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Abstract. The protection state of a system is defined by the privileges possessed by subjects at a given 
moment. Operations that change this state are themselves authorized by the current state. This poses a 
design problem in constructing the initial state so that all derivable states conform to a particular policy. 
It also raises an analysis problem of characterizing the protection states derivable from a given initial 
state. A protection model provides a framework for both design and analysis. Design generality and 
tractable analysis are inherently conflicting goals. Analysis is particularly difftcult if creation of subjects 
is permitted. The schematic protection model resolves this conflict by classifying subjects and objects 
into protection types. The privileges possessed by a subject consist of a type-determined part specified 
by a static protection scheme and a dynamic part consisting of tickets (capabilities). It is shown that 
analysis is tractable for this model provided certain restrictions are imposed on subject creation. A 
scheme authorizes creation of subjects via a binary relation on subject types. Our principal constraint 
is that this relation be acyclic, excepting loops that authorize a subject to create subjects of its own type. 
Our assumptions admit a variety of useful systems. 
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1. Introduction 

The access control or protection problem arises in any computer system that 
provides for controlled sharing of information among multiple users. Such systems 
can be viewed as consisting of subjects and objects. Active entities such as ‘users 
and processes are subjects, whereas passive entities such as text files are objects. 
Protection is enforced by ensuring that only those operations for which the invoking 
subject possesses privileges in its domain actually get executed. Operations may be 
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performed on objects (e.g., reading a text file) and on subjects (e.g., blocking a 
process). We regard subjects and objects as mutually exclusive and use entity to 
denote either a subject or object. By definition, objects do not possess privileges. 
Passive entities that possess privileges (e.g., directories) are modeled as subjects. 

The distribution of privileges in domains of subjects defines the protection state 
of a system. Henceforth we understand state to mean protection state. Inert 
privileges authorize operations that do not modify the state (e.g., reading a tile). 
Control privileges authorize operations that modify the state; for example, user X 
authorizes user Y to read tile Z. The paradigm is that an initial state is established 
and thereafter evolves as constrained by control privileges. The challenge is to 
construct an initial state such that all derivable states conform with the policy that 
the designer wishes to implement. 

Now what do we mean by policy in this context? At the simplest level an 
authorization policy defines a set of safe states where the distribution of privileges 
is consistent with the underlying objectives; for example, the policy that user X 
cannot read file Y. At all times the system must be in a safe state. Safety 
considerations are typically attribute based in that the concern is with classes of 
entities identified by some common attribute rather than with specific individuals; 
for example, the policy that only users in department D can access files internal to 
department D. This policy is said to be selective since users and files in different 
departments are treated differently. 

At a more sophisticated level it is not enough that the system be in a safe state. 
We must additionally ensure that the system arrives at safe states in a proper 
manner. For instance, consider the policy that users outside department D may 
access internal files of D provided the head of department D approves. Then any 
distribution of privileges to access internal files of D is safe by definition. However, 
the policy requires cooperation of the department head to arrive at safe states in 
which outsiders can access internal tiles of D. Besides being attribute based and 
selective, we say this policy is discretionary and cooperative because of the role of 
the department head. Discretionary power itself can be dynamically acquired; for 
example, the policy that the department head may designate any senior member 
of the department to provide outsiders access to internal files but may not designate 
a junior member for this purpose. In this manner the department head’s discre- 
tionary power is limited by mandatory controls. 

We are primarily concerned with the dynamic aspect of authorization policies. 
A protection model provides a framework and formalism for specification of such 
policies and should be general enough to accommodate conveniently the kinds of 
issues outlined above. But generality by itself is not sufficient. To understand the 
formal statement of a policy and to ensure that it captures our intent, we need to 
characterize the states that a system may arrive at from a given initial state. Since 
subjects are usually authorized to create new subjects and objects, we are confronted 
with unbounded systems, and it is not certain that such analysis can be decidable, 
let alone tractable, without sacrificing generality. 

Analysis issues were first formalized [5] in context of the well-known access- 
matrix model [l, 3, 7, 8, IO]. Not surprisingly, analysis is undecidable in this 
general setting. Furthermore, the access matrix lacks any structure for conveniently 
addressing the policy concerns outlined above. On the other hand, the take-grant 
model [ 1, 6, 8, 11, 191 and its variations [ 121, although efficiently analyzable, 
accommodate only a very speciftc class of simple policies. Thus this conflict between 
generality and analysis is quite real. 

The central point of this paper is to demonstrate that the conflicting goals of 
convenient generality and tractable analysis can be simultaneously achieved. For 
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this purpose we have developed the Schematic Protection Model (SPM), which we 
present in Section 2. The SPM formulation is an outgrowth of ideas developed in 
the author’s Ph.D. dissertation [ 15-171, which, in turn, were based on Minsky’s 
send-receive transport model [ 131. Section 3 discusses some applications of SPM. 
More extensive examples are discussed in [ 161 and [ 181. Section 4 develops concepts 
and terminology required for the analysis of Section 5. The principal result of this 
paper is that for a large class of SPM specifications, the analysis problem of deciding 
whether states derivable from a given initial state are safe is decidable and even 
tractable. SPM authorizes creation of subjects via a binary relation on subject 
types. Our major constraint is that this relation be acyclic, excepting loops that 
authorize a subject to create subjects of its own type. Our assumptions admit a 
variety of useful systems including the examples of Section 3 and of [ 161 and [ 181. 
We conjecture that most, if not all, SPM specifications of practical interest will 
satisfy this constraint. Section 6 concludes the paper. 

2. The Schematic Protection Model 

The key to balancing the conflicting goals of generality and analysis in SPM is the 
notion of protection type. The intuitive concept is that instances of the same 
protection type are treated uniformly by control privileges. Henceforth, we use 
type as synonymous with protection type. A critical assumption in SPM is that 
entities are strongly typed, that is, every entity is created to be of a specific type, 
and its type cannot change thereafter. 

SPM views the domain of a subject as consisting of two parts: a static type- 
dependent part defined by the protection scheme and a dynamic part consisting of 
tickets (capabilities). The scheme is defined in terms of types by the security 
administrator when a system is first set up and thereafter cannot be changed. The 
idea is that major policy decisions are built into the scheme, while details are 
reflected in the initial distribution of tickets. We find it useful to view an authori- 
zation scheme as analogous to a database schema and the distribution of tickets as 
analogous to an extensional database. 

Tickets are privileges of the form Y/x, where Y identifies some unique entity 
and the right symbol x authorizes the possessor of this ticket to perform some 
operation on Y. More generally x may authorize some particular set of operations 
on Y. Tickets are unforgeable and cannot be generated at will by a subject. They 
can be acquired only in accordance with specific rules to be discussed shortly. We 
do not intend that tickets must be represented at run time as capabilities built into 
the addressing mechanism of a computer [2, 91. The correspondence between 
tickets and run-time representation of dynamic privileges in a given mechanism is 
a separate issue. The assumption that a ticket carries only one right symbol 
simplifies the formal framework without loss of generality. Capabilities with 
multiple right symbols then correspond to sets of tickets. We often abbreviate sets 
of tickets in this manner; for example, Y/uvw denotes the tickets Y/u, Y/v, and 
Y/w. 

2.1 TYPES AND RIGHT SYMBOLS. The first step in defining a scheme is to specify 
the disjoint sets of object types TO and subject types TS. Their union T is the entire 
set of entity types. The idea is that protection types are used to identify classes of 
entities that share some common attribute. For subjects this may be membership 
in a department or a particular position of authority in a group. For objects this 
may be a classification such as an internal document or a public document. By 
convention types are named in lowercase italics and entities in uppercase roman. 
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Similarly, italics and roman are used to name sets, functions, and relations whose 
domains involve types and entities, respectively. The type of an entity Y is denoted 
by r(Y), where T is called the type function. 

The next, or perhaps concurrent, step is to define the right symbols carried by 
tickets. The set of right symbols R is partitioned into two disjoint subsets: RI the 
set of inert rights and RC the set of control rights. Examples of inert rights are the 
typical read, write, execute, and append privileges for a file. Because of the role of 
inert rights, the symbols in RI require no interpretation for analysis purposes. The 
interpretation of symbols in RC is discussed shortly. 

Every right symbol x comes in two variations x and xc, where c is the copyflag. 
The only difference between the Y/x and Y/xc tickets is that the former cannot be 
copied from one domain to another, whereas the latter can, provided certain 
additional conditions to be defined shortly are true. It follows that presence of 
Y/xc in a domain subsumes the presence of Y/x, but not vice versa. We use 
x : c to denote x or xc with the understanding that multiple occurrences of x : c in 
the same context are either all read as x or all as xc. When used with multiple 
right symbols on a ticket, the copy flag applies to each symbol, that is, Y/uvc 
denotes Y/UC and Y/vc. 

We denote the type ofa ticket Y/x : c by ~(Y/x : c) and define it to be the ordered 
pair T(Y)/x : c. That is, the type of a ticket is determined by the type of the entity 
it addresses and the right symbol it carries. Conventions for representing tickets, 
especially regarding the copy flag, extend in an obvious way to ticket types. In 
particular, ~(Y/x) and ~(Y/xc) are different ticket types. This is an important 
distinction because of the role of the copy flag. The entire set of ticket types 
is TX R. 

The remaining components of a scheme are defined in terms of functions and 
relations involving the sets TS, T, and T x R. SPM requires that T and R be finite 
sets, so a scheme is defined by finite sets, relations, and functions. SPM recognizes 
three operations that change the protection state: copy, demand, and create. 

