ulator for SCEL) which is an implementation of SCEL’s operational semantics
in the Maude framework [16]. MISSCEL currently focuses on a SCEL dialect
where repositories are implemented as multisets of tuples (as in Section 3.1),
while the processes of a SCEL component evolve in a pure interleaving fashion
(i.e. the interaction predicate is the interleaving one defined in Table 3). Access
control policies are supported, even if no policy language has been integrated
yet: by default, every request is currently authorized.

Why Maude? MISSCEL exploits the rich Maude toolset to perform:

– automatic state-space generation;
– qualitative analysis via Maude’s invariant and LTL model checkers;
– debugging via probabilistic simulations and animations generation;
– statistical model checking via the recently proposed MultiVeStA [51], a

distributed statistical analyser extending VeStA and PVeStA [3, 52].

A further advantage of MISSCEL is that SCEL specifications can now be in-
tertwined with raw Maude code, exploiting its expressiveness. This allows us to
obtain sophisticated specifications in which SCEL is used to model behaviours,
aggregations, and knowledge manipulation aspects, leaving scenario-specific de-
tails like, e.g. robots movements or computation of distances to Maude.

Reasoning in MISSCEL. In Section 3.3 we discussed about the enrichment
of SCEL components with reasoning capabilities via external reasoners. As a
matter of fact in [5] we have showed how to enrich MISSCEL components
(and thus SCEL components) with reasoning capabilities exploiting the reasoner
Pirlo [4], implemented in Maude as well, and we analyzed a collision-avoidance
robotic scenario. Collision avoidance is a key feature of the robot navigation.
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For example, in our robot disaster scenario, collision avoidance can be used
to minimise collisions during the random walk phase, which is characterised
by a high density of robots arbitrarily moving in unpredictable ways. Collision
avoidance is also an archetypal example of how external reasoners can be applied
to the scenario considered in this paper.

Using MISSCEL we can specify and evaluate two different random walks
strategies: a normal one and an informed one. We considered two kinds of robots
distinguished by the strategy they apply: normal robots, and informed robots.
Normal robots choose randomly (with a uniform distribution) among five actions:
to perform random walk in one of the four cardinal directions, or to stay idle.
Informed robots monitor their surrounding environment by relying on proximity
sensors, and exploit this information to choose actions aiming at reducing the
number of collisions. The amount of environment perceived by an informed robot
depends on its perception range. The positions up, right, down and left are
reachable with a single move, while the diagonal ones are reachable with two
moves. However, the perception of the diagonal positions is also useful for the
computation of the next action, as a robot located there (e.g. one perceived in
down-left) could move towards the same position chosen by the informed robot
(e.g. up, if the informed robot moves left).

Statistical Analysis with MultiVeStA. In [5] we exploited MISSCEL and the
recently proposed statistical model checker MultiVeStA to perform a statisti-
cal quantitative analysis of the robotic collision avoidance scenario.

MultiVeStA is a Java-based distributed statistical model checker which allows
its users to enrich existing discrete event simulators with automated and statis-
tical analysis capabilities. The analysis algorithms of MultiVeStA do not depend
on the underlying simulation engine: MultiVeStA only makes the assumption
that multiple discrete event simulations can be performed on the input model.
The tool has been used to reason about public transportation systems [26],
volunteer clouds [50], crowd-steering [41] and robotic collision avoidance [5] sce-
narios. Note however that MISSCEL is an executable operational semantics for
SCEL, and as such, given a SCEL specification representing a system’s state
(i.e. a set of SCEL components), MISSCEL executes it by applying a rule of
SCEL’s semantics to (part of) the state. According to such semantics, a system
evolves non-deterministically by executing the process of one of its components,
and in particular by consuming one of its actions. As usual (especially in the
Maude context, e.g. [6, 11, 2, 25]), in order to perform statistical analysis it is
necessary to obtain probabilistic behaviours out of non-deterministic ones by
resolving non-determinism in probabilistic choices. For this reason, we defined
a Java wrapper for MISSCEL together with a set of external schedulers which
permit to obtain probabilistic simulations of SCEL specifications, which can
then be exploited by MultiVeStA to perform statistical model checking.