2.2 THE COPY OPERATION. The copy operation moves a copy of a ticket from 
the domain of one subject to the domain of another leaving the original ticket 
intact. We often speak of copying a ticket from one subject to another, although 
technically a ticket is copied from one subject’s domain to another’s domain. In 
addition to the copy flag, this operation is authorized by a link predicate linki 
defined by control rights and its associated filter function Ji’ which is a component 
of the scheme. 

2.2.1 Link Predicates. A link predicate takes two subjects, say X and Y, as 
arguments and evaluates to true or false. If true, it establishes a connection from 
X to Y that can be used to copy tickets from the domain of X to the domain of Y. 
Its definition is in terms of the presence of some combination of control tickets for 
X and Y in the domains of X and Y. The idea is that the link predicate should be 
evaluated by examining the domains of the two subjects of concern, and that only 
with respect to the presence of control tickets for the two subjects. We emphasize 
this by calling it a local link predicate. That its definition should depend only on 
the presence and not the absence of tickets is a well-known principle for protection 
[ 141. As a special case, we also allow a link predicate that is always true to be 
defined. Formally, we have the following definition. 

Definition 1. Let dam(X) be the set of tickets possessed by subject X. A 

local link predicate linki(X, Y), with X and Y as formal parameters, is defined 
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as a conjunction or disjunction, but not negation, of the following terms for 
any z E RC. 

(1) X/z E dam(X), 
(2) X/z E dam(Y), 
(3) Y/z E dam(X), 
(4) Y/z E dam(Y), 
(5) true. 

For a given state, if linki(A, B) is true, we say there is a linki from A to B. This 
is necessary but not sufficient for copying tickets from A to B. If the context 
permits it, we often omit the subscript i. 

Some examples of local link predicates are listed below: 

(1) link(X, Y) = Y/g E dam(X) V X/t E dam(Y), 
(2) link(X, Y) = X/t E dam(Y), 
(3) link(X, Y) 5 Y/g E dam(X), 
(4) link(X, Y) = Y/s E dam(X) A X/r E dam(Y), 
(5) link(X, Y) = X/b E dam(X), 
(6) link(X, Y) = Y/p E dam(Y), 
(7) link(X, Y) = X/b E dam(X) A Y/p E dam(Y), 
(8) link(X, Y) = true. 

The first example is from the take-grant model [ 1 I], where the t and g control 
rights are read, respectively, as take and grant. The next two examples each retain 
just one of these privileges [ 121. The fourth example is from the send-receive 
mechanism [ 13, 151, where the s and r control rights are read, respectively, as send 
and receive. Thus the notion of a local link predicate is able to capture all these 
cases. 

The first four cases are deIined in terms of a control ticket for X in Y’s domain, 
or vice versa. The next three cases are quite different and are defined in terms of a 
control ticket for X in X’s domain, or similarly for Y. In the fifth case the definition 
of link depends only on X and is independent of Y. The control right b is read as 
broadcast. Similarly, in the sixth case the definition of link depends only on Y and 
is independent of X. Here the control right p is read as pickup. The seventh case 
is a combination of the fifth and sixth cases. The eighth case is unique in that it 
requires no tickets for a link to exist. We call this the universal link. There are 
other interesting possibilities for defining link predicates. We anticipate that simple 
link predicates of the kind defined above will suffice in practice, although the 
model does allow for arbitrarily complex predicates. 

In SPM a finite collection of local link predicates (linki ] i= 1 . . . NJ is defined 
in a scheme. If only one link predicate is defined, we drop the subscript. We 
emphasize that existence of a link from A to B is necessary but not sufficient for 
copying tickets from A to B. 

2.2.2 Filter Functions. The final condition required for authorizing a copy 
operation is defined by the corresponding filter function A: TSX TS + 2 TxR. The 
interpretation is that Y/x : c can be copied from dam(A) to dam(B) if and only if 
all of the following are true for some i, where the types of A, B, and Y are a, b, 
and y, respectively. 

(I) Y/xc E dam(A), 
(2) linki(A, B), 
(3) v/x : c Ejxu, b). 
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In this manner the copy flag, the link predicate, and the filter function together 
authorize a copy operation. The first two conditions depend on the distribution of 
tickets, whereas the third condition depends on the scheme. Selectivity in the copy 
operation is controlled by the filter function and specified entirely in terms of 
types. We emphasize there is a different filter function for each predicate link;. 

The filter functions are a powerful tool for specifying policies. They impose 
mandatory controls that are inviolable and confine the discretionary behavior of 
individual subjects. Some sample values forf(a, b) are TX R, TO X RI, and 4. In 
the first case all types of tickets can be copied from a subject of type a to a subject 
of type b provided the corresponding link predicate is true. In the second case only 
inert tickets for objects can be copied, whereas in the third case no tickets can be 
copied. 

Finally we note that SPM imposes no assumptions regarding the role of A and 
B in a copy operation from A to B. It is equally acceptable for copying to take 
place at the initiative of A or B alone or to require both to cooperate. 

2.3 THE DEMAND OPERATION. The demand operation allows a subject to 
obtain tickets simply by demanding them. A scheme authorizes this operation by 
the demand function d: TS + 2TxR. The interpretation of a/x : c E d(b) is that 
every subject of type b can demand the ticket A/x : c for every entity A of type a. 

Demand is a method for specifying implicit distribution of tickets. If 
a/x : c E d(b), then every subject of type b has the ability to access every entity of 
type a, including those that will be created some time in the future. Thus, when 
an entity A of type a is created, it is not necessary to distribute A/x : c tickets to 
every subject of type 6. Also, this access is immediately available to a newly created 
subject of type b, so when a subject of type b is created, there is no need to explicitly 
provide it all tickets of type a/x : c. In particular, control tickets can be demanded. 
This allows for links to be set up between subjects on demand. Also a subject can 
obtain copiable control tickets for other subjects in this manner, thereby obtaining 
the authority to establish links involving these subjects. Both features are useful in 
specifying policies. We shall see the utility of a demand operation for both inert 
and control tickets in the schemes discussed in Section 3. 

2.4 THE CREATE OPERATION. The create operation introduces new subjects 
and objects into the system. There are two issues here: What types of entities can 
be created and which tickets are introduced as the immediate result of a create 
operation? 

2.4.1 Authorization. The first issue is specified in a scheme by the can-create 
relation cc C TSX T. The interpretation is that subjects of type a are authorized to 
create entities of type b if and only if cc(a, b). For notational convenience we 
sometimes regard cc as a function cc: TS + 2 T. 

Visualize the cc relation as a directed graph with vertex set T and an edge from 
a to b if and only if cc(a, b). We say cc is acycZic if this graph contains no cycles 
excepting loops, that is, edges that connect a vertex to itself. An object type can 
only have incoming edges, so the acyclic restriction has no effect regarding creation 
of objects. For subject creation the acyclic restriction states that, if subjects of type 
a can directly or indirectly create subjects of type b, then it is not possible for 
subjects of type b to directly or indirectly create subjects of type a, unless a = b. In 
effect the acyclic assumption eliminates a kind of mutual recursion in cc. This is 
consistent with modern principles of system design that call for simple hierarchical 
structures. It is also consistent with the natural hierarchical structure of typical 
organizations. The analysis of Section 5 is based on this assumption. 
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2.4.2 Create-Rules. The tickets introduced by a create operation are specified 
by a create-rule for every pair in cc. Let subject A of type a create entity B of 
type b. If B is an object, the create-rule cr(a, b) tells us which tickets for B are 
placed in dam(A) as a result of this operation. If B is a subject, the create-rule 
must also tell us which tickets for A are placed in dam(B). SPM requires every 
create-rule be local in that the only tickets introduced are for the creating and 
created entities in the domains of the creating and created entities. The motivation 
is that frequently occurring incremental events, such as creation, should immedi- 
ately have only a local incremental impact on the state. Each ticket generated by a 
create-rule may or may not carry the copy flag as specified by the rule. We 
emphasize the create-rule may be different for each pair in cc. 

The facility to generate copiable control tickets for a created subject is certainly 
useful. The policy decision as to whether the creator, or the created subject, or 
both get these tickets is properly left open by the model. It is quite reasonable to 
place copiable control tickets for the created subject in the creator’s domain, since 
this gives the creator some discretionary control over the created subject. Similarly, 
placing copiable control tickets for the created subject in the created subject’s own 
domain in reasonable. Placing copiable control tickets for the creator in the created 
subject’s domain is also a valid policy option. For example, a policy may allow an 
ordinary user U to create a very powerful subject M of type system manager with 
the intention that M be used solely for experimentation by U in isolation from the 
rest of the system. If M gets copiable control tickets for U, then M may create a 
complex subsystem with which U can interact. Placing copiable control tickets for 
the creator in the creator’s own domain is a more subtle issue. We return to this 
issue shortly, after defining our notation for create-rules. 

When an object is created, the only tickets that can be introduced by a local 
create-rule are inert tickets for the created object in the creator’s domain. For such 
cases the create-rule is specified as cr(a, b) C (b/x : c 1 x: c E RI]. The interpretation 
is that when a subject A of type a creates an object B of type b, A gets B/x : c if and 
only if b/x : c E cr(a, b). 

For subject creation the situation is more complex. First, consider subject types 
a and b such that a # b. In such cases we specify the create-rule in two parts 
separated by a vertical line; that is, cr(a, b) = LEFT 1 RIGHT. Let subject A of 
type a create subject B of type b. The left part of cr(a, b) specifies the tickets placed 
in A’s domain, and the right part specifies tickets placed in B’s domain. Both 
LEFT and RIGHT are subsets of (a/x : c, b/x : c 1 x : c E R ). The interpretation is 
that A gets A/x : c provided a/x : c E LEFT, and B/x : c provided b/x : c E LEFT. 
Similarly, B gets A/x : c provided a/x : c E RIGHT, and B/x : c provided b/x : c E 
RIGHT. If a = b, this notation breaks down, since it is not apparent whether the 
ticket types in the create-rule refer to the created subject or to the creator. For such 
cases we introduce a special symbol self and specify LEFT and RIGHT as subsets 
of (a/x : c, self/x : c 1 x : c E R), with the understanding that self/x : c denotes tickets 
for the creator, whereas a/x : c denotes tickets for the created subject. 

2.4.3 Attenuating Create-Rules. The analysis of Section 5, in addition to the 
acyclic assumption regarding cc, requires an assumption about create-rules for 
loops in cc, that is, create-rules of the form cr(a, a). Consider subject A of type a 
such that cc(a, a). Subject A can create a child A’ of type a, which in turn can 
create a child A” of type a, and so on. The possibility of indefinitely long chains 
of create operations complicates analysis. The acyclic restriction eliminates certain 
kinds of indefinitely long chains but does not eliminate them completely because 
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of loops. We account for loops in cc by insisting that the child A’ be “no more 
powerful” than its creator A. Since A and A’ are both of type a, this is a somewhat 
curious requirement. The crucial difference between A and A’ lies in the tickets 
introduced by cr(a, a) when A creates A’. 

Our first restriction on cr(a, a) is that immediately after the create operation 
dom(A’) C dam(A). This is consistent with the principle of attenuation [ 141 in that 
a newly created subject should not get more tickets than its creator. Our second 
restriction is more subtle. It requires that, if a ticket for A’ is placed in dam(A), 
the corresponding ticket for A should also be placed in dam(A). The formal 
definition of these restrictions is as follows. 

Dejinition 2. A create-rule cr(a, a) = LEFT 1 RIGHT is attenuating provided 

(1) RIGHT C_ LEFT, 
(2) a/x : c E LEFT + self/x : c E LEFT. 

A scheme is attenuating if, for all a such that cc(a,a), the create-rule cr(a,a) is 
attenuating. 

Note that for an attenuating scheme only the create-rules for loops in cc are 
required to be attenuating. 

In order to understand the attenuating assumption, we focus on control tickets 
introduced by cr(a, a) when subject A of type a creates subject A’ of type a. We 
say a control right z E RC is external if z occurs in the definition of a predicate 
linki(X, Y) in terms of the form X/z E dam(Y) or Y/z E dam(X). Conversely, z is 
internal if it occurs in terms of the form X/z E dam(X) or Y/z E dam(Y). For the 
collection of link predicates defined in Section 2.2, the rights t, g, s, and r are 
external, whereas b and p are internal. In principle it is possible that a control right 
is both external and internal, but we ignore that possibility in our discussion here. 

Let subject A of type a create subject A’ of type a. Consider an external control 
right such as the grant right that defines link(X,Y) by Y/g E dam(X). Placing 
A’/g in dom(A’) or A/g in dam(A) is meaningless and can be assumed to occur if 
required to make cr(a, a) attenuating. So the attenuating assumption only applies 
to copiable grant tickets, that is, tickets with the gc right. The first part of the 
attenuating assumption says that, if A’ gets A’/gc or A/gc, then A should also get 
A’/gc or A/gc, respectively. The second part says that, if A gets A’/gc, then A 
should also get A/gc. The motivation for the first part is to ensure that all tickets 
possessed by A’ immediately after the create operation are also possessed by A, so 
A’ is not “more powerful” than A on this account. For the second part consider 
what happens if A gets A’/gc but does not possess A/gc. The A’/gc ticket (partially) 
authorizes A to establish link(B, A’). So it may be possible to establish link(B, A’), 
whereas link(B, A) cannot be established. But then A’ is “more powerful” than A, 
in a sense. The second part of the attenuating assumption eliminates this possibility. 

Similarly, consider an internal control right such as pickup that defines link(X, Y) 
by Y/p E dam(Y). Now placing A’/p in dam(A) is meaningless and can be 
assumed to occur if required to make cr(a, a) attenuating. If A’/p is placed in 
dom(A’) but A/p is not in dam(A), then clearly A’ is “more powerful,” since there 
is a link from every subject to A’ but not to A. With an attenuating create rule this 
cannot happen. 

The net effect of the attenuating assumption can be formulated slightly differently 
if we allow the effect of the create rule to depend on the current domain of the 
creator. 
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Definition 3. A create-rule ~(a, a) = LEFT 1 RIGHT is attenuating provided 

(1) RIGHT c LEFT. 
(2) Only those tickets A’/z : c or A/z : c for which the A/z : c ticket is present in the 

creator’s current domain, before the create operation, will be actually intro- 
duced by the create-rule. 

Thus A’/gc will be placed in dom(A’) or dam(A) only if A already possesses the 
ticket A/gc. Similarly, A’/p will be placed in dam(A) only if A already has A/p. 
Definition 3 is a conservative counterpart of Definition 2. The analysis of this 
paper applies equally well to either definition, and it is a matter of taste as to which 
one is preferred. 

As a final point on create-rules, we mention that the create-rules can always be 
treated as upper bounds on the tickets that can be generated, instead of specifying 
the exact tickets that will be generated. We can allow subjects to specify a subset 
of tickets permitted by the create-rule to be actually generated for a particular 
create operation. This will not affect the analysis of this paper. 

2.5 SUMMARY AND DISCUSSION. In summary, the Schematic Protection Model 
requires the security administrator to specify a protection scheme by defining the 
following components: 

(1) A finite set of entity types T partitioned into subject types TS and object 
types TO. 

(2) A finite set of right symbols R partitioned into inert rights RI and control 
rights RC. 

(3) A finite collection of local link predicates (linki 1 i = 1 . . . NJ. 
(4) A filter functionJ: TSX TS + 2 TxR corresponding to each linki. 
(5) The demand function d: TS + 2 TxR. 
(6) The can-create relation cc G TSx T. Equivalently, cc: TS ---, 2 T. 
(7) A local create-rule for each pair in cc. 

A system is specified by defining a protection scheme and the initial protection 
state, that is, the initial set of entities and the initial distribution of tickets. 
Thereafter, the protection state evolves by copy, demand, and create operations. 

A scheme is acyclic if its cc relation is acyclic, excepting loops of the form cc(a, a) 
that authorize a subject to create subjects of its own type. A scheme is attenuating 
if all create-rules of the form ~(a, a) are attenuating. The analysis in this paper is 
based on acyclic attenuating schemes. These restrictions admit a wide variety of 
schemes of practical interest. Indeed we have not been able to construct any realistic 
scheme that cannot be formulated as an acyclic attenuating scheme. Our conjecture 
is that most, if not all, schemes of practical interest will turn out to have an acyclic 
attenuating formulation. 

Our approach to analysis is based on a worst-case scenario in which we assume 
all subjects will cooperate with one another. Now it is certainly desirable to analyze 
systems under assumptions about the behavior of specific subjects. For some 
mechanisms this may be unavoidable. For example, the UNIX’ superuser has 
privileges to effect essentially arbitrary changes in the protection state. To do any 
interesting analysis in this environment, we must make assumptions that superusers 
will not exercise their privileges arbitrarily. SPM is able to accommodate such 
assumptions to the extent they can be captured in the scheme. Thus the worst-case 
scenario is more flexible than may appear at first sight. 

’ UNIX is a trademark of AT&T Bell Laboratories. 
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2.5.1 Revocation and the Restoration Principle. SPM lacks facilities for revo- 
cation of tickets and deletion of entities. This reflects a deliberate decision to focus 
on policies for acquisition of tickets and creation of entities, while setting aside the 
issue of specifying revocation and deletion policies for the moment. Fortunately, 
it turns out that under rather general assumptions revocation and deletion can be 
ignored for analysis purposes. Also, this greatly simpliftes analysis because without 
revocation and deletion the protection state evolves in a monotonic manner. 

Revocation can be ignored in a worst-case scenario provided the effect of 
revocation can be undone. We call this the restoration principle; that is, whatever 
can be revoked can be restored. In SPM, if a ticket obtained by a copy or demand 
operation is revoked, it is easily restored by repeating the operation. However, if a 
ticket introduced by a create operation is revoked, it may not be restorable by 
repeating the operation, since each created entity is unique. Also tickets distributed 
in the initial state may not be restorable. If we assume tickets distributed in the 
initial state or introduced by create-rules are irrevocable, the restoration principle 
does not entail any loss of generality in context of SPM. The need for a restoration 
principle is also demonstrated by the lost object problem. With unrestricted 
revocation it is possible that all tickets for an object may disappear. If tickets for 
this object cannot be generated on demand, the object thereby becomes inaccessible. 

The situation regarding deletion of entities is similar. Here the restoration 
principle requires that an entity that can be deleted should be replaceable by an 
equivalent entity. In general, this rules out deletion of entities present in the initial 
state. Regarding deletion of entities created subsequently, it is always possible to 
re-create an entity of the same type as was deleted. In other words, the individuality 
of created entities is not significant for analysis of the safety problem, whereas the 
individuality of entities in the initial state may be significant. 