In our analysis in [5], we considered two scenarios with ten normal robots
and an informed one, varying the size of the perception range of the informed
robot. In the first scenario the informed robot perceives only the four surrounding
positions (up, right, down, left). In the second scenario the informed robot has
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Fig. 9. Collisions of normal and informed robots at varying of number of steps.

1 SC(I(tId(’SCId), tId(’role), tId(’x), tId(’y), . . .,
2 K(< tId(’SCId) ; av(id(’robot -1)) >, < tId(’role) ; av(" rescuer ") >,
3 < av("pos") av(41) av(3) >, < tId(’x) ; av(41) >, < tId(’y) ; av(3)> . . .,
4 Pi(INTERLEAVING -PROCESSES_AUTHORIZE -ALL),
5 P(pDef(’ProcessName))
6 )

Listing 1.1. A MISSCEL component representing a robot

a wider perception range, allowing to perceive also the positions in the four
diagonal directions (up-right, down-right, down-left, up-left). For both scenarios
we first studied the expected value of the average number of collisions of the
normal robots when varying of number of execution steps. Not surprisingly, we
obtained very similar measures for both the scenarios, and hence we use only one
plot in Figure 9 (“Avg collisions of random walkers”). More interesting is the
case of informed robots. As depicted by the plots “Collisions of informed robot
- perceive 4 dirs” and “Collisions of informed robot - perceive 8 dirs”, informed
robots do significantly less collisions than the normal ones, and wider perception
ranges allow to further decrease the number of collisions.

Implementation details. Listing 1.1 provides an excerpt of a possible MISSCEL

representation of a robot. As discussed, each robot of our scenario is modelled as
a SCEL component. In MISSCEL, a SCEL component is defined as a Maude

term with sort ServiceComponent built with the following operation
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op SC : Interface Knowledge Policies Processes -> ServiceComponent

As an implementation choice, in MISSCEL tuples may have an identifier (e.g.
< tId(’role) ; av("rescuer") > is a tuple with identifier role), but it is
not mandatory (e.g. < av("pos") av(41.0) av(3.0) > has no identifier). Note
that, for implementation reasons, actual values (e.g. strings and integers) are
enclosed in the constructor av. Note moreover that ’role is a Maude term
with sort quoted identifier (similar to strings) built by prefixing alphanumeric
words with the operator “’”. However, only tuples with identifiers can be exposed
by the interface, as identifiers are used as pointers to the actual values of the
tuples stored in the knowledge. Then, as depicted in line 1 of Listing 1.1, an
interface is just a set of tuple identifiers enclosed in the Maude operation I,
while, as depicted in lines 2-3, the knowledge is a multiset of tuples enclosed
in the operation K. For example, the sketched robot has id id(’robot-1), role
rescuer and position (41,3). Line 4 specifies that the default policy is enforced.

Line 5 specifies that the behaviour of the robot is provided in the process defi-
nition ’ProcessName. To provide an example of process definition, the MISSCEL
representation of the process Pr of Section 5.2 is provided in Listing 1.2. Note
the almost one-to-one correspondence between the process specification and its
MISSCEL representation. SCEL variables with type value are built with the
Maude operations ?x (when act as binders, e.g. in a get or qry as in line 5)
or x (when instantiated, e.g. as in line 7), having as parameter the name of the
variable (we also have the corresponding process variables ?X and X). Listing 1.2
also provides an hint on how MISSCEL deals with process definitions and their
invocations. As depicted in lines 1-10, the body of a process is provided in the
form of aMaude equation.Maude equations are executed by theMaude engine
to rewrite occurrences of terms (in this case invoke(pDef(’Pr))) matching the
left-hand side (LHS) of the equation (i.e. before the =) in the term specified in
the right-hand side (RHS) of the equation (i.e. after the =), in this case the body
of the process. Intuitively, once all the preceding actions have been executed, a
process definition (e.g. pDef(’Pr)) is invoked. That is, it is encapsulated in the
operation

op invoke : ProcessDefinition -> Process

(e.g. invoke(pDef(’Pr))), which can then be matched with the LHS of the
corresponding equation, causing the replacement of the process definition with
its body.