To summarize, revocation and deletion policies that are consistent with 
the restoration principle can be ignored for analysis of the safety problem in a 
worst-case scenario. 

3. Applications 

In this section we specify a variety of policies in the SPM formalism. Our objective 
is to demonstrate the power of the SPM framework rather than provide an 
exhaustive investigation of policy alternatives in the different contexts considered. 
The examples are necessarily brief. We point out that the schemes discussed in this 
section, as well as those in the more extensive case studies of [ 161 and [ 181, are all 
either acyclic attenuating or can be easily reformulated to be acyclic attenuating. 

3.1 OWNER-BASED POLICIES. The concept of ownership is a well-known ap- 
proach to dynamic authorization. A user is regarded as the owner of all files he or 
she has created and has complete discretion regarding access to these files. Current 
operating system mechanisms are mostly based on this concept. In this context a 
simple policy is that a user U can authorize another user U’ to access tile F if and 
only if U is the owner of F. The following scheme specifies this policy in SPM: 

Scheme I. Basic owner-based policy. 

(1) TS = (user), TO = (file) 
(2) RI= (x:cJ, RC= r#~ 
(3) link,(X,Y) = true 
(4) f,(user, user) = (file/xc) 
(5) d(user) = 4 
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(6) cc(user) = (file) 
(7) cr( user, file) = (file/xc) 

The types user and file obviously correspond to users and tiles, respectively. For 
simplicity, a single inert right x : c provides access to files. This suffices so long as 
the policy regarding the dynamics of different inert rights, such as the typical read, 
write, execute, and append, remains the same. There are no control rights, so only 
the universal link predicate is defined. Tickets for files, with or without the copy 
flag, can be copied across universal links. Users can create tiles and get a copiable 
ticket for each created file. 

We now refine the policy to allow users to set up groups for distribution of 
tickets. The idea is that a user can identify a group of users and provide access to 
files on a group basis instead of having to distribute tickets to all members of a 
group. For this purpose we introduce a second subject type group and a control 
right g for grant. The grant right is used to define the link predicate link&X, Y) as 
Y/g E dam(X). We authorize users to create groups by placing group in cc(user). 
The corresponding create-rule establishes link&J, G) on creation of a group G by 
user U. This is the only way to establish a link, from a user to a group, so the only 
incoming link, to a group is from its creator. Membership in a group is effected by 
establishing links from the group to each user who is a member, and this is entirely 
at the discretion of the group’s creator. For this purpose we authorize users to 
demand all tickets of type user/gc. By placing user/g Ef(user, group), we allow the 
creator of a group to move grant tickets for all users who are members of the group 
into the group’s domain. Also, by placing file/xc in f(user, group), we authorize 
the creator of a group to make files available to group members by moving such 
tickets into the group’s domain. Finally, we authorize users to obtain tickets for 
files from a group to which they belong by placing file/x in f(group, user). This 
results in the following scheme: 

Scheme II. Owner-based policy with owner defined groups. 

(1) TS = (user, group), TO = (jile) 

(2) RI= (x:c], RC = (g:c] 

(3) link,(X, Y) = true 
link&X, Y) = Y/g E dam(X) 

(4) f,(user, user) = (file/xc) f,( user, user) = f#~ 

f,(user, grow) = 4 f,(user, group) = (file/xc, user/g) 

j&mm user) = 4 j&group, user) = {file/x) 

f&ww, grw) = 4 f,(grw, grow) = 4~ 

(5) &user) = (user/gc) 

(6) cc(user) = (file, group) 
cc(group) = 4 

(7) cr( user, file) = ($/e/xc] 

duser, grow) = krowh4 I 4 

Additional examples of schemes based on the notion of ownership and sharing by 
means of groups are discussed in [ 181. 

This scheme is acyclic and has no loops in cc, so it is also attenuating. It is worth 
considering the enhancement that user E cc(user). This allows a user to create 
another user perhaps simply for organizing his or her own workspace. Since 
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user-to-user links can be established on demand, cr(user, user) need not introduce 
any tickets. Thus the scheme remains acyclic attenuating. 

3.2 THE DEPARTMENTAL EXAMPLE. Next we consider the policy issues raised 
in Section 1. For simplicity, assume there is a single department. Users in the 
department can access internal documents of that department, but outsiders 
cannot. For this purpose we divide users into two types: in for insiders and out for 
outsiders. We define a single object type idoc for internal documents and a single 
inert right x. The policy is easily specified by means of the demand function as 
follows: 

Scheme III 

(1) TS = (in, out), TO = (idoc] 

(2) RI= (x:c], RC= 4 

(3) d(in) = (idoc/x] 
d(out) = 4 

(4) cc(in) = (idoc] 

(5) cr(in, idoc) = 4 

Every insider can create internal documents and obtain access to all such docu- 
ments on demand. There are no links in this scheme, and therefore the copy 
operation is ruled out. In practice this scheme would be a fragment of a larger 
scheme, for instance, one with several departments and document types. 

As a refinement to this policy we single out the department head as a distin- 
guished insider who can authorize outsiders to access idoc’s. For this purpose we 
define a new subject type head for department head with all privileges of in and 
some additional ones. Tickets for idoc’s are provided by a department head to 
outsiders by the copy operation. Since the department head has complete discretion 
in this regard, we define a single control right b (for broadcast), which sets up 
a link from the department head to all subjects, that is, link(A, B) if and only 
if A/b E dam(A). We authorize the department head to demand head/b and 
thereby establish links to every subject on demand. We place idoc/xc in 
d(head) rather than just idoc/x. And finally, we allow tickets of type idoc/x 
to be copied to outsiders from the department head’s domain by setting 
Ahead, out) to (idoc/x]. These changes result in the following scheme: 

Scheme IV 

(1) TS = (in, head, out ), TO = (idoc) 

(2) RI= (x:cJ, RC= (b:c] 

(3) link(A, B) = A/b E dam(A) 

(4) f(head, out) = (idoc/x) 
All other values offare empty. 

(5) d(k) = (idoc/x) 
d(head) = (idoc/xc, head/b) 
d(out) = 4 

(6) cc(in) = (idoc) 
cc(head) = (idoc) 

(7) cr(in, idoc) = $ 
cr(head, idoc) = 4 
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This scheme has no facility for restricting the number of instances of head, that is, 
several department heads may exist. This number gets fixed once the initial state 
is defined. Outsiders can access idoc’s only if at least one instance of head is 
present. This illustrates, in a somewhat trivial way, why analysis must consider the 
scheme as well as the initial state. 

As a final refinement we allow the department head to delegate his or her 
discretionary power to senior members of the department. We do this by replacing 
in by two types jun and sen for junior and senior members, respectively. The type 
jun has exactly the privileges of in, whereas sen has some privileges in addition to 
these. Specifically, the discretionary ability of a department head to broadcast 
tickets of type idoc/x to outsiders can be acquired by senior members as follows: 

(1) Let the department head demand copiable broadcast tickets for senior mem- 
bers, that is, sen/bc E d(head). 

(2) Authorize the department head to copy broadcast tickets to domains of senior 
members, that is, .sen/b E f(heud, sen). 

(3) Authorize senior members to demand copiable tickets for internal documents, 
that is, idoc/xc E d(sen) rather than just idoc/x E d(sen). 

(4) Authorize senior members to copy tickets for internal documents to outsiders, 
that is, idoc/x Ef(sen, out). 

In short, a senior member cannot export tickets for internal documents to outsiders 
until the department head gives him or her the broadcast privilege. The result is 
the following scheme. 

Scheme V 

(1) TS = (jun, sen, head, out), TO = {idoc) 

(2) RI= (x:cJ, RC= (b:c) 

(3) link(A, B) = A/b E dam(A) 

(4) f(sen, out) = (idoc/x) 
f(head, out) = (idoc/x) 
flhead, sen) = {sen/b) 
All other values offare emtpy. 

(5) d( jun) = (idoc/x) 
d(sen) = (idoc/xcl 
d(heud) = (idoc/xc, sen/bc, head/b) 
d(out) = 4 

(6) cc( jun) = (idoc] 
cc(sen) = (idoc] 
cc(head) = (idoc] 

(7) cr(jun, idoc) = 4 
cr(sen, idoc) = 4 
cr(heud, idoc) = 4 

It is instructive to consider the restoration principle in the context of this scheme. 
A reasonable revocation policy would be to allow the department head to revoke 
access to internal documents from outsiders and to revoke the broadcast privilege 
from the domains of senior members. This policy is consistent with the restoration 
principle because a ticket that is revoked can be restored by the department head. 
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The preceding three schemes do not allow creation of subjects and are trivially 
acyclic attenuating. We can extend scheme V to allow subject creation, for instance, 
by modifying cc as follows: 

cc(head) = (idoc, head, sen, jun), 
cc(sen) = (idoc, sen, jun ), 
cc(jun) = (idoc, jun). 

The modified scheme is acyclic but with loops. It should be evident that the create- 
rules for creation of subjects need not introduce any tickets, so the scheme remains 
acyclic attenuating. 

3.3 THE TAKE-GRANT MODEL. In our final example we demonstrate how the 
take-grant model [ 1 l] is specified in SPM. The name take-grant is due to the 
control rights t for take and g for grant. A single link predicate link(X, Y) is defined 
by Y/g E dam(X) or X/t E dam(Y). That is, a link requires a grant ticket at the 
source or a take ticket at the destination. 

In the basic take-grant model there is a single subject type that we call sub. The 
model does not explicitly include inert rights and objects in the sense of SPM. 
Nevertheless, we include these in our specification by defining the object type file 
and the inert right x. There is no selectivity in the copy operation, so we set 
f(sub, sub) to be TX R. Since there is no demand operation in the model, we set 
d(sub) to be empty. Subjects are allowed to create files and other subjects, 
and this is easily specified by cc(&). On creation of a file, the creator gets a 
copiable ticket for it. On creation of a subject, the creator gets copiable take and 
grant tickets for the created subject. This establishes links between the creator and 
created subject in both directions. All this results in the following scheme, which 
is equivalent to the take-grant model. 

Scheme I/I. The basic take-grant model. 

(1) TS = (sub), TO = (file) 

(2) RI= (x:c), RC= (t:c, g:c] 

(3) link(X, Y) = Y/g E dam(X) V X/t E dam(Y) 

(4) f(sub, sub) = TX R 

(5) d(sub) = 4 

(6) cc(d) = (file, sub) 

(7) cr(sub, file) = (file/xc) 
cr(sub, sub) = (sub/tgc) ] C$ 

We mention that the take-grant model does not include the notion of copy flag. 
This requires us to make the additional assumption that all tickets in the initial 
state are copiable. 

In this scheme cr(sub, sub) is not attenuating. We can modify this create-rule to 
be attenuating by reformulating it as (sub/tgc, selfltgcc) ] C#J. With this change, 
whenever a subject creates another subject, the creator gets copiable take and grant 
tickets for itself. This amounts to the assumption that every subject has copiable 
take and grant tickets for itself. For a subject A created subsequent to the initial 
state, from a worst-case viewpoint this assumption is without loss of generality. 
The creator of A does get the A/tc and A/gc tickets and can copy these to dam(A). 
However, for the initial set of subjects, this assumption is not satisfactory. 



418 RAVINDERPAL SINGH SANDHU 

This suggests that we need to treat the initial set of subjects differently from 
subjects created subsequently. For this purpose we break sub into two subject types: 
isub for initial subjects and csub for created subjects. All subjects in the initial state 
are of type isub, whereas those created subsequently are of type csub. These two 
types differ only with respect to cc and the create-rules. Only csub’s can be created, 
so we place csub in cc(isub) and cc(c.sub). The create-rules for these two cases 
differ in that cr(isub, csub) does not generate tickets for the creator, whereas 
cr(csub, csub) does. This makes the resulting scheme acyclic attenuating, as 
shown below. 

Scheme T/II. The basic take-grant model as an acyclic attenuating scheme. 

(1) TS = (isub, csub), TO = (file] 

(2) RI= (x:c), RC= (t:c, g:c] 

(3) link(X, Y) = Y/g E dam(X) V X/t E dam(Y) 

(4) f(isub, isub) = TX R 
ji(isub, csub) = TX R 
f(csub, isub) = TX R 
f(csub, csub) = TX R 

(5) d(isub) = 4 
d(csub) = 4 

(6) cc(isub) = (file, csub) 
cc(csub) = (file, csub) 

(7) cr(isub, file) = (file/xc) 
cr(csub, file) = (file/xc) 
cr(isub, csub) = (csub/tgc) 1 4 
cr(csub, csub) = {csubltgc, s&,tgc) ] $J 

This scheme is equivalent to Scheme VI, in the worst case but is attenuating. Thus 
the attenuating requirement is less restrictive than may appear at first sight. 

Next we consider the so called subject-object version of take-grant [6]. From 
our viewpoint, in this version there are two types of subjects: asub for active 
subjects and psub for passive subjects. A passive subject does not initiate any 
operation and is merely a repository for tickets. A link from one active subject to 
another active subject is much the same as before. However, a link from a passive 
subject to another passive subject cannot be used to copy tickets. This is easily 
achieved in SPM by setting the appropriate value of the filter function to empty. 

In the take-grant model a link from an active subject A to a passive subject B 
can be used to copy tickets only if the link is established by B/g E dam(A). 
Similarly, a link to an active subject A from a passive subject B can be used to 
copy tickets only if the link is established by B/t E dam(A). In both of these cases, 
the link can be used to copy tickets only if it is established by a ticket for the 
passive subject in the domain of the active subject. To specify this in the SPM 
framework, we need two link predicates as follows: 

(1) link,(X, Y) = Y/g E dam(X), 
(2) link,(X, Y) = X/t E dam(Y). 

Regarding interaction between active subjects or between passive subjects, these 
two kinds of links are equivalent, and we define the corresponding values of the 
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filter functions as follows: 

(1) f,(asub, asub) = Tx R, f,(psub, psub) = 4, 
(2) f;(asub, asub) = TX R,f;(psub, psub) = 4. 
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Regarding interaction between an active subject and a passive subject, these two 
kinds of links are different, and we have the following values for the filter function: 

(1) f,(asub, psub) = Tx R,f,(psub, asub) = 4, 
(2) f;(asub, psub) = 4, J;(psub, asub) = TX R. 

This example demonstrates the utility of multiple link predicates and filter func- 
tions in SPM. 

It remains to consider the create operation. Passive subjects are not allowed to 
create entities, whereas active subjects can create all types of entities. The create- 
rules are essentially the same as in the previous scheme. The resulting scheme is 
shown below. 

Scheme VIII. The take-grant model with passive subjects. 

(1) TS = (asub, psub), TO = {file] 

(2) RI= {x:cJ, RC= (t:c, g:cJ 

(3) m&(X, Y) = Y/g E dam(X) link,(X, Y) = X/t E dam(Y) 
(4) f,(asub, asub) = TX R f;(asub, asub) = TX R 

f,(asub, psub) = TX R J;(asub, psub) = 4 
f,(psub, asub) = 4 f;(psub, asub) = TX R 

f,(p=& psub) = 4 J;(psub, psub) = d 
(5) d(asub) = 4 

d(psub) = 4 

(6) cc(asub) = (file, asub, psub] 
cc(psub) = 4 

(7) cr(asub,file) = (file/xc] 
cr(asub, asub) = (asubltgc] I$ 
cr(asub, psub) = (psub/tgcJ 14 

Because of cr(asub, asub), this scheme is not attenuating. The technique used to 
convert Scheme VI into its attenuating version VII is again applicable. Here we 
would need to reline asub into two types, iasub and casub, to distinguish the initial 
set of active subjects from those created subsequently. 

4. The Flow Function and Maximal States 

Having demonstrated the expressive power of SPM we turn to analysis. In this 
section we develop the terminology and concepts required for this purpose. A 
change in state caused by a single copy, demand, or create operation is called a 
transition. A transition is legal provided there is proper authorization for the 
operation causing it. A history is a sequence of legal transitions. Histories are 
denoted by uppercase roman letters and states by lowercase roman letters or special 
symbols. Unless otherwise mentioned, a history is applied to the initial state. Any 
state that can be derived by a history is derivable. 

In analysis we are interested in functions and relations that depend on the state, 
for example, dom and linki. When appropriate, we qualify these with a superscript 
to identify the state, for example, domh and link? identify the context as state h. 
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The initial state is identified by the superscript 0. The set of subjects and entities 
in state h are, respectively, denoted by SUBh and ENTh. Both dom and linki exhibit 
a monotonic property because of the absence of revocation and deletion; that is, if 
g is derived from h, then link! C link:, and for all A E SUBh, domh(A) C domg(A). 
Because the functions and relations used in analysis depend on the presence rather 
than absence of tickets in domains, this monotonic property extends to all the 
functions and relations we consider. 

4.1 THE FLOW FUNCTION. The flow function expresses the authorization for 
copying tickets from one subject to another in a given state accounting for indirect 
as well as direct copying. For every pair of subjects, its value is a set of ticket types 
determined by the state and scheme. Its definition is based on the following notion. 

Definition 4. There is a pathh from A to B provided either one of the following 
conditions is true: 

(1) For some i, link!(A, B). 

(2) There exists a sequence of subjects CC2 . . - C, such that for some i& . - . i,, 
link%(A, C,), linkk(&, C,+,), k = 1 . . . n - 1, and link%(C,, B). 

In the former case we say the path is single link, whereas in the latter case the path 
is multilink and traverses C1C2 - . - C, with word i& . . . i,. 

Consider a multilink path from A to B that traverses CICz . . . C,. Let Y/xc E 
dam(A). Y/xc can be copied from A to B using this path provided that Y/xc can 
be copied across each link in the path. Further, Y/x can be copied from A to B 
using this path provided that Y/xc can be copied across each link in the path from 
A to C, and Y/x can be copied from C, to B; that is, the copy flag must be copied 
on all except the last link. This leads to the following definition. 

Definition 5. Define the capacity of a pathh from A to B as follows, where the 
types of A and B are, respectively, a and b. 

1. For a single link path, linkq(A, B) the capacity isJ(a, b). 

2. For a multilink path that traverses subjects CC2 . . . C, of types c1c2 . . . c,, 
respectively, with word ioil . . . i,, the capacity is the set of y/x: c such that 
y/xc Efb(a, cl), y/xc EJ~(c~, c~+~), k = 1 . . . n - 1 and y/x:c E&(c,, b). 

Note that only the types of entities involved in this definition are significant, not 
their specific identities. Also recall our convention by which the two occurrences 
of y/x: c above are either both read as y/x or both as y/xc. 