Predicates are defined as Maude operations with sort Predicate. As de-
picted in line 5 of Listing 1.2, we exploited the predicate Prescuers, specified
in lines 12-15. In line 12 we define the Maude operation Prescuers with sort
Predicate having no parameters. Then, in lines 13-15 we provide the body of
the predicate in the form of a Maude equation, similarly to what done for pro-
cess definitions. Note that in predicates we follow the convention of prefixing
tuple identifiers referring to the target of the communication with the keyword
remote (while we use this for local ones).
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1 eq invoke(pDef(’Pr)) = (
2 (qry(< av(" victimPerceived ") av(true) >)@self.
3 put(< av(" victim ") x y av(3) >)@ self.
4 put(< av(" rescue ") >)@ self +
5 get(< av(" victim ") ?x(’x) ?x(’y) ?x(’count) >)@ Prescuers .
6 pDef(’HelpingRescuer)
7 put(< av(" victim ") x(’x) x(’y) 3 >)@ self.
8 put(< av(" rescue ") >)@ self
9 ) | pDef(’RandomWalk) | pDef(’IsMoving)

10 ) .
11
12 op Prescuers : -> Predicate .
13 eq Prescuers
14 = remote. tId(’role) = av(" rescuer ") OR
15 remote. tId(’role) = av(" helpRescuer ") .
16 op PrescuersWithDist : FormalOrActualValue FormalOrActualValue -> Predicate .
17 vars xvic yvic : ActualValue .
18 eq PrescuersWithDist(xvic ,yvic)
19 = (remote. tId(’role) = av(" rescuer ") OR
20 remote. tId(’role) = av(" helpRescuer ")) AND
21 dist(xvic ,yvic , remote. tId(’x), remote. tId(’y)) <= 10 .

Listing 1.2. The MISSCEL representation of process Pr of Section 5.2

Interestingly, predicates can also be defined with parameters. An example
is PrescuersWithDist of lines 16-21, having as parameter the position of the
victim, so to send the message only to rescuers near to the victim. In line 16 we
define the Maude operation PrescuersWithDist with sort Predicate having
as parameters two FormalOrActualValue (i.e. either SCEL variables or actual
values). Then, similarly to Prescuers, in lines 18-21 we provide the body of the
predicate in the form of a Maude equation. Given that at line 17 we specify
the Maude variables (i.e. place-holders for any term with the same sort) xvic
and yvic with sort ActualValue, we have that only instantiated occurrences of
the predicate (i.e. where all the SCEL variables have been replaced by actual
values) match with the LHS of the equation.

Line 21 of listing 1.2 provides an interesting example demonstrating the use-
fulness of mixing SCEL and Maude specifications: dist is a Maude opera-
tion which computes the distance between two points (e.g. the positions of two
robots), which could for example correspond to the Euclidean distance. Note-
worthy, in case we would consider distances with different assumptions, e.g.
congested areas, it would be sufficient to change the Maude operations leaving
unchanged the SCEL specification.

Coming to semantics-related aspects, we have seen in Section 2.3 that the
operational semantics of SCEL is defined in two steps. The same happens in
MISSCEL. For the sake of presentation, we now exemplify the correspondence
of SCEL semantics and its implementation in MISSCEL for the semantics of
processes only.

Let us consider the first four rules of the SCEL process semantics reported in
Table 2. Listing 1.3 depicts (omitting unnecessary details) how we implemented
these rules in MISSCEL, where P, Q and P1 are Maude variables with sort
Process (i.e. place-holders for any term with the specified sort), while a is an
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1 op commit : Process -> Commitment .
2 rl commit(P) => commitment(inaction ,P) .
3 rl commit(a . P) => commitment(a,P) .
4 crl commit(P + Q) => commitment(a, P1) if commit(P) => commitment(a, P1) .

Listing 1.3. The first four rules of SCEL process semantics implemented inMISSCEL

Action variable. The correspondence is straightforward. Note that we need only
one rule for the + operator, as we defined it with the comm axiom, meaning that
it has the commutative property, i.e. when applying a rule to P + Q, Maude

will try to match the rule also with Q + P.