We are now ready to define the flow function. 

Definition 6. For every state h define theflow function flowh: SUBh x SUBh + 
2TxR by flowh(A, B) equal to the union of the capacity of all paths in state h from 
A to B. By convention flowh(A, A) is T X R. 

The convention regarding flowh(A, A) is consistent with the underlying intuition 
and is convenient. 

Computation of flowh is straightforward in principle and of polynomial com- 
plexity in ] SUBh ] [ 151. It is convenient first to compute the flow of ticket types 
with the copy flag. This can be done separately for each ticket type y/xc by 
computing the transitive closure of ((A, B) ] there exists link”(A, B) with capacity 
including y/xc). It is then easy to account for ticket types that do not carry the 
copy flag since such tickets can be copied at most over a single link. Assigning a 
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cost of 0( ] SUBh ] ‘) steps for each transitive closure computation, the entire 
computation requires 0( ] T x R 1 * I SUBh ] 3, steps. 

4.2 MAXIMAL STATES. The fundamental issue in analysis is to predict behavior 
of the flow function. This is especially so since create and demand operations are 
authorized solely by the scheme, whereas copy is authorized by both the scheme 
and the distribution of tickets. Because flow is monotonic, for a given pair 
of subjects it can only increase in derived states. From this fact we show in 
Section 4.3 that there exists a derivable state with the maximum value of flow 
between all subjects in SUB’. We call such a state a maximal state. In general, the 
maximal state is not unique. Indeed, the system can continue to evolve indefinitely 
by creation of new entities. A maximal state is a worst-case concept and will be 
derived only if all subjects cooperate toward this end. 

Let flow* denote the flow function in a maximal state. By definition, flow* 
specifies the ticket types that can be copied from A to B, either directly or indirectly 
via some other subjects, in the worst case. We can then trivially determine whether 
a specific ticket can be copied from A to B. The safety problem [5] poses the 
question whether or not it is possible to have a derivable state with Y/x : c in 
dam(B). The flow* function allows us to answer this question by asking the 
following question: Is there any subject A who possesses Y/xc in the initial state or 
can demand Y/xc and r(Y)/x : c E flow*(A, B)? 

Before formalizing the notion of maximal states and proving their existence, we 
present an example to illustrate changes in the flow function. The example is 
intended solely to demonstrate the concepts and does not have a meaningful 
practical interpretation. We use the following scheme: 

Scheme IX 

(1) TS= (a), TO= 4 
(2) RI= 4, RC= (s:c, r:c) 
(3) link(X, Y) = Y/s E dam(X) A X/r E dam(Y) 

(4) .k 4 = b/SCI 
(5) d(a) = M-1 
(6) cc(a) = (4 
(7) Ma, a) = Wsc, a/r) I b4fl4 

The requirement that X/r E dam(Y) in the definition of link is a technicality since 
Y can always demand this ticket. 

For this scheme consider an initial state with two subjects A and B, both of type 
a, with dam’(A) = (B/s) and dam’(B) = 4. Figure la shows this state, where the 
contents of dam(A) and dam(B) are listed within the circles labeled A and B, 
respectively. Since there is no link, both flod(A, B) and flow’(B, A) are empty. 

Let us see how this system evolves without create operations. B can demand the 
ticket A/r, thereby establishing link(A, B), as shown in Figure 1 b, with the directed 
edge from A to B indicating link(A, B). Since B cannot get the A/s ticket, no more 
links can be established, and the maximum value of flow with respect to A and B 
has been realized in this state. We call such a state a no-creates maximal state, 
identified by the symbol #. By inspection of Figure lb it is evident that 
flow#(A, B) = (a/SC), while flow#(B, A) = 4. 

Note that the # state is not unique. For instance, both A and B can, respectively, 
demand the tickets A/r and B/r, but this does not affect flow since these tickets do 
not establish any links. It should be apparent that a # state can be easily computed 
in general simply by executing copy and demand operations until the flow function 
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(b) 

FIG. 1. Evolution of flow: (a) initial state; (b) no- 
creates maximal state; (c) subject A creates subject C, 
(d) maximal state. 

C 

(4 

(4 

stabilizes. Straightforward algorithms for this purpose can be easily constructed 
with complexity polynomial in ] SUB’ ] [ 151. Since the number of subjects does 
not change, by our earlier discussion the flow function for any derivable state can 
be computed in 0( ] T x R ] * ] SUB’ ] 3, steps. If there are N link predicates, there 
are no more than N * ] SUB’ ] 2 links that exist in a # state. So the flow function is 
evaluated no more than N * I SUB’ ] 2 times before it stabilizes. This gives us an 
upper bound of O(N * ] T x R 1 * ] SUB’ ] “) steps for computation of flow#. 

Now consider further evolution of the system with create operations permitted. 
Let A create subject C of type a. By the create-rule this operation establishes 
link(C, A) and also places C/SC in dam(A), as shown in Figure lc. Now C/SC can 
be copied from dam(A) to dam(B), and C can demand the ticket B/r. This sets up 
link(B, C), as shown in Figure Id. In conjunction with link(C, A) we now have a 
flow of {U/SC) from B to A. By inspection offit is evident that flow can at most be 
(U/SC) so the flow between A and B cannot be increased any further. We call such 
a state a maximal state identified by the symbol *. 

The * state is not unique. Indeed there typically are an unbounded number of 
such states. For example, from the state of Figure Id the system can continue to 
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evolve indefinitely by creation of new subjects. The important point is that 
this can no longer increase the flow between A and B. Our example shows 
that, in general, flow’(A, B) is a subset of flow#(A, B), which, in turn, is a subset 
of flow*(A, B). The fundamental analysis question in SPM is to compute a 
maximal state. Before we consider this problem, we must first show that maximal 
states exist. 

4.3 EXISTENCE OF MAXIMAL STATES. The concept of maximal state is defined 
in terms of the initial set of subject. To focus on changes in flow with respect 
to subjects in SUB’, we introduce the following notions of reducibility and 
equivalence. 

Definition 7. A derivable state h is O-reducible to a derivable state g written 
h 5, g if and only if 

(VA, B E SUB”)[flowh(A, B) C flowg(A, B)]. 

For a given system two derivable states h and g are equivalent written h =. g if and 
only if h so g and g 5, h. 

Because of its focus on the initial set of subjects, this equivalence relation 
partitions the derivable states into a finite collection of equivalence classes. For 
future reference we state this as a lemma. 

LEMMA 8. For every system there is a finite number of equivalence classes of 
derivable states. 

PROOF. For every pair of subjects in SUB’, flow can take on at most ] 2TxR ] 
distinct values. Hence there are at most ] SUB’ ] * * I 2TxR I distinct equivalence 
classes, which is clearly finite. 0 

We are now ready to formalize the notion of maximal state. 

Definition 9. For a given system, m is a maximal state if and only if m is 
derivable and for every derivable state h, h so m. 

Clearly all maximal states are equivalent. The flow function in a maximal state 
completely defines the potential for copying tickets between subjects present in the 
initial state. 

The existence of maximal states is a consequence of the monotonic nature of 
state transitions in SPM. Consider a state h in which operation op is authorized. If 
op is a demand or copy operation, it continues to be authorized in every state 
derived from h because the conditions on which the authorization depends cannot 
be revoked. If op is a create operation, the situation is slightly different because 
each create operation is unique and cannot be repeated. We can account for creates 
by the formulation: If op is authorized in state h, then in every history applied to 
h either op will have occurred or will continue to be authorized. This leads to the 
following property. 

LEMMA 10. Given an arbitrary finite collection A? of derivable states, there 
exists a derivable state m such that for every h E x h so m. 

PROOF. The proof is by induction on size of&T The basis follows by setting &” 
to 4 and m to the initial state. Assume the lemma holds for all R’ of size n and 
consider 3 of size n + 1. Then GY’ = FU (hJ, where 15 1 is n. By induction 
hypothesis there is a derivable state g that satisfies the lemma for g For the 
induction step we show for every pair of derivable states g, h there exists a derivable 
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state m such that g 5, m and h so m. Let g and h be established by histories G 
and H, respectively. Let N be any interleaving of G and H that preserves the 
relative order of the transitions within G and H. Construct M by eliminating the 
second occurrence of every duplicate create operation in N. That every transition 
in M is legal follows from the discussion above. Let m be the state established 
by M. By construction every path in state g, and every path in state h, is duplicated 
in state m. That completes the induction step and the lemma follows. q 

Proving the existence of maximal states is now straightforward. 

THEOREM 11. For every system there exists a maximal state. 

PROOF. By Lemma 8 there is a finite number of equivalence classes of derivable 
states. Let &” be a collection of derivable states that contains exactly one 
representative from each equivalence class. The theorem follows by applying 
Lemma 10 to X 0 

This proof is nonconstructive and thereby does not provide a method for 
computing maximal states. In Section 4.2 we demonstrated that in order to derive 
a maximal state from the initial state we generally need to create new subjects. The 
problem is to determine which new subjects need to be created. Our conjecture is 
that in the general case this is an undecidable problem for SPM and we can only 
offer approximations [ 151. We do have exact solutions in several special cases of 
interest, one of which we discuss in the remainder of this paper. 

5. Maximal States for Acyclic Attenuating Schemes 

In this section we show how to compute a maximal state for systems with acyclic 
attenuating schemes. The importance of this result is underscored by our conjecture 
that most, if not all, schemes of practical interest will turn out to have an acyclic 
attenuating formulation. This conjecture is based on our failure to construct any 
realistic scheme that cannot be formulated as an acyclic attenuating scheme. In 
particular, the schemes discussed in Section 3 and in [ 161 and [ 181 are all either 
acyclic attenuating or can be easily reformulated to be acyclic attenuating. 

Because the authorization for creates and demands is entirely in terms of types, 
we can assume without loss of generality that all create operations occur first, 
followed by demand operations and finally followed by copy operations. We say 
such histories are canonical. Formally we have the following property. 

LEMMA 12. Every derivable state can be derived by a canonical history. 

PROOF. Let history H derive state h. Obtain H’ from H by rearranging the 
operations in H to conform to the canonical form while preserving the relative 
order of each kind of operation. Because creates are authorized by types and their 
relative order is preserved, these operations in H’ are legal. Similarly, the demand 
operations in H’ are legal. Every copy operation is preceded in H’ by all the 
operations that preceded it in H and therefore is legal. Thus H’ is a canonical 
history that derives h. Cl 

The most troublesome aspect in deriving a maximal state is the create operation. 
At the same time, the no-creates maximal state is trivially computed. Our objective 
is to reduce the former problem to the latter one. By Lemma 12 we know that all 
create operations can be assumed to occur at the beginning of a history, so, in 
particular, a maximal state can be derived by such a history. The real problem 
then is to determine the initial sequence of creates needed for this purpose. 
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Our strategy for computing a maximal state is as follows. From the given initial 
state we first derive a state u entirely by create operations, with the objective that 
entities in state u will account for all possible entities that can exist. We achieve 
this by defining a mapping u, read surrogate, from all possible entities to entities 
in state u such that entity A is simulated by u(A). In particular, u maps every entity 
present in the initial state to itself. In our proof we show that for every history H 
that derives h from the initial state there exists a history G, without create operations, 
that derives g from u such that flowh(A, B) C flowg(a(A), u(B)). Since G has no 
creates, the maximal state for the given system is the no-creates maximal state that 
results from u as the initial state. If the construction of u introduces only a 
polynomial number of new subjects, the entire computation can be done in 
polynomial time. The remainder of this section elaborates and formalizes this 
argument in context of acyclic attenuating schemes. 

5.1 THE SURROGATE FUNCTION. For an acyclic scheme, by definition cc is 
acyclic. For the moment assume cc contains no loops. Consider a subject A of 
type a. We say A is unfolded if A creates one entity of each type b such that 
cc(a, b). For each b the entity created in this manner is called the b-surrogate 
of A. The idea is that the b-surrogate of A will simulate all type b children of A. 
To account for descendants of A’s children, we apply the unfolding construction 
recursively to the surrogates of A, and so on, until all descendants of A are 
unfolded. Because cc is acyclic and without loops, this construction eventually 
terminates. At this point we say A is fully unfolded. The initial state is fully unfolded 
if all subjects in SUB’ are fully unfolded. 

If cc contains loops, we first eliminate the loops and fully unfold the initial state. 
Then, for every A in the resulting state such that cc(~(A), T(A)), we let A create A’ 
of type 7(A). The intention here is that the r(A) children of A will be simulated by 
A itself rather than by A’. Why then create A’ at all? The reason for this goes back 
to the motivation underlying our attenuating restriction on create-rules for loops 
in cc; that is, it is possible this create operation may generate copiable control 
tickets for A in dam(A). 

We now formally define this construction. 

Dejinition 13. Given any initial state 0 with an acyclic attenuating scheme 
derive the fully unfolded state u as follows: 

(1) Letcc’=cc-((a,a)laETSJ. 
(2) Mark all subjects in SUB’ as folded. 
(3) While there exists a folded subject A do 

Mark A as unfolded 
For all b such that cc’(r(A), b) do 

Let A create B of type b 
Call B the b-surrogate of A 
If B is a subject mark then mark it as folded 

(4) For all subjects A in the resulting state do 
If cc(~(A), T(A)) then let A create a subject of type 7(A) 

Clearly each create operation in this construction is authorized by cc, so u is a 
derivable state. Because of the absence of cycles and loops in cc’, this construction 
is guaranteed to terminate. 

LEMMA 14. The construction of Definition 13 terminates. 
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PROOF. We need to show that step 3 terminates. Consider A E SUB’. The 
descendants of A generated by step 3 form a tree with A at the root and each 
created entity a child of its creator. Because each subject creates only one child of 
each type, each node in the tree has a finite number of children. If we follow a 
path in this tree from the root to any of A’s descendants, the types of entities 
encountered in this path must all be different; otherwise cc’ contains a cycle or 
loop. Since all nodes in this path, except the last one, must be subjects, the 
maximum length of such a path is 1 TS 1 + 1. Hence the depth of the tree is 
finite. IZI 

Next we define a mapping to relate each entity that can be created to the entity 
in state u that simulates it. 

Definition 15. Given any initial state with an acyclic attenuating scheme, for 
every derivable state h define the surrogate function a: ENTh + ENT” as follows: 

(1) If A E ENT”, then a(A) = A. 
(2) If A creates B and T(A) # T(B), then a(B) = T(B)-surrogate of a(A). 
(3) If A creates B and 7(A) = T(B), then u(B) = u(A). 

It is evident that u preserves types; that is, T(u(A)) = 7(A). 

We demonstrate the construction of Definition 13 in Figure 2a. Let cc(a) = 
(a, b) and cc(b) = lb). Let A be a subject of type a in the initial state. In con- 
structing u, A creates a child B’ of type b. B’ is the b-surrogate of A, while A itself 
is the u-surrogate for A. Also A creates A’ of type a and B’ creates B” of type b. 
Each edge in Figure 2a connects a created subject and its creator. Now assume that 
the actual creates that take place are as shown in Figure 2b, where all Ai’s are of 
type a and all Bi’s of type b. By Definition 15 we have the following values for a: 

u(A,) = a(Az) = u(A3) = a(&) = u(A) = A, 
u(B1) = u(B2) = u(B3) = u(Bq) = u(Bs) = B’. 

Thus A will simulate itself and all the Ai’S while B’ will simulate all the Bi’s. 
Let us see how the create operations of Figure 2b are simulated by the create 

operations of Figure 2a. The creation of B, and BZ by A are both simulated by the 
creation of B’. Now both A1 and Az are mapped to A by u. This indicates that the 
creation of A1 and A2 should be simulated by A creating itself. Although this is 
somewhat curious, we can indeed pretend that A creates itself in Figure 2a. To do 
so, we must show that all tickets required by cr(u, a), with A playing the role of 
the creator and the created subject, are present in dam(A). This follows from the 
fact that cr(u, a) is attenuating. When A creates A’, by Definition 2 whatever A’ 
gets, A also gets. Moreover whatever A gets for A’, A also gets for itself. But 
this can be interpreted as A getting the tickets A/x:c for u/x: c or selfx: c in 
LEFT U RIGHT of cr(u, a). Thus we can pretend that A creates itself. 

This leads to the following property. 

LEMMA 16. For a system with an acyclic attenuating scheme, ifA creates B, 
then tickets that would be introduced by pretending that u(A) creates a(B) are 
present in dom”(a(A)) and dom”(u(B)). 

PROOF. If 7(A) # T(B), then u(A) indeed creates a(B) in constructing u from 
the initial state (step 3 of Definition 13). If 7(A) = 7(B), then u(A) = a(B). In 
constructing u then u(A) creates A’ of type 7(A) = T(u(A)) (step 4 of Defini- 
tion 13). By Definition 2 all tickets that would be introduced by pretending 
that u(A) creates itself are thereby present in dom”(a(A)). Cl 
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Lemma 16 is crucial because it suggests that in constructing the fully unfolded 
state u we have managed to account for all possible create operations. 

5.2 MAXIMAL STATES. We are now ready to prove the central result of this 
paper. Our objective is to show that every history for a given system can be 
simulated by a history without create operations applied to the fully unfolded state 
of Definition 13. 

THEOREM 17. For a system with an acyclic attenuating scheme, for every 
history H that derives h from the initial state there exists a history G, without 
create operations, that derives g from the fully unfolded state u such that 

(VA, B E SUBh)[frowh(A, B) Lflowg(a(A), a(B))]. 

PROOF. By Lemma 12 we may assume that H is in canonical form, that is, that 
all create operations occur first, followed by demand operations and then by copy 
operations. G is obtained from H by replacing the individual transitions of H as 
follows, while preserving the relative order: 

(1) Ignore all create operations. 
(2) Replace “A demands B/x : c” by “a(A) demands a(B)/x : c”. 
(3) Replace “copy A/x: c from B to C” by “copy u(A)/x:c from u(B) to u(C)“. 

We first establish the following assertions. 

(I) Every transition in G is legal. 
(II) A/x : c E domh(B) =+ a(A)/x : c E domg(a(B)). 

(III) For every i, link”(A, B) * linkf(u(A), u(B)). 

Assertion III follows trivially from II and is crucial to the second part of the proof. 
Assertions I and II are proved by induction on the number of copy operations 
in H. 

Basis case. Let there be no copy operations in H, so H consists of creates 
followed by demands while G consists entirely of demands. 
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Assertion I. By construction every operation “A demands B/x : c” in H is 
replaced by “a(A) demands a(B)/x : c” in G. Since u preserves types, the demand 
operation in G is legal. 