8.3 Spin-based Verification

We present here a verification approach for SCEL specifications based on the
Spin model checker [28]. Specifically, we provide a translation of SCEL specifi-
cations into Promela, the input language of Spin, and show how to exploit it to
verify some properties of interest of the swarm robotics scenario with Spin.

From SCEL to Promela. For the sake of presentation, we consider a simple
instance of SCEL with no policies, standard interleaving interaction (as in Ta-
ble 3), and knowledge repositories based on multiple distributed tuple spaces
(as in Section 3.1). Moreover, we do not consider other sophisticated features of
SCEL such as higher-order communication and dynamic creation of new names
and components.

We present below the key points of the translation from SCEL to Promela
by resorting to the robotics scenario25. The translation is defined by a family of
functions J·K, whose formal definitions are given in [23].

Specifications. The Promela specification resulting from the translation (of a sim-
plified variant) of the SCEL specification of the swarm robotics scenario is shown
in Listing 1.4. It contains the declaration of the necessary data structures for
representing interfaces, knowledge, components and processes. Data structures
representing interfaces and knowledge repositories are declared with a global
scope; in this way, attributes and knowledge items can be directly accessed by
Promela processes.

Interfaces. The translation declares a structured type interface (lines 8-11) as
a collection of variables, one for each attribute. In our scenario, all robots expose
two attributes: id, ranging over integer values, and role, ranging over names
in {rescuer, helpRescuer, explorer}. All interfaces are then recorded in the
array I (line 14), whose size is given by the number of robots, defined by the
constant NROBOTS (line 2).

25 The complete specification of the scenario can be retrieved from http://rap.dsi.

unifi.it/scel/docs/SpinSpecificationSwarmRoboticsScenario.pml
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1 /* Constants declaration */
2 #define NROBOTS 10 /* Number of robots */
3 #define CAPACITY 10 /* Maximum size of knowledge repositories */
4 ...
5
6 /* The type of the interface as a struct of attributes */
7 mtype ={rescuer , helpRescuer , explorer}
8 typedef interface{
9 int id;

10 mtype role;
11 }
12
13 /* A component -indexed array of interfaces */
14 interface I[NROBOTS ];
15
16 /* Component -indexed array of knowledge repositories */
17 mtype ={victim , direction}
18 chan K[NROBOTS ]=[ CAPACITY] of {mtype , int , int , int};
19
20 /* Components specification */
21 active [NROBOTS] proctype Robot (){
22 /* Attribute initialization */
23 int id=_pid;
24 I[id].id=id;
25 I[id].role=explorer;
26
27 /* Component ’s process specification */
28 ...
29 }

Listing 1.4. Promela specification of the swarm robotics scenario

Repositories. All knowledge repositories are grouped together in the array K

(line 18). Each repository is implemented as a channel of tuples, whose length
is given by the maximum length of items used in the specification. In fact, to
simplify message management in Promela, all tuples have the same length and
are composed only of a value in {victim, direction} followed by integer values.
To fulfil this assumption, messages representing shorter items are completed
by using dummy values. The dimension of repositories is set by means of the
constant CAPACITY (line 3).

Components. The translation of a component Ii [Ki , Πi , Pi ] corresponds to a
declaration of a Promela process, via the proctype construct (line 21), that ini-
tializes the data structure modelling the component attributes with values in Ii
(lines 23-25). In our example, the data structure modelling the knowledge repos-
itory, i.e. channel K[i], is not initialized because Ki is initially empty. Notably,
component translations are automatically instantiated in the initial system state
(by means of the keyword active).

Processes and actions. The composition of SCEL processes can be naturally
translated into Promela process declarations and their composition. For exam-
ple, multiple run statements can be used for the parallel execution of processes.
Then, each SCEL action is translated in a small piece of Promela code that
basically performs output or input operations on channels K[i]. For exam-
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ple, the group-oriented action get(“victim”, ?x, ?y, ?count)@(role=“rescuer” ∨
role=“helpRescuer”), used by a robot to receive a request for help by other
robots, is rendered in Promela as a non-deterministic choice among a set of in-
put operations on each K[i]. In particular, for each robot component i, there
is a choice branch

::atomic{(g i -> K[i]??victim,x,y,count}

where the guard g i is as follows:

(I[i].role==rescuer || I[i].role==helpRescuer) && K[i]??[victim, , , ]

This guard ensures the transition to fire only if the target predicate holds for
component i (i.e., the component plays either role rescuer or helpRescuer) and
i has a matching victim tuple in its repository. If that is the case, the tuple is in-
deed removed using the (consuming) input operation K[i]??victim,x,y,count.
It is worth noticing that the atomic block is used to guarantee atomic execution
of the operations.