Assertion ZZ. Without copy operations there are only three ways by which 
A/x: c can appear in domh(B). If A/x : c E dam’(B), then a(A) = A and 
a(B) = B; so Assertion II is trivially true. If A/x : c E domh(B) because of a create 
operation in H, Assertion II follows from Lemma 16. Finally, if A/x : c E domh(B) 
because of a demand operation, then Assertion II follows from the corresponding 
demand operation in G. 

Induction step. Assume Assertions I and II are true for every history with 
k copy operations and consider a history H with k + 1 copy operations. Since 
H is in canonical form, it consists of an initial sequence H’, with k copy opera- 
tions followed by a single copy operation. Let h’ be the state derived by H’. Let 
G’ be the required modification of H’. By induction hypothesis and assertion I, 
G’ is a history. Let g’ be the state derived by G’. Let the final operation of H 
be “copy A/x : c from B to C”. By construction the final operation of G is “copy 
a(A)/x : c from a(B) to u(C)“. 

Assertion I. For the final operation of H to be legal the following conditions 
must be true for some i: 

(1) A/xc E domh’(B). 
(2) link!‘(B, C). 
(3) 44/x: 4 EJX49, T(C)). 

By induction hypothesis and Assertion II it follows that the first two conditions 
above imply, respectively, that 

(1) u(A)/xc E domg’(u(B)), 
(2) linkF’(u(B), u(C)). 

Since (r preserves types it follows from the third condition above that 

(3) 4dWx: 4 ~fi’(~(dV), 4uW). 

So the three conditions required to authorize the final operation of G are true in 
state g’ and the final operation in G is legal. 

Assertion ZZ. h differs from h’ at most by A/x : c E domh(C). By construction 
the final operation of G ensures that a(A)/x : c E domg(a(C)). This completes the 
induction step. 

It remains to prove that (VA, B E SUBh)[flow”(A, B) C flowg(a(A), u(B))]. We 
do so by showing that for every pathh from A to B there is a pathg from u(A) to 
u(B) with the same capacity as the pathh from A to B. The proof is by induction 
on the number of links. For the basis case consider a pathh from A to B of 
length 1; that is, linkF(A, B). By Assertion III we have linkf(u(A), u(B)). Since u 
preserves types, the basis case is true. Assume the hypothesis is true for every pathh 
of length k and consider a pathh from A to B of length k + 1. Then there is some 
C with a pathh from A to C of length k and link,h(C, B). By induction hypothesis 
there is a path8 from u(A) to u(C) with the same capacity as the pathh from A to 
C. By Assertion III we have link;(u(C), u(B)). Since u preserves types, it follows 
there is a pathg from u(A) to u(B) with the same capacity as the pathh from 
AtoB. Cl 
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The essence of Theorem 17 is that all histories applied to the initial state can be 
simulated by histories without create operations applied to the fully unfolded 
state u. Let #u be the no-creates maximal state that results from u as the initial 
state. We have the following corollary. 

COROLLARY 18. For a system with an acyclic attenuating scheme #u is a 
maximal state. 

PROOF. From Theorem 17 and definition of #u, for every history H that derives 
state h from the initial state 

(VA, B E SUBh)[flowh(A, B) C flow#“(a(A), a(B))]. 

In particular, (VA, B E SUB”)[flowh(A, B) C flow#“(A, B)], so h so #u. q 

Note that flow#” also provides a bound on the flow involving subjects created 
subsequent to the initial state in terms of their surrogates. That is, 

(1) For A, B E SUB’, flow*(A, B) = flow#“(A, B). 
(2) For A, B E SUBh - SUB’, flow*(A, B) G flow#“(a(A), a(B)). 

If we wish to compute flow*(A, B) more precisely in the second case, we can apply 
the unfolding construction to a state in which A and B have been created. 

Clearly the #u state is derivable. To derive #u from u requires time polynomial 
in ] SUB” I. For each subject A E SUB’ the construction of u from the initial state 
introduces a constant number of new subjects determined by r(A). Thus the entire 
computation is polynomial in ] SUB’ ]. We take this as evidence that the compu- 
tation is tractable. We mention that ] SUB” ] may exceed ] SUB’ ] by a factor 
exponential in ] TS I. In the worst case the straightforward algorithms for computing 
flow’” will then be exponential in ] TS I. This will happen only if cc is highly 
nonsparse. At any rate this exponential factor involves ] TS ] rather than ] SUB’ ] 
and may be tolerable. 

6. Conclusion and Discussion 

This paper has focused on the problem of balancing generality and analyzability 
in a protection model. We defined the Schematic Protection Model (SPM) with 
the key idea of strong typing of entities. We demonstrated that for acyclic atten- 
uating schemes analysis of systems specified in SPM is tractable. The importance 
of this result is underscored by our conjecture that most, if not all, schemes of 
practical interest will turn out to have an acyclic attenuating formulation. This 
conjecture is based on our failure to construct any realistic scheme that cannot be 
formulated as an acyclic attenuating scheme. In particular, the schemes discussed 
in Section 3 and in [ 161 and [ 181 are all either acyclic attenuating or can be easily 
reformulated to be acyclic attenuating. 

SPM offers a significant advantage over the access matrix from a design view- 
point. SPM provides a “high-level” structure in contrast to the “low-level” structure 
of the access matrix. The much richer structure of SPM makes for more convenient 
specification of policies. Even without formal analysis this makes it easier to 
formulate and understand a SPM specification of a dynamic authorization policy. 

In comparing the generality of SPM and the access-matrix model of Harrison 
et al., [5], one obvious difference is the lack of revocation in SPM. We have by- 
passed the issue of revocation in SPM by appealing to the restoration principle that 
allows only those revocation policies in which revocation itself can be undone. 
This approach has the advantage that our results will not depend on the correct 
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working of a revocation mechanism. At any rate, SPM must be compared with the 
access matrix without revocation, that is, the monotonic access matrix [4]. Any 
SPM scheme can be expressed in the latter formalism by specifying the rules of the 
scheme for the copy, create, and demand operations by a straightforward construc- 
tion. On the other hand, in the access-matrix formulation the copy flag is not 
necessary for a copy operation. Also the authorization for a copy operation can be 
made to depend on tickets outside the domains of the two subjects in question. So 
it appears that the access-matrix formulation is able to express directly rules that 
contradict the spirit of SPM. But there may be ways of stating the same rules in 
some indirect manner in SPM. The exact relationship between SPM and the 
monotonic access matrix appears to be a difficult question for which we do not 
have a precise answer as yet. 

In comparison with the take-grant model, SPM is much more general, as evident 
from Section 3. We have shown that the take-grant model can be specified as a 
particular SPM scheme. We note that SPM is an outgrowth of the author’s earlier 
work on the Schematic Send-Receive (SSR) model [ 15- 171. SSR itself is based on 
Minsky’s send-receive transport model [ 131. SSR adopts some simplifying assump- 
tions and has a set-theoretic formulation in contrast to Minsky’s formulation, 
which has a production-rule flavor. 

The analysis developed in this paper is based on the worst-case concept of 
maximal state. In practice it is desirable to analyze systems under assumptions 
about the behavior of specific subjects. For instance in the departmental example 
of Scheme IV, essentially any state is safe because of the discretionary power of the 
department head. It would be interesting to analyze such a system under the 
assumption that the department head does not exercise his or her discretionary 
power to give access to internal documents to outsiders. In SPM, analysis with 
such behavioral assumptions can be reduced to worst-case analysis. If the depart- 
ment head will not exercise his or her discretionary power, we may assume that 
the value off(heud, out) is 4 rather than (z&c/x]. SPM, being a model rather than 
a mechanism, does not insist that behavioral restrictions built into a scheme be 
enforced at run time. Any restriction imposed by the scheme can be implemented 
by one or more of the following options: 

(1) Enforce the restriction at run time. 
(2) Assume subjects will honor the restriction. 
(3) Prove subjects will honor the restriction. 

The second alternative allows us to incorporate behavioral assumptions as part of 
a scheme. 

In this paper we have been primarily concerned with the analysis aspect of SPM. 
Regarding specification, we demonstrated a few simple examples. More extensive 
case studies are discussed in [ 161 and [ 181. Further work is needed in this area. 
In particular the SPM formulation of a policy is not unique. We saw this in 
Section 3.3 where the take-grant model was specified first as an acyclic non- 
attenuating scheme and then as an acyclic attenuating scheme. We need some 
formal understanding of what it means for two specifications to be equivalent. We 
also need a methodology for developing a specification in SPM. Finally even 
though we have chosen to bypass the issue of specifying policies for revocation and 
deletion by appealing to the restoration principle for analysis purposes, we do need 
a formalism for specifying these policies. 

In addition to specification and analysis of a policy, there is the all important 
issue of implementation. The goal regarding implementation is that a protection 
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model should permit a variety of implementations with attendant trade-offs for a 
given policy. That there are alternate specifications for the same policy in SPM is 
a possible advantage of SPM, since the specification can then be tailored to suit a 
particular mechanism. There is also the question of designing a mechanism that 
implements the SPM framework in toto. In a tightly coupled environment such a 
mechanism should be no more complex than some of the existing capability-based 
systems [9]. We foresee no conceptual hurdles in building such a mechanism. Of 
course, plenty of details need to be worked out and our beliefs must be validated 
experimentally. Extending the mechanism to a loosely coupled distributed 
environment is a more challenging endeavor. 
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