Spin verification. We illustrate in this section some examples of how Spin can
be used to check and verify properties of SCEL specifications, by resorting to
the translation of the SCEL specification of our swarm robotics scenario.

Checking Deadlock Absence. A first property one would like to check is absence
of deadlocks. Below, we report the result of invoking Spin for checking deadlock
absence in our scenario with 10 robots:

State-vector 2188 byte, depth reached 415289, errors: 0

415290 states, stored

The result is positive (no errors) and Spin explores more than 400.000 states.

Checking liveness. Another typical use of Spin that is very convenient for our
purposes is to look for interesting executions, that is, we characterise them by
means of an LTL formula. For example, in our scenario, we can specify a formula

[](I[i].role==helpRescuer ->

<>(positionX[i]==VICTIMX && positionY[2]==VICTIMY))

which states that whenever the robot i becomes a HelpRescuer, it eventu-
ally reaches the victim. Spin provides a positive answer, since in our simplified
scenario robots’ batteries never discharge. We have also defined a variant of the
scenario where each robot component has a battery level value that decreases
after each movement. In this case, the formula is not satisfied and Spin returns a
counterexample showing an execution of the system in which the robot becomes
a HelpRescuer but then stops moving because the battery is completely dis-
charged.
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9 Concluding Remarks

We have presented the kernel language SCEL and its Java implementation to-
gether with alternative linguistic primitives and with automatic tools to support
verification of qualitative and quantitative properties of its programs. To assess
to which extent SCEL meets our expectations, we have used it to tackle a num-
ber of case studies from robotics [15, 24, 13, 34], service provision domains [19,
23], cloud-computing [36, 38] and e-Mobility domains [12]. Moreover, to verify
the impact of SCEL on autonomic programming we have shown how it can be
used to model a key aspect such as self-expression [13] and how it can flexibly
model different adaptation patterns [15].

Our holistic approach to programming autonomic computing systems permits
to govern systems complexity by providing flexible abstractions for modeling
behaviors, knowledge and policies and for exploiting external reasoners whenever
informed decisions need to be taken. We are now working on two different, almost
opposite, directions.

On the one hand, we are developing a high-level programming language that,
by enriching SCEL with standard constructs (e.g., control flow constructs such
as while or if-then-else), simplifies the programming task. This would enable us
to implement an integrated environment for supporting the development of au-
tonomic systems at different levels of abstraction: from a high-level perspective,
based on SCEL, to a more concrete one, based on jRESP. (Semi-)Automatic
analysis tools, based on the SCEL’s formal semantics, will be integrated in this
toolchain. On the other hand, we are distilling from SCEL a minimal calculus
where communication partners are selected according to predicates on attributes
exposed by the different processes. Our aim is to understand the full impact on
distributed programming of this novel paradigm that has proved very fruitful
in modeling the interaction of large numbers of autonomic systems. For the
new calculus we plan to develop behavioral relations, axiomatizations and logics
that will help to devise new tools for supporting specification and verification of
SCEL programs.

Other interesting topics that deserve further investigation are those con-
nected to policies, reasoners and adaptation. We are currently working on defin-
ing different interaction policies to study the possibility of modeling different
forms of synchronization and communication, and for example to guarantee lo-
cal synchronous interaction and global asynchronous interaction between compo-
nents. Moreover, we are studying the connections between knowledge handlers,
reasoners and components goals described by means of appropriate knowledge
representation languages. In this case the aim is the development of methodolo-
gies that enable components to take decisions, possibly after consulting external
reasoners, about possible alternative behaviors by choosing among the best pos-
sibilities while being aware of the consequences.
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